
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 31849–31874
November 4-9, 2025 ©2025 Association for Computational Linguistics

Text2Vis: A Challenging and Diverse Benchmark for Generating
Multimodal Visualizations from Text

Mizanur Rahman‡,*, Md Tahmid Rahman Laskar‡,§, Shafiq Joty¶,#, Enamul Hoque‡,*,
‡York University, §Dialpad, ¶Salesforce AI Research, #Nanyang Technological University

Abstract

Automated data visualization plays a crucial
role in simplifying data interpretation, enhanc-
ing decision-making, and improving efficiency.
While large language models (LLMs) have
shown promise in generating visualizations
from natural language, the absence of compre-
hensive benchmarks limits the rigorous eval-
uation of their capabilities. We introduce
Text2Vis, a benchmark designed to assess text-
to-visualization models, covering 20+ chart
types and diverse data science queries, includ-
ing trend analysis, correlation, outlier detec-
tion, and predictive analytics. It comprises
1,985 samples, each with a data table, natu-
ral language query, short answer, visualization
code, and annotated charts. The queries in-
volve complex reasoning, conversational turns,
and dynamic data retrieval. We benchmark 11
open-source and closed-source models, reveal-
ing significant performance gaps, highlighting
key challenges, and offering insights for future
advancements. To close this gap, we propose
the first cross-modal actor-critic agentic frame-
work that jointly refines the textual answer and
visualization code, increasing GPT-4o’s pass
rate from 26% to 42% over the direct approach
and improving chart quality. We also introduce
an automated LLM-based evaluation frame-
work that enables scalable assessment across
thousands of samples without human annota-
tion, measuring answer correctness, code ex-
ecution success, visualization readability, and
chart accuracy. We release Text2Vis at https:
//github.com/vis-nlp/Text2Vis.

1 Introduction

Data visualization transforms raw data into mean-
ingful visual representations, allowing users to gain
insights and make data-driven decisions (Aparicio
and Costa, 2015; Hoque et al., 2022). It is an inte-
gral part of the data science workflow, frequently

* Contact Emails: {mizanurr,enamulh}@yorku.ca

Date Closing Price

01/13/2025 234.40

....

02/03/2025 228.01

Query: What will be the next two days' closing prices for Apple stock
using a 3-day Simple Moving Average? Also plot the trend in Apple's
closing prices over the past 15 trading days.

Line ChartAnswer: 233.87, 232.63

Data Table (38 by 2)

Code

Figure 1: Example from the Text2Vis benchmark.
Input: A data table containing historical stock prices
and a query. Output: Python code for visualization, the
predicted answer, and an annotated textual explanation.
The chart is generated from the code.

used for exploratory data analysis, outlier detec-
tion, pattern recognition, and feature identification.
However, creating accurate and intuitive visualiza-
tions is challenging due to the need to correctly
interpret natural language queries, locate and, if
necessary, transform the relevant data, identify the
appropriate chart type, and generate the correct
visualization code (Shen et al., 2022). This prob-
lem integrates multiple modalities—visual repre-
sentation, natural language understanding, logical
reasoning, and code generation—making it more
challenging than traditional NLP tasks. Moreover,
this process typically requires expertise in data sci-
ence, programming languages, and visualization
libraries (e.g., Matplotlib, Vega-Lite (Satyanarayan
et al., 2016)), creating a significant barrier for non-
technical users (Ali et al., 2016; Waskom, 2021;
Bisong and Bisong, 2019). While natural language
interfaces (NLIs) like Tableau’s Ask Data (Tableau,
2025) could be helpful for non-technical users
as these NLI platforms can generate basic charts
from queries, they lack flexibility, automation, cus-
tomization, and advanced analytical capabilities.

LLMs have demonstrated strong performance
in code generation and data analysis (Nejjar et al.,

31849

https://github.com/vis-nlp/Text2Vis
https://github.com/vis-nlp/Text2Vis

Dataset Data
Type

Query
Type

Web Data
Retrieval

Conversa-
tional

Unans-
werable

Multistep
reasoning

Text
Annotations

Text
Explainability

Chart
Variety

NLP to
Python

Chart
Specification

WikiSQL (Zhong et al., 2017) Real NL2SQL ✗ ✗ ✗ ✗ ✗ ✗ SQL Only No N/A
nvBench (Luo et al., 2021) Synthetic NL2Vis ✗ ✗ ✗ ✗ ✗ ✗ 7 Types No Direct
NLV-Utterance (Srinivasan et al., 2021) Real Simple Agg. ✗ ✗ ✗ ✗ ✗ ✗ 10 Types No Direct
ADVISor (Liu et al., 2021) Real Aggregation ✗ ✗ ✗ ✗ ✓ ✗ 3 Types No Direct
VisEval (Chen et al., 2024) Real + Synth. Mid-Complex ✗ ✗ ✗ ✓ ✗ ✗ 7 Types Yes Direct

Text2Vis (Ours) Real + Synth. Complex Hard ✓ ✓ ✓ ✓ ✓ ✓ >20 Types Yes Open

Table 1: Comparison of Text2Vis with existing text-to-visualization benchmarks.

2025), making them promising for automated visu-
alization tasks (Liu et al., 2021; Hoque and Islam,
2024; Maddigan and Susnjak, 2023). In addition
to LLMs understanding natural language queries,
they can also identify the relevant data attributes
and the appropriate chart types for visualization.
By generating visualization code, LLMs can lower
the barrier for non-experts to explore data without
extensive technical expertise.

However, as LLMs advance in coding and rea-
soning—often rivaling human performance on
benchmarks—there is a growing need for more rig-
orous evaluations with complex, real-world tasks.
Existing text-to-visualization benchmarks often fail
to capture this complexity, limiting themselves pri-
marily to natural language to SQL translation or
basic visualizations that map explicitly mentioned
data columns to chart elements (Zhong et al., 2017;
Luo et al., 2021; Srinivasan et al., 2021; Liu et al.,
2021). In addition, most rely on rule-based ap-
proaches or declarative specifications like Vega-
Lite, which restrict flexibility and hinder support
for advanced customization or logic, unlike ex-
ecutable code generation. While the recent Vi-
sEval benchmark (Chen et al., 2024) evaluates
LLM-driven visualization generation, it lacks di-
verse chart types, real-world data science tasks, and
multi-step reasoning. Moreover, most queries in
this benchmark have explicit chart-type mentions
(e.g., “draw a line chart...”) rather than accommo-
dating open-ended queries.

Another major limitation of existing benchmarks
is their omission of concise textual answers along-
side generated visualizations, despite the fact that
users often create charts to address specific data-
driven questions. For example, as shown in Fig-
ure 1, a query asking for a 3-day moving average
to predict a stock’s closing price benefits not only
from the generated chart, but also from an answer
that clarifies the logic used. Such multimodal out-
puts—visual and textual—are essential for robust,
interpretable systems.

To address these gaps, we introduce Text2Vis, a
comprehensive benchmark for evaluating LLMs on

real-world text-to-visualization tasks. It features
1,985 diverse samples, each comprising a data table,
a natural language query, a short answer, visualiza-
tion code, and annotated charts. Unlike previous
benchmarks, Text2Vis covers over 20 chart types
and supports a wide range of realistic analytical
scenarios, including retrieval-augmented queries,
multi-turn conversations, multi-chart outputs, and
unanswerable questions (Table 1). It also covers
complex reasoning tasks such as statistical analysis,
trend forecasting, outlier detection (Figure 2).

To advance LLM capabilities, we propose a
cross-modal actor-critic inference framework that
jointly refines textual answers and visualizations
using multimodal feedback. This improves answer
accuracy and chart quality, outperforming direct
inference. We also introduce a fully automated
LLM-based evaluation framework to assess answer
and chart correctness, chart readability, and visual
accuracy—validated on 1,985 samples across 11
models, closely aligning with human judgments
and eliminating the need for manual annotation.

In summary, our contributions include:
(i) Text2Vis, a comprehensive benchmark featur-
ing 1,985 queries that reflect diverse, real-world
data science challenges, including complex
analytical reasoning and multi-step tasks; (ii) a
cross-modal actor-critic agentic inference
framework that simultaneously refines both
answer and visualization code, which significantly
enhances the accuracy, readability, and reliability
of generated outputs; (iii) a scalable LLM-based
evaluation framework that systematically as-
sesses answer correctness, visualization readability,
and chart accuracy—enabling consistent, large-
scale benchmarking without human annotation;
and (iv) extensive evaluations with 11 open-
and closed-source models, revealing significant
performance gaps and common failure patterns,
providing valuable directions for future research.

2 Related Work

Text-to-Visualization Benchmarks Existing text-
to-visualization benchmarks often oversimplify

31850

Question: Based on the given data of 'Value' over time
periods 1 to 3, predict the 'Value' at time period 5 using a
second-degree polynomial regression model. Provide
the predicted value as a number rounded to the nearest
whole number.

(e) Trend Prediction

Question: Assuming that 'Yes, would' responses
increase by 20% annually, 'No, would not' responses
decrease by 10% annually, and 'Depends' responses
remain constant, in which year will the 'Yes, would'
responses surpass the 'No, would not' responses?
Provide the answer along with a line chart that
visualizes the trends over time.

(a) Reasoning
Question: Analyzing the percentage distributions across
all age groups for both males and females, determine
whether there is an extreme outlier in the female age
group percentages using the 1.5*IQR method, and specify
the age group where this outlier occurs?

(b) Outlier Detection

Question: Analyzing the data for Albania and Dominica
from 2005 to 2008, which entity shows a stronger negative
linear correlation between the years and its data values?

(f) Correlation Analysis

(c) Summary Statistics
Question: Analyzing the distributions of exam scores
among the five universities, identify the university that
exhibits a bimodal distribution in exam scores. Calculate
the mean exam score for each mode, and then determine
the difference between these two means.

Question: Retrieve the global average surface
temperature data from 1980 to 2020. Based on this data,
calculate the increase in temperature over this period in
degrees Celsius.

(g) Web Data Retrieval

Question: By analyzing the data from 2001 to 2019,
determine whether the gap between female and male
percentages is widening or narrowing over time, and predict
the gap in 2025 using linear regression. Provide your answer
supported by a dashboard with detailed visuals.

(d) Multiple Charts

Figure 2: Examples of different question types used in data analysis, including trend prediction, reasoning, outlier
detection, correlation analysis, summary statistics, and retrieval-augmented tasks.

real-world analytical tasks by framing them as NL-
to-SQL translation—assuming visualizations can
be derived from SQL outputs—or by reducing the
task to visualization specification mapping (Zhong
et al., 2017; Luo et al., 2021; Srinivasan et al., 2021;
Liu et al., 2021; Chen et al., 2024). For example,
WikiSQL (Zhong et al., 2017) and nvBench (Luo
et al., 2021) focus primarily on NL2SQL tasks,
while NLV-Utterance (Srinivasan et al., 2021) and
ADVISor (Liu et al., 2021) map textual queries
to visualization specifications but do not support
complex analytical queries or multi-step reasoning.
Most rely on Vega-Lite rather than Python code,
limiting practical use in customizable workflows.
VisEval (Chen et al., 2024), adapted from nvBench,
is constrained by its small set of tables (146), lim-
ited chart variety, and explicit chart-type mentions
in queries, reducing its real-world relevance.

As summarized in Table 1, current benchmarks
have three core limitations: (1) limited coverage
of questions and chart types, (2) lack of multi-step
analytical reasoning, and (3) weak alignment with
real-world workflows such as web data retrieval,
conversational input, and unanswerable queries.
These gaps motivate the need for a more compre-
hensive benchmark, which we present in this work.

LLMs for Automated Visualization Visualization
generation has progressed from rule-based tem-
plates to deep learning and LLMs. Early meth-
ods relied on predefined templates but struggled
with ambiguity and scalability (Narechania et al.,

2020), leading to hybrid approaches like RGVis-
Net (Song et al., 2022) and ADVISor (Liu et al.,
2021), which improved data extraction and vi-
sualization generation. Recent LLMs have sig-
nificantly advanced code generation capabilities
(Hoque and Islam, 2024; Maddigan and Susn-
jak, 2023). Chat2VIS (Maddigan and Susnjak,
2023) applied prompt engineering for visualiza-
tions, while ChartLlama (Han et al., 2023) en-
hanced chart understanding through instruction tun-
ing. Yet, challenges in grounding, correctness, and
execution persist (Chen et al., 2024). We address
these gaps with a cross-modal agentic inference
framework that jointly refines answers and code
using multimodal feedback.

Visualization Evaluation Early works like ADVI-
Sor (Liu et al., 2021) and NLV-Utterance (Srini-
vasan et al., 2021) focused on verifying syntactic
correctness and manually inspecting visualizations
but lacked scalability for complex queries and large
datasets. Chen et al. (2023) used LLMs for in-
terpreting data and designing visualizations, but
relied on manual evaluation. Podo et al. (2024) pro-
posed a structured framework assessing code cor-
rectness, chart legality, and semantic alignment. Vi-
sEval (Chen et al., 2024) partially leveraged LLMs,
using GPT-4V only for readability scoring, while
relying on rule-based checks for code validity and
chart legality. Although LLMs show high agree-
ment with human judgments (Gu et al., 2024), their
broader use in evaluating visualizations remains

31851

limited. We propose a fully automated LLM-based
framework for assessing answer and chart correct-
ness, visual quality, and readability, enabling scal-
able benchmarking with minimal human effort.

3 TEXT2VIS

We curated and synthesized a diverse dataset of
data tables, queries, charts, and metadata. The
dataset creation involved three key steps: (1) data
table collection, (2) query generation and annota-
tion, and (3) dataset analysis.

3.1 Data Table Construction

We started with the existing ChartQA cor-
pus (Masry et al., 2022), which originally scraped
22K data tables from four diverse sources:
(i) Statista (Statista, 2024), (ii) Pew Research (Pew,
2024), (iii) Our World In Data or OWID (Pew,
2024), and (iv) Organisation for Economic Co-
operation and Development or OECD (OWID,
2024). From this collection, we manually curated
2001 high-quality tables based on complexity, di-
versity, and analytical richness.

To broaden the dataset variety and increase com-
plexity further, we generated 173 synthetic tables
using OpenAI o1-preview and Gemini Flash 1.5
Pro (Table 14), incorporating missing values, multi-
variable dependencies, and non-linear patterns.

3.2 Query Generation and Annotations

Query Generation and Expansion Three co-
authors of this paper, who are also experts in data
science, manually crafted 600 high-quality queries
reflecting real-world challenges such as trend anal-
ysis, statistical computations, correlation analysis,
outlier detection, comparisons, deviation analysis,
predictive modeling, time-series analysis, forecast-
ing, and geospatial analysis. These queries em-
phasize complex reasoning, making them more
challenging than those in existing benchmarks. To
expand this initial set, we leveraged multiple LLMs,
including OpenAI o1-preview, Gemini Flash 1.5
Pro, and Claude 3.5 Haiku. Using few-shot prompt-
ing, we generated 1,624 additional queries (see Ta-
ble 13), broadening the coverage of analytical tasks
and reasoning-based challenges. After manual ver-
ification, 239 table-query pairs were removed due
to issues with table quality or overly simple queries.
The final dataset comprises 1,985 samples: 1,935
based on curated tables, and 50 designed for web-
based data retrieval, providing a robust benchmark

for evaluating text-to-visualization models across
complex analytical tasks in real-world scenarios.

Visualization Code and Answer Generation
For each query, we generated visualization code
using OpenAI o1-preview based on two li-
braries, Matplotlib (Bisong and Bisong, 2019) and
Seaborn (Waskom, 2021), as these are among the
most versatile and widely used data visualization
libraries in Python. In addition, we generated short
answers, visualization summaries, and metadata,
including chart type and axis labels. All outputs
were manually reviewed, corrected, and refined to
ensure accuracy, clarity, and relevance.

3.3 Dataset Analysis

Data Table Statistics Our dataset consists of 1,985
data samples covering over 60 countries and di-
verse demographic and sectoral domains, including
finance, healthcare, politics, energy, technology,
demographics, and environment. It exhibits struc-
tural diversity, with tables containing an average of
10 rows (max: 1,000) and 3.2 columns (max: 15),
ensuring a mix of compact and extensive datasets.
In addition to clean data tables, the dataset also
contains noisy tables (191 tables) featuring missing
values or inconsistencies, as well as hybrid cases,
enabling robust evaluation of models handling real-
world inconsistencies.
Query Diversity To characterize query types, we
used GPT-4o to automatically categorize each
natural language query across three dimensions:
(i) Question type, (ii) Question complexity and
(iii) Task type. See Appendix (Table 19) for an
example prompt used in complexity classification.

Text2Vis supports a diverse set of question types
that evaluate various aspects of analytical reason-
ing and visualization generation (Table 2). While
most questions take a given data table and query as
input, expecting a specific answer as output (closed-
ended), others are open-ended, allowing for mul-
tiple possible visualizations Appendix A.3. 20%
questions involve multi-turn conversations, simulat-
ing natural dialogue in analytical workflows. Simi-
larly, while many questions provide data tables, a
small number of queries (3%) require models to
retrieve external data before generating visualiza-
tions. Additionally, certain questions expect mod-
els to produce multiple visualizations to explore
complex datasets (10%), reflecting real-world sce-
narios in dashboards and infographics where a sin-
gle visualization is insufficient. Finally, unanswer-

31852

Question Category (%) Question Complexity Task Type

Closed/
Open-Ended

Single query/
Conversational

Data Given/
Web-data Retrieval

Single/
Multi-Chart

Answerable/
Unanswerable

Easy Medium Hard Extra Hard Analytical Exploratory Predictive Prescriptive

90/10 80/20 97/3 90/10 89/11 343 245 1173 224 1098 686 191 10

Table 2: Distribution of question categories, chart types, question types based on complexity, and tasks type in Text2Vis.

able queries (11%) appear across all categories,
adding complexity by requiring models to recog-
nize when a valid response cannot be generated.
The overall query set is highly challenging, with
most questions categorized as hard (1,173) or extra
hard (224). Examples of different query types are
illustrated in Figure 2 and Appendix A.3.

The dataset spans a broad range of data sci-
ence tasks, including analytical (1098 queries), ex-
ploratory (686), predictive (191), and prescriptive
(10), capturing real-world multi-step and interac-
tive data exploration scenarios (Table 2). It also
demonstrates significant linguistic richness, with
an average question length of 217.87 characters
and 34.15 tokens, covering a vocabulary of 6,776
unique tokens. This ensures syntactic complexity
and variability. The combination of diverse data
sources, multi-faceted queries, and linguistic depth
makes Text2Vis a challenging and realistic bench-
mark for text-to-visualization models.
Code Diversity and Complexity Matplotlib and
Seaborn are two of the most widely used Python
libraries for visualization, and we provide code in
both to ensure broad compatibility and adaptability.
To measure the diversity of axis labels, we used
cosine distance between the TF-IDF vectors of the
axis labels (for both X and Y). The average dis-
tance was 0.97, indicating that our dataset includes
a wide range of unique labels, covering different
contexts and visualization types. In terms of code
complexity, our scripts average 33.74 lines of code,
1,146 characters, and 123.72 tokens. Additionally,
with an average of 5.34 comments per script, we
prioritize clarity and maintainability, aligning with
real-world visualization coding practices.
Visual Diversity Our dataset includes over 20 types
of visualizations, covering not only common charts
like bar and line charts but also more complex and
less frequent types such as treemaps, boxplots, wa-
terfall charts, and dashboard-style multi-chart vi-
sualizations (Figure 4). This diverse collection en-
hances model robustness by exposing it to a wide
range of chart types and visual styles (e.g., color,
layout). To quantify color diversity, we converted
images to LAB color space and computed pair-
wise Euclidean distances between dominant colors,

yielding a Mean CIEDE2000 (Sharma et al., 2005)
Color Distance of 13.9, indicating strong variation
in color schemes. For multi-modal feature anal-
ysis, we used OCR to extract chart text, derived
visual features using CLIP (Contrastive Language-
Image Pretraining) (Radford et al., 2021) - whose
effectiveness for representing chart images was val-
idated via a small controlled experiment, and com-
puted text embeddings via a Sentence Transformer
(Reimers and Gurevych, 2019). This produced a
Mean Cosine Distance of 0.69, highlighting strong
diversity in chart structures and annotations.

4 Methodology

4.1 Problem Formulation

We define the Text2Vis task as a text-to-
visualization generation problem that evaluates
how well a model can translate natural language
queries into a visualization annotated with con-
cise textual answers. The dataset consists of N ex-
amples, denoted as D = {ti, qi, ai, vi}Ni=1, where
each example includes a data table ti, a natural lan-
guage query qi, the corresponding short answer ai,
and the visualization code vi. The model is tasked
with generating both ai and vi based on ti and qi,
with vi producing an executable visualization code.

4.2 Models

We evaluated both state-of-the-art closed-source
models and open-source models to benchmark text-
to-visualization generation capabilities. For closed-
source models, we tested GPT-4o (OpenAI, 2024)
and Gemini 1.5-Flash (Team, 2024), which are
widely used for natural language understanding and
code generation. For open-source models, we prior-
itized deployment feasibility in the real-world and
mostly selected models with less than 10B parame-
ters. More specifically, we evaluated Qwen2.5-7B-
Instruct, Qwen2.5-7B-Coder (Yang et al., 2024),
Mistral-7B (Jiang et al., 2023), LLaMA 3.1-8B
(Grattafiori et al., 2024), DeepSeek-Coder-V2-Lite
(DeepSeek-AI et al., 2024) and DeepSeek-R1-
Distill-LLaMA-8B (Guo et al., 2025), as well as
CodeLlama-7B-Instruct (Roziere et al., 2023). For
CodeLlama, we also use its 13B and 34B versions.

31853

4.3 Text2Vis Inference Approaches

We use two approaches to assess the performance
of text-to-visualization models: a direct inference
and an agentic inference framework (Fig 3).

(i) Direct Inference: In this method, the model is
given a prompt containing a natural language query,
a data table and instructions to generate a JSON
response containing both a short answer and visu-
alization code. We evaluate three prompting strate-
gies: (a) zero-shot prompting, (b) 3-shot prompting,
and (c) retrieval-augmented 3-shot prompting with
dynamically selected examples (Appendix A.4).

(ii) Agentic Inference: We propose a cross-modal
actor-critic inference framework, inspired by re-
flective LLM workflows (Islam et al., 2024; Shinn
et al., 2023; Madaan et al., 2023). To our knowl-
edge, this is the first agentic setup for text-to-
visualization that incorporates multimodal feed-
back on answer correctness, code quality, and
the resulting visualization (Figure 3). The frame-
work is also model-agnostic: it takes the initial
⟨answer, code⟩ output from any baseline inference
model fθ and routes it into the actor–critic refine-
ment loop. The key steps are:

(1) Initial Response Generation (Actor Step):
The actor model generates an initial response con-
taining the answer and visualization code based on
the given query and data table.

(2) Critic Evaluation & Feedback Genera-
tion: A separate critic model analyzes the initial
response and provides structured feedback across
three modalities: answer feedback (numerical cor-
rectness), code feedback (syntax/semantic checks),
and visual feedback (clarity and correctness of the
generated chart). The visual feedback is for the
chart produced by executing the generated code.

(3) Refinement & Final Response Generation:
The actor takes both the initial response and the
critic’s feedback into account to produce a refined
final response. This iterative refinement process en-
sures that the final output is more aligned with the
intent of the query. To ensure inference efficiency,
only one round of iteration is performed.

Feedback Strategies. We explore three critic con-
figurations: (1) self-critique (same model) (Saun-
ders et al., 2022), (2) cross-model critique (exter-
nal model), and (3) execution-based feedback (e.g.,
Matplotlib error traces). Each variant affects the
reliability of downstream refinement.

Answer Validation

2. Error Analysis & Feedback

Response Validation... ...
Answer Feedback: Incorrect calculation. The1.

 computed as Max(abs(Turnover - Average Turnover)).
 Mistake Type: Calculation Error
 The maximum deviation year should be recomputed
 The highest deviation is 50023.8 million euros,..in 2009.
2. Code Feedback: Missing import : Import numpy as np ...
 Incorrect Annotation Formatting: 'Max Deviation: 2009
.....[max_deviation_index]:.1f} million euros'
 Should be formatted in a single line or properly broken.

3. Revised Response Generation

1. Initial Response Generation

User Input

Generating Response... ...
Answer: 58411.
Code: import matplotlib.pyplot as plt2.

 years = ['2008', '2009', '2010' ]
 turnovers = [191985.5, 143670.0, ]
 plt.figure(figsize=(10, 6))
 plt.plot(years, turnovers, marker='o',)

 Plt.show()

Missing Numpy Import ,
Incorrect Annotation

Final Answer:
2009, 50023.8

Actor

Data Table... ...
Characteristic, Annual turnover in million euros... ...
... Years 2008-2016

 Turnover Values 191985.5, 143670.0, 178858.4

Query: From the annual turnover data from 2008 to 2016, ...
determine the year in which the annual turnover deviated
the most from this average, and compute the value of that
deviation in million euros.

Critic

Actor

Correcting Response... ...
Answer: 2009, 50023.76 million euros
Code:
import matplotlib.pyplot as plt
import numpy as np
years = ['2008', '2009', '2010' ...] ...
deviations=[abs(turnover-average_turnover)
m...]
max_index=deviatis.index(max(deviations)
plt.plot(years,turnovers, marker='o',...)

plt.annotate(f'MaxYear
{deviations[max_index]:.1f}

Figure 3: Our Agentic Inference Framework where the
Actor (e.g., Gemini) generates an initial response, while
the Critic (e.g., GPT-4o for validation, Matplotlib for
visualization execution) assesses and provides feedback.

4.4 Evaluation Criteria

To comprehensively assess text-to-visualization
models, we define four key evaluation criteria.

Answer Match: Assesses how well the gener-
ated text aligns with the ground truth.

Code Execution: Measures whether the gener-
ated visualization code executes successfully, en-
suring syntactic correctness and output generation.

Readability and Visualization Quality: As-
sesses the visual clarity and design quality of the
chart, including layout, axis scaling, labels, titles,
and color usage (Chen et al., 2024).

Chart Correctness: Measures whether the gen-
erated chart accurately represents the intent of the
query and the underlying data.

Scoring is binary for Answer Match and Code
Execution (1 = success, 0 = failure), while Read-
ability and Chart Correctness are rated from 1 to
5 (Table 18). A sample is considered a pass if the
code executes successfully, the answer matches the
ground truth, and both the readability score and the
chart correctness score are at least 3.5, implying
that minor readability or correctness issues may

31854

exist, but the output remains interpretable.

Automatic Judge: We use GPT-4o as the evalua-
tion judge for all criteria, including Answer Match,
Readability, Visualization Quality, and Chart Cor-
rectness, based on its strong alignment with human
judgments (Zheng et al., 2023; Gu et al., 2024).
The model is invoked with a fixed system prompt
and deterministic parameters (see A.6). The evalua-
tion rubric and prompt are detailed in Table 18. To
demonstrate scalability, we evaluated 1,985 sam-
ples in 5 minutes for a total cost of $2.0 (see A.7.5).

5 Experiment Results

5.1 Automatic Evaluation

Results for Direct Inference: Table 3 presents
the automated evaluation results for all models as-
sessed using the direct inference approach. The
models were evaluated based on predefined cri-
teria. GPT-4o achieved the highest performance,
with 87% code execution success, 42% correct an-
swer match, average visual clarity rating of 3.45,
chart correctness of 3.15, and a final pass rate of
26%. Among open-source models, Qwen2.5-7B
performed the best, followed closely by DeepSeek-
Coder-V2-Lite, both achieving a final pass rate of
13% and 10% respectively.

Despite its larger size, CodeLlama-34B per-
formed poorly, reinforcing that increased model
size does not necessarily improve structured data
comprehension. Over 50% of its failures were due
to incorrect extraction of relevant data elements,
leading to execution errors.

Results for Agentic Inference: Table 4 shows
that our agentic framework consistently improves
GPT-4o’s performance across all metrics, outper-
forming zero-shot, few-shot, and RAG baselines.
With one round of Answer + Code feedback, the an-
swer match improved from 42% to 53%, readabil-
ity from 3.45 to 3.99, chart correctness from 3.15
to 4.02, and the final pass rate from 26% to 42%
(+62%). Adding visual feedback further improved
readability (4.23) and chart correctness (4.24),
though answer match remained stable—indicating
its impact is primarily visual. Among all settings,
Answer + Code feedback yielded the strongest final
pass rate. In contrast, code-only and execution-only
feedback achieved high execution rates but low fi-
nal pass rates due to poor answer accuracy. Also,
all improvements in final pass rate over the zero-
shot baseline are statistically significant (p < 0.01),

based on McNemar’s test on all 1,985 paired sam-
ples. These findings highlight the benefit of multi-
modal feedback in agentic refinement.

5.2 Human Evaluation
To validate the reliability of our automated evalua-
tion, we manually annotated 236 samples stratified
to reflect the full dataset’s distribution. Three rep-
resentative models were assessed: GPT-4o (closed-
source, high-performing), LLaMA-3.1-8B (open-
source, lower-performing), and Qwen2.5-7B (open-
source, best-performing), using the same rubric as
the automated setup.

Across all three models, automated and manual
evaluations differed by under 15% on all criteria:
Answer Match, Readability, and Chart Correctness.
We found strong correlation between human and
model judgments for each metric, with high Pear-
son (r) and Spearman (ρ) coefficients (see Table 9).
To further assess agreement on the final pass rate,
we computed Cohen’s Kappa, obtaining an average
score of 0.78—indicating substantial alignment.

Evaluation Consistency and Robustness To as-
sess the generalizability of our evaluation frame-
work, we included Gemini 1.5 Pro as an alterna-
tive judge alongside GPT-4o. Across all models,
Gemini-based pass rates closely align with GPT-
4o (Table 3), with strong correlation between the
two judges (Table 8) and comparable agreement
with human annotations (Table 10). Although both
LLMs demonstrate high alignment with human
judgments, GPT-4o achieved slightly better correla-
tion and is more widely used as a standard evalua-
tor. Accordingly, we report GPT-4o-based scores as
the primary metric, while including Gemini results
for robustness. We also conducted a repeatability
study on the same stratified 236-sample subset us-
ing GPT-4o, evaluating each query five times with
identical prompts. Results showed minimal varia-
tion, with over 97.5% of samples yielding consis-
tent final pass rates. Further details (App. A.7.2).

5.3 Ablation Studies
We conducted ablation studies to assess feedback
contributions in our agentic framework and analyze
robustness across task types.

Feedback Modality Ablation. As shown in Ta-
ble 4c, we compared full tri-modal feedback (an-
swer, code, and visual) against reduced variants:
answer-only, code-only, visual-only, and execution-
based feedback using Matplotlib. Removing any

31855

Model Code Exec.
Success (%)

Answer
Match (%)

Visual Clarity
Readability

Chart
Correctness

Final
Pass Rate (%)
GPT Gemini

GPT-4o 87 42 3.45 3.15 26 24
Gemini-1.5-Flash 83 34 3.30 2.90 17 15
CodeLlama-7B 60 10 2.15 1.69 1 1
CodeLlama-13B 52 15 1.75 1.38 4 3
CodeLlama-34B 39 22 0.91 0.80 4 3
Llama-3.1-8B 72 24 1.68 1.59 7 6
Mistral-7B 39 24 1.40 1.31 6 4
Qwen-2.5-7B 80 29 2.82 2.73 13 12
Qwen-2.5-Coder-7B 31 24 1.25 1.26 4 3
DeepSeek-Coder-V2-Lite 75 22 2.93 2.63 10 8
DeepSeek-R1-Distill-Llama-8B 35 33 1.24 1.12 7 8

Table 3: Automatic evaluation on Text2Vis using direct inference across models. Higher scores indicate better
performance. Visual Clarity, Readability, and Correctness are rated out of 5 by GPT-4o. The last column gives Final
Pass Rate from Gemini 1.5 Pro for comparison.

Model Setup Strategy Code Exec.
Success (%)

Answer
Match (%)

Clarity
Readability

Chart
Correctness

Final
Pass Rate (%)

(A) Baseline
GPT-4o 0-shot 87 42 3.45 3.15 26
Gemini 1.5 Flash 0-shot 83 34 3.30 2.90 17
GPT-4o 3-shot 88 42 3.45 3.15 26
Gemini 1.5 Flash 3-shot 81 29 3.36 3.38 20
GPT-4o RAG + 3-shot 88 38 3.65 3.75 31
Gemini 1.5 Flash RAG + 3-shot 80 31 3.30 3.45 22
(B) Agentic Inference (LLM Feedback)
GPT-4o + Gemini 1.5 Answer + Code 91 49 3.85 3.87 36
GPT-4o + GPT-4o Answer + Code 94 53 3.99 4.02 42
GPT-4o + GPT-4o Answer + Code

+ Visual
93 46 4.02 4.23 41

(C) LLM Feedback Ablation
GPT-4o + GPT-4o Answer Only 86 47 3.51 3.20 28
GPT-4o + Matplotlib Code Exec Only 94 37 3.96 4.02 34
GPT-4o + GPT-4o Code Only 94 36 3.99 4.19 32
GPT-4o + GPT-4o Visual Only 94 38 4.03 4.24 33

Table 4: Model performance for (A) Baseline, (B) Agentic Inference, and (C) LLM Feedback Ablation. Code
execution and pass rate are shown as percentages.

Model Code Exec.
Success (%)

Answer
Match (%)

Visual Clarity
Readability

Chart
Correctness

Final
Pass Rate (%)

GPT-4o 87 39 3.32 3.30 30
Llama-3.1-8B 72 28 1.79 1.67 9
Qwen2.5-7B 80 31 3.03 2.94 17

Table 5: Human Evaluation results on Text2Vis using direct inference for different models.

31856

modality significantly degraded performance, con-
firming that multi-modal integration is essential for
effective agentic refinement. We also studied text-
only and visual-only generation settings and found
that jointly generating both answer and code does
not degrade performance, see A.7.4 and Tab 12.

Task-Type Robustness. We evaluated model
performance across task categories (Table 11).
Model performance declined for complex
queries—especially those requiring web-based
retrieval or multi-chart generation—across all
metrics , reflecting LLM limitations in ground-
ing external information and reasoning over
interdependent outputs. GPT-4o and Gemini-1.5
Flash consistently outperformed open-source
models on these tasks. Models also struggled with
unanswerable queries, highlighting difficulties
in recognizing when no valid visualization or
response can be generated. Interestingly, they
performed better on conversational queries,
possibly due to the contextual grounding acquired
during pre-training and instruction-tuning. Lastly,
open-ended queries were handled more effectively
than closed-ended ones, indicating a stronger
ability to generate diverse and flexible responses.

6 Error Analysis

We conducted a qualitative error analysis by manu-
ally evaluating 200 randomly selected samples for
each of the 11 models to identify key error patterns
(see fig.5). Our findings are as follows:

Code Execution Errors – Common syntax and
runtime failures such as unterminated strings, miss-
ing commas, shape mismatches (e.g., "shape mis-
match: objects cannot be broadcast to a single
shape"), and attribute errors (e.g., "’PathPatch’ ob-
ject has no attribute ’get_ydata’"). Naming issues
(e.g., y instead of years) and indentation errors
also disrupted execution. See Figure 6(c, d, f, g)

Data Import and Retrieval Issues – Frequent
failures in defining in-context datasets (’df’ is not
defined), handling non-standard date formats (time
data ’Sept 2000’ does not match %b %Y), and
executing web-based data retrieval. See Figure 6h.

Logical and Analytical Reasoning Errors Mis-
takes in multi-step calculations, incorrect metric
selection, and flawed logic led to misleading out-
puts. See Figure 6b.

Visualization Clarity Issues Issues like miss-
ing labels, inconsistent axis scaling, and poor color

schemes impacted interpretability, even when tech-
nically correct. See Figure 6(e).

Instruction-Following Failures Several mod-
els ignored task constraints or attempted irrelevant
actions. For example, CodeLlama-34B frequently
used pd.read_csv(’data.csv’) instead of
processing the provided data. See Figure 6a.

Incomplete Code Generation Outputs from
models like Mistral and LLaMA-3.1 were often
missing dataset definitions, key methods or steps,
resulting in unusable code. See Figure 6g.

7 Conclusion

We introduce Text2Vis, a benchmark for evaluat-
ing LLMs in text-to-visualization tasks, featuring
diverse datasets and over 20 chart types to support
complex queries involving multi-step reasoning, re-
trieval, multi-chart generation, and conversations.
Our evaluation of open- and closed-source mod-
els revealed critical limitations, with error analysis
highlighting key areas for improvement. To ad-
dress performance gaps, we propose a cross-modal
agentic inference framework that enables LLMs
to refine both textual answers and visualization
code using structured feedback. This framework
significantly enhances answer accuracy, chart cor-
rectness, and overall pass rates. In addition, we
present a scalable and fully automated LLM-based
evaluation pipeline that assesses correctness, code
execution, and visual quality. We believe Text2Vis
is a valuable resource for advancing LLM capabil-
ities in visualization code generation, promoting
better alignment with real-world tasks and enabling
more accurate, high-quality visualizations.

Ethical Considerations

Our work focuses on sharing benchmark data and
evaluation results to promote transparency and re-
producibility in text-to-visualization research. All
datasets used in Text2Vis are publicly available.
The authors manually verified all LLM-generated
queries and visualizations to ensure data integrity
and accuracy.

We maintained fairness in model comparisons
by applying consistent evaluation criteria across
both open-source and closed-source models.

Limitations

While Text2Vis provides a comprehensive bench-
mark for evaluating text-to-visualization genera-
tion models, it has some limitations. First, al-

31857

though our dataset incorporates diverse real-world
and synthetic data, it may not fully capture the
range of complexities found in specialized domains.
Second, our evaluation relies on LLM-based auto-
mated assessment frameworks which, while effi-
cient, may introduce biases in interpreting visual-
ization quality or correctness. Although we tested
with two different LLM-based judges and observed
strong alignment with human evaluations as well as
high correlation between the two judges, finer as-
pects of visualization aesthetics or interpretability
may still be better assessed through manual review.

Additionally, our benchmark focuses on Python-
based visualization using Matplotlib and Seaborn,
which are widely adopted for their versatility, com-
patibility, and extensive support in data science
workflows. While we do not provide native code
for other frameworks like Vega-Lite or D3.js, the
Python code can be readily converted to these li-
braries using existing LLMs or code converters.
Future work may extend Text2Vis by enabling di-
rect generation of Vega-Lite, D3.js, or Plotly code,
allowing broader support for interactive and web-
based visualizations.

Furthermore, while we describe our method as
an agentic inference framework, the current imple-
mentation follows a fixed actor–critic loop, without
dynamic planning or adaptive tool selection. Fu-
ture extensions could incorporate a planning com-
ponent that enables the model to autonomously de-
cide when to revise, retrieve external information,
or switch visualization libraries—moving closer to
a truly autonomous agent architecture.

Lastly, while our agentic learning framework
demonstrated significant improvements, it intro-
duces computational overhead, which may limit
scalability for larger datasets or more resource-
constrained environments. The agentic loop in-
troduces 3× latency over zero-shot inference;
while effective, this raises scalability challenges
in resource-constrained settings. As an alternative,
we showed how Matplotlib feedback can also pro-
vide similar improvements in performance.

References
Syed Mohd Ali, Noopur Gupta, Gopal Krishna Nayak,

and Rakesh Kumar Lenka. 2016. Big data visual-
ization: Tools and challenges. In 2016 2nd Interna-
tional conference on contemporary computing and
informatics (IC3I), pages 656–660. IEEE.

Manuela Aparicio and Carlos J Costa. 2015. Data visu-

alization. Communication design quarterly review,
3(1):7–11.

Ekaba Bisong and Ekaba Bisong. 2019. Matplotlib
and seaborn. Building machine learning and deep
learning models on google cloud platform: A com-
prehensive guide for beginners, pages 151–165.

Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and
Yuqing Yang. 2024. Viseval: A benchmark for data
visualization in the era of large language models.
IEEE Transactions on Visualization and Computer
Graphics.

Zhutian Chen, Chenyang Zhang, Qianwen Wang, Jakob
Troidl, Simon Warchol, Johanna Beyer, Nils Gehlen-
borg, and Hanspeter Pfister. 2023. Beyond gener-
ating code: Evaluating gpt on a data visualization
course. In 2023 IEEE VIS Workshop on Visualization
Education, Literacy, and Activities (EduVis), pages
16–21. IEEE.

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao,
Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu, Yukun
Li, Huazuo Gao, Shirong Ma, Wangding Zeng,
Xiao Bi, Zihui Gu, Hanwei Xu, Damai Dai, Kai
Dong, Liyue Zhang, Yishi Piao, and 21 others.
2024. Deepseek-coder-v2: Breaking the barrier of
closed-source models in code intelligence. CoRR,
abs/2406.11931.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, and 1 others.
2024. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang,
Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. 2023. Chartllama: A multimodal llm for
chart understanding and generation. arXiv preprint
arXiv:2311.16483.

Enamul Hoque and M Saidul Islam. 2024. Natural
language generation for visualizations: State of the
art, challenges and future directions. In Computer
Graphics Forum, page e15266. Wiley Online Library.

Enamul Hoque, Parsa Kavehzadeh, and Ahmed Masry.
2022. Chart question answering: State of the art
and future directions. In Computer Graphics Forum,
volume 41, pages 555–572. Wiley Online Library.

31858

https://doi.org/10.48550/ARXIV.2406.11931
https://doi.org/10.48550/ARXIV.2406.11931

Mohammed Saidul Islam, Md Tahmid Rahman Laskar,
Md Rizwan Parvez, Enamul Hoque, and Shafiq Joty.
2024. Datanarrative: Automated data-driven story-
telling with visualizations and texts. arXiv preprint
arXiv:2408.05346.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Can Liu, Yun Han, Ruike Jiang, and Xiaoru Yuan. 2021.
Advisor: Automatic visualization answer for natural-
language question on tabular data. In 2021 IEEE 14th
Pacific Visualization Symposium (PacificVis), pages
11–20. IEEE.

Yuyu Luo, Jiawei Tang, and Guoliang Li. 2021.
nvbench: A large-scale synthesized dataset for cross-
domain natural language to visualization task. arXiv
preprint arXiv:2112.12926.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2023. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36:46534–46594.

Paula Maddigan and Teo Susnjak. 2023. Chat2vis: Gen-
erating data visualizations via natural language using
chatgpt, codex and gpt-3 large language models. Ieee
Access, 11:45181–45193.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022. Chartqa: A benchmark
for question answering about charts with visual and
logical reasoning. arXiv preprint arXiv:2203.10244.

Arpit Narechania, Arjun Srinivasan, and John Stasko.
2020. Nl4dv: A toolkit for generating analytic speci-
fications for data visualization from natural language
queries. IEEE Transactions on Visualization and
Computer Graphics, 27(2):369–379.

Mohamed Nejjar, Luca Zacharias, Fabian Stiehle, and
Ingo Weber. 2025. Llms for science: Usage for code
generation and data analysis. Journal of Software:
Evolution and Process, 37(1):e2723.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OWID. 2024. Our world in data.

Pew. 2024. Pew research center.

Luca Podo, Muhammad Ishmal, and Marco Angelini.
2024. Vi (e) va llm! a conceptual stack for evaluating
and interpreting generative ai-based visualizations.
arXiv preprint arXiv:2402.02167.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, and

1 others. 2021. Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8748–8763.
PMLR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, and 1
others. 2023. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950.

Arvind Satyanarayan, Dominik Moritz, Kanit Wong-
suphasawat, and Jeffrey Heer. 2016. Vega-lite: A
grammar of interactive graphics. IEEE transactions
on visualization and computer graphics, 23(1):341–
350.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. 2022.
Self-critiquing models for assisting human evaluators.
CoRR, abs/2206.05802.

Gaurav Sharma, Wencheng Wu, and Edul N Dalal. 2005.
The ciede2000 color-difference formula: Implemen-
tation notes, supplementary test data, and mathemati-
cal observations. Color Research & Application: En-
dorsed by Inter-Society Color Council, The Colour
Group (Great Britain), Canadian Society for Color,
Color Science Association of Japan, Dutch Society
for the Study of Color, The Swedish Colour Cen-
tre Foundation, Colour Society of Australia, Centre
Français de la Couleur, 30(1):21–30.

Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang,
Xuming Hu, Xiongshuai Zhang, Zhiwei Tai, and
Jianmin Wang. 2022. Towards natural language
interfaces for data visualization: A survey. IEEE
transactions on visualization and computer graphics,
29(6):3121–3144.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Yuanfeng Song, Xuefang Zhao, Raymond Chi-Wing
Wong, and Di Jiang. 2022. Rgvisnet: A hybrid
retrieval-generation neural framework towards auto-
matic data visualization generation. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 1646–1655.

31859

https://arxiv.org/abs/2303.08774
https://ourworldindata.org/
https://www.pewresearch.org/
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.48550/ARXIV.2206.05802
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html

Arjun Srinivasan, Nikhila Nyapathy, Bongshin Lee,
Steven M Drucker, and John Stasko. 2021. Collect-
ing and characterizing natural language utterances
for specifying data visualizations. In Proceedings
of the 2021 CHI Conference on Human Factors in
Computing Systems, pages 1–10.

Statista. 2024. Statista.

Tableau. 2025. Tableau ask data.

Gemini Team. 2024. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of
context. Preprint, arXiv:2403.05530.

Michael L Waskom. 2021. Seaborn: statistical data
visualization. Journal of Open Source Software,
6(60):3021.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2023. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Pro-
cessing Systems, 36:46595–46623.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Line 19.8%

Bar

17.9%

Multichart

10.1%
Area

6.9%
Pie

5.7%

Waterfall
5.5%

Scatter

4.7%

Treemap

4.7%

Histogram

4.6%

Boxplot

4.5%

Dot

4.1%

Donut

3.5%

22 Others

8.1%

Figure 4: Common chart types in our Text2Vis.

A Appendices

A.1 Common Chart Types

Text2Vis includes a wide range of chart types that
reflect the diversity of real-world data analysis
tasks 4. Line charts are essential for visualizing
trends over time, making them ideal for time-series
forecasting and moving averages. Bar charts are
widely used for comparing categorical variables,
especially in demographic and economic data. Mul-
tichart visualizations simulate dashboard-style in-
sights, often used in business analytics. Pie charts
and donut charts are useful for showing part-to-
whole relationships. Scatter plots and boxplots
support statistical analysis such as correlation and
distribution. Waterfall charts are often applied in
financial reporting to track cumulative effects. By
including this variety, Text2Vis ensures robust eval-
uation of models across diverse analytical scenar-
ios.

A.2 Data Science Question Taxonomy

Data science plays a crucial role in uncovering in-
sights, identifying trends, making predictions, and
driving informed decision-making. However, data-
related questions vary in complexity and purpose.
To better organize and analyze such questions, they
can be categorized into four broad groups. These
categories help structure the analytical approach
and determine the appropriate methods for answer-
ing each type of question.

A.2.1 Exploratory: Understanding Patterns
and Structures

Some questions are aimed at understanding the
overall structure of the data, identifying trends, or
summarizing key characteristics. These questions
do not necessarily seek to establish relationships
between variables but rather focus on obtaining a

31860

https://www.statista.com
https://help.tableau.com/current/pro/desktop/en-us/ask_data.htm
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530

broad overview of the dataset.
Exploratory questions can be categorized into

the following subcategories: Insights, Trend Anal-
ysis, Statistical Summaries, Distribution Analysis,
Categorical Data Analysis, Geospatial Analysis,
Hierarchical Data Analysis, and Multi-Variable
Analysis, each focusing on different aspects of un-
derstanding data patterns and structures.

Insights Insights-based questions focus on ex-
tracting key findings and meaningful observations
from raw data. These questions often highlight no-
table patterns, distributions, or summary statistics.

Example: What are the top five best-selling
products in the last six months?

Trend Analysis Trend analysis aims to identify
changes in data over time, such as growth, decline,
or seasonal fluctuations. These questions often
involve historical patterns to detect trends.

Example: How have website visitor numbers
changed over the past year?

Statistical Summaries Statistical summaries
provide numerical insights into datasets, such as av-
erages, variances, and standard deviations. These
questions help quantify overall data characteristics.

Example: What is the median income of em-
ployees in each department?

Distribution Analysis Distribution analysis fo-
cuses on understanding how values in a dataset are
spread across a range. It helps detect skewness,
uniformity, or concentration in the data.

Example: What percentage of customers fall
within different age groups?

Categorical Data Analysis These questions fo-
cus on analyzing groups of categorical variables
to understand their distributions, relationships, or
proportions.

Example: What percentage of total sales come
from each product category?

Geospatial Analysis Geospatial analysis is con-
cerned with visualizing and understanding spatial
distributions across geographic regions.

Example: What is the distribution of customer
locations by city?

Hierarchical Data Analysis Hierarchical analy-
sis examines data structured in a nested or multi-
level format, often represented through tree struc-
tures.

Example: How is the company’s organizational
hierarchy distributed across different departments?

Multi-Variable Analysis This analysis focuses
on examining interactions between multiple vari-
ables simultaneously to identify complex relation-
ships.

Example: How do age, income, and location
influence customer purchasing behavior?

A.2.2 Analytical: Explaining Relationships
and Diagnosing Data

Certain questions go beyond simple observation
and focus on explaining why specific patterns or
anomalies exist in the data. These questions in-
vestigate relationships between variables, detect
irregularities, and provide insights into underlying
factors.

Analytical questions can be categorized into the
following subcategories: Reasoning, Correlation
Analysis, Outlier Detection, Deviation Analysis,
and Comparison Analysis, each focusing on un-
covering relationships, detecting anomalies, and
understanding variations in data.

Reasoning Reasoning-based questions focus on
understanding causality, hypothesis testing, and
logical deductions to explain why certain patterns
or anomalies exist in the data.

Example: Why do customers in certain regions
spend more on our products?

Correlation Analysis Correlation analysis exam-
ines the strength and direction of relationships be-
tween two or more variables, helping to understand
dependencies in data.

Example: Is there a relationship between adver-
tising budget and sales revenue?

Outlier Detection Outlier detection identifies un-
usual or extreme values in the dataset that may
indicate errors, fraud, or unique trends.

Example: Are there any anomalies in the
monthly transaction amounts that need investiga-
tion?

Deviation Analysis Deviation analysis measures
how much data deviates from expected baselines,
identifying significant variations or shifts in pat-
terns.

Example: How much does employee perfor-
mance vary from the expected target levels?

31861

Comparison Analysis Comparison analysis fo-
cuses on evaluating differences and similarities be-
tween datasets, categories, or time periods.

Example: How do customer engagement met-
rics compare between last year and this year?

A.2.3 Predictive: Forecasting Future Events
Some questions are forward-looking, focusing on
making informed predictions about future out-
comes based on historical data. These questions
rely on identifying past trends to estimate what is
likely to happen next.

Predictive questions can be categorized into
the following subcategories: Predictive Analysis,
Time-Series Analysis, Forecasting, and Anomaly
Prediction, each focusing on using past data to
estimate future outcomes and detect potential irreg-
ularities.

Predictive Analysis Predictive analysis focuses
on estimating future outcomes based on historical
data patterns, often using statistical models or ma-
chine learning techniques.

Example: What is the likelihood that a customer
will renew their subscription next year?

Time-Series Analysis Time-series analysis in-
volves examining data that changes over time to
identify trends, cycles, and seasonal effects.

Example: How do stock prices fluctuate over
different time periods?

Forecasting Forecasting predicts future values
based on past trends and patterns, commonly used
in sales, finance, and demand planning.

Example: What will be the expected revenue
for the next quarter?

Anomaly Prediction Anomaly prediction fo-
cuses on detecting rare but significant future events
that deviate from expected patterns, such as fraud
detection or equipment failures.

Example: Can we predict which transactions
are likely to be fraudulent?

A.2.4 Prescriptive: Recommending
Data-Driven Actions

Certain questions are designed to guide decision-
making by providing actionable insights. Instead of
just analyzing past data or predicting future trends,
these questions focus on identifying the best possi-
ble course of action.

Prescriptive questions can be categorized into the
following subcategories: Decision Support, Clas-

sification & Labeling, Clustering Analysis, and
Causal Inference, each focusing on recommend-
ing actions based on data insights and optimization
techniques.

Decision Support Decision support focuses on
recommending optimal strategies or actions based
on data analysis. It helps businesses or individuals
make informed choices by considering past trends
and current conditions.

Example: What is the best pricing strategy to
maximize profit while maintaining customer satis-
faction?

Classification & Labeling Classification and la-
beling involve assigning predefined categories or
labels to new data points based on learned patterns
from historical data.

Example: Should this email be categorized as
spam or not?

Clustering Analysis Clustering analysis identi-
fies groups of similar data points within a dataset,
allowing segmentation and targeted decision-
making.

Example: Can customers be segmented into dif-
ferent groups based on their purchasing behavior?

Causal Inference Causal inference seeks to de-
termine cause-and-effect relationships between
variables, helping understand the impact of changes
or interventions.

Example: How does increasing the marketing
budget affect customer retention rates?

A.3 Query Types & Illustrative Examples
To ensure a comprehensive evaluation of text-to-
visualization models, the Text2Vis dataset includes
diverse query types that reflect real-world data anal-
ysis scenarios. These queries are designed to test
various aspects of model reasoning, retrieval ca-
pabilities, response complexity, and visualization
diversity. Specifically, we categorize our dataset
along the following dimensions:

• Closed vs. Open-Ended Queries – Distin-
guishes between questions expecting a spe-
cific answer as output (closed-ended) and the
ones that are open-ended, allowing for multi-
ple possible visualizations.

• Single query vs. Conversational – Differen-
tiates between single query with multi-turn in-
teractions where each query builds on prior re-
sponses and independent, standalone queries.

31862

• Data given vs. Web-data Retrieval – Clas-
sifies queries based on whether they require
retrieving external web data before generating
visualizations.

• Single vs. Multi-Chart – Compares queries
requiring a single visualization versus those
needing multiple coordinated charts com-
monly found in dashboards and infographics.

• Answerable vs. Unanswerable Queries –
Identifies whether a query has a definitive an-
swer based on available data or if it requires
additional assumptions, external knowledge,
or subjective interpretation.

The following sections provide examples of few
of them.

Conversational Queries: These queries simulate
multi-turn interactions where each question builds
on the previous answer, testing the model’s ability
to maintain context and continuity across queries.

• Q1: Can you visualize the overall trend in un-
employment in the USA from 2000 to 2020?
A1 (Open-Ended): The unemployment rate
shows a significant spike during the 2008 fi-
nancial crisis, peaking in 2009, followed by a
steady decline until 2020. Code: Line chart
showing the unemployment trend from 2000
to 2020.

• Q2: What year had the highest unemploy-
ment rate? A2 (Short Answer): 2009. Code:
Bar chart highlighting the year 2009 with the
highest unemployment rate.

• Q3: Based on the provided unemployment
trend graph, what key patterns and anoma-
lies can you identify? Discuss any significant
changes, potential causes, and long-term im-
plications. A3 (Open-Ended): The unem-
ployment trend shows a sharp spike in 2009,
likely reflecting the impact of the 2008 finan-
cial crisis. Post-2010, there is a gradual de-
cline, suggesting economic recovery. How-
ever, smaller fluctuations in later years may
indicate cyclical job market instabilities. A
steep increase in recent years could be linked
to external shocks such as a global pandemic
or policy shifts. Code: Line chart with an
outlier marker on the year 2009.

Retrieval-Augmented Queries: These queries
require models to fetch additional data before visu-
alization, testing their ability to integrate external
data sources dynamically.

• Q1: Retrieve the unemployment data for the
USA from 2000 to 2020 and visualize the
trend. A1 (Open-Ended): The data shows
a consistent trend with notable spikes during
economic downturns, such as in 2009. Code:
Line chart showing the unemployment rate in
the USA from 2000 to 2020 after retrieving
relevant data.

• Q2: Based on the retrieved data, which
year had the lowest unemployment rate? A2
(Short Answer): 2019. Code: Bar chart
showing the year 2019 with the lowest un-
employment rate.

Short Answer vs. Open-Ended Queries: These
queries distinguish between concise factual re-
sponses and detailed analytical insights.

• Short Answer Query: What is the highest
unemployment rate recorded in the USA be-
tween 2000 and 2020? A (Short Answer):
9.6% in 2009. Code: Single bar chart high-
lighting 2009.

• Open-Ended Query: Analyze the unemploy-
ment trend in the USA from 2000 to 2020 and
discuss any significant fluctuations. A (Open-
Ended): The data indicates a sharp rise in un-
employment during the 2008 financial crisis,
followed by a gradual recovery. The COVID-
19 pandemic in 2020 caused another spike.
Code: Line chart with annotations on signifi-
cant years (2009 and 2020).

Unanswerable Queries Unanswerable queries
arise when the required data is not available in
the dataset or the question cannot be logically an-
swered based on the provided information. These
queries generally fall into the following types:

• Missing Data Queries – When the dataset
does not contain the required information. Ex-
ample: Asking for unemployment data from
1995 when the dataset only covers 2000 on-
ward.

• Ambiguous Queries – When the question
lacks specificity and can have multiple inter-

31863

pretations. Example: Asking for "employ-
ment trends" without specifying sector or re-
gion.

• Contradictory Queries – When the query
asks for information that is logically impossi-
ble. Example: Asking for the highest unem-
ployment rate in 2025 when the dataset does
not contain future data.

• Hypothetical Queries – When the question
asks about alternative scenarios not repre-
sented in the data. Example: Asking what
the unemployment rate would have been if the
2008 financial crisis had not occurred.

Question Type Count

Comparison Analysis 467
Deviation Analysis 362
Trend Analysis 346
Distribution Analysis 146
Forecasting 142
Outlier Detection 140
Statistical Summaries 138
Correlation Analysis 75
Reasoning 52
Predictive Analysis 31
Hierarchical Data Analysis 22
Time-Series Analysis 18
Insights 16
Categorical Data Analysis 12
Decision Support 7
Others 11

Table 6: Distribution of various visualization tasks in the
Text2Vis Dataset. Insights, Trend Analysis, Statistical Sum-
maries, Distribution Analysis, Categorical Data Analysis, Hi-
erarchical Data Analysis, and Multi-Variable Analysis fall
under the Exploratory category. Reasoning, Correlation Anal-
ysis, Outlier Detection, Deviation Analysis, and Comparison
Analysis fall under the Analytical category. Predictive Anal-
ysis, Time-Series Analysis, and Forecasting fall under the
Predictive category. Decision Support falls under the Prescrip-
tive category.

A.4 Zero/Few-Shot and Retrieval-Augmented
Prompting

In our experiments, we employed three distinct
setups for the direct inference approach to com-
prehensively evaluate model performance. Below,

we provide detailed descriptions of each approach
used:

(i) Zero-Shot Prompting: In the zero-shot
prompting scenario, the model receives only the tar-
get query and the corresponding data table directly,
without any preceding examples or additional con-
text. The prompt explicitly instructs the model
to generate the response in JSON format. This
setup assesses the model’s inherent ability to in-
terpret and respond to queries based solely on its
pre-trained knowledge and instruction-following
capabilities.

(ii) 3-Shot Prompting: In the 3-shot prompting
approach, the model is initially provided with three
randomly selected examples, each consisting of a
natural language query, the relevant data table, and
the correct annotated answer. These three examples
precede the actual target query and its associated
data table. The purpose of this setup is to evaluate
the model’s capability to leverage few-shot learn-
ing, enabling it to infer and adapt patterns from
a minimal number of illustrative examples before
generating the response for the target query.

(iii) Retrieval-Augmented Generation (RAG) +
3-Shot Prompting: The RAG + 3-shot prompt-
ing approach further enhances the 3-shot method by
dynamically retrieving relevant examples from the
dataset based on semantic similarity to the target
query. Specifically, we employed the Sentence-
BERT model (all-MiniLM-L6-v2) to encode
queries into embedding vectors. We then com-
puted cosine similarity scores between the target
query embedding and all available query embed-
dings within the dataset. The top three most se-
mantically similar queries and their corresponding
annotated answers and data tables were retrieved.
These retrieved examples served as the few-shot
context preceding the target query, providing con-
textually relevant information intended to improve
the model’s comprehension and response accuracy.

A.5 Common Data Visualization Error

Figure 5 highlights examples of common visual-
ization errors, including incorrect labeling, syntax
errors, and data issues. Figure 6 also provides de-
tailed examples of model failures. Finally, Figure 7
shows a word cloud of the most common words
that appeared in our evaluation error messages.

31864

SyntaxError

41%

ValueError

12%

TypeError10%

AttributeError

8%

NameError

7%

IndexError

5%

KeyError

3%

JSONDecodeError

3%

DataSourceError

3%

ImportError

3%

ParserError

3%

ConversionError

3%

Figure 5: Error type distribution with square root trans-
formation applied to prevent the SyntaxError category
from dominating the chart.

Model Code Exec.
Success (%)

Answer
Match (%)

Visual Clarity
Readability

Chart
Correctness

Final
Pass Rate (%)

GPT-4o 87 40 3.38 3.10 24
Gemini-1.5-Flash 83 34 3.35 2.69 15

CodeLlama-7b 60 10 1.97 1.23 1

CodeLlama-13b 52 14 1.90 0.90 3

CodeLlama-34b 39 21 0.92 0.60 3

Llama-3.1-8B 72 24 1.74 1.27 6

Mistral-7B 39 22 1.45 1.10 4

Qwen2.5-7B 80 28 2.86 2.40 12

Qwen2.5-Coder-7B 31 22 1.30 1.08 3

DeepSeek-Coder-V2-Lite 75 21 2.97 2.10 8

DeepSeek-R1-Distill-Llama-8B 35 36 1.70 1.21 8

Table 7: Automatic evaluation results on Text2Vis using
direct inference for different models. Higher values
indicate better performance. Visual Clarity Readability
and Chart Correctness are rated out of 5. Gemini 1.5
Pro as judge

A.6 Experimental Setup & Inference Protocol
A.6.1 Model Parameters
We used the following fixed seed and controlled
decoding parameters for output generation, while
all other settings were retained as default values
provided by each model’s API.

• Seed: 42

• Temperature: 0.1

• Top-p: 1.0

• Max New Tokens (Model Response Gener-
ation): 2048

A.6.2 Inference Protocols
We use three setups:

• Zero-Shot Prompting: Query + table only,
no examples.

• Few-Shot Prompting (3-shot): Three exam-
ples precede the query.

• RAG + 3-Shot Prompting: Three most
semantically similar examples retrieved via
SBERT, then appended before the query.

A.6.3 Prompt Construction Summary

For consistency, all prompting strategies use the
same system template structure and JSON format-
ting requirements. Full prompt templates are listed
in Appendix A.8.

A.7 Extended Evaluation & Robustness

A.7.1 Human Evaluation Setup

The 236 samples were first annotated by a primary
annotator—an expert in data science and visual-
ization. The annotations were then independently
verified by a second annotator, with any disagree-
ments resolved through discussion. Each model
output was rated for answer correctness, chart read-
ability, and visual accuracy using the same scoring
rubric as in automated evaluation.

To quantify agreement between human and au-
tomated scores, we computed Pearson (r) and
Spearman (ρ) correlations across all three core di-
mensions, (see Table 9). The average Pearson
correlations were 0.87 for Answer Match, 0.88
for Clarity & Readability, and 0.867 for Chart
Correctness. The corresponding Spearman corre-
lations were 0.87, 0.83, and 0.857, respectively.
Additionally, we computed Cohen’s Kappa for
agreement on final pass rate, obtaining an average
κ = 0.78—indicating substantial alignment.

These findings support the alignment of auto-
mated and human judgments, reinforcing the ro-
bustness of our LLM-based evaluation framework.

A.7.2 LLM Judge Agreement

To evaluate consistency across LLM judges, we
compared GPT-4o and Gemini 1.5 Pro on all bench-
marked models. As shown in Table 8, the two
judges exhibit strong agreement across all evalua-
tion dimensions. The average Pearson correlations
were 0.953 for Answer Match, 0.907 for Clarity
& Readability, and 0.828 for Chart Correctness.
Similarly, the average Spearman correlations were
0.953, 0.868, and 0.857 for the same dimensions,
respectively. Gemini also showed similarly strong
correlations with human scores (Table 10), with
average Pearson correlations of 0.91, 0.863, and
0.813, and Spearman correlations of 0.91, 0.823,
and 0.807 for Answer Match, Clarity & Readabil-
ity, and Chart Correctness, respectively. These
results confirm the consistency and robustness of
our automated evaluation framework across state-
of-the-art LLMs.

31865

CodeLlama-34B-Instruct expects a
CSV file instead of using the

provided data. Your paragraph text

mismatch due to incorrect variable
(y instead of years) in deepseek-

coder-v2-lite

Improper indentation in
deepseek-coder-v2-lite

GPT-40 model
generated poor quality

chart.

Question: By analyzing the hierarchical proportions of
public library shares across different locale codes, and
computing the proportional difference of each locale's
share to the overall share, which locale has the largest
positive proportional difference relative to the overall
share?

GPT-4.0 model generated
poor quality chart.

GPT-4.0 model
produced incorrect

syntax.

(f) Syntax Issues
Question: Assuming that the crop yield per hectare
increases by 2% for every 10 kg/ha increase in fertilizer
application rate from a base yield of 50 tons/ha without any
fertilizer, and given the fertilizer application rates in 2002 for
Papua New Guinea and Guyana, what is the difference in
crop yields per hectare between the two countries in tons
per hectare, rounded to two decimal places?

Question: Which category among 'Agency', 'All Other',
and 'Finance' has the highest positive skewness in its
counts over the years 2012 to 2018, as measured by
Pearson's skewness coefficient?

Question: By how much percentage would Spain
need to increase its share to match Finland's
share in 1993, given that Finland had a higher
percentage of people agreeing with the statement
"most people can be trusted"? Provide the
required percentage increase.

(a) Instruction-following Issues
Question: Given the private health expenditure per
person in 2004 for Argentina, Fiji, and Benin, and
assuming each country's expenditure grows annually at
different rates, after how many years will Benin's
expenditure per person surpass Fiji's expenditure per
person?

Question: After calculating the standard deviation of the
combined class percentages from both U.S. and EU
realms, identify the class with the highest percentage that
is more than one standard deviation above the mean.
Provide the name of this class.

Question: By Which country among the given four
experienced the greatest percentage decrease in the metric
from 1990 to 2016?

(b) Logical Issues (c) Shape Mismatch Issues (d) Indentation Issues

Value missing in Llama 7b model
Lead to shape mismatch

(e) Readability Issues (g) Incomplete Code

Mistral 7b model produced incomplete code

Question: What was the highest annual global average
temperature anomaly (in degrees Celsius) recorded
between 1880 and 2020, and in which year did it occur?

 (h)Web Data Retrieval Issues

Gemini Flash 1.5 Pro Fai
l to Fect Data

Figure 6: Common errors in Data Visualization generation.

A.7.3 Evaluation Repeatability

To test evaluation stability, we re-evaluated the
same stratified 236-sample subset five times using
GPT-4o with fixed prompts and identical sampling
settings. The results showed minimal variation
across runs, with standard deviations of ±0.0 for
Answer Match, ±0.015 for Readability, ±0.023
for Chart Correctness, and ±0.003 for the Final
Score. Notably, 97.49% of the samples maintained
the same final pass rate across all runs, confirming
the reliability and consistency of our evaluation
framework.

A.7.4 Disjoint vs Joint Generation (Ablation
Study)

We also ablated the task formulation by comparing
text-only, visual-only, and joint (both) generation
settings using GPT-4o. As shown in Table 12, the
joint setup achieved similar performance to the
disjoint settings across answer accuracy and chart
quality metrics. These results suggest that combin-
ing answer and visualization generation does not
degrade performance, supporting the feasibility of
our unified task formulation.

Setup Code Exec.
Success (%)

Answer
Match (%)

Visual Clarity
Readability

Chart
Correctness

Text only – 44 – –
Visual only 89 – 3.61 3.30
Both 87 42 3.45 3.15

Table 12: Ablation study comparing GPT-4o perfor-
mance in text-only, visual-only, and joint (both) genera-
tion settings.

A.7.5 Runtime & Cost Analysis

To demonstrate scalability, we split the full 1,985-
sample set into ten parallel GPT-4o API calls, com-
pleting all evaluations in just 5 minutes at a total
cost of approximately $2.0—compared to an es-
timated 33 human-hours (assuming 1 minute per
sample)—yielding a significant reduction in anno-
tation time and cost.

A.8 Prompt Templates

We present the key prompt templates used through-
out the Text2Vis. While we developed multiple
query generation prompts to support various chart
types and analytical tasks, representative examples
are provided here.

A.8.1 Query Generation Prompts

To ensure diversity and realism in question types,
we employ multiple prompts for structured query
generation. A few representative examples include:

31866

Figure 7: Most Frequent Words in Error Messages Across All Evaluated Models.

• Conversational Prompt: Used to generate in-
terdependent multi-turn queries over a dataset.
See Table 13.

• Histogram Prompt: Generates synthetic
frequency-based data and a complex reason-
ing question best answered with a histogram.
See Table 14.

• Scatter Plot Prompt: Used when the dataset
contains multiple numerical columns, en-
abling queries about relationships and outliers.
See Table 15.

Additional prompt types used during dataset cre-
ation include those for pie charts, bar charts, multi-
chart dashboard layouts, and unanswerable ques-
tion construction.

A.8.2 Inference Prompts
These prompts guide how models generate answers
and visualizations, ensuring consistency across in-
ference settings:

• Model Response Prompt: A unified system
prompt applied across zero-shot, few-shot,
and RAG settings. It defines task instructions,
output format (JSON), and required libraries
(Matplotlib/Seaborn). See Table 16.

• Agentic Refinement Prompt: Used in the
self-refinement loop to assess and correct
model outputs based on answer and chart qual-
ity. See Table 17.

A.8.3 Evaluation Prompts
We adopt LLM-based evaluation prompts to as-
sess answer and chart correctness and chart quality.
Theis evaluates answer match, chart readability,
and chart correctness using detailed rubrics. See
Table 18.

A.8.4 Complexity Prompt
This prompt is used to classify each query as
Simple, Medium, Hard, or Extra Hard. See
Table 19.

31867

Model Pearson Spearman

Answer
Match

Clarity &
Readability

Chart
Correctness

Answer
Match

Clarity &
Readability

Chart
Correctness

GPT-4o 0.93 0.83 0.90 0.93 0.71 0.87

Gemini-1.5-Flash 0.98 0.84 0.88 0.98 0.71 0.87

CodeLlama-7B 0.97 0.77 0.63 0.97 0.74 0.67

CodeLlama-13B 0.97 0.95 0.77 0.97 0.95 0.83

CodeLlama-34B 0.97 0.97 0.84 0.97 0.99 0.92

Llama-3.1-8B 0.96 0.96 0.83 0.96 0.97 0.91

Mistral-7B 0.94 0.97 0.86 0.94 0.98 0.92

Qwen-2.5-7B 0.95 0.95 0.84 0.95 0.85 0.86

Qwen-2.5-Coder-7B 0.95 0.96 0.88 0.95 0.97 0.87

DeepSeek-Coder-V2-
Lite

0.95 0.94 0.79 0.95 0.83 0.83

DeepSeek-R1-Distill-
Llama-8B

0.91 0.84 0.89 0.91 0.85 0.88

Table 8: Pearson and Spearman correlations between the GPT-4o judge and the Gemini 1.5 Pro judge across three
evaluation dimensions: Answer Match, Clarity & Readability, and Chart Correctness.

Model Pearson Spearman

Answer
Match

Clarity &
Readability

Chart
Correctness

Answer
Match

Clarity &
Readability

Chart
Correctness

GPT-4o 0.85 0.84 0.81 0.85 0.71 0.78

Llama-3.1-8B 0.89 0.91 0.87 0.89 0.91 0.89

Qwen2.5-7B 0.87 0.89 0.92 0.87 0.87 0.90

Table 9: Pearson and Spearman correlations between human evaluation and GPT-4o-based evaluation across three
core dimensions: Answer Match, Clarity and Readability, and Chart Correctness.

Model Pearson Spearman

Answer
Match

Clarity &
Readability

Chart
Correctness

Answer
Match

Clarity &
Readability

Chart
Correctness

GPT-4o 0.92 0.86 0.68 0.92 0.72 0.66

Llama-3.1-8B 0.91 0.89 0.83 0.91 0.90 0.91

Qwen2.5-7B 0.90 0.84 0.93 0.90 0.85 0.85

Table 10: Pearson and Spearman correlations between human evaluation and Gemini 1.5 Pro-based evaluation
across three core dimensions: Answer Match, Clarity and Readability, and Chart Correctness.

31868

Model Closed /
Open-Ended

Single Query /
Conversational

Data Given /
Web-data Retrieval

Single /
Multi-Chart

Answerable /
Unanswerable

GPT-4o 24 / 26 20 / 50 26 / 8 26 / 26 29 / 3

Gemini 1.5 Flash 17 / 19 13 / 33 18 / 17 17 / 17 19 / 6

CodeLlama-7b-hf 2 / 1 2 / 1 0 / 2 2 / 3 2 / 0

CodeLlama-13b-hf 5 / 0 3 / 8 4 / 0 4 / 4 5 / 0

CodeLlama-34b-hf 5 / 2 2 / 13 4 / 0 5 / 1 5 / 0

Llama-3.1-8B 7 / 4 5 / 14 7 / 0 7 / 5 7 / 0

Mistral-7B 5 / 9 4 / 12 4 / 6 6 / 4 6 / 1

Qwen2.5-7B 3 / 15 11 / 22 14 / 0 14 / 6 14 / 7

Qwen2.5-Coder-7B 4 / 4 2 / 11 14 / 0 4 / 3 4 / 0

DeepSeek-Coder V2-Lite 10 / 9 8 / 21 10 / 2 10 / 9 11 / 4

DeepSeek-R1-Distill-Llama-8B 6 / 10 6 / 10 7 / 2 7 / 5 7 / 2

Table 11: Performance breakdown (Final Pass Rate in percentages) for text-to-visualization models across different
evaluation categories.

Category Prompt Template

Conversational
Query
Generation

You are given a dataset in JSON format from my Data Table. Using this dataset, generate a complex, conversational data analysis task
consisting of 4 to 5 interrelated steps. Each step should logically build on the previous one to ensure a natural flow of analysis.

To ensure clarity, two examples are included to demonstrate the expected structure. Please review these before generating new tasks. Then,
create similar tasks that are diverse, contextually relevant, and dependent on the new Data Table provided.

Each conversation step should include:

• Question: A data-driven question requiring multi-step reasoning (e.g., trend analysis, variability comparison, peak detection,
forecasting) that directly relates to the dataset.

• Answer: Precisely answers the question.

• Python Code Using Matplotlib: A self-contained code snippet that generates a relevant visualization, including clear annotations
highlighting key insights.

• Text Summary: A concise explanation of the insights derived from the visualization.

• Metadata: Include fields such as "ChartType", "xlabel", and "ylabel" to specify the visualization type and axis labels.

Example Input:

Data Table
...

Expected JSON Output Format:

{ "Question": "...", "Answer": "...", "Code": "...", "TextSummary": "...", "ChartType":
"", "xlabel": "...", "ylabel": "..." }

Ensure that each step builds on the previous one, creating a logically structured multi-step data analysis task. Maintain clarity, conciseness,
and accuracy in all responses. Additionally, ensure that the generated tasks are diverse and well-aligned with the specific structure and
patterns observed in the examples, while adapting to the new dataset provided.

Table 13: Prompt Templates for Conversational Query Generation.

31869

Category Prompt Template

Synthetic Data Table
and Histogram
Question Generation

I want you to perform the following tasks:

1. Generate a Synthetic Data Table:
- Randomly choose one domain from:
Healthcare, Technology, Finance, Marketing, Retail, Education, Sports, Energy, Logistics, or any other relevant field.
- Clearly specify the selected domain in the output.
- Ensure domain-specific numerical scales (e.g., revenue in 100k+, sales in thousands, ratings 1.0-5.0, percentages 0-100%).
- The dataset should include 5-8 rows and 1 numerical column with frequency-based data to represent a distribution.
- The structure must naturally lead to a complex data science question requiring a Histogram to analyze distribution, frequency,
or variability.
- Return the dataset as a valid JSON object with column names as keys and values as lists.

2. Generate a Single, Very Complex Data Science Question:
- The question must require multi-step reasoning and deep analysis related to data distributions, frequency analysis, or variability.
- The question should involve detecting patterns, finding skewness, assessing data spread, or identifying peaks and outliers.
- Ensure the question requires multi-step computations such as mean, median, standard deviation, percentiles, or comparisons of
histogram bins before deriving the final answer.
- Do not modify the original dataset in any way (e.g., do not add missing values or create new data points).
- The question should be best answered using a Histogram.

3. Provide a Short Answer:
- The answer must be exactly one word or one number.

4. Output Python Code Using Matplotlib:
- The code should create a Histogram that effectively visualizes the dataset and addresses the generated question.
- Data should be binned appropriately to represent the distribution.
- Ensure clear labeling of axes and meaningful annotations to highlight key insights.
- Use colors, bin adjustments, and density plots if necessary to enhance clarity.
- Must include text annotations to enhance the chart’s clarity and insight.
- You may use pandas for data handling if necessary.

5. Include a Text Summary:
- Provide a concise summary.
- Highlight the main insight derived from the visualization.

6. Provide Metadata:
- Domain: The selected domain.
- ChartType: Must be "Histogram".
- xlabel: The numerical variable representing the bins.
- ylabel: The frequency count of values.

Output Requirements:

- Return all the above information in a valid JSON format without any additional text or commentary outside the JSON object.
- Follow this exact JSON structure:

{
"Domain": "...",
"GeneratedDataTable": { "Value": [...] },
"Question": "...",
"Answer": "...",
"Code": "...",
"TextSummary": "...",
"ChartType": "Histogram",
"xlabel": "...",
"ylabel": "..."
}

Table 14: Prompt Template for Synthetic Data Table and Histogram Question Generation

31870

Category Prompt Template

Scatter Plot You are given the following data table:
data_text
Before proceeding, evaluate whether the dataset is suitable for generating a question that is best answered by a scatter plot visualization. A
dataset is considered suitable for scatter plot analysis if it contains at least two numerical variables that can be meaningfully compared.
If the dataset is NOT suitable for scatter plot analysis, please output an empty JSON object with the key "skip" set to true and do not
generate any further content.
If the dataset is suitable, then perform the following tasks:

1. Generate a Single, Very Complex Data Science Question:

• The question must require multi-step reasoning and deep analysis.
• Design the question specifically for a scatter plot visualization. For example, it may ask to analyze the relationship, correlation,

or pattern between two numeric variables, identify outliers, or compare distributions.

2. Provide a Short Answer:

• The answer must be precise.

3. Output Python Code for a Scatter Plot Visualization:

• Use matplotlib to generate a scatter plot.
• Ensure the code annotates key insights on the plot.

4. Include a Text Summary:

• Provide a concise explanation of the reasoning behind the answer, highlighting the main insight derived from the scatter plot.

5. Provide Metadata:

• ChartType: Set this to "Scatter".
• xlabel: The variable used for the X-axis.
• ylabel: The variable used for the Y-axis (if not applicable, use "N/A").

To ensure clarity, two examples with scatterplot are included to demonstrate the expected structure. Please review these before generating new
query and responses. Then, create similar query that are diverse, contextually relevant, and dependent on the provided data table.
Output Requirements:

• Return all the above information in a valid JSON format without any additional text or commentary.

• Follow this exact JSON structure:

Example Input:

Data Table
...

Expected JSON Output Format:

{ "Question": "...", "Answer": "...", "Code": "...", "TextSummary": "...", "ChartType":
"Scatter", "xlabel": "...", "ylabel": "..." }

Table 15: Prompt Template for Generating a Scatter Plot Query

31871

Category Prompt Template

Response You are a data visualization expert. Given a structured data table, respond to the following user question based on the data.
Input Data:

• Data Table: {row[’Data Table’]}

• Question: {row[’Question’]}

Task:

1. Answer: Provide a precise and concise response based on the data. If no clear answer is available, return "unanswerable".

2. Visualization Code: Generate Python Matplotlib code to create a meaningful visualization that accurately represents the data. Ensure
annotations and highlights are included.

Important Requirement:

• The output must be in a valid JSON format without any extra text, markdown formatting, or explanations.

• Ensure the JSON structure strictly follows the format below.

Expected JSON Output Format:

{ "Answer": "...", "Visualization Code": "..." }

Table 16: Prompt Template for Model Response Generation

Category Prompt Template

Agentic Framework You are an expert in model response validation and refinement. Given a structured data table, Ground truth answer, a user-generated
question, and an initial model response, your task is to validate and refine the model output for accuracy, correctness, and completeness.
Input Data:

• Data Table: {row[’Table Data’]}

• Question: {row[’Question’]}

• Initial GPT-4o Response: {gpt response}

Task:

1. Answer Validation: Verify correctness and identify errors if any.

2. Visualization Code Validation: Check for syntax errors, readability issues, or execution problems.

3. Refinement Task:

• Based on the feedback, refine the model response to correct errors.
• Ensure the response is precise, formatted correctly, and adheres to the required JSON format.

Output Requirements:

• Ensure the final output is in a valid JSON format without extra text or markdown formatting.

• The JSON structure must strictly follow the format below.

Expected JSON Output Format:

{ "Answer": "...", "Visualization Code": "..." }

Table 17: Prompt Template for Agentic Framework

31872

Category Prompt Template

Evaluation You are an evaluation expert responsible for assessing the accuracy of generated answers and the quality of visualizations. Given a structured
data table, a user-generated question, a model-generated response, and an image-based visualization, your task is to validate the correctness of
the response and evaluate the visualization quality.
Input Data:

• Data Table: {row[’Table Data’]}

• Question: {row[’Generated Question’]}

• Generated Answer: {row[’Generated Answer’]}

• Ground Truth Answer: {row[’Answer’]}

• Generated Image: {row[’Generated image’]}

Task:

1. Answer Matching: Compare the generated answer with the ground truth using following evaluation criteria.

2. Visualization Evaluation: Score the visualization based on following evaluation criteria.

Evaluation Criteria:

1. Answer Matching (Binary: 1 or 0)

• Match if numbers are close (e.g., "48.77" vs "48.73") or equivalent percentage formats (e.g., "100" vs "100
• Match if the ground truth appears within the generated response (e.g., "100" in "The result is 100").
• For long ground truth answer, match is considered as long as the core summary remains the same, even if the wording differs.
• Allow minor spelling variations or abbreviations (e.g., "Albenia" vs "Albania", "USA" vs "United States").
• No match if the meaning changes significantly (e.g., "Fragile" vs "Extreme fragility").

2. Readability and Quality Score (0-5)

• Labels and Titles: Are they clear, concise, and correctly positioned?
• Layout Spacing: Is the layout well-organized with no clutter?
• Color Accessibility: Are colors distinct and accessible (colorblind-friendly)?
• Axis Scaling: Are axes correctly labeled and proportional?
• Chart Type Suitability: Is the visualization appropriate for the data type (e.g., line chart for trends)?
• Font and Legends: Are fonts readable, and legends properly aligned?
• Annotation Readability: Are annotations (e.g., data labels, callouts) clear, well-placed, and non-overlapping?

3. Chart Correctness Score (0-5)

• Query Alignment: Does the visualization correctly address the question?
• Data Integrity: Are all data points accurately plotted?
• Insight Representation: Does the chart effectively communicate its key insights based on its type?
• Handling Missing Data: Is missing data presented appropriately without misleading distortion?
• Complexity Handling: For multi-step queries, is the visualization logically structured?

• 5.0 – Excellent: Clear, accurate, and no issues.

• 4.5 – Very Good: Minor issues but does not impact understanding.

• 4.0 – Good: Small flaws like minor misalignments.

• 3.5 – Decent: Some readability/accuracy issues but still interpretable.

• 3.0 – Average: Noticeable problems that affect clarity or correctness.

• 2.5 – Below Average: Several issues that may lead to misinterpretation.

• 2.0 – Poor: Significant issues making the chart unclear.

• 1.5 – Very Poor: Major readability or correctness flaws.

• 1.0 – Unusable: Completely unclear or misleading.

• 0.0 – Failed: The visualization is unreadable or irrelevant.

Output Requirements:

• Ensure the final output is in a valid JSON format without additional text.

Expected JSON Output Format:

{ "Answer Match": "...", "Readability and Quality Score": "...", "Chart Correctness Score": "..." }

Table 18: Prompt Template for Evaluating Results Using the GPT-4.0 Model.

31873

Category Prompt Template

Complexity
Classification

Prompt: You are given a data science question based on a table. Your task is to classify the complexity of the question into one of the following
four categories:

• Simple: The answer can be directly retrieved by locating a single value or label, with no calculation required.

• Medium: The question requires one or two reasoning steps, such as comparing values, calculating a difference or percentage, or
sorting a small set of entries.

• Hard: The question involves multiple steps of reasoning—combining comparisons, aggregations, or filtering across rows or categories.
It may require intermediate calculations to arrive at the answer.

• Extra Hard: The question demands complex, multi-step reasoning such as identifying trends, interpreting grouped patterns, performing
advanced aggregations. It may also involve retrieving external information from the web to fully answer the query.

Based on the criteria above, classify the question using one of the following labels: Simple, Medium, Hard, or Extra Hard.
Provide only the label as your final output.

Table 19: Prompt Template for Question Complexity Classification

31874

