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Abstract

Reading fluency in any language requires ac-
curate word decoding but also natural prosodic
phrasing i.e the grouping of words into rhyth-
mically and syntactically coherent units. This
holds for, both, reading aloud and silent read-
ing. While adults pause meaningfully at clause
or punctuation boundaries, children aged 8-13
often insert inappropriate pauses due to limited
breath control and underdeveloped prosodic
awareness. We present a text-based model to
predict cognitively appropriate pause locations
in children’s reading material. Using a curated
dataset of 54 leveled English stories annotated
for potential pauses, or prosodic boundaries, by
21 fluent speakers, we find that nearly 30% of
pauses occur at non-punctuation locations of
the text, highlighting the limitations of using
only punctuation-based cues. Our model com-
bines lexical, syntactic, and contextual features
with a novel breath duration feature that cap-
tures syllable load since the last major bound-
ary. This cognitively motivated approach can
model both allowed and "forbidden" pauses.
The proposed framework supports applications
such as child-directed TTS and oral reading flu-
ency assessment where the proper grouping of
words is considered critical to reading compre-
hension.

1 Introduction

Human speech is not a continuous stream of words,
but rather unfolds in syntactically and semantically
organized segments. Native speakers instinctively
group words into prosodic units or chunks that are
marked by pauses, pitch resets, boundary tones,
and durational cues (Rosenberg, 2009). These seg-
ments include Prosodic Words (PW), Intermediate
Phrases (iP), and Intonational Phrases (IP) nested
hierarchically to reflect underlying structure and
meaning (Figure 1). The endpoints of these units
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are known as phrase boundaries and are central to
the naturalness and comprehensibility of speech.

Figure 1: Example showing prosodic hierarchy within
a sentence. IP: Intonational Phrase; iP: Intermediate
Phrase; PW: Prosodic Word

In this work, we are concerned with the pre-
diction of phrase boundaries from text in a man-
ner that mimics the speech of a fluent child reader.
However, Phrase or Prosodic Boundary Detection
(PBD) is inherently challenging. First, prosodic
phrasing often diverges from syntactic phrasing.
Semantic emphasis, speaker intent, and discourse
structure may override grammatical constraints,
leading to syntax–prosody mismatches (Atterer
and Klein, 2002). Second, most prior research
on PBD targets acoustic cues such as pitch re-
sets, pre-boundary lengthening, and silent pauses,
which are absent in plain text (Jeon and Liu,
2009; Kuang et al., 2022; Ananthakrishnan and
Narayanan, 2006). Third, prosodic boundaries are
hierarchically structured, requiring models to dis-
tinguish between no break, minor breaks (e.g., PP-
level), and major breaks (e.g., IP-level), making
PBD a nuanced multi-class classification problem
(Rosenberg, 2009; Yoon, 2006).

Predicting prosodic boundaries for children’s
texts, using only text-derived features, is thus a
particularly underexplored problem. Reliably pre-
dicted boundaries can serve as references for the
realised breaks in the child’s oral reading. This is
important in the assessment of oral reading fluency
(ORF), a topic of growing interest due to its strong
connection to reading comprehension (Bailly et al.,
2022).
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Acoustic cues to perceived breaks include pauses
and other phrase-boundary cues based on pitch
and duration. Most current approaches to ORF
assessment either ignore prosody or treat it super-
ficially. Yet recent studies show that listeners are
highly sensitive to the placement of breaks (also
termed ’pauses’). Unexpected disjunctures, es-
pecially within cohesive prosodic units like PWs
or syntactic phrases, are perceived as unnatural
and detrimental to comprehension (Sabu and Rao,
2024). In our study, we use the term forbidden
pauses for such unexpected events.

In the context of reading fluency development,
these concerns are magnified. Children differ sig-
nificantly from adults in both linguistic maturity
and physiological capacity. For instance, the av-
erage child between the age of 8 to 13 speaks at
a rate of 2.87 ± 0.5 syllables per second (Logan
et al., 2011), but their respiratory capacity limits
breath groups to roughly 2 to 3.33 seconds, al-
lowing for only 5 to 7 syllables per breath (Flem-
ing et al., 2011). In contrast, adults can sustain
breath groups with 14 to 16 syllables (Papadopou-
los, 2014; Venkatagiri, 1999). This discrepancy
underscores the need to model breath-driven phras-
ing constraints in child speech, rather than relying
fully on adult prosody models.

We focus on linguistically grounded, child-
aware modeling of prosodic boundaries using rich
syntactic, positional, and semantic features from
text. Our motivation lies in the fact that prosodic
segmentation is not merely a low-level speech fea-
ture, but a reflection of developmental, physiolog-
ical, and cognitive constraints, and that modeling
it accurately is key to understanding and support-
ing child readers. Importantly, our models operate
exclusively on text-based features, without rely-
ing on audio or prosodic contours, thus making
them applicable in settings like text preprocessing
for text-to-speech (TTS) systems and oral reading
fluency (ORF) assessment and pedagogy.

Our work makes two primary contributions.
First, we propose a cognitively motivated feature
based on breath duration to model prosodic bound-
ary strength. This feature quantifies the number
of syllables uttered since the last major prosodic
boundary and is grounded in developmental and
physiological research on children aged 8 to 13.
Second, we release a dataset containing annotations
and extracted text-based features from the read-
ing materials, which was used to predict prosodic

boundaries.1.

2 Previous Work

Prosodic boundary detection (PBD) has evolved
considerably over the past few decades, transition-
ing from rule-based systems grounded in linguistic
heuristics to data-driven methods leveraging syn-
tactic, semantic, and acoustic features.

Early approaches relied on handcrafted rules
or punctuation-based alignment (Möbius, 1999),
which proved insufficient for handling spontaneous
or expressive speech. More advanced heuristics
leveraged function-content word patterns (Ejerhed,
1988; Taylor and Black, 1998; Brierley and Atwell,
2007), but still fell short in syntactic depth. These
methods primarily depended on surface-level fea-
tures such as part-of-speech sequences or word
categories, lacking access to the hierarchical and re-
lational structures captured by full syntactic parses.
Rule-based systems informed by syntax, includ-
ing the PHI algorithm (Gee and Grosjean, 1983)
and various clause-structure heuristics (Atterer and
Klein, 2002; Fitzpatrick, 2001), achieved more ac-
curate phrasing predictions, yet their performance
was contingent on high-quality parses and often
failed to generalize across domains.

The availability of annotated corpora such
as the Boston University Radio News Corpus
(BURNC) (Ostendorf et al., 1995) with TOBI-
labeled prosodic annotations (Beckman and Ayers,
1997) enabled a shift toward supervised learning.
CART models like Wang (1991) combined syntac-
tic and prosodic features to achieve strong accuracy
of nearly 90% on datasets like ATIS (Hemphill
et al., 1990). Later studies extended classification-
based methods using maximum entropy models,
LightGBM, and memory-based learning. Zhang
et al. (2006) proposed a multi-pass ME model with
post-hoc rule refinement for Mandarin, Trang et al.
(2021) demonstrated performance gains in Viet-
namese PBD using PhoBERT embeddings and tree-
based syntactic features.

Sequence models such as Conditional Random
Fields (CRFs) became popular for capturing con-
textual label dependencies (Kim et al., 2009; Qian
et al., 2010; Levow, 2008). CRFs outperformed
decision trees in modeling sequential prosodic
patterns and showed robustness on corpora like
BURNC. Linear models like logistic regression
and SVMs provided interpretability, with lexical

1Link to Dataset
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and contextual features shown to be predictive of
boundary strength (Rosenberg, 2009; Jeon and Liu,
2009).

Mishra et al. (2015) achieved an accuracy of
94.7% using a logistic regression-based binary clas-
sifier to identify intonational phrase breaks. Yoon
(2006) explored memory-based learning that com-
bined semantic, syntactic, and phonological cues,
achieving high accuracy—93.23% for boundary
classification and 88.06% for boundary strength
prediction—on the BURNC corpus. Sloan (2023)
further improved TTS by injecting explicit prosodic
events (breaks and pitch accents) using random for-
est classifiers trained on BURNC, achieving an ac-
curacy of 93.4% in identifying phrase boundaries.

Recent work has focused on deep learning, espe-
cially LSTMs and BiLSTMs, which model tempo-
ral dependencies effectively when combined with
embeddings. Rendel et al. (2016) showed that con-
tinuous embeddings can predict symbolic prosodic
events in TTS, with an F1-score of 0.83.

Despite these advances, many systems still rely
on proxy labels—such as punctuation or TTS
heuristics — that poorly reflect perceived prosody,
especially in children’s speech that is shaped by
unique cognitive and physiological factors. To ad-
dress this, we model prosodic boundary strength
as a continuous variable derived from human anno-
tations, enabling a more nuanced and perceptually
grounded formulation of phrasing suited for child-
directed speech applications.

3 Data and Tasks

We present our dataset of human-annotated text
passages followed by a discussion of the research
tasks.

3.1 Dataset

The dataset developed for this study comprises
54 passages drawn from the stories in the Read-
ing Cards created by the Central Institute of En-
glish and Foreign Languages (CIEFL), India2 and
marked for reading level by grade. The selected
stories are evenly distributed across six grade lev-
els (Grades 3–8), with nine passages per grade,
covering both narrative and expository genres. To
maintain a balance of text types, each grade in-
cludes a mix of both genres. Direct speech in the
original stories was converted to indirect speech,

2https://www.orientblackswan.com/books?id=0&
pid=0&sid=40

as is typically done for texts created for use in oral
reading fluency assessments, to encourage a con-
sistent reading style. The dataset consisted of 8662
words and 701 sentences.

Manual annotation by fluent adult speakers of
Indian English was used to obtain the prosodic
boundaries in each text. Annotators were presented
with clear on-screen instructions within a custom-
built web-based annotation tool, instructing them
to mark the boundary words, i.e. words that they
would naturally pause after, when reading aloud
the presented texts to the children they were meant
for. To limit the total time required of an annotator
to within one hour, the 54 passages were divided
into 3 batches with each batch containing 18 stories
(three per grade), with a balanced representation of
genres (narrative and expository). A given annota-
tor received only one batch of passages.

A total of 21 annotators were recruited, rang-
ing from university students to working profession-
als, with self-declared high proficiency in English.
Each batch was assigned to a distinct group of 7
annotators, aligning with empirical findings from
(Cole et al., 2017), which suggests that inter-rater
agreement stabilizes around this number. Stories
within each batch were randomly ordered for each
annotator to mitigate order effects. Inter-annotator
agreement, measured with Fleiss’ Kappa scores,
obtained 0.69, 0.75, and 0.61 for the 3 batches,
with the overall average of 0.68 indicating substan-
tial agreement according to the criteria of Landis
and Richard (1977).

3.2 Data Insights

Figure 2: Distribution of the 8662 words in our dataset
by number of votes for pause presence (out of a total of
7 votes).

With every word in the dataset annotated by 7
raters, we obtain a histogram of the pause votes
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per word as shown in Figure 2. The distribution
is skewed toward extremes indicating relatively
high annotator agreement on words that receive
either 0 or 7 votes. Words with 0 votes (5305, or
60%) are typically short function words in syntac-
tically uninterrupted regions. Words receiving 1–2
votes appear within fluent, unmarked spans and
reflect marginal or reader-specific pause tenden-
cies. Those with 3–4 votes often occur near clause
boundaries (e.g., after subordinators or conjunc-
tions) and suggest variability in prosodic phrasing
strategies. Words with 5–6 votes frequently oc-
cur at near-clause endings or just before breath-
group transitions, determined by word and syl-
lable counts, signaling softer boundary markers.
Full agreement cases (7 votes) align with sentence
or clause-final positions and punctuation, offering
strong supervision cues for pause prediction. The
observed correspondence of number of votes with a
boundary hierarchy supports modeling of prosodic
boundaries as continuous phenomena rather than
strictly binary events.

Boundary Metrics: We also examine typical
phrase durations in terms of number of syllables
per phrase, separately for each grade given the ex-
pected dependence of text complexity on grade.
Table 1 presents the average number of syllables
and words per sentence, as well as between con-
secutive human-annotated boundaries with at least
one vote. As expected, the number of syllables and
words per sentence increases steadily from Grade 3
to Grade 7, reflecting longer and more syntactically
complex sentence structures in higher-grade texts.
Notably, the spacing between prosodic boundaries
also shows a gradual increase with grade level. For
example, Grade 3 stories exhibit a prosodic bound-
ary roughly every 5.5 syllables, whereas Grade 7
texts show lower pause density with an average of
7.1 syllables between pauses. This gradual length-
ening of phrase segments may reflect a shift toward
more complex syntactic constructions and longer
breath or thought groups in advanced-level texts.

Further, we observed that for prosodic bound-
aries receiving five or more annotator votes, an
average of 7.0 syllables is obtained between suc-
cessive boundaries, with standard deviation of 3.5.
This corresponds to roughly one pause every 5–7
syllables, aligning well with estimated breath group
sizes in younger children and offering physiologi-
cal motivation for incorporating breath-related cues
in pause prediction models.

Grade Syl/Sent Wd/Sent Syl/Bd Wd/Bd
M (SD) M (SD) M (SD) M (SD)

3 11.2 (2.2) 9.2 (2.1) 5.5 (1.2) 4.5 (0.9)
4 14.9 (2.3) 11.8 (1.6) 6.0 (1.8) 4.7 (1.4)
5 16.1 (3.3) 12.5 (2.5) 6.2 (1.7) 4.8 (1.2)
6 17.6 (2.4) 13.2 (1.7) 6.4 (2.2) 5.0 (1.8)
7 22.2 (3.7) 15.8 (2.7) 7.1 (3.1) 5.3 (2.3)

Table 1: Average number of syllables and words - Mean
(M), Standard deviation (SD) - between consecutive
annotated boundaries, grouped by grade level. Syl: Syl-
lables; Sent: Sentence; Wd: Word; Bd: Boundary

Role of Punctuation and Syntax: Further anal-
ysis shows that punctuation, particularly terminal
markers (., ?, !), corresponds to strong prosodic
boundaries. All such locations were labeled as
pauses by all 7 annotators. Non terminal markers
(commas, -, :, etc.), however, show more variabil-
ity: out of 430 comma-marked locations, only 57%
reached full agreement (Table 2).

Votes IP (700) ip (430)

≤4 0 12 (3%)
5–6 0 173 (40%)
7 700 (100%) 245 (57%)

Table 2: Distribution of phrase boundaries based on
punctuation and annotator agreement. IP: Intonational
Phrase boundary marked by terminal punctuation; ip:
Intermediate Phrase boundary marked by non-terminal
punctuation.

Despite being a punctuation cue, commas func-
tion as a soft constraint and show significant vari-
ability in annotator-rated boundary strength. Fig-
ure 3 illustrates the distinct ways in which commas
can be interpreted prosodically.

Long,| long ago, | the peacock had a lovely voice | and
beautiful feathers|.

When you eat a banana, | you see small, | soft, | black
seeds | inside the fruit|.

Figure 3: Examples where red | denotes locations with
≤4 votes (low agreement) and green | shows pause loca-
tions with ≥ 5 annotator agreement.

Syntactic Cues: Even after punctuation-based
boundaries are removed, the inter-annotator agree-
ment remains moderately high (κ = 0.45), indicat-
ing that prosodic phrasing is not solely governed by
surface punctuation cues but also by deeper linguis-
tic structures such as syntax and breath planning.
Notably, clause boundaries — especially those
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marked by coordinating conjunctions like “and” or
“but” — show strong alignment with pause place-
ment. If we consider locations that receive 5 or
more pause votes as perceived pauses, we find that
out of 323 instances of coordinating conjunctions,
255 (nearly 79%) were immediately preceded by a
perceived pause. This consistent pattern reinforces
the role of syntactic segmentation in pause pre-
diction, suggesting that readers instinctively place
boundaries at points of structural or cognitive reset.

3.3 Tasks
We define three automatic prediction tasks of inter-
est in downstream applications of this work. We
intend to evaluate models based on text-derived
features on these tasks.

• Prediction of perceived boundary strength
by regression: The number of annotator votes
per word (ranging from 0 to 7) serves as a
continuous measure of how strongly a word
is perceived as a natural pause point. This
formulation allows for nuanced modeling be-
yond binary decisions. For analysis purposes,
we group the words into three ranges to re-
flect different levels of perceived boundary
strength (see Table 3): no pause (0 votes), low
to moderate agreement (1–4 votes), and high
agreement (5–7 votes).

Votes Number of Words

0 5305 (61.24%)
1–4 1764 (20.36%)
5–7 1593 (18.40%)

Table 3: Grouping of vote counts for the 8662 words
into three classes for analysis and visualization.

• Binary classification for presence/absence
of prosodic boundaries: Words receiving
votes from at least 5 out of 7 annotators in-
dicate strong consensus and are labeled as
boundary. The remaining words are labeled
no boundary.

• Binary classification for presence/absence
of forbidden pauses: Words unanimously
marked with 0 votes (i.e., all annotators agreed
that no pause should occur) are categorized as
forbidden pauses. These represent positions in
the text where pausing may be particularly dis-
ruptive to the comprehension of the text. All
other words (with 1–7 votes) are considered

allowed pauses. This formulation supports
applications that aim to discourage disfluent
or unnatural pausing behavior during reading
as in ORF assessment.

4 Feature Extraction

Informed by the literature reviewed previously, we
extracted a comprehensive set of lexical, syntactic,
semantic, positional, and physiological features for
each word in the corpus to support accurate model-
ing of prosodic boundary prediction, as presented
here.

Lexical Features: At the surface level, we in-
cluded the word form and its lemmatized version,
along with orthographic and typographic charac-
teristics such as whether the word is capitalized,
whether it is the last word in the sentence, and
whether it is followed by a punctuation mark. Addi-
tional features include word length (in characters),
raw word frequency (computed from the corpus
statistics), and a binary indicator for whether the
word is a function word. To capture lexical pre-
dictability, we also incorporated the word’s score
from pre-trained BERT language model (Devlin
et al., 2018).

Semantic Features via Word Embeddings: To
represent semantic similarity without relying
on raw high-dimensional embeddings, we ex-
tracted contextualized word vectors using Google’s
bert-base-uncased (Devlin et al., 2018). Since
embeddings are not directly usable as features in
classification tasks, we reduced their dimensional-
ity via PCA and then applied K-Means clustering
to group semantically similar embeddings. Each
word was thus assigned a discrete cluster ID. No-
tably, these clusters showed strong alignment with
coarse-grained part-of-speech categories—for ex-
ample, one cluster predominantly represented pro-
nouns, another grouped nouns and proper nouns,
and so on. In addition to each word’s cluster ID,
we included the cluster IDs of its preceding and
succeeding words to provide lightweight semantic
context.

Syntactic and POS Features: Syntactic fea-
tures were derived from both dependency and con-
stituency parses. Each word is tagged with its part-
of-speech (POS), fine-grained morphological tag,
and dependency relation. To provide broader syn-
tactic context, we included the POS tags and de-
pendency labels of the three preceding and three
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succeeding words in the context window (Mishra
et al., 2015). These were extracted using the spaCy
NLP toolkit (Honnibal et al., 2024)

From constituency parses generated using the
Berkeley Neural Parser (Kitaev et al., 2019; Kitaev
and Klein, 2018), we extracted deeper syntactic
cues such as the depth and label of the smallest
constituent containing the word. We computed
the forward and backward positional indices of the
word within this constituent. To quantify syntactic
distance, we constructed a minimal spanning tree
between the current word and its neighboring word,
from which we derived both the tree’s label and
its length (Sloan et al., 2022). We also calculated
the word’s distance from the phrase root and the
phrase head, both in terms of syntactic depth and
position within the parse structure. These features
together capture a rich representation of the phrase-
structural boundaries and hierarchical grammatical
cues that are known to influence prosodic phrasing.

Positional Features: These features encode the
word’s position in its sentence, both as an absolute
index and as a relative value normalized by the sen-
tence length. Sentence length itself is also included
as a feature.

Physiological Features: To model breathing
and planning constraints in speech, we included
prosody-motivated physiological features. For each
word, we recorded its number of syllables, the
cumulative syllables since the last sentence end-
ing, and the number of syllables remaining in that
breath group duration (taken as 7 syllables) . These
features are grounded in cognitive-linguistic the-
ory, which suggests that prosodic boundaries often
align with respiratory planning units (Wang et al.,
2010).

5 Model Evaluation

To assess our models’ generalization ability across
grade levels and discourse types, we adopt a grade-
stratified, style-balanced evaluation protocol. For
each grade level (Grades 3–8), one narrative and
one expository story are held out as test data, com-
prising 12 stories in all. This setup ensures indepen-
dence between training and test splits while main-
taining lexical, syntactic, and stylistic diversity in
each split. The model was trained on features and
targets of the training set texts.

All models were trained using the LightGBM
framework (Ke et al., 2017), an efficient version of

the popular gradient boosting decision trees. For re-
gression tasks, we used the LGBMRegressor, while
for classification tasks, we employed the LGBM-
Classifier. Features described in Section 4 were
extracted for each word token wi in the dataset, ex-
cluding punctuation tokens. However, punctuations
were included in the context window for part-of-
speech and dependency features. Feature ablation
studies were conducted to assess the contribution
of different linguistic and prosodic cues.

5.1 Results

Model evaluation results are reported on the held
out test set of 6 passages spanning all the grades.

Regression task: Table 4 shows the regression
performance across different feature combinations.
The full model achieved an R2 of 0.87, RMSE
of 0.94, and MAE of 0.57, outperforming outper-
forming all cumulative ablation variants. Models
restricted to subsets such as lexical, punctuation, or
syntactic features showed consistently lower per-
formance, highlighting the complementary contri-
bution of each feature group.

Feature Set R2 RMSE MAE

Punctuation 0.67 1.48 1.05
+ Lexical 0.70 1.44 0.95
+ Semantic 0.76 1.27 0.85
+ Syntactic and POS 0.79 1.16 0.75
+ Positional 0.80 1.14 0.73
+ Physiological 0.87 0.94 0.57

Table 4: Regression performance across cumulative fea-
ture subsets. Bold values indicate the best performance.
Feature categories include punctuation (1), lexical (7),
semantic (3), syntactic (12), POS and dependencies (15),
positional (2), and physiological (3). Numbers in paren-
theses denote the feature count within each category.

To better understand model behavior across the
spectrum of annotator agreement, we analyzed re-
gression error by vote count. As shown in Table 5,
the model performs best at the extremes: MAEs
are lowest when there is unanimous agreement on
no-pause (0 votes) or strong consensus on a pause
(5–7 votes). Errors peak in the ambiguous mid-
range (1–4 votes), where inter-annotator variability
and prosodic ambiguity are highest.

Classification tasks: We report performance on
two classification tasks: Prosodic Boundary Detec-
tion (PBD) and Forbidden Pause Detection (FPD).
Table 6 summarizes the obtained precision, recall,
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Votes Meaning MAE

0 No Pause 0.38
1–4 Low to Moderate Agreement 0.67–1.77
5–7 High Agreement 0.37–1.53

Table 5: Mean Absolute Error (MAE) by annotator
agreement level (vote count).

Figure 4: Confusion matrix between annotation number
of votes and rounded regression outputs, both grouped
as 0 votes: No Pause, 1-4 votes: Low to Moderate
Agreement, 5-7 votes: High Agreement

Figure 5: Importance of features grouped by their cate-
gory as referred in Section 4

F1-score, and accuracies. Overall, we note perfor-
mances that are comparable to similar tasks in the
reviewed literature.

Performance Metrics PBD FPD

Precision 0.92 0.83
Recall 0.85 0.91
F1-score 0.89 0.87
Accuracy 0.96 0.84

Table 6: Performance on the two classification tasks.
Precision and recall are computed for the positive class
(i.e., presence of boundary or forbidden pause).

Prosodic Boundaries Detection: Despite high
overall performance in prosodic boundary detec-
tion, we note a recall of 85%. The model fails on a
small but important subset of boundaries, particu-

larly in complex syntactic or prosodically nuanced
contexts. A common pattern among false nega-
tives involves clause-internal boundaries that are
not marked by punctuation but are clearly perceived
as prosodic breaks by human annotators. For in-
stance, the model often misses pauses after verbs
introducing embedded clauses (e.g., “Nobody re-
ally knows | how they find their way. . . ”) or after
noun phrases ending in rare or meaningful content
words (e.g., “the thick and rough khadi | doesn’t
make me suffer”). It also struggles with coordi-
nated or contrastive structures, such as between
adjectives (“a thick coat of short | soft hair”) or
content-heavy noun phrases used for emphasis or
affect (“I was living alone | in an empty flat. . . ”).
These cases suggest that while the model captures
many syntactic patterns, it underestimates bound-
aries that depend on context prominence or subtle
shifts in information structure. The examples are
presented in full below.

GT: Nobody really knows | how they find
their way on these...
Model: Nobody really knows how they find
their way | on these...

GT: ... the thick and rough khadi | doesn’t
make me suffer. |
Model: ... the thick and rough khadi doesn’t
make me suffer. |

GT: It is a thick coat of short | soft hair. |
Model: It is a thick coat of short soft hair. |

GT: I was living alone | in an empty flat | in
a quiet Moscow street. |
Model: I was living alone in an empty flat |
in a quiet Moscow street. |

Forbidden Pause Detection: While the model
exhibits strong recall (0.91) in detecting true forbid-
den pauses i.e instances with zero annotator votes,
it also mislabels a notable number of words as for-
bidden despite evidence of pausing, resulting in a
lower precision of 0.83. Most of these false posi-
tives involve words with exactly one vote, typically
function words or mid-clause verbs like “fly” in

“they fly to warmer lands.” Such cases reflect reader-
specific phrasing preferences, where occasional
pauses occur for emphasis, hesitation, or rhythm,
but are not consistently marked across readers. We
also observe a few misclassifications on words with
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3 or more votes where pauses are more reliably
perceived. These include punctuation-induced em-
phasis (e.g., “...and say just one word: | Money”),
coordinated structures (“to swear | and to smoke”),
and discourse-driven boundaries (“That is why | ...”
or “She thought | we had all gone mad”). Such
errors indicate that the model sometimes overlooks
expressive or intonational pauses that lie beyond
strict syntactic rules or punctuation. Examples in
full appear below.

GT: So | when winter sets in, | they fly | to
warmer lands. |
Model: So | when winter sets in, | they fly
to warmer lands. |

GT: She thought | we had all gone mad. |
Model: She thought we had all gone mad. |

GT: The street taught me | to swear | and to
smoke | and to keep...
Model: The street taught me | to swear and
to smoke | and to keep...

GT: That is why | even the tiger | is afraid of
it. |
Model: That is why even the tiger | is afraid
of it. |

5.2 Discussion

This work aimed to predict the expected prosodic
boundaries in children’s oral reading using only
the corresponding prompt text. We focused on
pause patterns driven by linguistic structure and
developmental reading behavior. Our findings high-
light that prosodic phrasing in child-directed texts
is shaped not just by surface cues like punctuation,
but by a complex interaction of syntax, semantics,
and physiological factors such as breath control.

To reflect real-world educational and storytelling
contexts adult annotators were explicitly instructed
to mark pauses as they would naturally insert them
when reading aloud to children, rather than to adult
audiences. Analysis of the annotated data (Ta-
ble 1) revealed that the distribution of syllables
between marked boundaries closely aligns with
known breath group sizes for children. This sug-
gests that annotators implicitly adopted pausing
patterns consistent with children’s physiological
and cognitive constraints.

Nearly 30% of human-marked pauses occurred

at non-punctuation locations, highlighting that
punctuation alone is an insufficient marker for
prosody in children’s reading. While terminal
punctuation reliably aligned with high-agreement
boundaries, commas showed notable variabil-
ity—only 57% of comma-marked pauses had unan-
imous annotator consensus—suggesting punctua-
tion is a probabilistic cue.

Further, the pausing patterns across six grade lev-
els revealed clear developmental trends in prosodic
segmentation. Even though annotators were not
explicitly informed of the grade level of the stories
they labeled, we observed longer stretches between
pauses as grade level increased (see Table 1). This
suggests that prosodic phrasing naturally aligns
with the growing syntactic complexity, cognitive
load, and breath capacity of older children. These
findings underscore the importance of modeling
prosody in a grade-sensitive manner, as the same
features may signal different prosodic behavior
across reading proficiency levels.

Considering our observations, our model inte-
grates lexical, syntactic, and contextual embed-
dings with a novel breath-duration feature that cap-
tures syllable load since the last major pause. This
cognitively motivated feature draws on our find-
ing that prosodic boundaries typically appear every
5–7 syllables—consistent with known breath group
limits in children (see Section 1).

The regression-based formulation, which mod-
eled annotator agreement as a continuous mea-
sure of prosodic boundary strength, enabled a
more graded interpretation of pause likelihood. As
observed in Figure 4, the model performs reli-
ably at the extremes with intermediate words (1–4
votes) exhibiting significant confusion with adja-
cent classes. This reflects the inherent ambiguity of
mid-strength boundaries, where even human raters
show limited consensus.

In the classification tasks, our models performed
well across both prosodic boundary detection and
forbidden pause identification. As discussed in
Section 5.1, the errors observed in prosodic bound-
ary detection involve syntactically complex or se-
mantic emphasis contexts where explicit textual
cues are limited. The model’s reliance on struc-
tural features may thus limit its sensitivity to these
more nuanced forms of pausing, which can also
be listener or discourse driven rather than strictly
rule-governed.

On the task of forbidden pause detection, the
model achieved high recall (0.91), effectively iden-
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tifying most positions where no annotator indicated
a pause which is essential for flagging disfluent
or unnatural phrasing in ORF assessment. This
suggests potential for supporting educators in diag-
nosing phrasing-related stemming from the lack of
comprehension and guiding targeted reading inter-
ventions for learners.

The observed errors, discussed in Section 5.1,
point to a core limitation that expressive bound-
aries often depend on discourse-level and prag-
matic cues—such as contrast or elaboration which
are not reliably encoded in surface syntax or local
lexical context. Given that the model’s features
are primarily local and structurally driven, it may
lack the semantic flexibility needed to capture the
full range of phrasing decisions that readers make,
especially those involving interpretive or stylistic
variation.

Analyzing the feature importances grouped by
their linguistic roles (Figure 5) provides deeper un-
derstanding of how the model makes predictions.
Features related to syntax and dependency struc-
tures carry the most weight, followed by lexical
information and prosodic indicators such as sylla-
ble counts and breath group length. This pattern
supports our hypothesis that children’s phrasing
choices are primarily guided by grammatical struc-
ture while also being influenced by cognitive and
physiological factors like breath capacity. Instead
of depending on a single source of information,
the model leverages a combination of diverse fea-
tures, reflecting the complex, multifaceted nature
of reading with expression.

6 Conclusion
Our findings reveal that a combination of syntac-
tic, lexical, and prosodic features enables accurate
prediction from text of prosodic boundaries and
forbidden pauses for children’s oral reading. This
approach holds significant promise for applications
in education such as learning to read with com-
prehension for children, and for second-language
learners by enhancing TTS systems with natural
prosodic phrasing information. Since the applica-
ble features can be extracted with standard NLP
tools and are fully interpretable linguistically, this
methodology has strong potential for adaptation to
other languages with similar syntactic and prosodic
structures. Specifically, we plan to extend this work
to Hindi and Marathi children’s texts where the
use of punctuation, such as comma, in printed text
tends to be relatively low. By expanding datasets,

future research can further improve model accuracy
and practical usability in multilingual educational
settings. A future impactful validation of our model
can involve comparison of its predictions with data
on prosodic boundaries actually realised by fluent
children in oral reading assessments as detected by
acoustic measurements.

Limitations

Our work assumes that text-based features alone
can adequately capture prosodic patterns, but
prosody is influenced by additional factors such
as speaker intent, emphasis, and pragmatic con-
text, which are not represented in our model. This
simplification may limit robustness across diverse
speech styles or domains. Our work assumes
prosodic patterns generalize across readers and
linguistic backgrounds; however, variability in di-
alects and individual reading habits may affect per-
formance. Human annotations introduce subjec-
tivity and potential inconsistencies, adding noise
that can impact accuracy. Furthermore, the rela-
tively small dataset size restricts exposure to varied
prosodic phenomena, limiting generalizability. Fi-
nally, our approach does not explicitly model multi-
level prosodic features such as boundary tones or
pitch accents, which could enhance the naturalness
and realism of predicted prosody.
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