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Abstract

Large language models (LLMs) have shown
strong performance in many reasoning bench-
marks. However, recent studies have pointed
to memorization, rather than generalization, as
one of the leading causes for such performance.
LLMs, in fact, are susceptible to content varia-
tions, demonstrating a lack of robust planning
or symbolic abstractions supporting their rea-
soning process. To improve reliability, many
attempts have been made to combine LLMs
with symbolic methods. Nevertheless, exist-
ing approaches fail to effectively leverage sym-
bolic representations due to the challenges in-
volved in developing reliable and scalable ver-
ification mechanisms. In this paper, we pro-
pose to overcome such limitations by synthe-
sizing high-quality symbolic reasoning trajec-
tories with stepwise pseudo-labels at scale via
Monte Carlo estimation. A Process Reward
Model (PRM) can be efficiently trained based
on the synthesized data and then used to select
more symbolic trajectories. The trajectories
are then employed with Direct Preference Op-
timization (DPO) and Supervised Fine-Tuning
(SFT) to improve logical reasoning and gener-
alization. Our results on benchmarks (i.e., FO-
LIO and LogicAsker) show the effectiveness of
the proposed method with gains on frontier and
open-weight models. Moreover, additional ex-
periments on claim verification data reveal that
fine-tuning on the generated symbolic reason-
ing trajectories enhances out-of-domain gen-
eralizability, suggesting the potential impact
of the proposed method in enhancing planning
and logical reasoning.1

1 Introduction

Large language models (LLMs) have demonstrated
strong capabilities across a variety of NLP tasks
in different domains (Srivastava et al., 2023). As
language is the primary medium through which

1Our experimental code and data: https://github.com/
Xingwei-Tan/Symbolic-Guided_MC
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Figure 1: Standard offline simulation methods for rea-
soning rely on reasoning trajectories entirely expressed
in natural language. For logical reasoning tasks, how-
ever, natural language trajectories are prone to con-
tent biases, leading to a lack of generalization. We
present a novel symbolically-guided process synthe-
sizing method to derive LLMs with enhanced logical
capabilities through high-quality symbolic reasoning
trajectories.

humans formulate logical arguments, researchers
have focused on exploring whether logical reason-
ing capabilities can emerge in LLMs (Kojima et al.,
2022). Recent studies have indeed found evidence
of emergent reasoning capabilities, where LLMs,
with proper guidance, can mimic humans’ multi-
step thinking process (Wei et al., 2022a; Kojima
et al., 2022; Yao et al., 2023b).

While chain-of-thought reasoning might appear
plausible at the surface, subsequent studies have
found it unfaithful and contribute little to the fi-
nal answer (Sprague et al., 2025; Lewis-Lim et al.,
2025). When multiple valid deductive steps are
available, for instance, LLMs are incapable of plan-
ning to systematically explore different possibili-
ties (Saparov and He, 2023). To address this limita-
tion, prompting strategies have been combined with
search methods. For example, Yao et al. (2023a)
propose Tree of Thoughts to search over actions
and states, mimicking “slow thinking”, which al-
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lows exploring as many available directions as pos-
sible before providing the final answer. Similarly,
Hao et al. (2023) frame the reasoning process as a
Markov Decision Process, where LLMs generate
actions and world observations to simulate plan-
ning.

However, performing an extensive search to plan
reasoning at inference time (i.e., online simula-
tion) inevitably results in high latency (Jiao et al.,
2024). On the other hand, offline simulation (Jiao
et al., 2024) samples reasoning trajectories and uses
Monte Carlo estimation to evaluate the quality of
the steps. The trajectories and their pseudo-labels
are then used to train a PRM, which is later used
to rank and select more trajectories for fine-tuning
to integrate the planning-based reasoning into the
LLMs. However, this method is still limited to
trajectories entirely expressed in natural language.
This reliance on concrete logical arguments makes
the models susceptible to content and prompt vari-
ations (Xu et al., 2024), often limiting their ability
to generalize beyond the training domain (Dougrez-
Lewis et al., 2025).

Formal languages have been proposed as explicit
representations to enhance faithfulness and robust-
ness in logical reasoning, thereby facilitating the in-
tegration of Large Language Models (LLMs) with
symbolic methods (Pan et al., 2023). Unfortunately,
existing approaches struggle to effectively leverage
symbolic representations. This is primarily, due
to the inherent challenges in developing scalable
verification mechanisms, which are hampered by
the rigidity and complexity of external symbolic
solvers (Ranaldi et al., 2025), and in establishing
reliable quality checks, given the systematic nature
of logical reasoning (Quan et al., 2024).

In this paper, we propose to address the limita-
tions in offline planning-based reasoning simula-
tion and symbolic-based LLM reasoning by propos-
ing a new method to synthesize high-quality sym-
bolic reasoning trajectories (see Figure 1). Then
combine it with Monte Carlo estimation (Jiao et al.,
2024; Wang et al., 2024) to produce symbolic rea-
soning trajectories with stepwise pseudo-labels at
scale to support subsequent offline training for en-
hancing logical reasoning (see Figure 2). Specifi-
cally, our methodology is centred around the devel-
opment of Process Reward Models (PRMs) (Light-
man et al., 2024) to automatically determine the
quality of symbolic reasoning trajectories for logi-
cal reasoning. To this end, we first propose an ex-
tension to ReAct (Yao et al., 2023b) (i.e., Symbolic

ReAct) to collect symbolic reasoning trajectories.
Subsequently, we employ Monte Carlo estimation
to produce stepwise signals based on larger LLMs
(i.e., 70/72B parameters) to train a PRM. Finally,
the PRM is adopted in interaction with more tra-
jectories produced by smaller LLMs (i.e., 7/8B
parameters) to support fine-tuning methods such
as SFT (Ouyang et al., 2022) and DPO (Rafailov
et al., 2023a) without additional human supervision
to derive models that can perform logical reasoning
by leveraging explicit symbolic representations.

Extensive experiments on logical reasoning
benchmarks: FOLIO (Han et al., 2024) and Log-
icAsker (Wan et al., 2024) demonstrate the effec-
tiveness of our proposed method. In particular, we
found that symbolic ReAct can improve the per-
formance of frontier models when adopted as a
prompting strategy (i.e., +6% for GTP-5 (OpenAI,
2025) and +26% for Deepseek-V3 (DeepSeek-AI,
2025) over SymbCoT (Xu et al., 2024) and +4%
and +7% over non-symbolic ReAct), and contribute
to the development of effective PRMs for enhanc-
ing smaller language models (i.e., +9% Llama 8b
and +4% Qwen 7b).

Moreover, to investigate how the fine-tuned mod-
els reason on real-world tasks, we perform out-of-
domain evaluation on claim verification datasets
(Dougrez-Lewis et al., 2025) to test their general-
izability. The results reveal that fine-tuning LLMs
with the proposed framework enhances the per-
formance on claim verification compared to the
baseline, suggesting the proposed method produces
more robust models.

We release the generated symbolic reasoning
trajectories with stepwise pseudo-labels as part of a
novel dataset, SymbReAct-trace2, to support future
research at the intersection of logical reasoning and
generalization with LLMs.

2 Related Work

2.1 Enhancing LLM Reasoning

Recent work has explored ways to enhance the rea-
soning abilities of LLMs. Early work used textual
instructions to prompt and then generate reason-
ing steps before reaching a final conclusion (Wei
et al., 2022b; Kojima et al., 2022; Yao et al., 2023b).
Later work tried to incorporate searching, which
encourages LLMs to explore multiple reasoning
directions. Yao et al. (2023a) break reasoning into

2https://huggingface.co/collections/XingweiT/
symbreact-trace-68c422ec5edf4750d2f01add
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...
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Student(x) ::: x is a student.
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Figure 2: Overall pipeline for enhancing LLM with synthesized symbolic trajectories produced from Monte
Carlo process supervision. 1) We propose an extension to the ReAct method (i.e. Symbolic ReAct) to collect
symbolic reasoning trajectories and employ Monte Carlo process supervision to train a Process Reward Model
(PRM). Subsequently, the PRM is adopted in interaction with smaller models to support fine-tuning on high-quality
symbolic reasoning trajectories.

steps and form a tree at each step, then find the
best reasoning trace by calculating the fast rewards
with breadth-first search or depth-first search. Hao
et al. (2023) instead model the step-by-step rea-
soning as a Markov Decision Process and apply
Monte Carlo Tree Search to search for the optimal
reasoning plan. Although these methods can be di-
rectly plugged to off-the-shelf LLMs, they require
an extensive amount of sampling at inference and
thus are impractical applications that require low
latency.

Another line of work tries to enhance LLM rea-
soning via fine-tuning or preference optimization.
Zelikman et al. (2022) propose to bootstrap LLMs
by guiding them in generating reasoning traces,
then select those that could reach the correct an-
swers. However, wrong reasoning traces can also
lead to correct answers, and learning from them
can hurt a model’s ability to solve more challeng-
ing problems. Lightman et al. (2024) show that a
process reward model trained on large-scale data
with step-wise signals can better predict the final
answer than an outcome reward model. Such a pro-
cess reward model can help select a reasoning trace
so it not only has a correct outcome but also ensures
reliability of intermediate steps. Luo et al. (2024)

propose an automatic method to train process re-
ward models on a divide-and-conquer style Monte
Carlo tree search, avoiding expensive human anno-
tations. Wang et al. (2024) introduce Monte Carlo
estimation for generating stepwise pseudo-labels,
which treats the quality of a reasoning step as its
potential to deduce the correct answer and estimate
the step quality by generating multiple comple-
tions. Jiao et al. (2024) propose offline simulation
for learning planning-based reasoning via synthe-
sizing reasoning steps in ReAct (Yao et al., 2023b)
format and estimate the stepwise correctness with
Monte Carlo completions. However, these methods
do not consider the thinking styles of the trajecto-
ries, which is essential to solving complex logical
questions.

2.2 Symbolic Reasoning with LLMs

A different line of work combines the reliability
of symbolic systems and the flexibility of LLMs.
One approach is to fine-tune LLMs on the formal
proving steps generated by proof assistant, such as
Lean, to improve their performance on theorem-
proving problems (Xin et al., 2024, 2025). Trying
to tackle a wider range of real-world problems,
another line of work proposes using LLMs to au-
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tomatically formalize natural language questions
into symbolic representations (auto-formalization),
then use an external solver to infer a conclusion
(Pan et al., 2023; Quan et al., 2024; Wysocka et al.,
2025). However, these methods face the problem
that auto-formalization often fails to produce valid
symbolic representations for real-world questions.
To improve flexibility, Ranaldi et al. (2025) pro-
pose to guide LLMs to operate at a high level of
abstraction of the questions via quasi-symbolic ex-
planations. On the other hand, Xu et al. (2024) use
off-the-shelf LLMs as the solver, which can tolerate
a certain degree of errors in the symbolic represen-
tations. The above-mentioned work all focus on
logical benchmarks in abstractive settings, while
our work offers improvements in both standard
logical reasoning benchmarks and in real-world
problems.

3 Symbolically-Guided Monte Carlo
Process Supervision

Since LLMs are mostly trained on natural language
data, without explicit guidance, they tend to for-
mulate reasoning trajectories without leveraging
symbolic abstractions or formal representations.
While arguments expressed in natural language are
viable for addressing common reasoning problems,
recent studies have shown that they possess lim-
ited efficacy, robustness, and faithfulness when it
comes to systematic logical reasoning (Meadows
and Freitas, 2023; Lyu et al., 2023; Turpin et al.,
2023; Yee et al., 2024).

We aim to steer LLMs via prompting to gen-
erate reasoning trajectories that involve explicit
symbolic formalisms. To this end, we propose an
extension to ReAct designed to elicit symbolic rea-
soning trajectories, which we call Symbolic ReAct
(3.1). Then, we perform Monte Carlo estimation to
assess the quality of intermediate reasoning steps
(3.2). The pseudo-labels generated through Monte
Carlo estimation are used to train a Process Reward
Model (Lightman et al., 2024, PRM). Finally, we
leverage the resulting high-quality trajectories se-
lected based on the PRM to fine-tune smaller LLMs
4. Figure 2 shows the overall process.

3.1 Collecting Reasoning Trajectories via
Symbolic ReAct

Given a logical reasoning dataset D “
tpPi, Hi, yiquNi“1, where each instance consists of
a set of premises Pi, a hypothesis Hi, and a label

yi P tTrue, Falseu indicating whether Hi logi-
cally follows from Pi, we construct symbolic rea-
soning trajectories in a Symbolic ReAct format.
Each trajectory comprises a sequence of steps struc-
tured as thoughts, actions, and observations (see
Figure 2, left).

For a given problem instance pP,Hq, the goal
is to determine whether P |ù H . Here, a thought
tj represents a high-level reasoning step or plan
toward solving the problem. Each thought tj may
be followed by one or more actions aj,k, which
are executable symbolic operations (e.g., formal-
ization, rule application) designed to advance the
reasoning state. Executing an action results in an
updated environment state, captured as an obser-
vation oj,k “ Executepaj,kq, reflecting the new
knowledge or inference derived from the action. A
reasoning trajectory can be represented as:

pt1, a1,1, o1,1, a1,2, o1,2, . . . , t2, a2,1, o2,1, . . .q

where each thought tj leads to a variable-length
sequence of paj,k, oj,kq pairs.

Symbolic ReAct trajectories are generated via
in-context learning, using one-shot prompting to
illustrate the desired structure and reasoning pro-
cess (see the prompt Appendix C Table 7). The
examples are formalized in first-order logic (FOL)
to encode thoughts, actions, and observations sym-
bolically, thereby enabling precise logical manipu-
lation and traceability.

Our investigation focuses on two key questions:

1. Can symbolic guidance via ReAct improve
LLMs’ logical reasoning capabilities?

2. Can the structured symbolic trajectories serve
as effective supervision signals for fine-tuning
techniques?

3.2 Monte Carlo Process Supervision

Sound and robust logical reasoning crucially de-
pends on the ability to derive formally valid con-
clusions through the correct application of valid
reasoning schemas. Therefore, to achieve high per-
formance and generalization, LLMs should learn to
apply valid reasoning patterns and logical schemes
across different problems. To this end, we define a
process reward model to provide detailed step-wise
feedback over the generated reasoning trajectories.
A process reward model is usually trained using
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Figure 3: The concept of Monte Carlo estimation. Green
blocks are completions reaching the correct answer.

the following loss function:

LPRM “ ´
Nÿ

i“1

”
ysi log ŷsi`p1´ysiq logp1´ŷsiq

ı
,

(1)
where ysi is the golden label of si (the i-th step
in the reasoning trace s), ŷsi is the score on si
predicted by the model, and N is the total number
of reasoning steps.

Ideally, a PRM can be trained on human-
annotated reasoning steps where each step is ver-
ified based on its soundness and formal validity
(Lightman et al., 2024). However, such an an-
notation process is not scalable in practice due
to the complexity involved in formal verification.
Therefore, following recent work, we approximate
stepwise correctness by using Monte Carlo estima-
tion(Jiao et al., 2024; Wang et al., 2024).

We perform Monte Carlo estimation (see Fig. 3)
on top of the reasoning trajectories generated via
the symbolic ReAct method described in Section
3.1. Specifically, we prompt an LLM to complete a
partial solution generated via Symbolic ReAct and
extracted from the collected reasoning trajectories –
i.e., providing the first n steps in context and asking
it to derive the final answer after completing the
reasoning (see Appendix C Table 8). We then verify
whether the completions reach the correct answer,
and assign a pseudo label for the intermediate step
where the completions start (Zhang et al., 2025).

In particular, after generating 10 samples of com-

pletion for each seed trajectory, the pseudo label
is determined by matching the predicted answer
with the ground truth to check how many com-
pletions are successful. Following Zhang et al.
(2025), we define hard binary labels (i.e., correct
vs incorrect) as pseudo-labels since models trained
on hard labels have been shown to achieve bet-
ter performance than soft labels (i.e., based on a
continuous score). To determine the hard labels,
we simply assign a positive score (i.e., +1) to a
reasoning step if at least one of the sampled com-
pletions reaches the correct answer; otherwise, a
negative score is assigned (i.e., -1). The number
of completions sampled for each trajectory and the
number of successful completions needed for as-
signing a positive label are both hyperparameters.
After acquiring the pseudo-labels for the reasoning
trajectories, we use the collected data to fine-tune
a PRM. It is also worth noting that the effective-
ness of Monte Carlo estimation heavily depends
on the LLMs used for completions. To minimize
the chance that the LLM completers fail to reach
a correct answer due to their own inability, we use
the most capable open-weight LLMs we can host
on our devices (i.e., Llama3.3-70B-Instruct and
Qwen2.5-72B-Instruct).

4 Synthetic Dataset Generation &
Fine-Tuning

We apply our symbolic trajectory collection and
annotation process on two widely adopted logical
reasoning datasets: FOLIO (Han et al., 2024) and
LogicAsker (Wan et al., 2024), which strike a bal-
ance between complexity and scalability.

FOLIO. This is an expert-written, logically com-
plex and diverse dataset for reasoning. Each sam-
ple consists of a context and a statement, which
requires the model to determine whether the state-
ment is true, false, or uncertain. It contains logic
connectives such as implications, conjunctions, and
disjunctions. The authors only provide a training
split and a development split for FOLIO and FO-
LIOv2. As FOLIO has been used in many existing
papers, we use the development set of it as the test
set and the development set of FOLIOv2 as the
development set for our experiment.

LogicAsker. This dataset encompasses a com-
prehensive set of atomic logical rules, integrating
them to construct queries that require long infer-
ence chains. It requires the model to determine
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whether the target statement is true or false, given
the context. In our experiments, we generated
900 question-answer pairs with the inference chain
length set to 7, 8, or 9. Then, they were split evenly
into training, development, and testing sets.

Symbolic Reasoning Trajectories & PRM. Us-
ing our proposed method, we generate 1, 505 rea-
soning trajectories, including 12, 448 atomic steps
in total. For this purpose, we use a random subset
of the training sets of FOLIO (1, 003 questions),
FOLIOv2 (1, 000 questions), and LogicAsker (300
questions). With these stepwise pseudo-labels, we
fine-tune a Qwen2.5-7B-Instruct with a binary clas-
sification head as a PRM.

Fine-tuning on Symbolic Reasoning Trajecto-
ries. We leverage the fine-tuned PRM to select
high-quality reasoning trajectories generated by
Llama3.1-8B-Instruct and Qwen2.5-7B-Instruct on
all the training questions of FOLIO, FOLIOv2, and
LogicAsker. The PRM predicts a reward (positive
or negative) for every step in the reasoning tra-
jectories generated via Symbolic ReAct. We then
select as training data only the trajectories where
all steps are labelled as correct and for which the
final answer matches the ground-truth. We use
the trajectories to fine-tune Llama3.1-8B-Instruct
or Qwen2.5-7B-Instruct via supervised fine-tuning
and direct preference optimization (DPO) (Rafailov
et al., 2023b). To acquire the preference data for
DPO, we obtain a real value score for each rea-
soning trajectory: 1) compute the predictive prob-
abilities for a positive label given each step in the
filtered trajectories generated by LLMs. 2) com-
pute the cumulated product of all the probabilities
in the trajectory to obtain the score value (i.e., the
probability of the entire trajectory being correct).
Equation 2 shows how to compute the score value
vDPO:

vDPO “
Nź

i“1

P py “ 1|si; θPRMq, (2)

where θPRM represents the parameters of the trained
PRM model. For any two trajectories that have a
difference larger than a threshold, we include them
in the preference tuning data by using the one with
the higher value as positive and the lower value as
negative. The threshold is set to 0.25, which strikes
a balance between the data quantity and differenti-
ating the positive and negative examples. After the
filtering, we collect a total of 15K reasoning paths
(11M tokens) and 21K DPO pairs (44M tokens).

5 Experimental Setup

5.1 Base LLMs
We include the following open and frontier LLMs
in our experiments: (1) Llama3.1-8B-Instruct
(et al., 2024); (2) Qwen2.5-7B-Instruct (Yang et al.,
2024); (3) DeepSeek-V3 (DeepSeek-AI, 2025); (4)
GPT-4o (OpenAI, 2024); and GPT-5 (OpenAI,
2025).

We use the symbolic trajectory data (Section 4)
to fine-tune Llama3.1-8B-Instruct and Qwen2.5-
7B-Instruct. We also tested models fine-tuned with
DPO to compare how it differs from supervised
fine-tuning on our reasoning trajectories.

5.2 Reasoning Approaches
We employ the following methods for logical infer-
ence with LLMs:

• ReAct prompting with one human-written
demonstration to simulate planning-based rea-
soning.

• Symbolic-CoT (Xu et al., 2024) consists of
multi-stage prompts for formalization, plan-
ning, solving, and verification.

• process-DPO (Jiao et al., 2024) performs
DPO based on PRM-rated reasoning trajecto-
ries. The PRM is trained on stepwise pseudo-
labels produced via Monte Carlo estimation
based on vanilla ReAct.

5.3 Evaluation Data
Logical Reasoning. We first evaluate all models
and reasoning methods in-domain on the FOLIO
and LogicAsker test sets.

Out-of-domain generalizability FOLIO and
LogicAsker both consist of partially formalized
expressions which only appear in classroom in-
stead of the real world. To investigate whether the
proposed method offers out-of-domain generalis-
ability, we include more realistic datasets. We use
claim verification datasets, where a model needs to
determine whether a statement/claim is true given a
set of textual evidence. We experiment with the fol-
lowing datasets from Dougrez-Lewis et al. (2025):

• Vitamin C (Schuster et al., 2021) is a claim
verification benchmark infused with chal-
lenging cases where the evidence changes
over time. The evidences are collected from
Wikipedia revisions that modify an underlying
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fact. The dataset contains contrastive claim-
evidence pairs that are nearly identical in lan-
guage and content but one supports a given
claim while the other does not.

• Climate-FEVER (Diggelmann et al., 2021) is
adapted from FEVER (Thorne et al., 2018) to
online claims about climate. For each claim,
the authors retrieve the top five relevant evi-
dence from Wikipedia and present them in the
dataset.

• PHEMEPlus (Dougrez-Lewis et al., 2022),
as an extension of the PHEME benchmark,
it contains Twitter conversations along with
relevant external evidence pertaining to a ru-
mourous claim. A model needs to identify
whether a claim is True, False or Unverified.
Verification of most claims here requires com-
plex reasoning.

We use their sampled subsets, where each dataset
consists of 500 samples.

5.4 Implementation Details
We full fine-tune the models for 10 epochs, saving
checkpoints after each epoch. The test results are
obtained from the checkpoints that have the highest
accuracy on the development set. We perform the
same process of collecting Monte Carlo comple-
tions, train a process reward model, select trajecto-
ries, and fine-tune for process-DPO baseline, which
is based on vanilla ReAct without any guidance of
reasoning style. We first tested process-DPO and
our fine-tuned models with only instructions and no
demonstrations. We then tested process-DPO and
our fine-tuned models using vanilla ReAct. For the
off-the-shelf LLMs, we sample for answers using
3 random seeds and report the average. All fine-
tuning runs were performed on a single NVIDIA
H100 GPU. More details about hyperparameters
and settings are presented in Appendix A.

6 Results

6.1 Logical Reasoning Results
Table 1 shows the results on logical reasoning tasks,
our Symbolic ReAct approach (applied to closed
and open-weight models), and the fine-tuned open-
weight models using our SymbReAct-trace data.

Adding symbolic guidance in ReAct helps
increase accuracy. As expected, the frontier
DeepSeek-V3, GPT-4o, and GPT-5 exhibit higher

Method FOLIO LogicAsker

G
PT

-4
o ReAct (Yao et al., 2023b) 70.10 74.40

SymbCoT (Xu et al., 2024) 49.51 54.33
Symbolic ReAct (Ours) 74.02 79.33

G
PT

-5 ReAct (Yao et al., 2023b) 81.86 87.00
SymbCoT (Xu et al., 2024) 79.41 62.67
Symbolic ReAct (Ours) 85.78 89.00

D
S-

V
3 ReAct (Yao et al., 2023b) 83.33 77.98

SymbCoT (Xu et al., 2024) 51.96 62.00
Symbolic ReAct (Ours) 84.80 85.00

L
la

m
a3

.1
-8

B
-I

ns
tr

uc
t

ReAct (Yao et al., 2023b) 53.43 52.33
SymbCoT (Xu et al., 2024) 53.43 37.33
Symbolic ReAct (Ours) 50.16 54.11

process-DPO (Jiao et al., 2024) 61.27 62.00
process-DPO (Jiao et al., 2024) + ReAct 53.92 55.67
Sym. Trajectory-FT (Ours) 63.24 63.67
Sym. Trajectory-FT-DPO (Ours) 61.27 60.67
Sym. Trajectory-FT + ReAct (Ours) 62.75 60.67
Sym. Trajectory-FT-DPO + ReAct (Ours) 60.29 61.33

Q
w

en
2.

5-
7B

-I
ns

tr
uc

t

ReAct (Yao et al., 2023b) 57.84 69.56
SymbCoT (Xu et al., 2024) 53.76 48.33
Symbolic ReAct (Ours) 60.78 66.78

process-DPO (Jiao et al., 2024) 61.27 68.00
process-DPO (Jiao et al., 2024) + ReAct 61.27 57.67
Sym. Trajectory-FT (Ours) 68.14 74.00
Sym. Trajectory-FT-DPO (Ours) 58.33 71.00
Sym. Trajectory-FT + ReAct (Ours) 64.71 67.00
Sym. Trajectory-FT-DPO + ReAct (Ours) 58.82 57.33

Table 1: Accuracy in logical reasoning tasks.

accuracy than other methods due to their signif-
icantly larger model sizes and extensive training.
Interestingly, integrating Symbolic ReAct still sub-
stantially boosts the performance of all three LLMs.
Notably, GPT-4o shows a 4% increase in accuracy
on FOLIO and a 5% increase on LogicAsker. GPT-
5 increases 4% on FOLIO and 2% on LogicAs-
ker. DeepSeek-V3 shows a 1% increase on FOLIO
and a 7% increase on LogicAsker. Symbolic Re-
Act also improves the performance of Qwen2.5-
7B-Instruct on FOLIO and Llama3.1-8B-Instruct
on LogicAsker, outperforming their vanilla ReAct
counterparts, which do not provide any guidance
for reasoning schema.

Fine-tuning on SymbReAct-trace data improves
smaller models. Notably, the much smaller
Qwen2.5-7B model, when fine-tuned with our
SymbReAct-trace data, achieves performance com-
parable to DeepSeek-V3, approximately 2% lower
on FOLIO and 3% lower on LogicAsker than
Deepseek-V3. It nearly matches GPT-4o’s per-
formance on LogicAsker. This demonstrates that
smaller models, when equipped with a process re-
ward model to select high-quality reasoning trajec-
tories with effective guidance, are beneficiary, even
if those trajectories are also generated by smaller
models. It is important to note that the 70B models
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Method RECV Vitamin C RECV Climate Fever RECV PHEMEPlus

Llama

process-DPO (Jiao et al., 2024) 82.000.16 76.131.04 73.470.77
process-DPO (Jiao et al., 2024) + ReAct 78.731.64 74.671.20 71.001.88

Symbolic Trajectory-FT (Ours) 86.060.77 78.271.06 72.000.85
Symbolic Trajectory-FT-DPO (Ours) 80.530.81 75.800.99 72.870.68
Symbolic Trajectory-FT + ReAct (Ours) 74.401.47 74.400.28 67.530.96
Symbolic Trajectory-FT-DPO + ReAct (Ours) 80.871.64 75.872.29 70.672.38

Qwen

process-DPO (Jiao et al., 2024) 54.270.77 37.670.74 26.130.96
process-DPO (Jiao et al., 2024) + ReAct 76.801.14 56.200.65 59.671.67

Symbolic Trajectory-FT (Ours) 81.930.25 58.070.41 60.400.57
Symbolic Trajectory-FT-DPO (Ours) 51.471.64 33.270.93 22.800.65
Symbolic Trajectory-FT + ReAct (Ours) 79.400.33 55.931.76 58.600.43
Symbolic Trajectory-FT-DPO + ReAct (Ours) 77.001.47 58.530.52 58.201.30

Table 2: Out-of-domain results on claim verification tasks on the RECV benchmark by Dougrez-Lewis et al. (2025)

are exclusively used for generating training data
for fine-tuning the process reward models. The
process reward model itself remains a relatively
small model compared to GPT-4o and DeepSeek-
V3. Additionally, all models using our approach
are considerably smaller than DeepSeek-V3 and
GPT-4o, yet achieve competitive results.

Symbolic-guided trajectories are better than the
trajectories without guidance. When compared
to process-DPO, which allows models to choose
any reasoning style without explicit guidance, fine-
tuning models trained on our symbolic trajectories
achieves higher accuracy on both FOLIO and Log-
icAsker. Limiting the comparison to DPO-tuned
models, those fine-tuned on guided trajectories gen-
erally exhibit superior performance compared to
their unguided counterparts. Exceptions include
Qwen on LogicAsker with ReAct, and both Qwen
on FOLIO and Llama on LogicAsker when em-
ploying direct prompting.

Symbolic Trajectory-FT outperforms DPO.
We consistently observe that supervised fine-tuning
on SymbReAct-trace outperforms DPO. The sole
exception is Llama Symbolic Trajectory-FT-DPO,
which exhibits 0.66% higher accuracy than Llama
Symbolic Trajectory-FT on LogicAsker. One po-
tential explanation could be the cumulative prod-
ucts of PRMs’ predictive probabilities fail to dif-
ferential the positive trajectories from the negative
ones. Whether PRMs’ predictive probabilities are
well-calibrated enough for producing informative
DPO pairs still require further investigation.

ReAct does not improve our fine-tuned reason-
ing models. Regarding the choice between Re-
Act and direct prompting, the latter generally yields

superior performance in most cases. The only ex-
ceptions are the DPO-tuned Llama model on Log-
icAsker and the DPO-tuned Qwen model on FO-
LIO, though the performance differences in these
instances are minimal. This suggests that explicitly
instructing LLMs to follow ReAct when they have
already been trained on ReAct trajectories may not
lead to optimal performance. Instead, directly pos-
ing questions appears to be more effective, aligning
with the experimental settings employed by Jiao
et al. (2024) in their experiments.

6.2 Out-of-Domain Results

Table 2 presents the out-of-domain results of all
methods. We directly employ the model check-
points selected for FOLIO and LogicAsker testing,
reporting the higher accuracy of the two. Models
fine-tuned using our proposed approach demon-
strate increased accuracy compared to process-
DPO in most instances, with the exception of
Llama on PHEMEPlus. The accuracy on RECV Vi-
tamin C is increased by about 28% with Qwen and
4% with Llama. The improvement RECV Climate
Fever is 21% with Qwen and 2% with Llama. On
RECV PhemePlus, there is a 34% gain with Qwen.
This suggests that fine-tuning on trajectories with
symbolic reasoning generally leads to improved
transfer performance on claim verification datasets.
Our test results align with the trends observed by
Dougrez-Lewis et al. (2025), where PHEMEPlus
exhibits the lowest accuracy, followed by Climate
Fever and then Vitamin C. PHEMEPlus presents
a more challenging setting, especially as it is col-
lected from Twitter/X where there is more noise.

We observe that the Qwen models fine-tuned
with process-DPO on logical reasoning datasets
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show substantial degradations on these claim verifi-
cation datasets (i.e., the first row for Qwen). How-
ever, the performance recovers when prompting
with ReAct (i.e., the second row for Qwen). Such a
phenomenon does not appear in Llama models and
all the models fine-tuned with symbolic trajectories.
The exact reason for this is not clear, but we found
an anomaly in the generations of the Qwen models
where they sometimes produce “.imgur.com” in the
outputs for unknown reasons.

6.3 Qualitative Analysis

We further analyse the reasoning trace generated
by our Symbolic Trajectory-FT. Questions do not
contain symbols except for punctuation. Example
1 is a trace produced by using Qwen Symbolic
Trajectory-FT on a LogicAsker question:

Example 1

1. We have four premises

• @x20 pTeapx20q Ñ Squashpx20qq

• Dx20 pCookpx20q _ Teapx20qq

• @x20 pSquashpx20q Ñ Cookpx20qq

• @x20 pCookpx20q Ñ Squashpx20qq

2. We need to determine if there exists an x20 such that
Squashpx20q.
3. From premise 2 (Dx20 pCookpx20q _ Teapx20qq), we know
that at least one person either cooks or makes tea.
4. Let’s consider two cases:

• Case A: There exists an x20 who cooks.
In this case, from premise 4 (Cookpx20q Ñ Squashpx20q),
we can conclude that Squashpx20q must be true.

• Case B: There exists an x20 who makes tea.
From premise 1 (Teapx20q Ñ Squashpx20q), we can di-
rectly conclude that Squashpx20q must be true.

5. Since in both cases we can infer that there exists an x20 for whom
Squashpx20q is true, we can conclude that Dx20 pSquashpx20qq.
Finish [True]

Example 1 shows that the model has effectively
learnt to first formalise the premises in first-order
logic and then perform multi-step logical reasoning
to derive the validity of the target statement. Ex-
ample 2, on the contrary, shows the Qwen model
tuned with process-DPO based on vanilla ReAct
generates a different style of response, where all
reasoning is conducted solely in natural language.

Although in this case both reasoning processes
reach the correct answer, symbolic reasoning tra-
jectories tend to be more transparent and efficient,
requiring, on average, a smaller number of rea-
soning steps and fewer generated tokens. Overall,
these examples demonstrate how symbolic reason-

ing trajectories can support higher levels of abstrac-
tion, leading empirically to generalization improve-
ments.

Example 2

Reasoning steps:
1. Let’s analyze the premises one by one: Premise 1: For all x20, if
x20 makes tea, then x20 is playing squash. This means that making
tea implies playing squash. Premise 2: There is at least one x20 for
which x20 will cook or x20 will make tea. This tells us that there
exists at least one x20 who either cooks or makes tea. Premise 3:
For all x20, if x20 plays squash, then x20 is cooking. This means
that playing squash implies cooking. Premise 4: For all x20, if x20

cooks, then x20 is playing squash. This means that cooking implies
playing squash.
2. Now let’s consider the conclusion we need to verify: There is at
least one x20 for which x20 will play squash.
3. To prove this, we need to find a way to connect the premises to
this conclusion.
4. From Premise 2, we know there exists an x20 who either cooks
or makes tea.
5. If x20 cooks (from Premise 2), then according to Premises 3
and 4, x20 must be playing squash (since cooking implies playing
squash).
6. Therefore, if there is an x20 who cooks, we can conclude that
there is at least one x20 who plays squash.
7. If x20 makes tea (from Premise 2), then according to Premise 1,
x20 must be playing squash.
8. Therefore, if there is an x20 who makes tea, we can also conclude
that there is at least one x20 who plays squash.
9. Since Premise 2 guarantees the existence of at least one x20 who
either cooks or makes tea, we have established that there must be at
least one x20 who plays squash.
Finish [True]

7 Conclusion

We introduced symbolic ReAct and a fine-tuning
pipeline to enhance LLM reasoning by generat-
ing high-quality symbolic reasoning trajectories
via Monte Carlo estimation and then fine-tuning.
The generated data are presented as SymbReAct-
trace. This approach directly addresses LLMs’
susceptibility to memorization over genuine gen-
eralization. Our results confirm the effectiveness
of our methods in improving logical reasoning and
out-of-domain generalization. This suggests that
symbolically-guided process supervision can sub-
stantially alleviate memorization, paving the way
for more reliable and robust LLM reasoning.

Limitations

The PRM trained on automatically generated data
cannot guarantee that the steps synthetically gener-
ated reasoning trajectories are completely correct.
The Monte Carlo estimation relies on the comple-
tion of LLMs to estimate the quality, which can
make mistakes if the later stage of the reasoning
chain is challenging. That might make the PRM
underestimate the correctness of the previous step,
leading to incorrect training signals. Despite our
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results showing that the proposed symbolic reason-
ing trajectories can achieve a better trade-off be-
tween scalability and accuracy compared to natural
language trajectories, more reliable automatic eval-
uation metrics for the reasoning steps are needed to
guarantee formal correctness. Future work might
explore methods to efficiently integrate external
symbolic solvers to provide additional signals to
the PRM (Leang et al., 2025).
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A Additional Details

Table 3 shows the hyperparameters in our model
training process.

Description Value

Learning Rate 5e ´ 7
max_epoch 10
Batch Size 8
max_seq_length 2, 048
Optimizer adamw_torch_fused

Table 3: Hyperparameter settings for fine-tuning.

We implemented the process-DPO (pDPO) as
a baseline. We generate 1, 244 reasoning trajecto-
ries, which have 9, 908 steps in total, by prompting
Llama3.3-70B-Instruct and Qwen2.5-72B-Instruct
on a randomly sampled subset of the training sets of
FOLIO (1, 003 questions), FOLIOv2 (1, 000 ques-
tions), and LogicAsker (300 questions). 10 com-
pletions were generated for each intermediate step
in the seed trajectory. The Monte Carlo estimation
took about 250 GPU hours on an AMD Instinct
MI300X. For sampling the trajectories from off-
the-shelf models, we used Ollama3 apart from the
API-based models. We further use about 42 hours
for sampling trajectories to fine-tune the reasoning
LLMs.

B Additional Results

Table 4 shows the testing results of zero-shot
prompting which includes larger LLMs and QwQ.

Model FOLIO LogicAsker

llama3.1:8b 56.212.67 56.781.40
qwen2.5:7b 65.691.74 72.671.70
llama3.3:70b 66.991.29 77.330.82

qwen2.5:72b 72.881.01 77.000.98
QwQ 71.570.80 73.780.57

GPT-4o 72.55 77.18
DeepSeek-V3 80.39 83.73

Table 4: Mean accuracy of zero-shot prompting with
simple instruction. The standard deviations are shown
as grey subscript for each model.

Table 5 shows the model performance without
using a PRM to filter out the low-quality trajecto-
ries.

Table 6 shows the comparison between vanilla
ReAct and symbolic ReAct based on larger LLMs.

3https://ollama.com/

Model FOLIO LogicAsker

Llama3.1:8B w/o PRM 62.25 63.00
Llama3.1:8B with PRM 63.24 63.67
Qwen2.5:7B w/o PRM 65.20 73.33
Qwen2.5:7B with PRM 68.14 74.00

Table 5: Model accuracy when using trajectories with-
out PRM filtering. All models are instruction-tuned
LLMs.

The upper part is tested with the vanilla Re-
Act, while the bottom part is tested with sym-
bolic ReAct. The symbolic ReAct has higher
accuracy in most of the settings except for
Llama3.1-8B-Instruct on FOLIO and Qwen2.5-7B-
Instruct/Qwen2.5-72B-Instruct on LogicAsker.

Prompt Model FOLIO LogicAsker

V
an

ill
a llama3.1:8b 53.431.83 52.330.82

Qwen2.5:7b 57.841.74 69.560.57
Llama3.3:70b 70.261.29 77.330.54
Qwen2.5:72b 73.860.23 79.782.35

Sy
m

bo
lic llama3.1:8b 50.161.16 54.111.03

Qwen2.5:7b 60.782.62 66.780.68
Llama3.3:70b 73.041.44 80.220.63

Qwen2.5:72b 74.181.85 78.110.57

Table 6: Mean accuracy of ReAct prompting with sim-
ple instruction. The standard deviations are shown
as grey subscript for each model. All models are
instruction-tuned LLMs.

C Prompt Examples

In this section, we show an example of the prompt
we used for symbolic ReAct. Table 7 shows the
prompt with symbolic instruction and an example
of symbolic ReAct format for sampling the trajec-
tories in Section 3.1. Table 8 shows the prompt
for generating Monte Carlo completions based on
preceding steps in Section 3.2.

D Output Examples

Example 3 was generated by Llama symbolic
trajectory-FT on the Vitamin C dataset. Example
4 was generated by Llama symbolic trajectory-FT-
DPO on the Climate Fever.
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Input to the LLMs
Solve a question answering task by having a Thought, then Finish with your answer. Thought can reason about the current
situation. Finish [answer] returns the answer and finishes the task. You will be given context that you should use to help
you answer the question. Given the facts and a question, try to define predicates and variables if necessary. Then, parse the
problem and the question, formulate them into first-order logic formulas. Next, try to infer the statement presented in the
question based on the premises. If it is possible to infer the statement, please answer "True". If it is possible to infer the
negation of the statement, please answer "False". If the statement cannot be proofed or disproofed, please answer "Uncertain".

In your response, please include a reasoning path to show each step of the inference where you need to specify what logic
rule is applied to which premises. The format of the reasoning step should be like the following:

Thought: {A high-level thought to solve the question}

Action: {The description of an action to realize the thought}

Observation: {After applying the action, what would you get? Can be a new formula}

It is not necessary to have a new thought for each step, but an action and an observation should be in each step.

The grammar of the first-order logic formular is defined as follows:

1) logical conjunction of expr1 and expr2: expr1 ^ expr2

2) logical disjunction of expr1 and expr2: expr1 _ expr2

3) logical exclusive disjunction of expr1 and expr2: expr1 ‘ expr2

4) logical negation of expr1: ␣expr1

5) expr1 implies expr2: expr1 → expr2

6) expr1 if and only if expr2: expr1Ø expr2

7) logical universal quantification: @x

8) logical existential quantification: Dx

=============Example==============

Context: All people who regularly drink coffee are dependent on caffeine. People either regularly drink coffee or joke about
being addicted to caffeine. No one who jokes about being addicted to caffeine is unaware that caffeine is a drug. Rina is
either a student and unaware that caffeine is a drug, or neither a student nor unaware that caffeine is a drug. If Rina is not a
person dependent on caffeine and a student, then Rina is either a person dependent on caffeine and a student, or neither a
person dependent on caffeine nor a student.

Question: Based on the above information, is the following statement true, false, or uncertain? Rina is either a person who
jokes about being addicted to caffeine or is unaware that caffeine is a drug.

Thought: We need to translate the information into First Order Logic.

Action: Define predicates

Observation:

Dependent(x) ::: x is a person dependent on caffeine.

Drinks(x) ::: x regularly drinks coffee.

Jokes(x) ::: x jokes about being addicted to caffeine.

Unaware(x) ::: x is unaware that caffeine is a drug.

Student(x) ::: x is a student.

Action: Translate the statements in the context to logic premises

Observation:

@x (Drinks(x) → Dependent(x)) ::: All people who regularly drink coffee are dependent on caffeine.

@x (Drinks(x) _ Jokes(x)) ::: People either regularly drink coffee or joke about being addicted to caffeine.

¬Dx (Jokes(x) → Unaware(x)) ::: No one who jokes about being addicted to caffeine is unaware that caffeine is a drug.

(Student(rina) ^ Unaware(rina)) _ ¬(Student(rina) _ Unaware(rina)) ::: Rina is either a student and unaware that caffeine is
a drug, or neither a student nor unaware that caffeine is a drug.

¬(Dependent(rina) ^ Student(rina)) → (Dependent(rina) ^ Student(rina)) _ ¬(Dependent(rina) _ Student(rina)) ::: If Rina
is not a person dependent on caffeine and a student, then Rina is either a person dependent on caffeine and a student, or
neither a person dependent on caffeine nor a student.

Thought: Infer on the existing formulas to try to proof the statement by applying logic rules

Action: Apply the law of quantifier negation on the third formula

Observation:

@x ¬(Jokes(x) → Unaware(x)) ::: It is false that all people who jokes about being addicted to caffeine is unaware that caffeine
is a drug.
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Action: Apply instantiation on the formulas which have universial quantifiers.

Observation:

Drinks(rina) → Dependent(rina) ::: If Rina regularly drinks coffee then she is dependent on caffeine.

Drinks(rina) _ Jokes(rina) ::: Rina either regularly drink coffee or jokes about being addicted to caffeine.

¬(Jokes(rina) → Unaware(rina)) ::: It is false that if rina jokes about being addicted to caffeine, then she is unaware that
caffeine is a drug.

Action: Rewrite the implication in ¬(Jokes(rina) → Unaware(rina)) with disjunction

Observation: ¬(¬Jokes(rina) _ Unaware(rina))

Action: Apply De Morgan’s Laws on ¬(¬Jokes(rina) _ Unaware(rina))

Observation: ¬(¬Jokes(rina)) ^ ¬Unaware(rina)

Action: Apply double negation on ¬(¬Jokes(rina))

Observation: Jokes(rina)

Action: Given that Jokes(rina) is true, any disjunction we introduce is also true.

Observation: Jokes(rina) _ Unaware(rina)

Action: Finish [True]

Table 7: An example of symbolic ReAct prompt.

Input to the LLMs
[Symbolic ReAct prompt in Table 7]

[Previous steps in the seed trajectory]

I have wrote the first part of the reasoning path. Please continue the reasoning path.

Table 8: An example of completion prompt.

Example 3

Step 1: Analyze the context provided, which mentions the HBO
miniseries “John Adams” and a specific event involving Vice Presi-
dent John Adams casting a tiebreaker vote in favor of ratifying the
Jay Treaty.
Step 2: Identify the key elements in the context: “John Adams” is a
miniseries, and it belongs to HBO.
Step 3: Determine the relevance of the information about Vice
President John Adams casting a tiebreaker vote to the question at
hand. The event described is a specific scene from the miniseries,
but it does not directly relate to the question about whether “John
Adams” is a miniseries that belongs to HBO.
Step 4: Conclude that the information provided confirms that “John
Adams” is indeed a miniseries, and it is stated that it belongs to
HBO.
Step 5: Based on the context and the information provided, the
statement “John Adams is a miniseries that belongs to HBO” can be
inferred as true.
Finish [True]

Example 4

Thought: Determine what the Review concluded about the CRU’s
work and actions.
Action: Identify the key points mentioned in the context about the
Review’s findings.
Observation: The Review found that the CRU’s work had been “car-
ried out with integrity” and had used “fair and satisfactory” methods.
(From premise 2)
Thought: Analyze the Review’s findings in relation to the CRU’s
actions and integrity.
Action: Look for any information that indicates whether the Review
concluded that the CRU’s actions were normal and did not threaten
the integrity of peer review.
Observation: The Review would also scrutinise the CRU’s policies
and practices, but it found no evidence of scientific malpractice.
(From premise 3 and 5)
Thought: Determine if the Review’s findings imply that the CRU’s
actions were normal and did not threaten the integrity of peer review.
Action: Apply the definition of “normal” and “integrity” to the
Review’s findings.
Observation: Since the Review found that the CRU’s work was
carried out with integrity and used fair and satisfactory methods, and
there was no evidence of scientific malpractice, it can be inferred
that the CRU’s actions were normal and did not threaten the integrity
of peer review.
Applying the definition of “normal” and “integrity” to the Review’s
findings, we can use the following logical rule:
If A (work is carried out with integrity) and B (no evidence of
scientific malpractice), then it can be inferred that C (actions are
normal and do not threaten the integrity of peer review).
Therefore, the statement is: True.
Answer: A) True
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