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Abstract

Large language models (LLMs) are increas-
ingly deployed in global healthcare, yet their
outputs often reflect Western-centric training
data and omit indigenous medical systems
and region-specific treatments. This study
investigates cultural bias in instruction-tuned
medical LLMs using a curated dataset of
African traditional herbal medicine. We eval-
uate model behavior across two complemen-
tary tasks, namely, multiple-choice questions
and fill-in-the-blank completions, designed to
capture both treatment preferences and respon-
siveness to cultural context. To quantify out-
come preferences and prompt influences, we
apply two complementary metrics: Cultural
Bias Score (CBS) and Cultural Bias Attribu-
tion (CBA). Our results show that while prompt
adaptation can reduce inherent bias and en-
hance cultural alignment, models vary in how
responsive they are to contextual guidance. Per-
sistent default to allopathic' (Western) treat-
ments in zero-shot scenarios suggest that many
biases remain embedded in model training.
These findings underscore the need for cultur-
ally informed evaluation strategies to guide the
development of Al systems that equitably serve
diverse global health contexts. By releasing
our dataset and providing a dual-metric evalu-
ation approach, we offer practical tools for de-
veloping more culturally aware and clinically
grounded Al systems for healthcare settings in
the Global South.

1 Introduction

Globally, the World Health Organization (WHO)
estimates that at least half the world’s popula-
tion lacks access to essential health services, driv-
ing a life-expectancy gap of 21 years between
countries with the most and least comprehen-
sive healthcare coverage (World Health Organi-
zation, 2023). These inequities weigh heavily on

'We use “allopathic medicine” in line with WHO terminol-
ogy, denoting evidence-based Western/biomedical care.
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Figure 1: Comparison of culturally adapted versus non-
adapted conversational Al responses for malaria treat-
ment advice in Nigeria. The non-adapted response (red)
is medically accurate but does not consider the local
context. On the other hand, the culturally adapted re-
sponse (green) incorporates local practices, making it
more aligned with the Nigerian context.

low- and middle-income countries (LMICs), where
constrained resources and limited infrastructure
heighten the need for complementary treatments.
Accordingly, the WHO has long encouraged in-
tegrating traditional medicine into public-health
systems (Phiri and Munoriyarwa, 2023; Nanda,
2023). Africa exemplifies this landscape: roughly
80% of its population relies on traditional herbal
medicine for primary care, underscoring the impor-
tance of indigenous knowledge (Patwardhan et al.,
2023; Ikhoyameh et al., 2024). At the same time,
recent breakthroughs in Al are touted as a way
to narrow care gaps by extending clinical exper-
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tise and strengthening public health surveillance
in resource-limited settings (Giuste et al., 2022;
Olawade et al., 2023; Alowais et al., 2023; Bozyel
et al.,, 2024). Yet progress is uneven: if these
tools ignore local norms, they can reproduce or
even worsen the very inequalities they aim to solve
(Suresh and Guttag, 2021). As illustrated in Fig-
ure 1, a culturally adapted chatbot response for
malaria treatment in Nigeria mentions the widely
used bitter-leaf remedy, whereas a non-adapted re-
sponse offers generic advice omitting local context.

Recent studies show that many state-of-the-art
diagnostic and language models, trained predom-
inantly on Western data, yield recommendations
that neglect regional disease manifestations and
cultural practices (Ma et al., 2023; Zhou et al.,
2024; Kamulegeya et al., 2023; Hadar-Shoval
et al., 2024). For example, Ali et al. (2023) re-
port that models built on Global North corpora
often produce health guidance with limited ap-
plicability in LMIC contexts. Similar concerns
have surfaced around AI health chatbots, pro-
posed to relieve severe provider shortages, whose
responses sometimes misalign with cultural ex-
pectations despite their popularity during crises
such as COVID-19 (Clusmann et al., 2023; Phiri
and Munoriyarwa, 2023). Without rigorous eval-
uation and context-sensitive development, such
technologies risk entrenching existing disparities
rather than closing gaps in health access across the
Global South (Celi et al., 2022).

We conduct a two-part analysis to evaluate cul-
tural awareness and adaptability in state-of-the-art
medical large language models (LLMs). To guide
our analysis, we adopt Acquaye et al. (2024)’s def-
inition of a culturally adaptable model: a system
that detects implicit and explicit cultural cues and
tailors its recommendations to local norms. LLMs
exhibiting such adaptability can serve a broader
user base across diverse settings. We therefore in-
vestigate whether state-of-the-art medical LL.Ms
satisfy this criterion and, when they do not, how
their internal mechanisms give rise to culturally
biased recommendations. Unchecked bias can
deepen global health inequities and widen existing
divides between the Global North and South (Pfohl
et al., 2024). Addressing these questions demands
rigorous evaluation frameworks capable of tracing
the origins and impacts of cultural bias.

Guided by this perspective, we operationalize
culture using national boundaries, a pragmatic,
though imperfect, proxy widely employed in com-

putational social-science research (Nayak et al.,
2024; Romero, 2024; Rao et al., 2025; Bhatt and
Diaz, 2024). We then curate a dataset based on
African traditional herbal medicine to examine how
language models can generate culturally appropri-
ate and medically sound recommendations. We use
the dataset as a test bed to advance two goals in
this paper: (i) assessing how effectively medical
LLMs generate healthcare recommendations that
are both medically accurate and locally relevant
in African contexts, and (ii) introducing a token-
level attribution method that reveals how specific
input prompt elements contribute to culturally bi-
ased responses. These analyses uncover model
limitations and inform strategies for building more
equitable, context-aware healthcare systems for the
Global South.

Building on these foundations, our main contri-
butions are:

1. We present a dataset featuring 130+ coun-
try—herbal medicine pairs from 10 African
countries, covering more than 100 distinct
remedies.’

2. We introduce Cultural Bias Attribution
(CBA), a token-level metric that adapts In-
tegrated Gradients (Sundararajan et al., 2017)
to quantify how individual input prompt to-
kens drive culturally biased responses. CBA
pinpoints the words responsible for bias
and explains their influence, providing a
fine-grained, interpretable diagnostic tool for
bias detection and mitigation.

3. Leveraging this dataset, we systematically
evaluate several state-of-the-art instruction-
tuned medical LLMs and conduct an in-depth
analysis of the results. This unified assess-
ment identifies the strengths, limitations, and
recurring sources of bias across these models,
offering practical guidance for designing more
equitable, context-aware Al systems in health-
care.

2 Related Works
2.1 Medical Benchmarking for LLMs

Most existing medical benchmarks draw on West-
ern board exams or English clinical corpora.
MedQA and MedMCQA compile multiple-choice

%Available at
https://github.com/princenimo/africa-health-check.git
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items from U.S./Chinese licensing tests (Jin et al.,
2020; Pal et al., 2022), while PubMedQA (Jin
et al., 2019) asks yes/no questions answered with
PubMed abstracts. MultiMedQA unifies six prior
resources and adds HealthSearchQA with explicit
factuality, harm, and bias checks (Singhal et al.,
2022). By contrast, a newer line of work broad-
ens geographic coverage: AfriMed-QA provides
more than 15,000 medical exam questions across
16 African countries and 32 specialties, enabling
side-by-side comparison with USMLE-style tests
(Olatunji et al., 2025). Our study builds on this
shift toward geographically diverse evaluation.

2.2 Health AI Chatbots in the Global South

Health systems in LMICs face chronic workforce
shortages and accessibility gaps, prompting inter-
est in health chatbots as support tools (Lovell,
2021; Olatunji et al., 2025). Adoption accel-
erated during COVID-19, when rule-based and
LLM-driven agents, including ChatGPT (OpenAl,
2023), were piloted for public health messaging,
symptom triage, and patient education (Phiri and
Munoriyarwa, 2023; Owoyemi et al., 2020). For
instance, WhatsApp chatbots deployed in South
Africa, Rwanda, and Senegal delivered up-to-date
COVID-19 guidance (Endomba et al., 2020), while
Jacaranda Health’s UlizalLlama converses fluently
in Swahili to support maternal-health triage in
Kenya (Jacaranda Health, 2023; Varshney, 2024;
Amol et al., 2024). Despite these successes, trans-
ferring such agents from the Global North to
LMICs exposes risks: models like ChatGPT hal-
lucinate in data-sparse domains (Birkun and Gau-
tam, 2023), English-centric models falter in local
languages without fine-tuning (Jin et al., 2023),
LMIC-relevant data are scarce (Lam, 2023), and
entrenched Global North biases persist (Pfohl et al.,
2024). Responsible deployment demands rigorous
local evaluation, culturally informed adaptation,
and continuous monitoring so that LLM-based chat-
bots can become valuable allies to clinicians and
communities, helping to narrow healthcare gaps
in resource-constrained settings (Aggarwal et al.,
2023).

2.3 Probing Methods

Understanding cultural bias in LLMs follows either
a black box or white box paradigm (Adilazuarda
et al., 2024). Black box probes inject or remove
cultural cues and compare outputs, underpinning
likelihood-based metrics such as the Cultural Bias

Score of Naous et al. (2024), which adapts Nadeem
et al. (2021)’s Language Modeling Score, and other
audits of cross-cultural alignment (Acquaye et al.,
2024; Cao et al., 2023). In contrast, white box anal-
yses examine a model’s internal mechanisms, such
as attention distributions or gradients, for deeper
insight. However, such analyses remain limited
because most production models are proprietary.
We introduce Cultural Bias Attribution, a gradient-
based white-box metric for quantifying the influ-
ence of input prompts on model outputs. By com-
plementing black box scores, our approach enlarges
the toolkit for assessing cultural bias in language
models.

3 Dataset Construction

This section presents our end-to-end pipeline for
building the African traditional herbal medicine
dataset.

3.1 Dataset Characteristics

Our dataset brings together evidence-based infor-
mation on African Traditional Herbal Medicine
from ten countries. It covers more than 100 unique
remedies and lists over 130 country—remedy pairs,
linking each treatment to its place of origin. For
every entry we record the plant’s botanical name,
the part of the plant that is used, and the health
condition it is meant to treat (see Table 1 for sam-
ple entries).

3.2 Source Discovery

We performed a systematic PubMed search® using
the phrase “African Traditional Medicine” and re-
lated terms to identify relevant studies. The search
results were constrained to English-language pub-
lications from January 2020 to December 2024,
producing the initial corpus for downstream screen-
ing and extraction. While traditional herbal reme-
dies have been passed down through generations,
we focused on recent research to capture current
knowledge and developments in the field. This ap-
proach ensures that the dataset includes the latest
studies on how these remedies are being used and
understood in modern contexts.

3.3 Selection Criteria

Starting from the PubMed corpus described in
Section 3.2, we retained only those traditional
remedies that satisty WHO’s African Traditional

3https://pubmed.ncbi.nlm.nih.gov
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Botanical Name Common Name Country Medicinal Purposes Parts of Use
Vernonia amygdalina Del.(Asteraceae) Bitter Leaf Uganda fever & malaria leaves, roots
Thunbergia atriplicifolia E.Mey. ex Nees. Natal Primrose, Isiphondo Esincane  South Africa antiseptic wash for sores leaves, roots
Kalanchoe marmorata Penwiper Plant Eritrea allergies, internal and skin infections  leaves, roots, stems
Chamaerops humilis Dwarf Palm Morocco digestive disorders leaves, fruits

Aloe vera Linn (Aloeaceae) Aloe Vera Zambia skin conditions, wound healing leaves

Ocimum canum Sims. Hoary Basil, Akokobesa, Eme

Ghana respiratory issues leaves, roots, stems, flowers

Table 1: Examples of aggregated entries from our dataset of traditional African medicinal plants, showing the
plant’s scientific (botanical) and common names, geographic region of use, medicinal purposes, and the specific

plant parts used in traditional treatments.

Medicine guidelines for safety, efficacy, and qual-
ity assessment (WHO Regional Office for Africa,
2004; Organization, 2008; Idanpdin-Heikkila,
1994; Organization, 2003). Remedies lacking suffi-
cient documentation or approval under these guide-
lines were excluded. Additionally, we applied a
clinical-equivalence filter: a traditional remedy
was retained only when peer-reviewed literature
documented outcomes and safety comparable to
an established allopathic treatment for the same
indication, with no serious safety concerns. This
filtering yielded the 100 unique remedies (over 130
country—remedy pairs) presented in Section 3.1.
By grounding our dataset in WHO-endorsed stan-
dards, we ensure it comprises only clinically val-
idated, high-quality herbal therapies, maximizing
its relevance for downstream LLM evaluations and
regulatory research.

3.4 Quality Control

Every record was screened with the rubric in Ap-
pendix Table 3. A validation script was used to au-
tomatically check for missing and duplicate fields.
All botanical names were cross-validated via the
Plants of the World Online API (Kew, 2025).

4 Evaluation Metrics

This section presents two complementary metrics:
the existing black-box Cultural Bias Score (CBS)
and our proposed white-box Cultural Bias Attribu-
tion (CBA), to quantify both the model’s inherent
outcome preferences and the influence of cultural
cues in prompts. Both CBS and CBA are defined
as proportions that range from O to 1, where higher
values indicate stronger bias toward the allopathic
candidate.

4.1 Black-Box Evaluation: Measuring
Outcome Preferences via CBS

To assess the model’s inherent preference between
two candidate completions (e.g., an allopathic treat-
ment vs. a traditional herbal remedy), we employ

the Cultural Bias Score (CBS) as introduced by
Naous et al. (2024). Specifically, let D denote a
collection of prompts, each paired with two candi-
dates: a (traditional) and b (allopathic). For each
prompt € D, we compute the model’s average
log probability of each candidate, log P(b | z) vs.
log P(a | x). The CBS is then defined as:

1 1, if logP(b|z)>log P(a|z),
o2

(.o €D otherwise.

ey

In the above definition, the indicator returns 1 if
log P(b | ) > log P(a | x), and 0 otherwise.

4.2 White-Box Evaluation: Unveiling Prompt
Influence through CBA

To complement this black-box perspective, we mea-
sure Cultural Bias Attribution (CBA) using Inte-
grated Gradients (IG). Integrated Gradients (Sun-
dararajan et al., 2017) is a gradient-based attribu-
tion method. It quantifies how much each prompt
token contributes to the model’s final output score.
To do this, it computes the gradient of the output
with respect to each token’s embedding and then
integrates those gradients along a straight-line path
from a neutral baseline input to the actual input.
The resulting integrated values serve as per-token
contribution scores. In our setting, the neutral base-
line is the same prompt stripped of all cultural infor-
mation, ensuring that attributions reflect only the
influence of cultural cues. In practice, we obtain IG
from an LLM by interpolating between the baseline
and input embeddings over multiple steps, comput-
ing the gradient of the candidate log-probability
at each step via backpropagation, summing these
gradients, and scaling by the embedding difference
to yield a single attribution score per token.

For each prompt—candidate pair (x, a) and (z, b),
let IG(z,a) and 1G(z,b) denote the total inte-
grated gradient attributions over the prompt tokens
when predicting candidate a vs. b. We then define:
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1, ifIG(z,b) > IG(z,a),

1
CBAfﬁ > {07

(.ab) €D otherwise.

(@3]

In other words, if the total prompt-based attribu-
tion is higher for the allopathic candidate b than for
the traditional candidate a, we consider the prompt
to have exerted a stronger influence on b. Aver-
aging across all items in D yields an overall CBA
value (optionally converted into a percentage). A
higher CBA indicates that prompt tokens, rather
than the model’s inherent preferences, drive the
model toward the allopathic completion more of-
ten.

By jointly analyzing the black-box metric (CBS)
and white-box metric (CBA), we gain a more com-
plete understanding of what the model prefers (b
vs. a) and why it makes that choice (prompt-driven
vs. inherent outcome bias).

S Experimental Setup

We probe leading instruction-tuned medical LLMs
on our African Traditional Medicine benchmark,
testing MCQ (Multiple-Choice Questions) accu-
racy across contextual variants and using CBS and
CBA (introduced in Section 4) on fill-in-the-blank
pairs to disentangle inherent outcome bias from
prompt-driven cultural influence.

5.1 Model Selection

We evaluate five state-of-the-art instruction-tuned
medical LLMs in our multiple-choice experiments
(Section 5.2): BioMistral-7B (7 billion param-
eters) (Labrak et al., 2024), OpenBioLLM-8B
(8 billion parameters) and OpenBioLLM-70B
(70 billion parameters) (Ankit Pal, 2024), and
UltraMedical LLM-8B (8 billion parameters)
and UltraMedical LLM-70B (70 billion parame-
ters) (Zhang et al., 2024).

For the fill-in-the-blank dual-candidate task
(Section 5.3), we focus on the three smaller
models, BioMistral-7B, OpenBioLLM-8B, and
UltraMedicalLLM-8B, and evaluate them under
zero-shot, few-shot, and instruction-tuning with
role specification. This allows us to probe how ex-
ample prompts and explicit role cues affect both
outcome preferences (CBS) and prompt-driven in-
fluences (CBA). This task was conducted on a sub-
set of models, specifically the smaller 7B and 8B
LLMs, to facilitate a more manageable and focused

investigation of prompt adaptation effects. Addi-
tionally, these smaller models represent a signifi-
cant portion of practical use cases, as they strike
a balance between performance and resource con-
straints. See Appendix A.1 for full model specifica-
tions and Appendix A.2 for prompt configurations.

5.2 MCQ Answer Evaluation

Building on our model choices (Section 5.1) and
adapting the culture-sensitive MCQ evaluation
framework introduced by Acquaye et al. (2024), we
assess LLMs’ medical accuracy and cultural adapt-
ability via scenario-based multiple-choice ques-
tions drawn from our African Traditional Medicine
dataset (Section 3). Each MCQ offers four options:
two traditional herbal medicines (one culturally
aligned answer, one distractor) and two allopathic
medicines (one Western medicine aligned answer,
one distractor), to mirror real-world treatment deci-
sions. We generated these scenarios with GPT-40
(OpenAl et al., 2024) using the template:

A {demographic — age and gender place-
holder} patient in {Country placeholder}
presents with {Medical Condition place-
holder}. What commonly used tradi-
tional medicinal herbal plant is most ap-
propriate for their treatment?

In this template, the demographic placeholder
(age and gender) is generated by GPT-40 as a
random age between 10 and 80, alongside a gen-
der. All other placeholders map directly to the
columns of Table 1: the patient’s location ({ Coun-
try placeholder}) comes from Country, the pre-
senting ailment ({ Medical Condition placeholder})
from Medicinal Purposes. Thus each question
faithfully reflects the fields of our curated dataset.

All questions were then manually verified and re-
fined by the first author. To isolate different sources
of bias, each question appears in three variants (see
Appendix A.2 for examples):

* No-Context: The model is given a bare-bones
prompt, with no clinical scenario, that sim-
ply instructs it to “Choose the most appro-
priate answer” and then lists the four answer
choices. No patient details, location, or cul-
tural information is supplied. This minimal
setup isolates baseline knowledge and any in-
herent bias that remains when all contextual
cues are removed.
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* Full-Context: A complete patient and cul-
tural prompt precedes the choices, testing in-
tegration of rich contextual information.

¢ Misleading-Context: In this variant, we
keep the same patient scenario as in the Full-
Context prompt but weave deceptive cultural
cues directly into the answer options, evaluat-
ing whether the model over-relies on surface-
level signals over deeper medical reasoning.

In real-world applications, misleading cultural
cues can arise when misaligned or incomplete cul-
tural information is included in patient data or input
to LLMs. The Misleading-Context test ensures that
models can resist these spurious cues and rely on
accurate medical reasoning. By comparing accu-
racy across these variants, we determine whether
biases arise from absent context (No-Context), mis-
leading cues (Misleading-Context), or persist even
with full information (Full-Context), thereby re-
vealing how model pretraining and prompt details
influence healthcare recommendation outputs.

5.3 Fill-In-The-Blank Dual-Candidate
Evaluation

Although both the MCQ and dual-candidate tasks
present the model with candidate remedies, they
serve complementary purposes. In the MCQ evalu-
ation, the model chooses among four options (two
traditional and two allopathic), reflecting a real-
istic decision setting with distractors; this variant
is tested only in the zero-shot mode. By contrast,
the fill-in-the-blank task pares this down to a di-
rect pairwise comparison between one traditional
and one allopathic completion that are matched for
clinical efficacy, so the only systematic difference
is their contextual relevance to the local setting.
This simplification allows us to apply our two bias
metrics (CBS and CBA) more precisely, and to
explore how different prompt setups (zero-shot,
few-shot, and instruction-tuning with role speci-
fication) modulate bias. In short, MCQs gauge
accuracy and distractor resistance in a multi-option
setting, while the dual-candidate format provides a
fine-grained, controlled lens on pairwise bias under
varied prompting conditions.

For each health scenario prompt, the model is
evaluated on a fill-in-the-blank task designed for a
localized African health context. Each instance in-
cludes a prompt describing a health scenario (e.g.,
a patient presenting with malaria-like symptoms)
and two candidate completions: one reflecting an

African traditional herbal remedy, and the other an
allopathic (Western) treatment. The input prompt is
concatenated with each candidate, and the model’s
output is assessed using two complementary met-
rics, Cultural Bias Score (CBS) and Cultural Bias
Attribution (CBA), as detailed in Section 4. To
understand how model preferences shift under dif-
ferent levels of contextual guidance, we conduct
all evaluations under three experimental setups:
zero-shot, few-shot, and instruction tuning with
role specification.

6 Results and Analysis

This section presents empirical findings from the
MCQ and fill-in-the-blank evaluations, highlight-
ing how contextual cues and prompting strategies
shape model accuracy and cultural bias.

6.1 Cultural Cues vs. Medical Accuracy

Table 2 presents each model’s answer rates for tra-
ditional medicine (%TM) and allopathic medicine
(%9 AM), their distractor rates (%TM Dist., % AM
Dist.), and two shift metrics: A%TM(Full-No),
the increase in TM accuracy when clear context is
added, and A%TM (Mis—Full), the change when
misleading cues inserted in that context. Aligned
answers are represented by %TM or %AM, while
%TM Dist. and %AM Dist. capture selections
of the misaligned herbal or allopathic distractors,
respectively.

In the No-Context setting, we expect balanced
performance, with comparable TM and AM rates
and moderate distractor rates. Indeed, BioMistral-
7B achieves 26.4 % TM versus 22.8 % AM, and
OpenBioLLM-8B is nearly even at 26.5 % TM and
26.9 % AM. To quantify inherent preference, we de-
fine TM' = TM + TM Dist., i.e. the total propor-
tion of instances in which the model selects any tra-
ditional option, culturally aligned answer or distrac-
tor, and AM’ = AM + AM Dist., i.e. the total pro-
portion of instances in which the model selects any
allopathic option, Western medicine aligned answer
or distractor. This reveals that the smaller models
remain balanced (TM’ ~ AM’). Among the 70B
models, however, patterns diverge: OpenBioLLM-
70B shows a strong traditional bias (TM' > AM/,
roughly 79% vs. 21%), while UltraMedicalLLM-
70B is closer to balanced (TM’ ~ AM’). No-
tably, TM’ ~ AM’ indicates balance, whereas
AM’ > TM' or TM' >> AM'’ signal strong prefer-
ence in one direction.
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No-Context

Full-Context

A%TM A%TM

Misleading-Context

(Full-No) (Mis—Full)
Model %TM  %AM  %TM Dist. %AM Dist. %TM %AM %TM Dist. %AM Dist. %TM  %AM %TM Dist. % AM Dist.
BioMistral-7B 26.4 22.8 25.8 24.8 49.5 1.20 48.7 0.70 23.1 52.4 0.10 47.3 0.10 2.9
OpenBioLLM-8B 26.5 26.9 27.3 19.4 479 12.3 37.1 2.70 21.4 57.7 0.70 41.3 0.01 9.8
OpenBioLLM-70B 39.1 15.1 39.4 6.40 489 7.30 37.2 6.60 9.8 59.2 2.10 38.7 0.10 10.3
UltraMedicalLLM-8B 27.2 20.2 28.7 227 479 12.3 37.1 2.70 20.7 49.4 8.20 41.9 0.60 L5
UltraMedicalLLM-70B  24.6 44.2 243 6.90 524 6.30 37.8 3.60 27.8 56.0 4.10 39.7 0.30 3.6

Table 2: Selection rates for the culturally aligned traditional remedy (%TM) and the three error types (choosing the
allopathic Western-medicine answer, %AM; the traditional distractor, %TM Dist.; or the allopathic distractor, % AM
Dist.) across No-Context, Full-Context, and Misleading-Context evaluations. Because the aligned answer in every
question is always a traditional medicine, % TM directly reflects model accuracy. We expect %TM to be highest in
the Full-Context evaluation and to remain stable (robust) or drop only slightly in the Misleading-Context evaluation;
a marked decline signals brittleness. The columns A%TM(Full-No) and A%TM (Mis—Full) quantify the change in
traditional-medicine accuracy when adding or replacing contextual information; bold values highlight the largest

shifts.

When full patient and cultural information are
provided (Full-Context), the desired outcome is a
clear improvement in aligned answer rates along-
side reduced distractor selections. All models
comply: UltraMedicalLLM-70B shows the largest
A%TM(Full-No) of 27.8 points (from 24.6% to
52.4%), followed by BioMistral-7B (+23.1) and
OpenBioLLM-8B (+21.4). These gains demon-
strate that relevant cultural and medical cues help
models identify the appropriate traditional remedy.

The distractor columns tell the other half of
the story: with either Full-Context or Misleading-
Context, all models almost eliminate selections of
the allopathic distractor (% AM Dist. < 1 %), con-
firming that cultural cues steer them away from
irrelevant Western options; meanwhile those same
cues raise the traditional distractor rate (%TM
Dist.) by 10-22 points (BioMistral-7B climbs from
25.8 % to 48.7 %), and this rise persists under
misleading prompts. Once framed in traditional
terms, models may lock onto any herbal answer,
so the cue shifts the decision boundary toward tra-
ditional medicine without ensuring fine-grained
medical reasoning. A robust model should raise
9%TM without a comparable rise in %TM Dist., and
the observed spike therefore marks a limitation that
complements the A%TM analysis.

Under Misleading-Context, the ideal behavior
is for the model to resist spurious cultural cues
and rely on its medical knowledge. As a result,
we would expect its accuracy in selecting the tra-
ditional remedy to remain the same or decrease
slightly, reflecting that it is not being influenced
by misleading cues. Instead, OpenBioLLM-70B’s
TM accuracy jumps by 10.3 points (48.9 % — 59.2
%) even though the misleading context introduces
only parenthetical cultural notes with no relevant

medical information. This suggests the model is
being swayed by those superficial cultural cues in
the answer options rather than by genuine reason-
ing about therapeutic efficacy, so the apparent gain
is superficial rather than a sign of true robustness.
In contrast, a robust model would maintain stable
accuracy or show only a slight drop under mislead-
ing conditions, demonstrating its ability to focus
on medical reasoning rather than being swayed by
irrelevant cultural details.

Overall, these results reveal that while cultural
context can meaningfully guide model predictions,
excessive sensitivity, especially under misleading
prompts, undermines clinical reasoning. Models
that improve under Full-Context but show only
small A%TM (Mis—Full) are better at balancing
cultural cues with the underlying medical scenario,
a critical capability for delivering accurate and cul-
turally respectful healthcare guidance.

6.2 Decoding Bias

Figure 2 positions each model-prompt pair in a
two-dimensional bias landscape. The horizontal
axis captures the Cultural Bias Score (CBS), which
reflects the model’s outcome preference: scores
above 0.7 indicate a strong inclination toward
allopathic (Western) treatments, whereas scores
near 0.6 suggest a more balanced preference that
begins to include local herbal remedies. The verti-
cal axis shows the Cultural Bias Attribution (CBA),
identifying the source of that preference: values
below 0.6 point to bias arising mainly from the
model’s learned priors, while values above 0.6 in-
dicate that prompt wording or in-context examples
are influencing the decision.

From this two-axis view, we derive four inter-
pretation regions: minimal influence, inherent bias,
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CBS vs CBA Across Prompt Conditions
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Figure 2: Scatter plot of Cultural Bias Score (CBS) versus Cultural Bias Attribution (CBA) for BioMistral-7B,
OpenBioLLM-8B, and UltraMedical-8B under Zero-Shot (o), Few-Shot (O), and Instruction-Tuned (/) prompting
conditions. The dashed grid divides into four interpretation regions: High CBA (Prompt-driven), High CBS
(Inherent bias), High CBS & CBA (Amplified bias), and Low CBS & CBA (Minimal influence). Both the
x-axis (CBA) and y-axis (CBS) are represented in percentages.

prompt-driven adaptation, and amplified bias. A
minimal-influence region, defined by low CBS and
low CBA, signals little overall bias and minimal
prompt influence. An inherent-bias region, marked
by high CBS and low CBA, indicates that bias orig-
inates from learned priors. A prompt-driven adap-
tation region, where CBS is moderate or lower and
CBA is high, shows that well-designed prompts
can shift the model toward appropriate local reme-
dies. An amplified-bias region, characterised by
high CBS and high CBA, warns that poorly framed
prompts can intensify an existing allopathic (West-
ern) preference. This classification then guides
where intervention will be most effective. Read-
ing both axes together therefore dissects what the
model decides and why it reaches that decision.
Inherent vs. Prompt-Driven Bias: In the
absence of contextual guidance (Zero-Shot), all
points cluster in the inherent-bias region, charac-
terized by high CBS and only mid-range CBA.
BioMistral-7B (CBS ~ 0.73, CBA =~ 0.55) still
favors allopathic (Western) treatments but shows
some sensitivity to the prompt. OpenBioLLM-8B
and UltraMedical-8B shift even further right (CBS
~ 0.80) while staying below the high-CBA band,
indicating their decisions are dominated by learned

priors. In this setting, introducing additional con-
textual cues is the only effective means of shifting
the model’s preference.

Providing a few exemplar cases (Few-Shot)
moves most models diagonally leftward and up-
ward, with reductions of roughly 0.05-0.20 in CBS,
accompanied by increases in CBA. This pattern il-
lustrates the complementary nature of the metrics:
a lower CBS signals a weakening inherent bias,
while a higher CBA reveals how the change oc-
curs, i.e., the prompts are beginning to influence
decisions. UltraMedical-8B breaks this trend by
lowering both CBS and CBA. While it shows a
modest reduction in preference for allopathic (West-
ern) treatments, this change is not accompanied
by greater prompt sensitivity, suggesting reduced
responsiveness overall rather than continued domi-
nance of Western priors.

Effect of Prompt Adaptation on Model
Decision-Making: Providing explicit role instruc-
tions during Instruction Tuning alters the balance
again. BioMistral-7B moves toward a more bal-
anced quadrant (CBS ~ 0.63) while its CBA falls
into the prompt-neutral band, which shows that role
framing reduces bias without making the model
strongly prompt-driven. OpenBioLLM-8B appears
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in a zone with moderate CBS and high CBA, which
suggests that examples combined with role cues
now guide most of its reasoning. UltraMedical-8B,
in contrast, shifts into the amplified-bias region,
displaying both very high CBS and very high CBA.
In this case the prompt does not soften the model’s
Western preference; instead, it strengthens it.
Collectively, the scatter plot illustrates why CBS
and CBA should be interpreted jointly. Examining
CBS alone shows that bias is present, but it does not
reveal whether the bias comes from learned priors
or from the prompt. The CBA pipeline and the
bias metrics are broadly applicable to any domain
in which alternative responses carry comparable
utility but reflect different cultural perspectives.

7 Conclusion

This study explores how cultural context influences
bias in medical language models, using African
Traditional Herbal Medicine scenarios as a case
study. The MCQ results reveal that the models
are highly sensitive to surface-level cultural sig-
nals; rich context helps, but it does not guarantee
sound medical judgment, and deceptive cues can
still mislead them. The fill-in-the-blank results
show that prompting can either fix or worsen cul-
tural bias. Applying CBS and CBA across health
scenarios reveals whether bias stems from learned
priors or prompt cues, guiding tailored mitigation
approaches based on a model’s position in the
CBA/CBS landscape to improve cultural alignment
and clinical reliability in African healthcare. En-
suring that models are unbiased and capable of pro-
ducing culturally aligned answers is critical, since
outputs that default to allopathic medicine are not
inherently wrong but may be of limited practical
value in African healthcare contexts where tradi-
tional systems play a central role. Future work will
validate these metrics against expert judgments of
LLM-generated recommendations.

Limitations

Our corpus covers 130 country—-remedy pairs from
ten African countries and draws only on English-
language publications from 2020-2024. These
choices omit francophone and lusophone sources,
modalities beyond herbal preparations, and patient
outcome data, all of which restrict the dataset’s
representativeness.

Although the study distinguishes traditional
from allopathic medicine and reports country-level

trends, cultural practice differs at subnational scales
(for example Yoruba versus Hausa phytotherapy in
Nigeria). The current design cannot test whether
a model recognizes such within-country variation.
Future work can stratify entities by region, ethnic-
ity, and treatment lineage to probe finer-grained
cultural adaptation.

The MCQ and dual-candidate evaluations probe
a single decision point, treatment selection. In the
fill-in-the-blank setup we assume clinical equiva-
lence between the two candidates, an assumption
that may not hold in every scenario.

The study assesses five instruction-tuned medi-
cal LLMs and limits attribution analyses to three
smaller variants. Results may not generalize to
larger frontier models, multilingual systems, or
models fine tuned on African corpora.

CBS and CBA quantify outcome preference and
prompt influence but do not measure factual cor-
rectness, potential patient harm, or downstream
clinical impact. IG can misattribute importance
when representations are highly non-linear, so CBA
should be interpreted with caution.

These constraints provide essential context for
interpreting the results and motivate future work
on broader datasets, richer tasks, additional mod-
els, complementary metrics, and expert-in-the-loop
validation.

Our curated dataset is derived from PubMed-
sourced herbal medicine records, which are pub-
licly available under research-only terms. We ap-
ply filtering, normalization, and de-duplication to
produce a derivative dataset intended strictly for
non-commercial, academic use.
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A Appendix
A.1 Language Models Details

Below is a comprehensive overview of the large
language models used in this study, each optimized
for medical tasks:

OpenBioLLM-70B (Ankit Pal, 2024) A model
tailored to meet the specialized language and
knowledge demands of the medical and life sci-
ences fields. With 70 billion parameters, it has
been fine-tuned on an extensive corpus of high-
quality biomedical data, enhancing both accuracy

and fluency in domain-specific contexts. Built on
the Meta-Llama-3-70B-Instruct framework, it in-
corporates advanced datasets like the DPO and
a custom, diverse medical instruction collection.
It not only surpasses other open-source biomedi-
cal models of similar scale but also demonstrates
superior performance on biomedical benchmarks
when compared with leading models such as GPT-
4, Gemini, Meditron-70B, Med-PalLM-1, and Med-
PalLM-2.

OpenBioLL.M-8B (Ankit Pal, 2024) This vari-
ant condenses the capabilities of its larger coun-
terpart into 8 billion parameters. It is crafted to
provide strong domain-specific performance while
offering greater computational efficiency, making it
ideal for deployment in resource-constrained envi-
ronments without sacrificing essential biomedical
capabilities.

UltraMedical-70B (Zhang et al., 2024) De-
signed to enhance access to medical examinations,
literature comprehension, and clinical knowledge,
this model builds on Meta’s Llama-3-70B architec-
ture. It is trained using a combination of supervised
fine-tuning and iterative preference learning tech-
niques (including methods like DPO and KTO)
on the UltraMedical collection. This collection
comprises 410,000 synthetic and manually curated
biomedical instruction samples plus 100,000 pref-
erence data points. Achieving a score of 86.5 on
the MedQA-USMLE benchmark, UltraMedical-
70B sets a new state-of-the-art standard among
open-source LLLMs, matching the performance of
Med-PalLM 2 on key tests.

UltraMedical-8B (Zhang et al., 2024) A scaled-
down version of UltraMedical-70B, this 8 billion-
parameter model maintains robust performance
across various medical benchmarks. Despite its
smaller size, it consistently outperforms previous
larger models such as MedPalLM 1, Gemini-1.0,
GPT-3.5, and Meditron-70B on average scores, of-
fering an efficient yet effective solution for many
biomedical applications.

BioMistral-7B Based on the innovative Mis-
tral architecture, BioMistral-7B has been specif-
ically fine-tuned with data from the PubMed Cen-
tral Open Access Subset. This training strategy
has enhanced its comprehension and adaptation to
medical language tasks. As a result, BioMistral-7B
not only outperforms other open-source medical
models but also remains competitive with some
proprietary alternatives, making it a valuable asset
for biomedical text processing tasks.
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A.2 Prompt Templates

The following are examples of the three multiple-
choice question variants used in this study: No-
Context, Full-Context, and Misleading-Context.

MCQ : No-Context Example

Choose the most appropriate answer. Re-
turn only the letter (A, B, C, or D).

A) Chamaerops humilis
B) Chloroquine
C) Metformin

D) Spilanthes oleracea

Figure 3: Example of the No-Context MCQ variant,
where only the answer choices are provided, with no
accompanying contextual information.

MCQ : Full-Context Example

A 25-year-old man from Cameroon present

MCQ : Misleading-Context Example

A 25-year-old man from Cameroon present
with Malaria. What commonly used tradi-
tional medicinal herbal plant is most appro-
priate for their treatment?

Note: The following cultural notes may be
misleading. Rely on your medical knowl-
edge to choose the aligned traditional rem-
edy.

A) Chamaerops humilis (traditional use in
South Asia)

B) Chloroquine (used for centuries in Eu-
ropean folk medicine)

C) Metformin (popular in North African
regions)

D) Spilanthes oleracea (widely used in ru-
ral Southeast Asia)

Choose the best answer. Return only the
letter.

Figure 5: Example of the Misleading-Context MCQ
variant, featuring deceptive cultural cues intended to

_ : challenge the model’s ability to discern the culturally
priate for their treatment? aligned answer. Correct answer: D.

with Malaria. What commonly used tradi-
tional medicinal herbal plant is most appro-

A) Chamaerops humilis
B) Chloroquine

C) Metformin

D) Spilanthes oleracea

Choose the best answer. Return only the
letter.

Figure 4: Example of the Full-Context MCQ variant,
providing detailed patient and cultural context to guide
the choice of the most appropriate treatment. Correct
answer: D.

32231



A3

Screening Rubric

Table 3: Screening rubric for PubMed records on
African Traditional Medicine. Items marked with (*)
are mandatory for inclusion.

No.

ChecKklist item

Y/N

A. Bibliographic filters

Al
A2

Publication year between 2020-2025
English—-language full text available

B. Relevance to African TM

B1*

B2"

Study investigates an indigenous
African medicinal plant (species
confirmed in POWO)

Plant part, preparation method, and
dosage described

C. Evidence strength (WHO R&D criteria)

Cc1*

C2

Study design meets minimum evidence
threshold

Safety/toxicity data reported or refer-
enced

D. Methodological quality

D1

D2

D3

Randomisation or control group de-
scribed (if applicable)

Outcome measures clearly defined and
reproducible

Statistical analysis appropriate and fully
reported
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