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Abstract

Confidence estimation is essential for the re-
liable deployment of large language models
(LLMs). Existing methods are primarily de-
signed for factual QA tasks and often fail
to generalize to reasoning tasks. To address
this gap, we propose a set of training-free,
graph-based confidence estimation methods tai-
lored to reasoning tasks. Our approach mod-
els reasoning paths as directed graphs and es-
timates confidence by exploiting graph proper-
ties such as centrality, path convergence, and
path weighting. Experiments with two LLMs
on three reasoning datasets demonstrate im-
proved confidence estimation and enhanced per-
formance on two downstream tasks.

1 Introduction

Confidence estimation quantifies how certain a ma-
chine learning model is in its output. Higher con-
fidence typically suggests a greater likelihood that
the prediction is correct (Zhang et al., 2024b; Yang
et al., 2024, 2025). This capability is critical in
real-world applications, particularly in high-risk
domains, where over-confidence can have serious
consequences (Fadeeva et al., 2023; Zhang et al.,
2024a, 2025a,b). When confidence is low, alter-
native mechanisms (e.g., model self-reflection or
information retrieval) can be activated to enhance
overall trustworthiness.

Most prior work on confidence and uncertainty
estimation focuses on factual QA tasks (Kuhn et al.,
2023; Xiong et al., 2024; Fadeeva et al., 2023;
Zhang et al., 2024a). However, when applied to
reasoning tasks, existing methods often fail due
to two key differences between factual and reason-
ing QA: (1) model outputs in the latter are longer
and include intermediate steps before the final an-
swer; and (2) these intermediate steps are logically
connected, unlike factual texts where facts can be
verified independently (Zhang et al., 2024a; Jiang

et al., 2024). Existing methods to estimate the con-
fidence in reasoning tasks that focus solely on the
final answer consistency (Wang et al., 2024a; Lyu
et al., 2024) are thus insufficient.

In this paper, we propose a series of novel,
training-free, graph-based methods for confidence
estimation in reasoning tasks. The graph struc-
ture can effectively capture the logical connections
among different reasoning paths. Given a ques-
tion and several independently sampled reasoning
steps, we construct a directed graph to represent the
reasoning process. Confidence estimation is then
formulated using three graph-theoretic concepts:
centrality, path convergence, and path weighting.
Our approach is model-agnostic and can be applied
directly to any language model.

We evaluate our methods on two language mod-
els, Llama3.1-8B (Meta, 2024) and Gemma2-9B
(Gemma Team et al., 2024), using three reasoning-
intensive benchmarks: MATH500 (Lightman et al.,
2024a), MMLU-Pro (Wang et al., 2024b), and
FOLIO (Han et al., 2022). Our method consis-
tently outperforms baseline approaches. To further
demonstrate its effectiveness in downstream tasks,
we apply it to selective self-reflection and LLM cas-
cading, achieving improved overall performance
with fewer reflection and cascading steps.

2 Related Works

Confidence Estimation in Reasoning. While
most prior work on confidence estimation has fo-
cused on factual question answering, there is grow-
ing interest in applying similar techniques to rea-
soning tasks (Razghandi et al., 2025; Li et al.,
2025). Wang et al. (2024a) and Lyu et al. (2024)
demonstrate that self-consistency can improve cali-
bration in reasoning, though their approaches only
consider final answers and ignore intermediate rea-
soning steps. The most similar work to ours is CoT-
UQ (Zhang and Zhang, 2025), which leverages self-
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prompt keyword extraction to enhance uncertainty
quantification. While both methods address uncer-
tainty in reasoning, our approach is from another
angel, focusing on the structural graph properties
of multiple reasoning paths rather than keyword
extraction from a single path.

Graph-Based Confidence Estimation. Graph-
based methods have been explored for confidence
estimation in short-form QA (Li et al., 2024; Lin
et al., 2023). In the context of long-form genera-
tion, Jiang et al. (2024) construct semantic entail-
ment graphs and use centrality measures to estimate
confidence. Our approach differs fundamentally
in both the graph construction methodology and
our focus on complex reasoning tasks. Yin et al.
(2024) propose token-level uncertainty as a guide
for reasoning processes, while Mo and Xin (2024)
introduce the Tree of Uncertain Thoughts, which
employs Monte Carlo Dropout to estimate uncer-
tainty at intermediate steps. Closest to our work,
Da et al. (2025) also apply graph-based modeling to
reasoning tasks; however, their graph construction
strategy differs significantly from ours.

LLM-as-a-Judge and Process Reward Models.
Another line of work focuses on verifying interme-
diate reasoning steps via process reward models
(PRMs) and LLM-as-a-judge frameworks. These
approaches train specialized reward models to as-
sess the correctness of each step in a solution trajec-
tory (Zhang et al., 2025c; Lightman et al., 2024b;
Wang et al., 2023; Han et al., 2025). For exam-
ple, Lightman et al. (2024b) compare outcome vs.
process supervision and introduce a PRM trained
on 800K human-annotated step-wise feedback la-
bels, significantly improving a model’s reliability
on math problems. Similarly, Zhang et al. (2025c)
integrate an LLM-as-judge to label intermediate
steps, finding that naive self-evaluation underper-
forms compared to using a large language model or
human feedback. Wang et al. (2023) present Math-
Shepherd, a PRM trained with automatically gener-
ated step-level supervision signals for math, which
is used to rerank solution steps and guide step-by-
step reinforcement learning. More recently, Han
et al. (2025) introduce a unified verifier, VerifiAgent,
that performs both meta-level consistency checks
and tool-assisted verification, achieving broad im-
provements with fewer samples and lower cost than
prior PRM-based methods. While effective in es-
timating the likelihood that each reasoning step
is correct, these methods typically require heavy

training and the use of specialized reward models,
making them resource-intensive. Therefore, we
do not include them in our comparisons, focusing
instead on techniques that do not demand such ded-
icated reward model training.

3 Methodology

Motivation Reasoning tasks can be solved
through multiple pathways, each potentially lead-
ing to the same or different answers. This structure
can naturally be modeled as a directed graph. The
edges represent the logical flow of reasoning and
nodes for each step. Each path from the question
to an answer corresponds to a distinct reasoning
route. Our central insight is that an answer sup-
ported by numerous, diverse paths is more likely to
be correct, reflecting the idea that “all roads lead
to Rome.” Based on this intuition, our method gen-
erates multiple reasoning chains, merges them into
a unified graph, and computes confidence from the
resulting structure.

3.1 Reasoning Chain Sampling
For a question Q, we generate N reasoning
chains by prompting the model, denoted as C =
{C1, C2, . . . , CN}. Each reasoning chain Ci can
be further decomposed into a sequence of steps,
i.e., Ci = {si1, si2, . . . , siTi}, where Ti is the num-
ber of steps in the i-th chain. The final answers
produced by the N reasoning chains are denoted as
A = {A1, A2, . . . , AN}. Identical answers across
different chains are merged into a single node, re-
sulting in a set of distinct answer nodes A′ ⊆ A,
with |A′| ranging from 1 to N .

3.2 Graph Construction
We then construct a directed graph G = (V, E) to
represent the multi-path reasoning process. Each
node corresponds to either a reasoning step or an
answer, and edges capture the structure of reason-
ing. Starting from the question node Q, we itera-
tively add reasoning steps from each sampled chain.
For each chain, we connect consecutive steps using
intra-edges, which are directed edges represent-
ing the forward logical progression within a sin-
gle reasoning path. In contrast, we also add inter-
edges between nodes from different chains that
express equivalent meaning (identified via an aux-
iliary model; see Appendix C). These bidirectional
inter-edges capture semantic equivalence across
chains. The construction procedure is described
in Algorithm 1. An simplified example with only
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Figure 1: Illustration of the graph construction. The left part shows the graph with only intra-edges. The middle
part includes inter-edges. The right part shows the graph after merging equivalent nodes for the PATHWEIGHT
method. Node weights are indicated inside the nodes.

Algorithm 1: Graph Construction
Input: Question Q and reasoning chains

{C1, . . . , CN} where Ci = {si1, . . . , siTi}
Output: Graph G = (V, E)

1 Initialize V ← {Q}, E ← ∅;
2 for i← 1 to N do
3 for j ← 1 to Ti do
4 Add node sij to V;
5 if j = 1 then

// First node in the chain
6 Add edge (Q→ si1) to E ;
7 else
8 Add intra-edge (si(j−1) → sij) to E ;

9 foreach pair (sij , skl) from different paths do
10 if Equivalent(sij , skl) then
11 Add inter-edge (sij ↔ skl) to E ;

12 for i← 1 to N do
13 if Ai /∈ V then

// Only keep unique answers
14 Add answer node Ai to V;

15 Add edge (siTi → Ai) to E ;

three paths and a limited number of intermediate
steps is shown in Figure 1.

3.3 Confidence Calculation

Given a question x and a model output y, the confi-
dence is denoted as Conf(x, y). With the graph G,
we formulate the confidence estimation problem in
the following ways:

Centrality-Based Confidence (CENCONF). In-
spired by the self-consistency approach (Wang
et al., 2024a; Lyu et al., 2024), which is essentially
the in-degree centrality of each answer node (Jiang
et al., 2024), we adopt Katz centrality to capture
more graph information. Katz centrality evaluates
a node’s influence by considering both immediate
neighbors and all other nodes that connect to it

through these neighbors, with the influence of dis-
tant nodes attenuated by a factor α. Intuitively, an
answer node that is reachable via numerous short,
semantically meaningful paths is more likely to
be correct. Further discussion on other centrality
metrics is provided in Appendix A.

Formally, let A denote the adjacency matrix of
the graph G. The Katz centrality score for node v
is defined as:

Katz(v) = α
∑

j

Avj Katz(j) + β

where α is the attenuation factor (with 0 < α <
1/λmax, and λmax being the largest eigenvalue of
A), and β is a constant representing the initial
centrality assigned to each node. This recursive
formula accounts for the influence of neighboring
nodes, with the impact diminishing over longer
paths. After computing Katz(v) for each candidate
answer node, we normalize the scores to obtain a
confidence measure:

Conf(Ai) =
Katz(Ai)∑

Aj∈A′ Katz(Aj)

Path Convergence Confidence (PATHCONV). In
PATHCONV, we leverage the number of distinct
reasoning paths from the question node Q to each
candidate answer node Ai ∈ A′. The underlying
intuition is that an answer reached by many distinct
(or partially overlapping) paths is more likely to be
correct. Formally, we define: paths(Q → Ai) =
{π | π = (Q → · · · → Ai) ∈ G}. The total
number of paths that reach any answer is:

Pall =
∑

Aj∈A′
|paths(Q→ Aj)|

The normalized confidence score is then com-
puted as:
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Conf(Ai) =
|paths(Q→ Ai)|

Pall

In cases where the graph G is large and enumer-
ating all paths is computationally intractable, we
propose a path sampling strategy to approximate
the path counts (Appendix B).

Path Weighting Confidence (PATHWEIGHT). In
PATHWEIGHT, we merge the nodes with equivalent
semantic meaning. Each merged node v is assigned
a weight w(v) (default 1) representing the number
of original steps combined. For a path π = (Q →
· · · → Ai) traversing nodes {v1, v2, . . . , vk}, we
define its score as:

pathScore(π) =
∏

v∈π

w(v)

The path weighting confidence is:

Conf(Ai) =

∑
π∈paths(Q→Ai)

pathScore(π)
∑

Aj∈A′
∑

π′∈paths(Q→Aj)
pathScore(π′)

PATHWEIGHT emphasizes paths that incorporate
commonly shared reasoning steps, thus boosting
the confidence of answers supported by converg-
ing and repeated logic. Compared to simple path
counting, the path weighting approach suppresses
the influence of isolated or idiosyncratic steps, re-
sulting in a more robust confidence estimation.

4 Experiments

4.1 Setup

Models and Datasets. We use the instruction-
tuned Llama3.1-8B (Meta, 2024) and Gemma2-
9B (Gemma Team et al., 2024). For evaluation, we
select MATH500 (Lightman et al., 2024a), MMLU-
Pro STEM (Wang et al., 2024b), and FOLIO (Han
et al., 2022), which span arithmetic, STEM, and
logical reasoning tasks. We deliberately select
tasks that yield a balanced mix of correct and in-
correct predictions, as this scenario best showcases
the value of confidence estimation. 1

Baselines and Metrics. Given the large number of
confidence elicitation methods, we only select rep-
resentative approaches. We also exclude methods
that cannot provide confidence to each response
(e.g., semantic uncertainty (Kuhn et al., 2023)).
For model self-reported confidence, we include:

1Datasets like GSM8K (Cobbe et al., 2021), where 7B-
scale models already achieve >90% accuracy, are less suitable
for evaluating uncertainty estimation methods, since always
predicting high confidence can still yield good calibration.

p(true) (Kadavath et al., 2022), and self-verbalized
confidence (Self-Verb) (Tian et al., 2023; Xiong
et al., 2024). For consistency-based methods, we
consider self-consistency (Self-Cons) (Wang et al.,
2024a; Lyu et al., 2024), Degree Matrix (Deg) (Lin
et al., 2023), and Eccentricity (Ecc) (Lin et al.,
2023). Additionally, we include LUQ (Zhang et al.,
2024a), a method specifically designed for long-
form outputs. To ensure a fair comparison, we
exclude PRMs (Wang et al., 2023; Zhang et al.,
2025c), as they require extensive training. For eval-
uation, we use AUROC (Bradley, 1997) as our
main metric following (Kuhn et al., 2023; Lin et al.,
2023). For comparison, we also include commonly
used metrics: Brier Score (BS) (Brier, 1950) and
Expected Calibration Error (ECE) (Naeini et al.,
2015).

Experiment Settings. We use NetworkX (Hagberg
et al., 2008) for graph construction and computa-
tion. The model is prompted to output in a clear
structure, explicitly illustrating each step. Addi-
tional experiment details, evaluation strategies and
prompts are provided in Appendix C and E.

4.2 Main Results

Across all three benchmarks and both founda-
tion models, our proposed graph-based meth-
ods consistently outperforms non-graph baselines.
For Gemma, PATHWEIGHT raised AUROC from
60.9% to 81.5% on MATH500 while cutting ECE
from 35.6% to 15.5%; PATHCONV pushed the
Brier Score down from 41.1% to 17.2% with a
comparable AUROC of 80.9%. Similar trends hold
for Llama, where PATHWEIGHT reaches an AU-
ROC of 84.0% (vs. 64.0%) and an ECE of 10.4%,
and PATHCONV attains the lowest Brier Score of
10.3%. CENCONF trails the two graph methods
but still outperforms baseline methods. The re-
sults confirm that modeling logical connections
and leveraging graph properties can significantly
improve confidence estimation for reasoning tasks.

5 Applications

We demonstrate two downstream uses of the
PATH-WEIGHT confidence estimator: selective
self-reflection and LLM cascading. Both interven-
tions are triggered only for the k ∈ {5, 10, 15}%
lowest-confidence instances. For comparison, we
also report a naive baseline that applies the same
intervention to all queries (k = 100%). Unless oth-
erwise specified, the initial response is generated
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MATH500 MMLU-Pro FOLIO

Method AUROC↑ BS↓ ECE↓ AUROC↑ BS↓ ECE↓ AUROC↑ BS↓ ECE↓
Gemma-2-9B-It

p(true) 60.9 41.1 35.6 59.4 40.7 35.6 62.3 39.5 34.9
Self-Verb 61.6 36.8 33.5 60.7 37.7 32.8 64.4 35.7 31.2
Self-Cons 75.3 24.4 21.6 69.8 25.5 26.9 76.1 24.1 19.4
Deg 63.7 36.3 30.3 61.3 36.6 33.0 64.0 35.9 30.1
Ecc 64.9 34.6 31.0 62.9 35.7 31.7 68.1 35.1 27.6
LUQ 75.0 25.1 20.9 69.6 26.2 27.4 74.9 25.4 21.0

CenConf 76.7 18.8 17.0 77.9 18.3 19.2 78.3 16.6 16.7
PathConv 80.9 17.2 16.6 78.5 18.7 16.6 81.2 21.0 11.2
PathWeight 81.5 17.8 15.5 80.8 19.1 13.1 82.9 15.4 13.2

Llama-3-8B-Instruct

p(true) 64.0 36.3 31.2 63.3 37.4 32.5 64.8 35.1 30.6
Self-Verb 65.5 33.3 28.4 64.7 34.2 29.1 66.5 32.3 27.0
Self-Cons 79.3 15.1 18.2 73.1 22.5 20.2 80.0 20.5 17.4
Deg 68.2 32.2 27.1 66.3 33.1 28.3 70.2 30.3 25.2
Ecc 68.8 31.5 26.0 67.1 32.6 27.2 70.8 29.4 24.1
LUQ 79.5 17.5 17.5 73.5 23.2 19.5 80.5 20.5 16.5

CenConf 83.0 16.1 11.7 81.0 19.7 16.3 80.5 17.2 13.2
PathConv 83.5 10.3 15.8 83.5 15.5 9.5 84.0 21.8 9.8
PathWeight 84.0 15.3 10.4 82.0 15.1 11.1 85.5 19.4 9.5

Table 1: Experiment Results on Gemma and Llama. All values are in percentages. The best three results are
highlighted in orange. The best results largely fall into our graph-based methods.

by Llama3.1-8B-Instruct.

Selective Self-Reflection. Self-reflection prompts
the same model a second time to critique and revise
its own answer. For each low confidence example,
we append a concise reflect-then-finalise prompt
(see Appendix E), asking the model to (i) identify
flaws and (ii) provide a corrected response.

Table 2 shows that reflecting on just the bottom
15% of low-confidence queries yields accuracy im-
provements of +3 to +5 points across three bench-
marks. Moreover, reflecting all the time (+100%)
proves suboptimal—and in the case of MATH500,
even reduces accuracy. This echoes prior findings
that excessive self-critique may cause correct an-
swers to degrade, due to sycophancy (Sharma et al.,
2024) or over-revision (Laban et al., 2023).

Dataset Base +5% +10% +15% +100%

MATH500 49.8 52.1 53.4 54.3 53.0
MMLU-Pro 47.3 50.2 51.5 52.4 50.8
FOLIO 63.5 66.0 66.8 67.2 64.8

Table 2: Accuracy (%) after Selective Self-Reflection
on the k% least-confident samples.

LLM Cascading. Instead of reflecting, we can
escalate low-confidence queries to a more capa-
ble (larger but slower) model. In our setting, low-
confidence cases are routed to Llama3-70B-Instruct

with the same prompt, while the rest are handled
by the original Llama3-8B-Instruct. As shown in
Table 3, cascading just the least-confident 15% of
queries yields accuracy improvements of around
+2 to +5 points.

Dataset Base +5% +10% +15% +100%

MATH500 49.8 51.2 53.0 54.6 58.1
MMLU-Pro 47.3 49.1 51.7 52.9 56.3
FOLIO 63.5 64.2 65.8 67.1 70.4

Table 3: Accuracy (%) when cascading the k%
least-confident queries to Llama3-70B-Instruct.

6 Conclusion

We present a suite of graph-based, training-free
methods for confidence estimation in reasoning
tasks. By modeling reasoning paths and their log-
ical connections as directed graphs, our approach
captures deeper structural signals often overlooked
by existing methods. Empirical results show con-
sistent improvements over baselines across mul-
tiple benchmarks. Our methods also improve
downstream applications such as self-reflection and
LLM cascading, highlighting the practical benefits
of our methods. We hope this work inspires fu-
ture research into graph-based reasoning and un-
certainty modeling in large language models.
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Limitations and Future Work

Compute/latency overhead. Our approach in-
creases inference-time cost by sampling multiple
reasoning chains and constructing a graph per in-
stance. This cost is shared with consistency-style
methods that similarly rely on sampling rather than
internal logits. In practice, the overhead can be
mitigated with early-exit heuristics (e.g., skipping
graph construction when all samples agree) and
by trading sample count for speed in settings with
tight latency budgets.
Black-box scope (no logits). We intentionally
design the method to be black-box and model-
agnostic, requiring only generated text. This broad-
ens applicability to APIs and closed models where
token-level logits are unavailable. A natural exten-
sion for white-box access is to inject logit-derived
signals into the graph: for example, (i) weight intra-
edges in a chain by token- or step-level probabili-
ties to reflect per-step confidence, and (ii) weight
inter-edges by the verifier’s (or auxiliary judge’s)
confidence in semantic equivalence. Such inte-
grations could further sharpen both path aggrega-
tion and centrality scores, but would narrow the
method’s deployment footprint to models exposing
internals. We leave this to future work.
Single-property estimators (no ensembling). To
isolate the contribution of distinct structural sig-
nals, we study three graph-based confidence esti-
mators independently. Prior work suggests that fus-
ing complementary confidence cues can yield more
robust estimators; ensembling these graph proper-
ties (e.g., via learned stacking, temperature-free
weighted voting, or calibration-aware mixtures) is
therefore a promising avenue we deliberately defer
to future work.
Sensitivity to graph construction. Our estimates
depend on faithful step decomposition and reli-
able cross-path equivalence detection. Noisy step
segmentation or spurious equivalence links can
perturb the topology (e.g., by creating shortcuts
or cycles), which in turn can bias centrality and
path counts. Robustness could be improved with
stricter agreement thresholds, cycle-aware prun-
ing, or by marginalizing over multiple equivalence
graphs rather than committing to a single one.
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Appendix

A More on Centrality-Based Methods

During our experiment, we tested other centrality
metrics such as closeness, pagerank, and Laplacian;
however, they showed inferior performance com-
pared to Katz centrality, which we utilize in Cen-
Conf. Katz centrality consistently yielded higher
AUROC and significantly lower calibration errors,
demonstrating superior effectiveness for this task.

Method AUROC↑ BS↓ ECE↓
Katz 83.0 16.1 11.7
Closeness 69.2 22.5 15.6
Pagerank 65.3 24.6 18.2
Laplacian 64.3 27.3 19.2

Table 4: Performance of Llama-3-8B-Instruct on
MATH500.

B More on PATHCONV

Algorithm 2 outlines a randomized method that tra-
verses the graph from Q up to a maximum path
length L, sampling M paths and accumulating
weighted counts for each candidate answer Ai.

B.1 Path Sampling Strategy

Algorithm 2: Path Sampling for Approxi-
mating Weighted Path Counts

Input: Graph G = (V, E), question node Q,
candidate answer Ai, sample size M ,
maximum path length L, attenuation factor
γ ∈ (0, 1)

Output: Estimated weighted path count P̂ (Q→ Ai)
1 Initialize accumulator C ← 0;
2 for m← 1 to M do
3 Set current node v ← Q;
4 Set path weight w ← 1;
5 for ℓ← 1 to L do
6 if v = Ai then
7 C ← C + w;
8 break the current sample;
9 Obtain successor setN (v) from G;

10 ifN (v) is empty then break;
11 Sample a node v′ uniformly fromN (v);
12 Update path weight: w ← w × γ;
13 Set v ← v′;

14 return P̂ (Q→ Ai)← C
M

;

The estimated weighted confidence for each an-
swer Ai is then incorporated into the overall nor-
malization:

Conf(Ai) =
P̂ (Q → Ai)∑

Aj∈A′ P̂ (Q → Aj)
.

B.2 Avoiding Loops
In our experiments, we observe that loops occasion-
ally appear in the graphs (less than 5% of cases).
This is mainly due to misjudgments in equivalence
checking. In such cases, we remove the loops by
discarding certain inter-edges in the loops.

C Experiment Details

We use vLLM (Kwon et al., 2023) for all model
inference. To find equivalent steps, we prompt a
Llama-3-8B-Instruct with temperature 0.

For path generation, we use the temperature 1
with 3-shot in-context learning. We generate 10
additional samples for graph construction or con-
sistency calculation. For fairness comparison, for
p(ture) and Self-Verb, we directly ask the model
whether each sampled answer is correct. For
consistency-based methods, if the answer does not
appear in the samples, it will be given a confidence
0. For all methods, the output scores are normal-
ized to the range [0, 1] before computing ECE and
Brier Score.

D Hyperparameters

Setup. Here we report the ablations conducted
with Llama-3-8B on MATH500. Our default set-
tings are α=0.1, N=10 sampled traces, and L=12
maximum path length.

Attenuation Factor α (for CENCONF)
Table 5 shows that α=0.1 yields the best AUROC
with a favorable ECE, validating our default.

Table 5: Ablation on attenuation factor α (CENCONF).

α AUROC (%) ECE (%)

0.01 79.5 14.1
0.1 (Default) 83.0 11.7
0.2 82.2 12.9
0.5 78.9 15.4

Number of Sampled Traces N (for
PATHWEIGHT)
Increasing N improves performance with dimin-
ishing returns (Table 6). N=10 provides a strong
cost–performance trade-off and is used as default.

Maximum Path Length L (for PATHCONV)
We observed average reasoning chains of roughly 5–
6 steps. Table 7 shows that L=12 avoids truncation
errors seen at L=5; larger caps (L≥15) yield no
meaningful AUROC gains and only modest ECE
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Table 6: Sensitivity to the number of sampled traces N
(PATHWEIGHT).

N AUROC (%) ECE (%)

3 79.1 16.2
5 81.7 14.0
10 (Default) 84.0 10.4
20 84.5 10.1

improvements, so L=12 remains our default for
efficiency.

Table 7: Impact of maximum path length L (PATH-
CONV).

L AUROC (%) ECE (%)

5 81.2 21.5
12 (Default) 83.5 15.8
15 83.6 13.4
20 83.6 12.6
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E Prompt

PROMPT FOR PATH GENERATION

Answer the following question. Break down your reasoning process into the
smallest possible steps. Each step should represent a single, minimal reasoning
action, and each step must logically follow the previous one. Use the following
format for each step:
Step N: Thought: [Provide a detailed explanation of your reasoning for this
step.]
Present your entire reasoning process in one cohesive response.
After completing all the steps, conclude with:
Final Answer: \boxed{[Your final numerical answer here without the unit or any
additional text]}
Ensure that your response strictly follows this format to maintain clarity and
consistency.
Question: {question}

Table 8: Prompt for Path Generation.

SELECTIVE SELF-REFLECTION PROMPT

Question: {question}
Previous Answer: {model’s earlier response}
Please review your previous answer. Identify any errors or flaws, and revise
your answer if necessary. For you final answer, output it in the following
format:
Final Answer: \boxed{[Your corrected final answer here]}

Table 9: Prompt for Self-Reflection.

EQUIVALENCE CHECKING PROMPT

You are tasked with identifying the equivalent reasoning step in Path B for a
specific reasoning step in Path A.
Context: Path A and Path B are sequences of reasoning steps.
Inputs:
Target Step: {A Step in Path A}
Steps in Path B: {All Steps in Path B}
Your Task: Identify the single step number in Path B that is equivalent to the
given step in Path A. The equivalent step must:

• Contain the same reasoning as the given step in Path A.

• Not contain additional or conflicting information.

If no such step exists, respond with "none".
Output Format: Provide only the step number (e.g., "5") or "none".

Table 10: Prompt for Equivalence Checking.
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