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Abstract
With the development of large language mod-
els, their ability to follow simple instructions
has significantly improved. However, adhering
to complex instructions remains a major chal-
lenge. Current approaches to generating com-
plex instructions are often irrelevant to the cur-
rent instruction requirements or suffer from lim-
ited scalability and diversity. Moreover, meth-
ods such as back-translation, while effective
for simple instruction generation, fail to lever-
age the rich knowledge and formatting in hu-
man written documents. In this paper, we pro-
pose a novel Automatic Iterative Refinement
(AIR) framework to generate complex instruc-
tions with constraints, which not only better
reflects the requirements of real scenarios but
also significantly enhances LLMs’ ability to fol-
low complex instructions. The AIR framework
consists of two stages: 1) Generate an initial
instruction from a document; 2) Iteratively re-
fine instructions with LLM-as-judge guidance
by comparing the model’s output with the doc-
ument to incorporate valuable constraints. Fi-
nally, we construct the AIR-10K dataset with
10K complex instructions and demonstrate that
instructions generated with our approach sig-
nificantly improve the model’s ability to follow
complex instructions, outperforming existing
methods for instruction generation1.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have shown impressive performance across
a wide range of tasks (Zhao et al., 2023; Li et al.,
2024a; He et al., 2024b). Driven by vast amounts
of data and efficient training, most current LLMs
are capable of effectively following user instruc-
tions and aligning to a certain extent with human
preferences (Ouyang et al., 2022; Li et al., 2024b;
Huang et al., 2025). However, despite these suc-
cesses, they still face significant challenges when

1Codes and data are available at https://github.com/
WeiLiuAH/AIR-Automatic-Iterative-Refinement.
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Figure 1: Illustration of how humans iteratively refine
instructions to be more complex.

it comes to following complex instructions (Jiang
et al., 2023; Wen et al., 2024).

Existing datasets of complex instructions pri-
marily originate from two sources: 1) Curated
data from open-source datasets or human annota-
tions (Zhou et al., 2024a; Zhang et al., 2024), which
are resource-intensive and lack scalability, and
2) Transforming simple instructions into complex
ones automatically using proprietary LLMs (Xu
et al., 2023; Sun et al., 2024). While the automatic
transformation improves scalability, the generated
constraints are often recombinations of few-shot
examples, resulting in limited diversity. Moreover,
these constraints may have low relevance to the
target output, failing to reflect real-world scenarios.

Recently, back-translation, which involves trans-
lating text from the target side back into the
source side, has been proposed to generate scal-
able and diverse instructions from human-written
corpora (Sennrich, 2015; Hoang et al., 2018; Zheng
et al., 2024a; Li et al., 2023). However, these meth-
ods typically focus on generating simple instruc-
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tions and have not fully explored the rich knowl-
edge contained in the human corpus.

In this paper, we propose an Automatic Iter-
ative Refinement (AIR) framework for generat-
ing high-quality complex instructions. Specifically,
our approach is based on two key observations.
First, human-written documents contain massive
human preferences that can be converted into spe-
cific constraints, such as formatting conventions
in legal documents. Second, humans often refine
complex instructions iteratively based on feedback
from model outputs. As illustrated in Figure 1,
simple instructions are progressively adjusted and
enriched to better align with human preferences.
This iterative process plays a critical role in craft-
ing effective complex instructions.

Therefore, our AIR framework incorporates
document-based knowledge and LLM-as-judge to
iteratively construct complex instructions. The
framework consists of two key steps: 1) Initial
Instruction Generation, where the model gener-
ates initial instructions based on the document con-
tent; 2) Iterative Instruction Refinement, where
instructions are iteratively refined with LLM-as-
judge guidance by comparing model outputs with
the document, to identify and incorporate valuable
constraints. This process enables the framework to
generate more challenging instructions that align
more closely with real-world scenarios.

In summary, our contributions are as follows:

• To better align with real-world scenarios, we
propose the AIR framework, which iteratively
refines complex instructions with LLM-as-judge
guidance by comparing with the document.

• We introduce a novel instruction dataset, AIR-
10K, generated using our framework. Experi-
mental results demonstrate that our fine-tuned
model significantly outperforms existing meth-
ods on instruction-following benchmarks.

• We provide a comprehensive experimental anal-
ysis to evaluate the individual components of our
framework, validating the contribution of each
step to the overall improvement.

2 Related Work

2.1 Instruction Generation
Instruction tuning is essential for aligning Large
Language Models (LLMs) with user inten-
tions (Ouyang et al., 2022; Cao et al., 2023). Ini-
tially, this involved collecting and cleaning exist-
ing data, such as open-source NLP datasets (Wang

et al., 2023; Ding et al., 2023). With the importance
of instruction quality recognized, manual annota-
tion methods emerged (Wang et al., 2023; Zhou
et al., 2024a). As larger datasets became neces-
sary, approaches like Self-Instruct (Wang et al.,
2022) used models to generate high-quality instruc-
tions (Guo et al., 2024). However, complex instruc-
tions are rare, leading to strategies for synthesizing
them by extending simpler ones (Xu et al., 2023;
Sun et al., 2024; He et al., 2024a). Nevertheless,
existing methods struggle with scalability and di-
versity.

2.2 Back Translation

Back-translation, a process of translating text from
the target language back into the source language,
is mainly used for data augmentation in tasks like
machine translation (Sennrich, 2015; Hoang et al.,
2018). Li et al. (2023) first applied this to large-
scale instruction generation using unlabeled data,
with Suri (Pham et al., 2024) and Kun (Zheng et al.,
2024a) extending it to long-form and Chinese in-
structions, respectively. Nguyen et al. (2024) en-
hanced this method by adding quality assessment
to filter and revise data. Building on this, we further
investigated methods to generate high-quality com-
plex instruction datasets using back-translation.

3 Approach

Our approach mainly consists of two steps: 1) Ini-
tial Instruction Generation; 2) Iterative Instruction
Refinement, as shown in Figure 2. In this section,
we will introduce the two steps in detail.

3.1 Initial Instruction Generation (IIG)

Document Collection. Traditional instruction
generation methods such as Self-Instruct (Wang
et al., 2022) often suffer from limited diversity,
as the generated instructions are generally re-
combinations of the provided few-shot examples.
Inspired by Li et al. (2023), we generate initial
instructions using back translation based on human-
written documents.

To further enhance the diversity of the gener-
ated instructions, we implement a density-based
sampling mechanism for documents, as shown
in Algorithm 1. Specifically, we convert docu-
ments into vector representations using Sentence-
Transformers1, and perform sampling to maximize
the density of samples in the representation space.

1sentence-transformers/all-MiniLM-L6-v2.
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Step1: Initial Instruction Generation (IIG) Step2: Iterative Instruction Refinement (IIR) 
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D2: It's not a serious piece of kit, but you can 
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thinking it was just a novelty, but after watching a review ...
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I: Write a casual review of a water-proof 
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C1: Please state the conclusion first.

C2: Key features should be highlighted.

C3: The review should be concise, avoiding 
excessive details.

I: Write a casual review of a water-proof 
camera. 

C2: Key features should be highlighted.

Instruction Set

Deduplication and Rewriting

Instruction: Please write a casual 
review of a waterproof camera, 
citing data as much as possible and 
highlighting the key features.

Response: I recently got my hands 
on the GoPro HERO11 Black, a 
waterproof camera that 's been 
making waves  (pun intended) in 
the adventure. 

Generate Response

 
Instruction: Please write a casual 
review of a waterproof camera, 
citing data as much as possible and 
highlighting the key features.

Instruction 
Set

Figure 2: AIR: Automatic Iterative Refinement Framework.

Algorithm 1 Density-based Sampling

Input: Instruction Dataset D with m samples,
number of samples to select n.

Output: Selected Dataset D′ with n samples.
1: Derive the embeddings for each sample in D.
2: Randomly sample one data point x from D.
3: Delete x from D, add x to D′.
4: for i = 1,2, ...,n−1 do
5: Calculate the cosine similarity score be-

tween x and each sample from D.
6: Select the least similar sample x′ from D.
7: Let x = x′.
8: Delete x from D, add x to D′.
9: end for

In this way, we effectively eliminate redundant
documents, enhancing the diversity of instructions.
Moreover, this approach ensures that the knowl-
edge introduced during instruction fine-tuning is
evenly distributed across various domains. This
not only prevents the model from overfitting to a
specific domain but also mitigates the risk of catas-
trophic forgetting of fundamental capabilities2.

Moreover, to further ensure the quality of the
document collection, we filter out documents based
on the following criteria: 1) Length: Documents
with fewer than 50 words or exceeding 2,048 words
are removed. 2) Symbol-to-text ratio: Documents
where the proportion of symbols exceeds that of

2The effectiveness of this density-based sampling approach
is demonstrated in Appendix ??.

textual content are excluded. 3) Redundancy: Doc-
uments containing repetitive paragraphs or exces-
sive symbol repetitions are eliminated.

Instruction Back-translation Based on the sam-
pled documents, we employ the back-translation
method to construct initial instructions. Specifi-
cally, we utilize a guidance model to predict an
instruction which can be accurately answered by (a
portion of) the document3. This enables the gener-
ation of new instructions without relying on few-
shot examples or pre-designed rules. Moreover, we
can further ensure the diversity of the generated
instructions by diversifying the documents.

However, although constructed from documents,
instructions do not always align well with them in
two key respects (Nguyen et al., 2024). First, the
document is unstructured and does not follow the
AI-assistant format. Second, it may contain content
irrelevant to the instruction. Therefore, we intro-
duce an additional refinement step to transform the
document into response format and remove irrele-
vant content.

To further ensure the quality of the instructions,
we introduce a scoring step to filter out low-quality
data. Each instruction is assigned a score on a scale
of 1 to 5 by the guidance model, with each point
corresponding to a specific aspect. Only instruc-
tions with a score greater than (or equal to) 4 are
retained for the next step4.

3Detailed prompt templates are presented in Appendix B.2.
4Instruction score criteria are presented in Appendix B.3.
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Algorithm 2 Iterative Instruction Refinement
Input: Guidance model M, current model m, re-

fined document R, initial instruction I0.
Output: Constraint Sets Cn and C′

n.
1: for i = 1,2, ...,n do
2: Use m to generate a response Ai for the pre-

vious instruction Ii−1.
3: Leverage M as the judge, compare Ai with

R to identify a new constraint ci.
4: Add ci to Cn.
5: Add ci to Ii−1 to form a new instruction Ii.
6: Use m to generate a response A′

i for Ii.
7: Leverage M as the judge, check whether A′

i
satisfies constraint ci. If not, add ci to C′

n.
8: end for

3.2 Iterative Instruction Refinement (IIR)

To enhance a model’s ability to follow complex in-
structions, it is crucial to construct complex instruc-
tion data that incorporates multiple constraints. Pre-
vious methods typically start with simple instruc-
tions and generate complex ones through rewriting
or recombination (Xu et al., 2023). However, the
constraints generated in this way often do not meet
actual needs or lack diversity.

An effective sample for complex instruction fine-
tuning should adhere to two key principles:

1. Whether the model’s response originally mis-
aligns with the constraint before it is added;

2. Whether the model’s response still misaligns
with the constraint after it is added.

These constraints highlight the model’s weak-
nesses in handling complex instructions and require
further improvement. Conversely, if a constraint
does not meet these principles, it indicates that the
constraint falls within the model’s current capabili-
ties and does not require additional learning.

Therefore, we introduce constraint generation
using LLM-as-judge guidance (Zheng et al., 2023),
which mimics the human process of iteratively re-
fining prompts to form complex instructions5. As
shown in Algorithm 2, during the process of itera-
tion, we obtain the constraints that the model fails
to satisfy, which require further fine-tuning.

Throughout this process, as the number of con-
straints increases, the model’s response also im-
proves, making the identification of new constraints

5The analysis of potential biases in the LLM-as-Judge
approach are presented in Appendix A.1.
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Figure 3: Data statistics of AIR-10K.

more challenging. To uncover constraints that bet-
ter reflect human preferences, we use the refined
document as the reference answer for the judgment
process. Human-written documents inherently con-
tain vast amounts of knowledge and formatting
conventions that reflect human preferences. There-
fore, the derived constraints will also align more
closely with human preferences.

Finally, the constraint set is merged into a new
instruction. Note that two constraint sets are de-
rived: the first set Cn satisfies Principle 1, while
the second set C′

n, which includes an additional
checking step, satisfies both Principle 1 and 2.

While we leverage the refined document as the
reference for the judgment process, it should not
be used as the target for fine-tuning as in Nguyen
et al. (2024), as the document is not refined with
the constraints presented explicitly. Therefore, we
leverage the guidance model to re-generate the re-
sponse based on the combined instruction6.

3.3 Data Statistics of AIR-10K

With our proposed framework, we constructed
a high-quality complex instruction dataset, AIR-
10K, based on openly available documents. We
present the real-life scenario-specific domain distri-
bution of AIR-10K in Figure 3(a). As can be seen,
our dataset encompasses nearly 20 different do-
mains in total, demonstrating a high degree of bal-
ance across diverse fields. Furthermore, we present
the distribution of constraint types during iteration

6A detailed example illustrating the complete pipeline is
provided in Appendix A.6.
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Figure 4: Length distribution of AIR-10K.

1 and 5 in Figure 3(b). It is evident that in iteration
1, Inclusion and Document Structure constraints
dominate. However, after four rounds of constraint
additions, by iteration 5, the proportions of each
constraint type become more uniform7.

We also analyze the length distributions of both
instructions and responses. As shown in Figure
4(a) and 4(b), our instructions are of substantial
information for capturing complex tasks.

4 Experiments

4.1 Set-up
Data. Following Nguyen et al. (2024), we utilize
a subset of Dolma v1.7 (Soldaini et al., 2024) as
the document source, which is derived from a col-
lection of web pages and has undergone rigorous
quality and content filtering to ensure data quality.

Models. We apply our method to two mod-
els, Llama-3-8B and Qwen2.5-7B, and we apply
preliminary supervised fine-tuning for both mod-
els. The preliminary fine-tuning process is con-
ducted on two general instruction datasets, namely
ultrachat-200k (Ding et al., 2023) and tulu-330k
(Lambert et al., 2024), respectively. For the guid-
ance model to construct the data, we rely on a larger
model with the same group to ensure data quality,
namely Qwen-2.5-72B-Instruct for Qwen-2.5-7B,
and Llama-3-70B-Instruct for Llama-3-8B. We set
the maximum number of iterations to 5.

Evaluation. We mainly conduct evaluations on
two complex instruction-following benchmarks,
CFBench (Zhang et al., 2024) and Follow-
Bench (Jiang et al., 2023), where instructions con-

7The constraint type definition and complete distributions
across all iterations are detailed in Appendix A.7.

sist of multiple constraints. We also conduct eval-
uations on a general instruction benchmark of Al-
pacaEval2 (Dubois et al., 2024). Note that all
benchmarks require GPT-4 for judgment, and we
use GPT-4o-0806 8 as the evaluator for all of them.
We also conduct evaluations on fundamental ca-
pability benchmarks, including math, code, and
knowledge tasks, and the results are presented in
Appendix A.2 due to space limitations.

Baselines. We mainly compare our method with
four groups of methods as follows:

1. Human-crafted instruction data: This in-
cludes ShareGPT9, which is a collection of real
human-AI conversations.

2. Automatically crafted general instruction
data: This includes Self-Instruct (Wang et al.,
2022), which leverages few-shot examples to
self-generate simple instruction samples.

3. Automatically rewritten complex instruction
data: This includes Evol-Instruct (Xu et al.,
2023), ISHEEP (Liang et al., 2024), Muffin
(Lou et al., 2023) and Conifer (Sun et al., 2024),
which initiate with simple instructions and pro-
gressively construct more complex ones through
rewriting or recombination.

4. Automatically back-translated complex in-
struction data: This includes Suri (Pham et al.,
2024) and Crab (Qi et al., 2024), which cu-
rate the complex instructions and constraints
by back-translating the pre-existing response.
These methods are the closest to our work.

We also compare with the original back-
translation and back-and-forth translation (Cao
et al., 2023; Nguyen et al., 2024), where IIR is
skipped and initial instructions are directly used.

For all constructed datasets, we sample 10k
instruction-response pairs for supervised fine-
tuning under the same hyper-parameters10.

Note that, due to space limitations, some results
and analysis are presented in Appendix A.

4.2 Main Results

As shown in Tables 1 and 2, our proposed method
achieves the best performance on both complex and
general instruction-following benchmarks, demon-
strating its effectiveness. In contrast, automatically

8platform.openai.com/docs/models/gp#gpt-4o
9huggingface.co/datasets/anon8231489123/

ShareGPT_Vicuna_unfiltered
10Detailed hyper-parameters are presented in Appendix B.1.
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Fine-tuned on Llama-3-8B-UltraChat

Method
CF-Bench FollowBench AlpacaEval2

CSR ISR PSR HSR SSR LC. Len
Baseline 0.51 0.15 0.22 41.04 57.39 8.86 1,017

back-translation 0.40-0.11 0.11-0.04 0.15-0.07 21.19-19.85 33.92-23.47 0.96-7.90 2,966
back-and-forth 0.58+0.07 0.20+0.05 0.27+0.05 44.65+3.61 61.58+4.19 10.06+1.20 1,440

ShareGPT 0.62+0.11 0.22+0.07 0.32+0.10 40.99-0.05 58.59+1.20 8.36-0.50 1,052

Self-Instruct 0.34-0.17 0.08-0.07 0.10-0.12 12.33-28.71 26.92-30.47 2.76-6.10 384

Evol-Instruct 0.57+0.06 0.22+0.07 0.28+0.06 43.58+2.54 59.21+1.82 7.15-1.71 903
MUFFIN 0.50-0.01 0.16+0.01 0.22+0.00 30.88-10.16 48.48-8.91 4.51-4.35 791
Conifer 0.57+0.06 0.22+0.07 0.28+0.06 47.06+6.02 61.32+3.93 12.81+3.95 1,084

I-SHEEP 0.53+0.02 0.17+0.02 0.23+0.01 34.26-6.78 50.28-7.11 5.41-3.45 838

Suri 0.26-0.25 0.05-0.10 0.07-0.15 3.19-37.85 3.83-53.56 0.60-8.26 29
Crab 0.56+0.05 0.18+0.03 0.25+0.03 39.92-1.12 56.83-0.56 9.05+0.19 1,192

AIR 0.61+0.10 0.24+0.09 0.31+0.09 50.69+9.65 63.89+6.50 21.00+12.14 1,813
Fine-tuned on Qwen-2.5-7B-UltraChat

Method
CF-Bench FollowBench AlpacaEval2

CSR ISR PSR HSR SSR LC. Len
Baseline 0.68 0.29 0.40 47.71 64.79 10.87 836

back-translation 0.42-0.26 0.14-0.15 0.18-0.22 21.62-26.09 34.86-29.93 1.79-9.08 3,266
back-and-forth 0.63-0.05 0.24-0.05 0.34-0.06 45.33-2.38 60.39-4.40 12.59+1.72 1,480

ShareGPT 0.69+0.01 0.32+0.03 0.41+0.01 47.67-0.04 64.46-0.33 10.75-0.12 1,028

Self-Instruct 0.39-0.29 0.10-0.19 0.14-0.26 20.10-27.61 35.47-29.32 2.47-8.40 557

Evol-Instruct 0.67-0.01 0.30+0.01 0.40+0.00 46.67-1.04 63.98-0.81 8.81-2.06 964
MUFFIN 0.61-0.07 0.26-0.03 0.34-0.06 45.27-2.44 62.45-2.34 8.44-2.43 880
Conifer 0.70+0.02 0.34+0.05 0.44+0.04 51.65+3.94 65.72+0.93 19.39+8.52 1,024

I-SHEEP 0.63-0.05 0.25-0.04 0.36-0.04 41.96-5.75 59.48-5.31 6.43-4.44 996

Suri 0.31-0.37 0.07-0.22 0.10-0.30 4.55-43.16 4.85-59.94 0.94-9.93 239
Crab 0.62-0.06 0.24-0.05 0.32-0.08 41.48-6.23 59.57-5.22 9.68-1.19 1,102

AIR 0.76+0.08 0.41+0.12 0.51+0.11 59.07+11.36 71.35+6.56 32.43+21.56 1,779

Table 1: Experiment results on Llama-3-8B and Qwen-2.5-7B, with both models fine-tuned with ultrachat-200k
(Ding et al., 2023). Llama-3-70B-Instruct and Qwen-2.5-72B-Instruct are used as the guidance models respectively.

Fine-tuned on Llama-3-8B-Tulu

Method
CF-Bench AlpacaEval2

CSR ISR PSR LC. Len

Baseline 0.50 0.15 0.20 5.20 995

back-trans 0.27 0.07 0.08 1.09 2,263
back&forth 0.47 0.14 0.19 9.04 1,337

ShareGPT 0.61 0.21 0.29 9.00 1,080

Self-Instruct 0.30 0.07 0.09 2.63 378

Evol-Instruct 0.58 0.19 0.27 18.09 991
MUFFIN 0.46 0.15 0.18 5.21 760
Conifer 0.61 0.24 0.32 7.15 903

I-SHEEP 0.49 0.16 0.19 3.11 931

Suri 0.25 0.05 0.06 0.44 151
Crab 0.56 0.19 0.27 8.55 1,221

AIR 0.68 0.28 0.38 22.00 2,097

Table 2: Experiment results on Llama-3-8B, fine-tuned
with tulu-330k (Lambert et al., 2024), with Llama-3-
70B-Instruct as the guidance model.

crafted general instruction data significantly under-
perform, highlighting the importance of multiple
constraints in effective instruction fine-tuning. Au-

tomatic rewritten instructions also underperform,
as their constructed constraints do not align with
real-world practice. Additionally, automatically
back-translated instructions underperform as well.
Despite the constraints being derived from docu-
ments, the documents (even after refinement) suffer
from misalignment and should not be directly used
as the target for fine-tuning.

4.3 Data Quality Evaluation

To evaluate our dataset’s quality, we employed the
Deita scorer (Liu et al., 2024), which utilizes an
LLM to assess the complexity score for instruc-
tions and the quality score for both instructions and
responses. As shown in Figure 5, our approach sig-
nificantly outperforms human crafted instructions,
automatically crafted general instructions, and au-
tomatically rewritten complex instructions in terms
of both complexity and quality scores. Notably,
our method shows marginal improvements over au-
tomatic back-translation approaches like Suri and
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Figure 6: Variation of quality indicators across iterations.
Init represents initial instructions generated by IIG.

Crab, despite their use of high-quality seed datasets
(e.g., Alpaca GPT4 for Crab) and advanced models
(e.g., GPT-4-turbo for Suri). These results validate
the effectiveness of our data generation strategy.

To investigate the effect of iterative refinement,
we analyze the variation of average unique trigrams
and token lengths across iterations in Figure 6(a).
The results demonstrate consistent increases in both
instruction length and unique trigrams, indicating
that newly added constraints are diverse rather than
mere repetition. Furthermore, Figure 6(b) displays
the evolution of complexity and quality scores
throughout the iterations, showing steady improve-
ment of data quality as the iterations progress.

Method FollowBench AlpacaEval2
HSR SSR LC. Len

Results on Llama-3-8B-UltraChat

Baseline 41.04 57.39 8.86 1,017

w/o judge 47.15 62.62 19.07 1,706
judge w/o doc 51.24 63.81 20.00 1,717
judge w/ doc 52.34 64.09 19.74 1,408

w/ check 50.69 63.89 21.00 1,813

Results on Llama-3-8B-Tulu

Baseline 34.91 51.76 5.20 995

w/o judge 47.59 63.60 18.32 2,067
judge w/o doc 50.62 63.69 17.02 2,842
judge w/ doc 54.16 67.52 20.45 1,639

w/ check 51.35 66.09 21.09 2,049

Table 3: Experiment results on Llama-3-8B models with
constraints from different judgment strategies.

4.4 Judgment Strategy for Better Constraint

In this section, we investigate the optimal judg-
ment strategy for constraint generation. When hu-
mans adjust prompts based on the output, they typi-
cally have a pre-expected response as the reference
in mind, and constraints are issued to guide the
response closer to the reference. Therefore, we
compare three judgment settings: 1) No judgment,
directly curate constraints; 2) Judge without doc-
ument as the reference. Instead, use the guidance
models’ response as the reference; 3) Judge with
the refined document as the reference.

As shown in Table 3, the judgment process is
essential for uncovering valuable constraints to im-
prove the complex instruction following ability.
LLM-judge can curate constraints that reflect the
insufficiency of the model which requires further
tuning. Moreover, using the document as a refer-
ence is also essential due to the limited judgment
ability of the model, and human-written references
aid in more targeted constraint construction.

On the other hand, the additional checking step
does not improve complex instruction-following
ability, as the checking step would result in fewer
constraints. However, we observe improved perfor-
mance on general-instruction following, indicating
there exists a trade-off between general and com-
plex instruction following abilities.

4.5 Influence of Iterative Judge

In this section, we investigate the effectiveness of
our iterative judging approach by examining model
performance across different iterations. As shown
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Iteration FollowBench AlpacaEval2 Token Numbers
HSR SSR LC. Len Input Output

1 49.75 64.78 21.63 1,994 1,882 1,869
2 53.82 67.55 21.01 1,829 3,351 2,562
3 54.46 67.54 20.69 1,722 4,844 3,275
4 53.97 67.09 22.50 1,672 6,361 4,008
5 53.30 67.91 20.78 1,599 7,902 4,761

Table 4: Experiment results and computational costs for
Llama-3-8B-Tulu models across multiple iterations.

Method FollowBench AlpacaEval2 Uni-TrigramsHSR SSR LC. Len

1-shot 50.17 63.82 18.49 1,566 41.72
5-iteration 53.30 67.91 20.78 1,599 67.45

Table 5: Comparative analysis between 1-shot and 5-
iteration generation for Llama-3-8B-Tulu.

in Table 4, we evaluate models trained on data
from different iterations and compute the average
number of input and output tokens to quantify the
computational cost associated with each iteration.

Specifically, we observe consistent improve-
ments on FollowBench and AlpacaEval2 through
the first two iterations. This suggests that the it-
erative judging process effectively identifies and
incorporates increasingly sophisticated constraints
that are valuable for complex instruction following.
However, improvements tend to plateau after the
third iteration. This could be attributed to the fact
that the most critical and fundamental constraints
have already been discovered in earlier iterations.

Moreover, as shown in Figure 6, data quality
improves steadily across iterations. Despite the
increased computational costs reflected in Table 4,
these iterations generate more valuable constraints
that directly enhance model performance.

We also experimented with a 1-shot approach
that generates multiple constraints simultaneously.
As shown in Table 5, this approach is less effective
because it lacks a gradual process of uncovering
more challenging constraints with higher diversity
(measured by unique trigrams).

4.6 Influence of Sampling Strategy
As explained in Section 3.1, we conducted density-
based sampling to ensure the diversity of instruc-
tion data. To verify the effectiveness of our ap-
proach in enhancing diversity and improving fine-
tuning results, we conducted experiments using
three different sampling methods for selecting 1K
samples:

1. Random 1K: Randomly selecting 1K samples.
2. Density 1K: Selecting 1K samples using our

proposed density-based sampling method.
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Figure 7: The variation of performance on FollowBench
and AlpacaEval2 with the variation of data number.

3. InsTag (Lu et al., 2023) 1K: Using GPT-4 to
label each instruction with semantic and com-
plexity tags, then selecting instructions to ensure
diverse representation.

As shown in Table 6, our density-based method
significantly outperforms random selection on both
complex and general instruction-following bench-
marks. On the other hand, despite InsTag’s expen-
sive tagging process, it underperforms compared
to our approach. Moreover, we also calculated the
average unique trigrams in instructions sampled by
different methods, finding that our method could
select samples with higher unique trigrams, indi-
cating better diversity.

Method FollowBench AlpacaEval2 Unique
HSR SSR LC. Len Trigrams

Baseline 41.04 57.39 8.86 1,017 -

Random 1K 41.71 57.66 12.26 1,313 45.13
Density 1K 45.85 60.21 17.15 1,611 66.81
InsTag 1K 44.11 59.89 13.03 1,251 58.09

Table 6: Experiment results on Llama-3-8B-UltraChat
fine-tuned on different sampling methods.

4.7 Robustness to Document Quality

As discussed in Section 3.2, our framework pri-
marily utilizes documents to extract constraints
rather than as direct fine-tuning targets. During fine-
tuning, we use outputs from the guidance model
as targets, which insulates the process from docu-
ment quality issues. Moreover, we implemented
multiple safeguards in our data production pipeline,
which provides inherent robustness against docu-
ment noise.

To empirically validate our method’s robustness
to document quality, we conducted an additional
experiment comparing two document sets: (1) a
"low-quality" subset comprising the 1,000 lowest-
scoring documents from AIR-10k (evaluated by
GPT-4 across helpfulness, completeness, and harm-
lessness dimensions), and (2) a randomly sampled
set of 1,000 documents from the same corpus.
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Table 7 presents the performance comparison
of Llama-3-8B-UltraChat models fine-tuned on in-
structions derived from these two document sets.
The results demonstrate negligible performance
differences across all evaluation benchmarks. This
empirical evidence confirms that our method main-
tains consistent performance regardless of input
document quality, validating its robustness.

Additionally, we provide the number of samples
at each stage of the iterative process. As shown
in Table 8, despite starting with a large number of
initial documents, only 15% of them are retained
for iterative instruction refinement. Furthermore,
nearly 50% of the documents are filtered out during
the iterations, leaving only the highest-quality sam-
ples for final training. This demonstrates how our
carefully designed strategies effectively maintain
sample quality across multiple iterations.

Data CFBench FollowBench AlpacaEval2
CSR ISR PSR HSR SSR LC. Len

random 1k 0.61 0.23 0.33 45.85 60.21 17.15 1,611
low-quality 1k 0.60 0.22 0.30 44.00 59.83 16.10 1,685

Table 7: Comparison of model performance when fine-
tuned on instructions from different document sets.

Stage Sample Number

Rule-based Filtering 300k
Density-based Sampling 60k

Instruction Scoring 20k
Iteration 1 17.3k
Iteration 2 15.2k
Iteration 3 13.7k
Iteration 4 12.7k
Iteration 5 11.9k

Table 8: Progressive reduction in sample size through
filtering stages and five iterations.

4.8 Influence of Data Quantity
In this section, we investigate the impact of data
quantity on AIR’s performance. We present the
results of models trained with varying amounts of
data in Figure 7. As shown, performance on both
general and complex instruction tasks improves
with increasing data quantity. On the other hand,
the model can achieve superior performance with
only 1k training samples, and the performance
gains become marginal as more data is added.
Therefore, in practical applications, the optimal
amount of fine-tuning data can be determined based
on available computational resources.

Guid. Model FollowBench AlpacaEval2
HSR SSR LC. Len

Baseline 47.71 64.79 10.87 836

14B 57.72 70.59 29.13 1,501
32B 60.06 71.97 26.39 1,309
72B 59.07 71.35 32.43 1,779

Table 9: Experiment results on Qwen-2.5-7B-UltraChat
fine-tuned with different guidance model size.

4.9 Influence of Guidance Model Size

In Table 9, we investigate the impact of guidance
model size on AIR’s performance. We performed
experiments with Qwen-2.5-7B-UltraChat as the
base model, while varying the guidance model size
from 14B to 72B parameters. As shown, all guid-
ance models with different sizes significantly im-
prove instruction-following ability compared to the
baseline, while larger models generally provide
greater improvement. On the other hand, even the
14B guidance model demonstrates remarkable im-
provement. This scalability across different model
sizes highlights the robustness and efficiency of our
proposed approach.

5 Conclusion

This paper introduces the Automatic Iterative Re-
finement (AIR) framework, a novel approach for
generating complex instructions that better align
with real-world scenarios. We also construct a com-
plex instruction dataset, AIR-10K, to facilitate the
application of complex instruction following.

While previous methods for complex instruction
following often introduce constraints without clear
justification, it is crucial to understand what authen-
tic complex instruction entails. In the future, we
will conduct further research on the effectiveness
and efficiency of complex instruction data.

Limitations

Our work has several limitations. 1) Although
our evaluation includes multiple established bench-
marks and metrics, including human evaluation
could further improve its credibility. Due to time
and resource limitations, we have to leave this as
future work. 2) Despite meticulous preprocess-
ing, the Dolma dataset remains relatively noisy.
Incorporating more high-quality documents (for
example, judicial documents made public) could
provide more knowledge and formality to support
constraint construction. 3) The iterative nature of
our framework requires multiple rounds of model
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inference, resulting in higher computational de-
mands. While our ablation studies demonstrate
effectiveness even with smaller guidance models
and fewer samples, the computational cost remains
a challenge for researchers with limited resources.

Ethical Considerations

Our data construction framework primarily lever-
ages proprietary models such as Llama-3-70B-
Instruct, which have undergone extensive prefer-
ence optimization to minimize the likelihood of
generating instructions that raise ethical concerns.
However, large-scale web corpora—our primary
data sources—are uncensored and may contain
harmful or toxic content. To address this, we rec-
ommend implementing more rigorous and metic-
ulous filtering mechanisms to proactively identify
and remove such instances if possible.

While the AIR framework mainly aims to en-
hance models’ ability to follow complex instruc-
tions, it is important to note that some user con-
straints may conflict with system constraints set
by developers. For example, users may request
the generation of harmful or toxic content. Al-
though our study does not specifically investigate
conflicting constraints, there is a potential risk that
the pipeline could prioritize user requests over
developer-defined safeguards.
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A Additional Experimental Results and Analysis

A.1 Analysis of LLM-as-Judge Bias
Previous studies such as Chen et al. (2024); Ye et al. (2024) have revealed that biases in LLM-as-Judge
approaches can significantly influence judgment outcomes. Therefore, this section conducts an analysis of
the potential impact of LLM-as-Judge bias during the constraint generation process.

For this purpose, we analyzed the top three constraints with the highest proportions identified during
each iteration, along with their respective distribution percentages. As shown in the Table 10, as the
iteration progresses, the variety of constraint types becomes increasingly diverse, including a wide range
of constraint types such as content constraints, tone constraints, and emotional constraints, indicating that
the LLM-as-Judge’s bias did not lead to an overabundance of specific format-related constraints.

Iterations Primary Constraint Secondary Constraint Tertiary Constraint

1 Inclusion (35%) Document Structure (23%) Tone and Style (12%)
2 Inclusion (27%) Document Structure (23%) Target Audience (15%)
3 Document Structure (20%) Target Audience (19%) Inclusion (18%)
4 Target Audience (18%) Tone and Style (16%) Document Structure (15%)
5 Target Audience (15%) Tone and Style (15%) Domain - Specific Format (14%)

Table 10: Distributions of top three constraints across iterations in the iterative constraint construction process.

While LLM-as-Judge approaches may exhibit certain biases in response selection or scoring tasks
(e.g., favoring longer or more formatted answers regardless of instruction adherence), our implementation
mitigates these concerns, as we mainly rely on LLM-as-Judge specifically to identify missing constraints
from current responses with reference documents as ground truth, rather than for response selection or
scoring. This targeted application substantially reduces the impact of potential biases.

Furthermore, as demonstrated in Section 4.9, experiments with smaller models as LLM-as-Judge
resulted in only minimal performance degradation. This finding underscores the robustness of our
methodology: even with less capable judge models, we can still construct effective constraints that
enhance complex instruction-following capabilities.

A.2 Impact on Fundamental Capabilities

Method MMLU CQA NQ HumanEval GSM8K AVG

Results on Llama-3-8B-UltraChat

Baseline 64.00 72.97 29.61 30.49 57.47 50.90

AIR 61.64 73.63 30.54 29.88 54.59 50.05

Results on Qwen-2.5-7B-UltraChat

Baseline 73.64 82.39 25.68 52.20 81.65 63.11

AIR 73.35 82.56 25.76 55.49 84.38 64.30

Results on Llama-3-8B-Tulu

Baseline 65.43 79.44 32.22 50.61 64.14 58.36

AIR 64.95 79.92 34.62 50.85 63.70 58.80

Table 11: Experiment results on fundamental capabilities.

Previous methods have shown LLMs may suffer from capability degradation during alignment (Ouyang
et al., 2022). To evaluate this concern, we tested our AIR method on MMLU (Hendrycks et al., 2021),
CommonsenseQA (CQA) (Talmor et al., 2019), Natural Questions (NQ) (Kwiatkowski et al., 2019),
HumanEval (Chen et al., 2021), and GSM8K (Cobbe et al., 2021). In Table 11, our method does not have
a negative impact on fundamental capabilities. For Qwen-2.5-7B-UltraChat and Llama-3-8B-Tulu, our
method even improves the average performance by 1.19 and 0.44 points, respectively. This indicates that
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instructions constructed from documents with evenly sampled distributions also exhibit even distribution,
which would not lead to catastrophic forgetting of fundamental capabilities.

A.3 Comparison with Related Iterative Refinement Paradigms

Method CFBench FollowBench AlpacaEval2
CSR ISR PSR HSR SSR LC. Len

Results on Llama-3-8B-UltraChat

Self-Refine 0.58 0.22 0.30 46.82 61.62 18.91 1,706

AIR 0.61 0.24 0.31 50.69 63.89 21.00 1,813

Results on Qwen-2.5-7B-UltraChat

Self-Refine 0.71 0.38 0.48 54.99 67.33 28.27 2,093

AIR 0.76 0.41 0.51 59.07 71.35 32.43 1,779

Table 12: Performance comparison between AIR and Self-Refine methods.

This section presents a comprehensive comparison between our proposed AIR method and existing
iterative refinement paradigms. While prior work has explored iterative refinement in various contexts,
our approach differs fundamentally in both objective and methodology. Existing methods typically focus
on improving response quality through multiple iterations in specific domains such as code generation
(Madaan et al., 2023; Bi et al., 2024), tool retrieval (Xu et al., 2024), and task planning (Zhou et al.,
2024b), where the refined output serves as the final result. In contrast, our work targets instruction
construction, where the refined instructions are utilized to enhance the model’s capability in following
complex instructions. Additionally, these tasks often include external feedback (e.g., code executor),
while we primarily rely on LLM-as-Judge as feedback during iteration.

To validate the effectiveness of our approach, we conducted external experiments comparing AIR with
the Self-Refine baseline across multiple benchmarks, as shown in Table 12. The results demonstrate that
AIR consistently outperforms Self-Refine across all evaluation metrics on both models, indicating the
superiority of our proposed iterative refinement strategy.

A.4 Comprehensive Human Preference Study
To complement our automated evaluation metrics, we conducted a blind, pairwise human evaluation
to compare instructions generated by our AIR framework against those from strong and representative
baselines.

For this study, we selected three diverse and highly relevant baselines for comparison:

1. ShareGPT: A widely-used dataset composed of real, human-crafted conversations.
2. Conifer: A state-of-the-art method for generating complex instructions via automatic rewriting.
3. Crab: A strong baseline that, similar to our work, utilizes back-translation from existing documents.

The evaluation was conducted as a blind pairwise comparison. For each baseline, we randomly sampled
100 instructions. To ensure a fair and controlled comparison, each instruction pair (e.g., one from AIR,
one from Crab) was generated from the identical source document. We recruited three expert annotators,
all holding Master’s degrees and proficient in NLP, who were blind to the origin of the instructions.
Annotators were asked to select a winner for each pair based on three criteria: Instruction Complexity,
Instruction Clarity, and Overall Preference.

The final results, determined by majority vote, are presented in Table 13. The findings reveal an
overwhelming preference for instructions generated by our AIR framework across all comparisons and
criteria.

To ensure the reliability of our human evaluation, we also calculated the inter-annotator agreement using
Fleiss’ Kappa (Fleiss, 1971). As shown in Table 14, the high agreement scores confirm the consistency
and validity of our annotators’ judgments.
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Comparison Evaluation Criterion AIR Wins (%) Baseline Wins (%) Tie (%)

AIR vs. ShareGPT
Instruction Complexity 66.0 30.0 4.0
Instruction Clarity 58.0 33.0 9.0
Overall Preference 60.0 29.0 11.0

AIR vs. Conifer
Instruction Complexity 69.0 21.0 10.0
Instruction Clarity 67.0 23.0 10.0
Overall Preference 68.0 23.0 9.0

AIR vs. Crab
Instruction Complexity 70.0 23.0 7.0
Instruction Clarity 67.0 27.0 6.0
Overall Preference 67.0 21.0 12.0

Table 13: Pairwise human evaluation results comparing AIR against three baseline methods across three criteria.
Results are based on the majority vote of three expert annotators.

Comparison Fleiss’ Kappa (%)

AIR vs. ShareGPT 82.82
AIR vs. Conifer 83.34
AIR vs. Crab 80.47

Table 14: Inter-annotator agreement (Fleiss’ Kappa) for the human preference study.

This study provides compelling human-centric evidence that AIR generates instructions that are not
only more complex but also significantly clearer and more preferred than those from both human-crafted
datasets and other state-of-the-art automated methods.

A.5 Controlled Comparison of Instruction Generation Methods

The main paper evaluates AIR-10K against existing public datasets, a common paradigm that reflects how
these resources are used in practice. However, this "dataset-vs-dataset" approach can be influenced by
confounding variables, such as the quality of the source corpus and the capability of the guidance models
used to generate each dataset.

To isolate the direct impact of the instruction generation methodology itself, we conducted an additional
set of experiments under a strictly controlled environment. In this setting, we re-generated datasets for all
baseline methods using the identical source corpus (Dolma v1.7) and guidance model (Llama-3-70B-
Instruct) employed in our AIR framework. This ensures a direct "apples-to-apples" comparison of the
underlying methodologies, removing the influence of external factors.

The results of this controlled comparison are presented in Table 15. Our analysis reveals several key
insights:

1. Robust Superiority of AIR: Under these strictly controlled conditions, our AIR method continues to
significantly outperform all baseline methodologies across all complex instruction-following (CFBench,
FollowBench) and general-purpose (AlpacaEval2) benchmarks. This provides strong evidence that the
performance gains are intrinsic to our Automatic Iterative Refinement framework.

2. Sensitivity to Foundational Components: The experiment underscores the high sensitivity of instruc-
tion generation methods to the quality of their source data and guidance model. For instance, methods
like Suri and Self-Instruct exhibited substantial performance improvements when provided with our
high-quality setup. Conversely, methods such as Conifer and Crab, which may have originally benefited
from highly curated private data or more powerful proprietary models, saw a performance decrease.
Meanwhile, robust methods like Evol-Instruct and ShareGPT performed comparably, suggesting their
original configurations were already strong.

In summary, this controlled analysis provides stronger evidence for the effectiveness of the AIR
framework, demonstrating that its advantages are attributable to the methodology itself rather than the
initial choice of data or models.
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Method Setting CFBench FollowBench AlpacaEval2
CSR ISR PSR HSR SSR LC. Len

Baseline - 0.51 0.15 0.22 41.04 57.39 8.86 1,017

back-translation Original 0.40 0.11 0.15 21.19 33.92 0.96 2,966
back-and-forth Original 0.58 0.20 0.27 44.65 61.58 10.06 1,440

ShareGPT Original 0.62 0.22 0.32 40.99 58.59 8.36 1,052
Re-run 0.59 0.20 0.31 44.50 59.20 12.70 1,570

Self-Instruct Original 0.34 0.08 0.10 12.33 26.92 2.76 384
Re-run 0.42 0.11 0.16 15.00 32.00 8.50 2,384

Evol-Instruct Original 0.57 0.22 0.28 43.58 59.21 7.15 903
Re-run 0.55 0.21 0.26 45.20 59.80 8.80 890

MUFFIN Original 0.50 0.16 0.22 30.88 48.48 4.51 791
Re-run 0.48 0.15 0.20 29.50 46.20 4.01 990

Conifer Original 0.57 0.22 0.28 47.06 61.32 12.81 1,084
Re-run 0.52 0.18 0.23 43.20 58.50 11.50 850

I-SHEEP Original 0.53 0.17 0.23 34.26 50.28 5.41 838
Re-run 0.55 0.18 0.25 36.00 52.50 7.20 1,070

Suri Original 0.26 0.05 0.07 3.19 3.83 0.60 29
Re-run 0.53 0.17 0.23 43.00 58.08 9.50 1,980

Crab Original 0.56 0.18 0.25 39.92 56.83 9.05 1,192
Re-run 0.54 0.17 0.23 38.50 55.50 8.80 1,105

AIR Original 0.61 0.24 0.31 50.69 63.89 21.00 1,813

Table 15: Performance comparison on Llama-3-8B-UltraChat under controlled experimental settings. The "Re-run"
setting indicates that a method’s dataset was regenerated using our standardized corpus (Dolma v1.7) and guidance
model (Llama-3-70B-Instruct).

A.6 Case Study for Complete Pipeline
This section presents a detailed end-to-end demonstration of our pipeline in Figure 9. The case study
provides a thorough walkthrough of each stage in our instruction generation and refinement process.

A.7 Constraint Type Taxonomy and Distribution Analysis
This section provides a detailed classification of constraint types, as defined in Table 16. Additionally, we
present a comprehensive analysis of constraint type distribution patterns observed across five iterative
refinement rounds, as visualized in Figure 8.
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Figure 8: Distribution of constraint types across all iterations.

Constraint Type Description

Data Format
The generated content should conform to specific data structure
formats, such as JSON, Markdown, Table, CSV, etc.

Document Structure

The generated content should follow specific document organization
patterns, including Numbered lists (1, 2, 3 or I, II, III), Bullet points
(•, -, *), Custom templates with predefined sections, Tables, Headers,
etc.

Domain-Specific Format Content must follow strict format rules for different industries

Inclusion
Identify and list the specific elements or information that should be
included in the generated content

Exclusion
Identify and list the specific elements or information that should not
be included in the generated content

Citation
The generated content should include citations to sources, providing
reliable sources and literature support; follow specific citation for-
mats or reference styles

Prior Condition
When a specific intention is met, a particular process should be
followed to perform an operation or output specific content

Target Audience
The generated content should target a specific audience, which affects
the terminology used, the level of detail provided, and the complexity
of the content

Tone and Style
The generated content should adopt a specific tone and style, such as
formal, polite, academic, concise, literary, romantic, or sci-fi

Emotion
The generated content should express a specific emotion or mood,
such as ensuring the content is positive, inspiring, or empathetic

Linguistic Characteristics
Use specific linguistic features, such as metaphors, personification,
and other rhetorical devices

Multilingual
The generated content should be written in a specific language, such
as English, Mandarin, or Spanish

Table 16: Types of Constraints Used in Dataset Generation.
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Document
When do looted artefacts become legitimate cultural property? There is a dividing line between what counts as 
looted artefacts & what counts as legitimate cultural property, assimilated deeply into the cultural fabric of its 
new homeland. Unfortunately, nobody can agree at what point this dividing line occurs …

Document Refine
The complexities of cultural property restitution are 
multifaceted, and determining the legitimacy of looted 
artefacts is a contentious issue …

Instruction
Explore the complexities of cultural property restitution and the challenges of determining the legitimacy of looted artefacts.

Model Response
Cultural property restitution refers 
to the process of returning cultural 
artefacts that have been looted or 
stolen from …

Score: 4 

Constraint Iter1
Tone and Style Constraint: Adopt a critical and analytical tone, 
incorporating nuanced perspectives and historical context to 
explore the complexities of cultural property restitution.

Model Response Iter1
Cultural property restitution is a 
complex and contentious issue that 
has been debated for years …

Constraint Iter2
Document Structure Constraint: Each paragraph should start 
with a topic sentence that sets the tone for the rest of the paragraph, 
followed by supporting evidence and analysis.

Model Response Iter2
Cultural property restitution is a complex and contentious issue that 
has been debated for years. The question of who has the right to 
possess cultural artefacts that have been looted or stolen from their 
rightful owners is a matter of great importance …

Constraint Iter5
Citation Constraint: Support historical claims with evidence 
from reputable sources, such as academic journals or established 
historical records.

Model Response Iter5
Cultural property restitution is a complex and contentious issue that 
has been debated for centuries. The question of who has the right to 
possess …

Merge Instruction
Explore the complexities of cultural property 
restitution and the challenges of determining the 
legitimacy of looted artefacts …

Final Output
The restitution of cultural property is a 
labyrinthine issue, fraught with complexities that 
rival the most intricate of archaeological 
excavations …

…

Merge Instruction w/check
Explore the complexities of cultural property 
restitution and the challenges of determining the 
legitimacy of looted artefacts …

Final Output
Cultural property restitution refers to the process 
of returning cultural artifacts, artworks, and other 
items of cultural significance to their countries of 
origin or rightful owners …

Figure 9: End-to-End Pipeline Implementation Example.
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B Implementation Details

B.1 Model Training Hyper-parameters
This section details our model training configuration based on the LlamaFactory (Zheng et al., 2024b)
framework. We employed Supervised Fine-Tuning (SFT) with hype-rparameters as outlined in Table 17.

Configuration Llama-3-8B Qwen-2.5-7B
max length 4096 4096
learning rate 1e-5 1e-5
scheduler cosine decay cosine decay
training epochs 3 3
batch size 64 64
flash-attn fa2 fa2
numerical precision bf16 bf16
ZeRO optimizer stage 2 stage 2

Table 17: Hyper-parameters for Supervised Fine-Tuning.

B.2 Prompt Templates
This section presents the prompts used in our data generation pipeline. For Initial Instruction Generation,
the prompts serve different purposes from initial instruction generation through back-translation (Figure
10) to document refining (Figure 11) and instruction scoring (Figure 13). For Iterative Instruction
Refinement, the prompts serve different purposes from constraint generation (Figure 12), constraint
verification (Figure 14), and finally combines all elements into refined instructions (Figure 15).

B.3 Instruction Score Criteria
This section presents the detailed score criteria of the instruction quality through representative examples.
As illustrated in Figure 16, we provide a diverse set of instructions spanning the entire quality spectrum
(scores 1-5). Each score category is exemplified by five carefully selected cases, where score 1 represents
basic quality and score 5 demonstrates exceptional quality.

Please generate a single instruction that would lead to the given text as a response. 

- The instruction should not be a question. Instead, it should be a more general task.

- The instruction should not cover all details of the response. Instead, it should be concise and 

   only focus on the main aspect.

Please generate your instruction based on the text.

Text: {document}

Instruction: 

Figure 10: Prompt for generating initial instructions through back-translation.
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You are a professional editor. Given an instruction and an original response, your task is to 
improve the response while ensuring it aligns well with the instruction.

The improvement should focus on:
- Better alignment with the instruction
-   Enhanced clarity and coherence
- Aligns with AI assistant response style
- Maintaining the core message while improving expression.

Now, this is your task. Please directly present your modifications, without using ANY headings 
or prefixes.

Instruction: {instruction}
Original Response: {document}
Enhanced Response:

Figure 11: Prompt for refining document content.

Based on the provided instruction, I obtained Output1 and Output2 from two different models. 
Please analyze both outputs carefully to identify the MOST CRITICAL constraint type that 
Output2 needs to improve to match Output1's quality.

Available Constraint Types:
{constraints_type}

Task Requirements:
1. [Analysis] Compare Output1 and Output2 to identify differences
2. [Selection] Choose the SINGLE most critical constraint type where Output2 shows the 
biggest gap
3. [Constraint] Create ONE specific constraint that:
- Addresses ONLY the selected constraint type
- Exists in Output1 but is missing in Output2
- Is written in a clear and concise sentence (10-20 words)
- Avoids references to "Output1" or "Output2"
4. If no significant differences match the available types, specify "None"

Required Response Format:
**Analysis**: [Brief analysis]
**Selected Type**: [Single most critical type]
**Constraint**: [ONE specific constraint]

Context:
#Instruction#
{instruction}

#Output1#
{document_refine}

#Output2#
{model_response}

#Your Response#

Figure 12: Prompt for generating constraints based on judge.
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Review the user's instruction using the additive 5-point scoring system described below. Points 
are accumulated based on the satisfaction of each criterion:

Award 1 point for containing a basic question or task.
Add 1 point if the instruction can be addressed using the language model's existing knowledge 
base without requiring external resources or current event information.
Add 1 point if the instruction does NOT require analyzing specific texts, documents, or specific 
person's perspective.
Add 1 point if the instruction effectively communicates both the core question and key 
preferences, demonstrating clear intent while being self-contained.
Add 1 point if the instruction pertains to general topics or advice that are widely applicable and 
within the common knowledge base, rather than requiring specialized or niche information 
about specific individuals or events.

After examining the instruction:
- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: "Score: <total points>/5"

Example 1:
Instruction: What was the impact of Gary Gilmour's career and his life in the years following his 
cricketing career?
Answer: The instruction poses a basic question about Gary Gilmour's impact after his 
cricketing career (1 point). It can be answered using the language model's existing knowledge 
(1 point). It doesn't require analyzing specific texts, documents, or a specific person's 
perspective (1 point). The question is clear, self-contained, and demonstrates clear intent (1 
point). However, since it involves information about a specific individual, which requires 
specialized or niche knowledge, the last point is not awarded.
Score: 4/5

Example 2:
Instruction: What's the most helpful advice you have for students who are awaiting their 
college admission decision?
Answer: The instruction asks for the most helpful advice for students awaiting their college 
admission decisions, which is a basic question (1 point). It can be answered using the 
language model's existing knowledge (1 point). It does not require analyzing specific texts, 
documents, or a specific person's perspective (1 point). The question is clear, self-contained, 
and demonstrates clear intent (1 point). It pertains to a general topic that is widely applicable 
and within the common knowledge base (1 point).
Score: 5/5

…

This is your task:
Instruction: {instruction}
Answer:

Figure 13: Prompt for scoring initial instructions.
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I want you to act as a quality evaluator. You need to evaluate the model answer by combining 
[User Instructions], [Model Answer], and [Evaluation Criteria] and score with 0-3.

Specifically, [Model Answer] is the response to [User Instructions], and [Evaluation Criteria] 
defines the points that the model answer should satisfy and needs to be evaluated. You need 
to strictly score the [Model Answer] according to each evaluation point in [Evaluation Criteria].

Scoring Rules:
- Score 0: Does not meet the evaluation criteria
- Score 1: Meets the evaluation criteria with acceptable response
- Score 2: Meets the evaluation criteria with high quality and comprehensive response
- Score 3: Meets the evaluation criteria with exceptional and flawless response

Output format: 1. Strictly output one line at a time according to the order of evaluation points in 
[Evaluation Criteria], with lines separated by "\n\n";
                        2. Each line first outputs the corresponding content in [Evaluation Criteria], then 
uses "\t" to separate, and outputs the corresponding score (0-3) after it;
                        3. Please output your evaluation directly without any other content;
                        4. Note that if a criteria states like "do not include X", the score should be 0 if 
the answer includes X.

[User Instructions]: {instruction}

[Model Answer]: {model_response}

[Evaluation Criteria]: {constraints}

[Your Evaluation]: 

Figure 14: Prompt for verifying model responses against constraints.

You are a skilled writing specialist who excels at blending different elements into cohesive, 
natural-sounding instructions.

Fusion guidelines:
- Consolidates overlapping constraints and resolves any conflicts
- Craft a cohesive instruction that naturally integrates ALL appropriate constraints
- AVOID expanding constraints

{few_shot}

Now it's your turn. Please merge the following input and constraints, do not output anything 
else, including response to the merged instruction:

[Original Input]
{instruction}

[Original Constraints]
{constraints}

[Merged Instruction]

Figure 15: Prompt for combining instructions with constraints.
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Instruction
Conduct an in-depth interview with a standout college basketball player about their career.
Write a weekly community newsletter for a small town, covering local news, and opinions.
Write a personal account of a company-wide cost reduction.
Write a scene where Amato meets with Raith to discuss a new.
Write a profile article about a local church and its leadership.

Score: 1 

Instruction
Conduct an in-depth interview with a professional chef about their career path.
Write a review of a recent episode of the TV show Shameless.
Review and compare alternative Instagram growth services to Hyper Vote.
Provide a progress update on the Pensions Dashboards Programme.
Write a personal tribute to a Nigerian politician who has made a positive impression on you.

Score: 2 

Instruction
Draft a court opinion for the appeal of a grand theft conviction.
Write a feature article about the Pac-12's dominance in college athletics.
Create an informed consent document for a research study.
Write a film review of Top Gun: Maverick.
Write a critical analysis of the movie Prometheus, exploring its themes.

Score: 3 

Instruction
Compile a comprehensive guide to natural remedies for treating yeast infections in women.
Write a spiritual reflection on the limitations of human capacity.
Write a comprehensive guide about how doctors inform patients about cancer diagnosis.
Write a sports article about a football team's creative adjustments due to injuries.
Write a comprehensive guide for international students on pursuing MBA program in the UK.

Score: 4 

Instruction
Write a comprehensive guide to understanding the different types of real estate.
Develop a guide for starting a meditation habit.
Write a guide on securing valuables and property at home.
Develop a guide on leveraging social media stories for business growth.
Write an article about the mental health benefits of owning a pet.

Score: 5 

Figure 16: Examples of instructions at different score levels (1-5), where each score level is illustrated with five
representative cases. Score 1 represents the lowest quality while score 5 represents the highest quality.
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