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Abstract

We present NN-RANK, an algorithm for rank-
ing source languages for cross-lingual trans-
fer, which leverages hidden representations
from multilingual models and unlabeled target-
language data. We experiment with two pre-
trained multilingual models and two tasks: part-
of-speech tagging (POS) and named entity
recognition (NER). We consider 51 source lan-
guages and evaluate on 56 and 72 target lan-
guages for POS and NER, respectively. When
using in-domain data, NN-RANK beats state-
of-the-art baselines that leverage lexical and lin-
guistic features, with average improvements of
up to 35.56 NDCG for POS and 18.14 NDCG
for NER. As prior approaches can fall back
to language-level features if target language
data is not available, we show that NN-RANK
remains competitive using only the Bible, an
out-of-domain corpus available for a large num-
ber of languages. Ablations on the amount of
unlabeled target data show that, for subsets con-
sisting of as few as 25 examples, NN-RANK
produces high-quality rankings which achieve
92.8% of the NDCG achieved using all avail-
able target data for ranking.

1 Introduction

Cross-lingual transfer, where knowledge from a
source language is used to improve performance
for a target language, extends the coverage of lan-
guages supported by natural language processing
tools. Pretrained multilingual models (Devlin et al.,
2019; Conneau et al., 2020a) are effective in this
framework: the model is first finetuned on labeled
data in the source language and then evaluated di-
rectly on target language data. Models show strong
performance, even in a zero-shot setting where no
labeled examples from the target language are used
(Hu et al., 2020; Ruder et al., 2021).

A critical element for successful transfer is the
choice of source language, and while many prior
works use only a single high-resource language

Target Token Top Five Neighbors Source Dataset

[‘probablement’]

[‘probabilmente’] UD_Italian-ISDT
[‘likely’] UD_English-GUM
[‘verjetno’] UD_Slovenian-SSJ
[‘probablement’] UD_Catalan-AnCora
[‘provavelmente’] UD_Portuguese-GSD

[‘##isation’]

[‘##ización’] UD_Spanish-AnCora
[‘##ització’] UD_Catalan-AnCora
[‘##ación’] UD_Spanish-AnCora
[‘##ção’] UD_Portuguese-GSD
[‘##ció’] UD_Catalan-AnCora

Table 1: Example of nearest neighbors for French target
tokens calculated using mBERT representations. To
create the ranking, for every target token we tally the
number of occurrences of each source dataset in the
right-most column, and sort them in decreasing order.

such as English, this has been called into question
(Turc et al., 2021). An alternative is to rank all avail-
able source datasets for a given target language, as
in LangRank (Lin et al., 2019), which uses lexi-
cal features (such as word overlap) as well as lin-
guistic features (such as word order, syntactic, and
phylogenetic information). Other highly related
prior works, which focus on analyzing how, and
for which language pairs, these multilingual mod-
els are able to achieve strong cross-lingual trans-
fer also focus on these features (Wu and Dredze,
2019; Pires et al., 2019; K et al., 2020; Dufter and
Schütze, 2020; de Vries et al., 2022; Rice et al.,
2025). In general, pairs of languages with more
similar features tend to yield better transfer perfor-
mance.

While these static features – which we define as
those independent of the model being evaluated –
are intuitive, we hypothesize that they cannot suffi-
ciently describe the relationships between the rep-
resentations of the languages contained within a
pretrained multilingual model and, as such, do not
provide an adequate signal for choosing source
languages. For example, a model may be able to
strongly transfer between two languages with dis-

32416



similar static features, e.g., inverted word order
or no lexical overlap, given sufficient pretraining
data. Conversely, two languages with high lexi-
cal overlap or similar language-level features may
yield poor transfer performance due to weak rep-
resentations from, e.g., low amounts of data. Con-
sider a theoretically "perfect" source language for
a specific target language; if the model is unable
to encode the source language, e.g., due to script
or vocabulary restrictions, strong cross-lingual per-
formance can never be realized. We hypothesize
that hidden representations extracted from the in-
termediate layers of the model implicitly capture
the relationships between the pretrained languages
beyond the abilities of static features, and there-
fore serve as a stronger predictor of cross-lingual
performance. In this work, we present Nearest
Neighbor-Rank (NN-RANK), a model and data-
based approach to ranking source languages. Our
experiments on part-of-speech tagging (POS) and
named entity recognition (NER), using two popular
multilingual models, multilingual-BERT (mBERT;
Devlin et al., 2019) and XLM-RoBERTa (XLM-
R; Conneau et al., 2020a), show that this approach
beats LangRank – a state-of-the-art approach which
relies on static lexical and linguistic features – in
all settings, when using the unlabeled development
sets to create the ranking. We include 51 source
languages for both tasks, 56 target languages for
POS, and 72 target languages for NER. We also
experiment with rankings that are generated using
out-of-domain data taken from the Bible, a cor-
pus covering over 1600 languages commonly used
for data-scarce languages (McCarthy et al., 2020),
and find that NN-RANK remains competitive with
LangRank. Finally, we conduct ablations on the
amount of data required for NN-RANK, and show
that, for target languages with sufficient representa-
tion quality after pretraining, NN-RANK produces
viable rankings with as little as 25 examples.

2 Related Work

Multilingual Model Analysis Since their re-
lease, there has been growing interest in analyzing
pretrained multilingual models, in order to better
understand what factors lead to strong cross-lingual
performance (Philippy et al., 2023). Lexical over-
lap – the percentage overlap of subwords between
two languages – is often considered, though its
importance is unclear: Pires et al. (2019) find no
correlation with downstream performance, while

Wu and Dredze (2019) find a positive correlation.
Linguistic similarity, calculated using typological
databases (Dryer and Haspelmath, 2013; Skirgård
et al., 2023), has also been considered. Transfer
performance is often better for more similar lan-
guages, particularly languages with similar word
order (Pires et al., 2019; K et al., 2020; Dufter and
Schütze, 2020; Littell et al., 2017).

Architectural properties have also been shown
to correlate with downstream performance. Desh-
pande et al. (2022) show that embedding similarity
is correlated with zero-shot performance. Similarly,
Conneau et al. (2020b) show that shared parame-
ters in the lower layers of the model are important
for multilingual representations, and Muller et al.
(2021) show that these lower layers focus on align-
ing representations across languages. In a similar
vein, Dou and Neubig (2021) find that word align-
ment performance (Och and Ney, 2000), calculated
using vector similarity metrics, is strongest when
using representations from middle layers of the
model. NN-RANK is motivated by these works,
and calculates nearest neighbors using representa-
tions taken from intermediate layers.

Ranking Source Languages LangRank (Lin
et al., 2019) is a learned model which uses lexi-
cal and linguistic features (Littell et al., 2017) to
rank source languages for four supported tasks, in-
cluding part-of-speech tagging (POS) and entity
linking (EL). Ranking models are trained on exam-
ples which consist of a pair of valid source and tar-
get datasets, along with a ranking signal taken from
a trained cross-lingual model. A bi-directional
LSTM CNN-CRF (Ma and Hovy, 2016) is used
for EL, and a character-level LSTM (Hochreiter
and Schmidhuber, 1997) is used for POS. The final
ranking model is a gradient boosted decision tree
(Ke et al., 2017). For POS, dataset size and type–
token ratio are found to be the most informative
signals, while geographic and syntactic distance are
most important for EL. In our experiments, we use
the provided POS and EL ranking models for the
respective experiments. While LangRank focused
mainly on bilingual models, Rice et al. (2025) ex-
tend it to pretrained multilingual models.

3 NN-Rank

3.1 Method

The inputs to NN-RANK are an unlabeled dataset
in the target language, a pool of unlabeled source
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datasets to be ranked, and a model which can en-
code the input text. While we describe the approach
using task-specific datasets, NN-RANK can use any
unlabeled dataset which represents the source or
target languages of interest (see §6). For each tar-
get subword, the general approach is to find the k
nearest neighbor subwords from the source pool
and tally the source datasets which yielded these
neighboring subwords. An example can be found
in Table 6. The ranking is calculated by sorting
source datasets by their final count in descending
order. We describe the steps in detail below:

1a. Encoding the Target Dataset Each example
from the unlabeled target dataset is input into
the model and, for each subword, the repre-
sentation from layer ℓ is extracted. Assuming
a model hidden dimension of hd, this step
yields a matrix T ∈ RNtgt×hd , where Ntgt is
the total number of subword representations
extracted from the target dataset, omitting spe-
cial tokens. We consider all target tokens, not
target types, as the representations will depend
on the context.

1b. Encoding each Source Dataset Let P =
[s1, . . . , sn] define the pool of n source
datasets, with each yielding Ns1 , . . . , Nsn

subwords, respectively, after tokenization. Re-
peat Step 1a for each source dataset avail-
able. This yields a pool of available source
subwords, which is represented as a single
concatenated matrix S ∈ RNsrc×hd , where
Nsrc =

∑n
i=0Nsi . Define a function m :

Rhd → {s1, . . . , sn}, which maps every
source hidden representation to the dataset
which yielded it.

2. Calculating Nearest Neighbors Create a tally
C which maps each source dataset to a count
initialized at 0. Iterate over the rows of T , i.e.,
every target subword, and find the k nearest
neighbors from the rows of S. For each of
these top-k neighboring representations, use
m to lookup the origin dataset of the source
representation and, for each dataset, incre-
ment its tally in C by 1.

3. Calculating the Ranking To calculate the fi-
nal ranking for a given target dataset, sort the
source datasets in C by their tally in descend-
ing order.

3.2 Hyperparameters

For all experiments, we use either mBERT or XLM-
R as the encoding model and set hd = 768 and
ℓ = 8 (Dou and Neubig, 2021). We describe the
distributions of each Ntgt and Nsi in Tables 25–28.
Nearest neighbor calculations are performed using
FAISS (Douze et al., 2025), a vector database that
performs efficient retrieval using the inner product.
We set k to 5 for our main results, chosen em-
pirically using the development set performances
presented in Tables 17 and 18.

3.3 Considerations

Importantly, because all initial counts are set to
0, source datasets whose tokens do not appear as
a nearest neighbor cannot be ranked, as the final
count would remain 0. In our experiments, how-
ever, we find that the majority of source languages
have positive count (see Figure 9). Furthermore, we
expect NN-RANK to work best for target languages
which the model encodes with high-quality repre-
sentations. For low-resource languages or those
with unseen scripts, the ranking performance is
likely to suffer. However, we note that this may be
a minor issue in practice: if a target language is not
represented well enough to produce an adequate
ranking, model performance for that language on
a downstream task will likely be poor regardless
of source language selection. Furthermore, this is
a benefit in the reverse direction: NN-RANK is
unlikely to give a high rank to source datasets that
the model cannot represent well – regardless of
features such as linguistic similarity. This is useful
as source datasets with poor representations are
not likely to lead to good downstream performance.
We discuss these trade-offs in §5.

4 Experimental Setup

We present experiments comparing various meth-
ods for ranking source datasets. First, we finetune
each task model on every source training dataset,
yielding one finetuned model per training dataset.
Each finetuned model is then evaluated zero-shot
on every target dataset and the performance – accu-
racy for POS and F1 for NER – is recorded. This
yields num. source datasets×num. target datasets
total scores for each pretrained model. Finally, we
use these performances to evaluate each ranking
method using the metrics described below. A small
worked example and additional details are in Ap-
pendix A.
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POS test-all NER test-all

Source Split Task Model Ranking Method Avg. Acc.@5 NDCG@5 Avg. F1.@5 NDCG@5

train-large

mBERT

NN-RANK-mBERT 74.59 62.91 60.77 47.94
NN-RANK-XLM-R 73.49 58.92 60.85 46.35
LangRank 70.60 36.47 57.48 28.55
N-LangRank-mBERT 69.01 32.05 56.02 21.19
N-LangRank-XLM-R 68.70 33.75 55.07 20.17

XLM-R

NN-RANK-mBERT 78.38 60.81 60.74 47.16
NN-RANK-XLM-R 77.75 60.69 61.55 49.09
LangRank 76.00 37.32 58.14 33.02
N-LangRank-mBERT 73.90 29.96 56.26 20.41
N-LangRank-XLM-R 74.24 32.75 55.71 20.78

train-med

mBERT

NN-RANK-mBERT 74.69 55.46 60.78 47.20
NN-RANK-XLM-R 72.97 50.76 60.96 45.35
LangRank 68.98 24.61 57.54 27.50
N-LangRank-mBERT 54.21 13.98 55.73 18.14
N-LangRank-XLM-R 57.73 17.97 54.93 18.76

XLM-R

NN-RANK-mBERT 78.02 53.65 60.86 45.07
NN-RANK-XLM-R 76.82 52.45 61.75 48.52
LangRank 73.18 26.22 58.35 32.07
N-LangRank-mBERT 55.87 14.39 56.24 18.73
N-LangRank-XLM-R 60.80 17.71 55.55 18.50

train-all

mBERT

NN-RANK-mBERT 73.41 44.51 59.61 44.07
NN-RANK-XLM-R 71.46 41.07 57.97 38.88
LangRank 58.67 8.95 57.09 25.93
N-LangRank-mBERT 55.39 12.62 53.88 17.17
N-LangRank-XLM-R 57.32 13.43 54.69 17.71

XLM-R

NN-RANK-mBERT 75.67 42.04 58.68 41.36
NN-RANK-XLM-R 74.46 39.84 57.61 39.95
LangRank 60.13 8.89 57.17 29.68
N-LangRank-mBERT 57.40 13.04 54.23 17.36
N-LangRank-XLM-R 59.87 13.31 55.18 17.69

Table 2: Main results. Task Model denotes the model which was finetuned and evaluated. Ranking Method denotes
how the rankings were produced. The model used for hidden representations, in the case of NN-RANK and the
model used for the training signal, in the case of N-LangRank, are denoted.

Tasks We focus on two tasks which allow for
large scale evaluation: POS and NER. For POS,
we use Universal Dependencies (UD; Nivre et al.,
2020). For NER, we use the WikiANN dataset (Pan
et al., 2017; Rahimi et al., 2019).

Languages For both datasets, the amount of data
available for each language varies greatly. There-
fore, we consider different language splits1 – all,
medium, and large – based on a minimum thresh-
old number of examples, which defines both our
pool of possible source datasets as well as target
datasets included in the evaluation. Because we
have no maximum threshold, each split builds upon
the prior: large ⊂ medium ⊂ all, which allows

1Split names reflect the amount of data available per-
dataset. Datasets in large have the most data, but the split
itself contains the smallest number of languages.

for comparison across splits. Splits mark increas-
ing difficulty, with all being the hardest; ranking
becomes more difficult as the pool becomes larger,
and target languages in all are more likely to be
poorly represented by the model. We only consider
languages which are supported by the released Lan-
gRank models: source datasets are limited to those
in the model index, and target datasets are limited
to the languages supported by lang2vec (Littell
et al., 2017).

The UD dataset often provides various treebanks
for the same language. Any dataset which meets
the minimum threshold is included in the pool of
source languages to be ranked; therefore our ex-
periments using UD data are not ranking source
languages but source datasets. The same rule ap-
plies to the target languages: any treebank which
meets the evaluation threshold is included. As NER
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data is extracted from Wikipedia, there is only one
dataset per language.

For the UD training data, the minimum thresh-
olds are 500, 7500, and 15000 examples for the
all, medium, and large splits respectively. For UD
evaluation data, the thresholds are 100, 750, and
2000. For NER, the thresholds are set to 1000,
10000, and 15000 for training, and 100, 1000, and
10000 for evaluation. In the most restrictive setting
(i.e., train-large x test-large), we have 20 unique
source languages and 21 target languages for POS
(corresponding to 25 source and 25 target datasets),
as well as 37 source languages and 34 target lan-
guages for NER. In the least restrictive setting (i.e.,
train-all x test-all), we have 51 source languages
and 56 target languages for POS (corresponding to
78 source datasets and 118 test datasets), as well
as 51 source languages and 72 target languages for
NER. Both tasks include languages from up to 13
different language families, however, the majority
are Indo-European. Detailed information on all
languages can be found in Tables 19–22.

Ranking Methods We consider five different
ranking methods in our main experiments. The
pretrained LangRank model released by Lin et al.
(2019) is used as a baseline. For this model, lexical
features are taken from the development set. As
LangRank always produces a ranking of all avail-
able source languages, for each source language
split, we skip any language in the ranking which
is not valid for that case. We also skip any source
language with the same ISO code as the target. We
also consider two LangRank-based models trained
from scratch (N-LangRank), using relevance scores
calculated from the development set performance
of either mBERT or XLM-R. We follow the general
experimental setup of Lin et al. (2019) and train a
different ranking model for each target language.
Training examples are created by considering all
available pairs of train and development set datasets
– dependent on the language split – and excluding
any source or target dataset which shares the same
ISO code as the target language. For N target
datasets, this yields N different models, each of
which is used at test time. Lexical features from
the target development set are used for inference.

We also consider two NN-RANK rankings, de-
pending on if hidden representations are taken from
mBERT or XLM-R. Source representations are cal-
culated using the training split for each target task,
and target representations use the development set.

We set a limit of 1000 total input lines, and the
source language split determines which datasets
are included in the source pool P .

Task Models We consider two task models: the
base versions of mBERT and XLM-R, as they
show strong zero-shot POS and NER performance.
We omit large language models from this work, as
they are often pretrained on a smaller number of
languages and may not encode all source or target
languages with sufficient quality.

Metrics We use Normalized Discounted Cumula-
tive Gain (NDCG; Järvelin and Kekäläinen, 2002)
for ranking evaluation. We follow Lin et al. (2019)
and assign a relevance score of γmax to the top
predicted transfer dataset, γmax − 1 to the second
predicted, and continue until the top-γmax source
datasets have a relevance score greater than 0. The
other source datasets are given a score of 0.

We additionally implement performance-based
metrics, Average Accuracy@p and Average F1@p
for POS and NER, respectively. For a given tar-
get dataset, we average the accuracy or F1 scores
achieved by the task models finetuned on the pre-
dicted top-p source datasets. We then average these
scores across all target datasets to get the final value
for the evaluation split (e.g., test-all). γmax is set
to 10, and p is set to 5 (Lin et al., 2019; Rice et al.,
2025) for all metrics.

5 Results

We present a summary of results in Table 2, where
we calculate metrics using test set performances.
Because all rankings are created with development
set data, this setting ensures that we do not evaluate
on any data used to generate the rankings. NN-
RANK greatly outperforms LangRank in every set-
ting in terms of NDCG, highlighting the strength
of rankings generated from model hidden states.
The increase in performance-based metrics shows
that these ranking differences also have a practi-
cal impact on model performance. While there is
some variance across task and split depending on
the pretrained model, we find that mBERT is often
a stronger choice for ranking than XLM-R, even
when XLM-R is used as the task model. This may
be due to the pretraining data of mBERT, which
uses Wikipedia for all languages. The similar writ-
ing style and domain may lead to better implicit
alignments between languages during pretraining.
This result aligns with prior work which finds that
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Figure 1: Mean accuracy of a target language over all
source languages compared to NDCG for that target lan-
guage. Each bin contains 10 languages, and the y-axis
is the average NDCG for each bin. Shading represents
the 95% confidence interval for NDCG scores.

mBERT representations yield stronger word align-
ment performance (Ebrahimi et al., 2023).

More specific results are available in the ap-
pendix: full results detailing all language splits
can be found in Tables 9 and 10.

5.1 Analysis
In this section, we analyze the main results and
focus on NN-RANK-mBERT and the {train-all x
test-all} language split.

5.1.1 Per-Language Performance
In Figure 1 we present the mean NDCG of target
languages, ordered by their representation quality
under mBERT. Here, we approximate quality by
taking the mean POS accuracy achieved by mBERT
on the target language, over all source languages.
NN-RANK is sensitive to quality, where it pre-
dicts stronger rankings for languages that tend to
be higher accuracy. LangRank, on the other hand,
is invariant to this quality measure. This illustrates
one fault of NN-RANK: it may struggle to find
the best source datasets for poorly represented tar-
get datasets. However, for every bin, including
the lowest accuracy bin, NN-RANK outperforms
LangRank on average.

Indeed NN-RANK outperforms LangRank for
almost every target dataset with the exception of
8 datasets covering Korean, Latin, Armenian and
Turkish. We might expect mBERT to encode these
target datasets with high quality representations –
leading to strong ranking performance – as they are
well represented in the pretraining data. We find
that the reduced ranking performance is due to a
Finnish source dataset which achieves top five per-

NN-Rank-mBERT LangRank
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Figure 2: Distribution of ranking position for poor
source datasets.

formance for 7 of the 8 datasets, but is not ranked
highly. This indicates that NN-RANK is not only
sensitive to the representation quality of the target
dataset, but the source as well. In cases such as
these, where the model cannot properly encode a
source dataset, NN-RANK will fail to produce a
strong ranking for target languages that the source
language transfers well to.

5.1.2 Analysis of Poor Source Datasets
To further analyze quality, we plot the distribution
of ranking position given to poor source datasets,
which we define as those found in the bottom 15%
of the gold ranking for a given target language.
This analysis complements NDCG, which assigns
the same relevance score to all source datasets out-
side of the top ten, by focusing on the worst per-
forming source datasets. We present results in Fig-
ure 2, which shows that NN-RANK consistently
gives a low rank to poor source datasets while the
distribution is flat for LangRank. We also plot the
ranking distribution for source datasets with greater
than 5% unknown tokens in Figure 5.

6 Experiment 2: General Rankings
without Task Datasets

While ranking approaches such as LangRank can
fall back to language-level features, NN-RANK

requires unlabeled data in the target language. Rel-
evant domain-specific data in the target language
may be difficult to collect, particularly for data-
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NER Test-all

Task Model Ranking Method F1.@5 NDCG@5

mBERT
NN-RANK-mBERT 61.23 36.07
NN-RANKXLM-R 60.08 35.76
LangRank 60.38 27.29

XLM-R
NN-RANK-mBERT 60.43 39.87
NN-RANKXLM-R 58.70 37.67
LangRank 59.69 30.79

Table 3: Experiment 2 results. NN-RANK results take
both source and target representations from the Bible.
For reference, LangRank outputs using lexical features
from the task-specific datasets are included.

scarce languages. For this experiment, we ask:
Can NN-RANK produce a high-quality general
purpose ranking without task- or domain-specific
data in both the source and target languages? This
may be useful in cases where, for example, we
wish to create an all-purpose ranking of source lan-
guages prior to having access to data in the domain
of interest, such as in an online setting. Here, we
assume that the only data available is the Bible,
a corpus which is currently available for around
1600 languages (McCarthy et al., 2020). While the
Bible is often used for its coverage of languages, it
has multiple drawbacks which include biased lan-
guage, infrequently used vocabulary, and a limited
domain – all of which may impact the performance
of NN-RANK.

Experimental Setup These experiments largely
follow the experimental setup of the main exper-
iment. However, instead of using the unlabeled
development set to extract model hidden representa-
tions for the target language, we use the associated
Bible from the JHU Bible Corpus (McCarthy et al.,
2020). To maximize the similarity between the
source and target domains, we also use the Bible
to represent the source languages. We omit POS
in this experiment, as this general ranking is at the
language level, while the UD dataset has multiple
train datasets for a single source language. Table 24
describes the Bible used for each language. For ref-
erence, we include LangRank results when using
task-specific data in the target language (as Bible
data does not have the task-specific labels needed
to calculate relevance scores). There are 46 source
datasets in the train-all split, and again 62 target
datasets.

Results Summary of results can be found in Ta-
ble 3, and full results can be found in Table 11. For

POS Tagging Results {train-all x test-all}

Task Model Ranking Method Acc.@5 NDCG@5

mBERT
NN-RANK-mBERT 74.85 38.66
NN-RANK-XLM-R 68.95 28.26
LangRank 53.20 5.95

XLM-R
NN-RANK-mBERT 78.57 38.88
NN-RANK-XLM-R 73.21 26.17
LangRank 57.00 4.70

NER Results {train-all x test-all}

Task Model Ranking Method F1@5 NDCG@5

mBERT
NN-RANK-mBERT 59.95 28.74
NN-RANK-XLM-R 58.77 28.72
LangRank 61.27 29.18

XLM-R
NN-RANK-mBERT 58.23 32.12
NN-RANK-XLM-R 56.74 32.80
LangRank 60.30 31.43

Table 4: Domain mismatch results. Target language
representations are taken from the Bible, while source
representations are taken from the task-specific datasets.

both task models, the Avg. F1 is very close between
the best NN-RANK ranking and LangRank, with a
difference of 0.85 when evaluating with mBERT,
and 0.74 for XLM-R. For both cases, using Lan-
gRank outperforms rankings generated using XLM-
R, but rankings created using mBERT achieve the
best performance across all approaches. When con-
sidering NDCG scores however, NN-RANK – us-
ing either mBERT or XLM-R to generate represen-
tations – outperforms LangRank. Across both task
models, the worst-performing NN-RANK ranking
beats LangRank by 8.47 and 6.85 NDCG, respec-
tively. These results show that NN-RANK does
not require in-domain data to create a strong rank-
ing for the tasks in our experiments; general pur-
pose NN-RANK rankings are competitive with
task-specific LangRank rankings.

7 Analysis and Ablations

We conduct three analysis experiments, focused on
(1) the impact of domain mismatch, (2) the layer at
which model representations are taken, and (3) the
number of target subwords used for ranking. We
use task-specific data for the layer and target data
ablations.

7.1 Impact of Domain Mismatch

In the prior experiments, the data used to repre-
sent both source and target languages is taken from
the same domain. For this analysis, we ask: How
strongly does domain mismatch affect the perfor-
mance of NN-RANK?
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Experimental Setup To simulate realistic do-
main mismatch, representations for the source
datasets are taken from the available training sets
for each task while representations for the target
datasets are taken from the Bible. For fair com-
parison, we present results when using LangRank
with lexical features from the Bible. Performances,
however, are not directly comparable to the main
results, as not all train and evaluation languages
have a corresponding Bible. For POS, there are
103 target datasets, and 62 target datasets for NER.

Results We present a summary of results in Ta-
ble 4, with full results in Tables 12 and 13. For POS,
NN-RANK continues to outperform LangRank
across both metrics, and using mBERT hidden rep-
resentations offers the best ranking. For NER, rank-
ing performances are much more mixed. When
considering average F1, LangRank is consistently
stronger. However, for NDCG, LangRank is only
stronger when mBERT is used as the task model.
This indicates that, while NN-RANK remains com-
petitive, it is sensitive to domain mismatch. In prac-
tice, this mismatch should be avoided by changing
the domain of the source languages to match that
of the target.

7.2 Layer Ablation

For this ablation, we focus on the difference in rank-
ing performance if we use hidden representations
taken from Layer 8 and Layer 0 (the embedding
layer). A summary of the results can be found in Ta-
ble 5 with full results in Tables 14 and 15. In prac-
tically all cases, performance improves when using
the intermediate layer, with large gains in NDCG.
Using embedding representations only leads to bet-
ter performance when measuring average accuracy
or average F1, with the maximum difference across
both tasks being less than -0.5. This result further
highlights the weakness of static features; ranking
quality improves as we move away from the em-
bedding layer – the closest model-based feature to
lexical overlap – and allow the model the encode
and align the input sequences.

7.3 Target Data Ablations

Here, we are interested in understanding how the
amount of target language data available influences
ranking quality. We focus solely on NN-RANK

performance using mBERT – as both the ranking
and task model – for POS only. We discuss the
limitations of these experiments in §8.

POS Tagging Results {train-all x test-all}

Task Model Ranking Model ∆ Acc.@5 ∆ NDCG@5

mBERT mBERT 3.27 12.01
XLM-R 1.17 7.57

XLM-R mBERT 3.36 12.27
XLM-R 1.55 7.68

NER Results {train-all x test-all}

Eval Model Ranking Model ∆ F1@5 ∆ NDCG@5

mBERT mBERT 2.07 10.53
XLM-R 0.55 7.78

XLM-R mBERT 1.24 5.61
XLM-R -0.26 4.02

Table 5: Layer ablation results. Positive scores indicate
higher performance when using Layer 8.
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Figure 3: Data ablation results. Compares the perfor-
mance using each subsample size to the Main results.
The lower subplot shows the number of overlapping
source datasets between the top five predicted datasets
from the subsample ranking and main ranking.

Experimental Setup For this experiment, we
subsample the number of target hidden representa-
tions used, i.e., the rows of T , and consider sample
sizes from between 10 and 2000. We take three
different samples for each size, calculate a rank-
ing from each, and consider the mean NDCG and
average accuracy across each sample.

Results Full data ablation results can be found
in Table 16. The average accuracy is surprisingly
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Figure 4: Case study results for French. Token frequency plotted using log scale. Pearson’s r is used.

stable across all sample sizes, while the NDCG,
on average, increases consistently with larger sam-
ples. This indicates that strong source datasets are
found quickly, and the ranking quality improves
with more target tokens. We present the distribu-
tion of performances in Figure 3, which compares
the ranking performance using each subsample to
the main ranking, which uses all available data
(limited to 1000 input sequences); we also ana-
lyze the difference between each consecutive sub-
sample in Figure 6. The former shows that, even
with the smallest subsample, we recover over half
of the source datasets predicted in the main top
five, when considering the median over all target
languages. Similarly, when considering how the
NDCG achieved using the subsamples compares
to when we use all target data, the median using a
sample size of 10 hidden representations is 85.6%.
For subsamples of 25 and 50, the median is 92.8%
and 97.4%, respectively.

To understand how a ranking can be created with
so few target representations (see §3.3), we con-
duct a case study on French. The goal is to ex-
amine how each target subword contributes to the
tally. We quantify the contribution using two mea-
sures: the first is diversity, defined as the number of
unique source datasets found in the top five nearest
neighbors of a target token, averaged across each
instance. The second is the total count of unique
source datasets in the nearest neighbors, summed
across each instance. Both measures are neces-
sary: a token may have high diversity (e.g., all five
neighbors are from different datasets), but yield the
same set of five datasets in each instance (low total
count). Further details can be found in Appendix D,
with an example in Table 6.

We present results in Figure 4. We see that the
majority of tokens are diverse, yielding at least
three different source datasets in their neighbors on
average. The total count of unique source datasets

is large as well: across all frequencies, we find
tokens which achieve the maximum possible to-
tal count (a token which appears only once can
increase the tally of at most five source datasets).
Interestingly, we also see that diversity is not corre-
lated with frequency: while diverse tokens are more
frequently found, frequency is not necessary for a
token to be diverse. These findings explain how
rankings are created with very few target subwords:
the majority of target tokens increase the tally of
at least three different source datasets, and these
source datasets change depending on the context
of the target token.

To highlight the sensitivity of the neighbor dis-
tribution to context, we analyze two punctuation to-
kens: the period and comma. As shown in Figure 8,
not only do these tokens have high diversity, but a
large total count of unique source datasets as well.
Since punctuation does not carry any strong inher-
ent multilingual meaning, we attribute changes in
the neighboring source token distribution across
instances to changes in the context. Notably, the
large total counts hold across the spectrum of target
language performances.

8 Conclusion

In this work, we present NN-RANK, a data-driven
approach to ranking source languages for cross-
lingual transfer, which leverages model hidden rep-
resentations. The approach outperforms LangRank
and remains competitive when using out-of-domain
data. Our results highlight a critical weakness of
prior approaches to ranking and general multilin-
gual analysis: the use of static features, such as
language-level or lexical features. These features
fail to account for the model itself and, as such,
cannot be used to sufficiently explain cross-lingual
performance. We hope that our findings help moti-
vate future work on better understanding the cross-
lingual properties of multilingual models.
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Limitations

Model Selection Decoder-only multilingual
large language models (LLMs) such as BLOOM
(Workshop et al., 2023) have also been proposed
and have shown strong cross-lingual performance.
In this work, we choose to focus solely on encoder-
only models. This choice was guided by the multi-
lingual LLMs available at the time of experimenta-
tion, which are less multilingual than their encoder-
only counterparts. For example, BLOOM only
covers 46 languages and does not include partic-
ular high-resource languages that we expect may
be helpful source languages, like German. Further-
more, a method to rank source languages should
ideally be lightweight and quick to run – for exam-
ple, LangRank does not require any GPU resources,
which makes it more applicable to a real-world set-
ting.

We believe that using NN-RANK to evaluate and
analyze multilingual LLMs is a promising direction
for better understanding the dynamics of multilin-
gual pretraining. However, due to the size of these
models, the differences in pretraining procedures
and objectives, as well as the various ways in which
they can be used to achieve cross-lingual transfer,
we believe that these experiments are better suited
to dedicated future work.

Experimental Setup In this work, we solely ex-
periment with single-source cross-lingual transfer,
as this allows for more focused analysis on the ef-
fectiveness of specific languages as the source lan-
guage. We chose this setting to allow comparison
to prior analysis works which also focus on a single-
source setting (Wu and Dredze, 2019; Pires et al.,
2019; K et al., 2020; Dufter and Schütze, 2020;
de Vries et al., 2022; Rice et al., 2025). Multi-
source transfer has been shown to yield better per-
formance (Wu et al., 2020; Adelani et al., 2022;
García-Ferrero et al., 2024) and, while the usage
of NDCG should reflect the quality of the top five
datasets, it remains to be shown which ranking
method is best for a multi-source training setup.

Target Data Ablations For this experiment, we
subsample the number of target hidden representa-
tions available independently across all available
target tokens, i.e., sampling directly from T with no
constraints. This is an unrealistic setting if we want
to simulate the case where we only have, e.g., 10
sentences available in a dataset. Because represen-
tations are taken from Layer 8, the sampled vectors

will change depending on the context. As such,
10 tokens sampled from the same input sequence
will likely yield different results than 10 tokens
each sampled from different contexts. For these
reasons, results from the target data ablation cannot
be extrapolated to cases where we have fewer input
sequences than the sample size – especially for the
smaller sample sizes.

Furthermore, we stress that the performance of
this method relies on the quality of model repre-
sentation for the target languages. While we show
that the approach works with as little as 10 input
sequences – considering the mean NDCG –, this is
qualified with the assumption that the representa-
tions are strong. A high-quality ranking using 10
input sequences should not be expected for, e.g.,
a low-resource language not contained in the pre-
training data of the model.
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Appendix

A Additional Metric Details

We provide a small worked example for our experi-
mental setup and how to calculate Average F1@2
(here p = 2 is used for simplicity) for XLM-R.
Assume we have 3 source NER datasets, associ-
ated with English (en), Spanish (es), and French
(fr). Assume we have 5 target NER datasets:
Czech (cs), Igbo (ig), Irish (ga), Finnish (fi), and
German (de). We first finetune XLM-R on each
source dataset, yielding 3 finetuned models. Each
model is then evaluated zero-shot on every target
dataset, yielding 15 total pairs of (source_dataset,
target_dataset) F1 scores.

For each target dataset, the selected ranking
method generates an ordering of the 3 source
datasets. Assume for German, the predicted rank-
ing is [English, French, Spanish]. We then
average the F1 scores for the English-finetuned
model and French-finetuned model to get the av-
erage F1 for German. This process is repeated for
the 4 other target datasets. To get the final Average
F1@2, we average the resultant five averages.

NDCG As discussed in §3.3, NN-RANK may not
always provide a complete ordering of all source
datasets. As shown in the case study and target
data ablations, in practice this is highly unlikely.
However, in our evaluation, any unordered source
dataset is assigned a rank of infinity, yielding a
relevance score of 0 to maintain fair evaluation.
This problem could be alleviated by initializing
the tally with values that induce a default ordering;
this represents one way in which linguistic features
could be incorporated into NN-RANK.

B Model Training

We use established hyperparameters: a batch size
of 32, learning rate of 2e-5, and train for 10 epochs
(Ebrahimi and Kann, 2021) and assign labels to the
last subword.

C Languages

We use Glottolog (Hammarström et al., 2022) to ob-
tain the language name and family information for
each ISO code. To convert between two-letter and
three-letter ISO codes, we use the map provided by
LangRank.

D Case Study: French and Wolof

For this analysis we use token diversity, defined as
the number of unique source datasets found among
the top five nearest neighbors of a given target to-
ken, averaged across every instance of the token.
Therefore, the lower bound of target diversity is
0, and the upper bound is 5. We also measure
the total number of unique source datasets discov-
ered in the top five neighbors of a specific target
token – summed across all instances. The lower
bound of this value is 0, and the upper bound is 5
times the number of occurrences of the token (a
token which appears once can maximally have 5
total unique neighbors, while a token that appears
twice can have 10). Both metrics are required for a
complete picture. A specific token may have low
diversity (e.g., the nearest neighbors all come from
the same source dataset), but a large number of
unique source datasets (e.g., the source datasets
of the neighbors change depending on the token
context). Conversely, a token may have high di-
versity (e.g., all 5 neighbors come from a different
source dataset), but a low number of unique source
datasets (e.g., every instance of the token yields
the same 5 source datasets). Counts are calculated
across the three samples of size 2000.

French is a relatively high-resource language
which is very closely related to English. In addition
to the main case study, here we also include Wolof,
a low-resource language not contained in the pre-
training data of mBERT. Results can be found in
Figure 7. Wolof tokens are less diverse, however
the majority still yield on average two different
source datasets. There is still no correlation be-
tween token frequency and diversity, and similar
to French, Wolof target tokens still yield a large
number of unique neighbor datasets.
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Figure 5: Distribution of ranking position for source datasets with high unknown token percentage. A rank position
of 0 is used to mark the top-ranked candidate; in the figure, a lower value signifies that the ranking method gave
the source candidate a higher rank. We consider the source datasets with greater than 5% UNK tokens, using the
mBERT tokenizer.
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Figure 6: Data ablation results - Performance from one subsample to the next, omitting the first subsample of size
10. ∆NDCG refers to the change in NDCG per target language, from one subsample to the next. Persistent Source
Candidates refers to the number of source datasets found in the top five predicted datasets of the subsample which
were also in the top five predicted datasets of the previous subsample.
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Figure 7: Case study results for French. Token frequency plotted using log scale. Pearson’s r is used. We also
include Wolof, as it is a low-resource and unseen language. Details provided in Appendix D.
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F Nearest Neighbor Examples

Target Dataset Target Token Top-5 Neighbors Source File Source Treebank

fr_gsd-ud-dev

[‘le’]

[‘el’] ca_ancora-ud-train UD_Catalan-AnCora
[‘el’] es_ancora-ud-train UD_Spanish-AnCora
[‘il’] it_isdt-ud-train UD_Italian-ISDT
[‘il’] it_isdt-ud-train UD_Italian-ISDT
[‘il’] it_isdt-ud-train UD_Italian-ISDT

[‘.’]

[‘.’] es_ancora-ud-train UD_Spanish-AnCora
[‘.’] es_gsd-ud-train UD_Spanish-GSD
[‘.’] it_isdt-ud-train UD_Italian-ISDT
[‘.’] ca_ancora-ud-train UD_Catalan-AnCora
[‘.’] it_isdt-ud-train UD_Italian-ISDT

[‘française’]

[‘civil’] es_ancora-ud-train UD_Spanish-AnCora
[Al Arabiya*] ar_padt-ud-train UD_Arabic-PADT
[‘Wereldoorlog’] nl_lassysmall-ud-train UD_Dutch-LassySmall
[‘1918’] ar_padt-ud-train UD_Arabic-PADT
[‘Wereldoorlog’] nl_lassysmall-ud-train UD_Dutch-LassySmall

[‘reliant’]

[‘liga’] pt_gsd-ud-train UD_Portuguese-GSD
[‘from’] en_ewt-ud-train UD_English-EWT
[‘entre’] es_gsd-ud-train UD_Spanish-GSD
[‘des’] ca_ancora-ud-train UD_Catalan-AnCora
[‘##ndo’] pt_gsd-ud-train UD_Portuguese-GSD

Maria

[‘Maria’] it_isdt-ud-train UD_Italian-ISDT
[‘Maria’] ro_nonstandard-ud-train UD_Romanian-Nonstandard
[‘Maria’] ro_nonstandard-ud-train UD_Romanian-Nonstandard
[‘Maria’] pt_gsd-ud-train UD_Portuguese-GSD
[‘Maria’] it_isdt-ud-train UD_Italian-ISDT

[‘.’]

[‘.’] it_isdt-ud-train UD_Italian-ISDT
[‘.’] sl_ssj-ud-train UD_Slovenian-SSJ
[‘.’] it_isdt-ud-train UD_Italian-ISDT
[‘.’] ru_syntagrus-ud-train UD_Russian-SynTagRus
[‘.’] cs_cac-ud-train UD_Czech-CAC

[‘##ttes’]

[‘##eras’] pt_gsd-ud-train UD_Portuguese-GSD
[‘##der’] no_nynorsk-ud-train UD_Norwegian-Nynorsk
[‘##s’] pt_gsd-ud-train UD_Portuguese-GSD
[‘##os’] pt_gsd-ud-train UD_Portuguese-GSD
[‘##ers’] nl_lassysmall-ud-train UD_Dutch-LassySmall

Table 6: Example of nearest neighbors for French tokens. Arabic tokens are transliterated for the table and marked
with an (*). Tokens and neighbors are calculated using mBERT representations. To calculate the ranking, we tally
the number of occurrences of each treebank or source dataset found in the right-most column, and sort them in
decreasing order. If we assume that these are the only two instances of the period token, we would calculate the
diversity to be avg(4,4) = 4 and the total number of unique source datasets to be 7 (see §7.3).
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G Full Results Tables: Main Results

test-large test-medium test-all
Source Split Eval Model Ranking Method Acc.@5 NDCG@5 Acc.@5 NDCG@5 Acc.@5 NDCG@5

train-large

mBERT

NN-Rank-mBERT 82.00 69.11 77.18 64.28 74.59 62.91
NN-Rank-XLM-R 80.43 65.99 76.17 60.92 73.49 58.92
LangRank 77.54 40.90 73.80 40.52 70.60 36.47
N-LangRank-mBERT 77.23 38.00 71.66 31.93 69.01 32.05
N-LangRank-XLM-R 75.92 36.01 72.05 35.20 68.70 33.75

XLM-R

NN-Rank-mBERT 84.09 65.47 81.10 62.70 78.38 60.81
NN-Rank-XLM-R 83.11 67.89 80.51 62.80 77.75 60.69
LangRank 82.07 42.55 79.22 41.65 76.00 37.32
N-LangRank-mBERT 80.73 36.97 76.75 31.84 73.90 29.96
N-LangRank-XLM-R 80.03 30.97 77.48 33.78 74.24 32.75

train-medium

mBERT

NN-Rank-mBERT 82.56 63.45 77.44 57.76 74.69 55.46
NN-Rank-XLM-R 80.68 61.55 75.72 53.98 72.97 50.76
LangRank 75.69 29.20 72.32 28.16 68.98 24.61
N-LangRank-mBERT 62.98 20.49 56.02 14.41 54.21 13.98
N-LangRank-XLM-R 65.95 21.72 61.38 19.33 57.73 17.97

XLM-R

NN-Rank-mBERT 84.42 61.43 80.86 55.86 78.02 53.65
NN-Rank-XLM-R 82.94 64.00 79.59 56.81 76.82 52.45
LangRank 78.25 30.26 76.42 29.55 73.18 26.22
N-LangRank-mBERT 63.92 19.27 58.02 15.29 55.87 14.39
N-LangRank-XLM-R 68.46 20.94 64.46 19.13 60.80 17.71

train-all

mBERT

NN-Rank-mBERT 81.46 54.51 75.92 47.12 73.41 44.51
NN-Rank-XLM-R 79.94 51.79 74.19 43.68 71.46 41.07
LangRank 63.12 10.84 61.06 10.19 58.67 8.95
N-LangRank-mBERT 65.29 19.92 57.64 13.38 55.39 12.62
N-LangRank-XLM-R 66.81 15.87 60.90 14.17 57.32 13.43

XLM-R

NN-Rank-mBERT 82.63 51.44 78.07 45.20 75.67 42.04
NN-Rank-XLM-R 81.22 49.86 77.20 43.53 74.46 39.84
LangRank 63.49 10.47 62.79 10.76 60.13 8.89
N-LangRank-mBERT 66.08 16.40 59.88 14.42 57.40 13.04
N-LangRank-XLM-R 68.83 15.45 63.37 13.99 59.87 13.31

Table 7: Main POS results – Full table highlighting ranking performances for all language split combinations.
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test-large test-medium test-all
Source Split Evaluation Model Ranking Method F1.@5 NDCG@5 F1.@5 NDCG@5 F1.@5 NDCG@5

train-large

mBERT

NN-Rank-mBERT 69.41 53.98 67.17 50.95 60.77 47.94
NN-Rank-XLM-R 69.29 51.88 67.10 49.15 60.85 46.35
LangRank 65.82 29.76 64.01 30.74 57.48 28.55
N-LangRank-mBERT 64.51 22.87 62.21 22.34 56.02 21.19
N-LangRank-XLM-R 63.92 22.94 61.81 22.41 55.07 20.17

XLM-R

NN-Rank-mBERT 68.29 61.21 66.35 53.69 60.74 47.16
NN-Rank-XLM-R 68.31 60.09 66.43 53.80 61.55 49.09
LangRank 64.03 39.33 62.72 36.95 58.14 33.02
N-LangRank-mBERT 62.53 24.23 60.53 21.34 56.26 20.41
N-LangRank-XLM-R 62.42 25.83 60.70 23.18 55.71 20.78

train-medium

mBERT

NN-Rank-mBERT 69.56 53.20 67.12 49.65 60.78 47.20
NN-Rank-XLM-R 69.37 52.12 67.21 48.95 60.96 45.35
LangRank 66.01 27.56 64.14 28.59 57.54 27.50
N-LangRank-mBERT 63.78 20.37 61.80 20.19 55.73 18.14
N-LangRank-XLM-R 63.98 22.18 61.43 21.52 54.93 18.76

XLM-R

NN-Rank-mBERT 68.20 57.56 66.28 50.41 60.86 45.07
NN-Rank-XLM-R 68.19 58.37 66.50 52.68 61.75 48.52
LangRank 64.06 36.99 62.84 34.39 58.35 32.07
N-LangRank-mBERT 61.98 21.47 60.39 19.52 56.24 18.73
N-LangRank-XLM-R 62.43 25.41 60.41 21.91 55.55 18.50

train-all

mBERT

NN-Rank-mBERT 69.05 51.97 66.36 47.59 59.61 44.07
NN-Rank-XLM-R 68.03 47.98 64.93 44.21 57.97 38.88
LangRank 65.46 25.84 63.31 26.94 57.09 25.93
N-LangRank-mBERT 61.95 19.38 59.90 19.32 53.88 17.17
N-LangRank-XLM-R 64.08 21.74 61.27 20.38 54.69 17.71

XLM-R

NN-Rank-mBERT 67.33 56.04 64.87 48.08 58.68 41.36
NN-Rank-XLM-R 66.11 53.36 63.19 46.79 57.61 39.95
LangRank 62.95 35.44 61.32 32.32 57.17 29.68
N-LangRank-mBERT 59.95 20.10 58.27 18.25 54.23 17.36
N-LangRank-XLM-R 62.55 25.19 60.08 21.08 55.18 17.69

Table 8: Main NER results – Full table highlighting ranking performances for all language split combinations.
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H Full Results Tables: Standard Deviations

test-large test-medium test-all
Source Split Eval Model Ranking Method Acc.@5 NDCG@5 Acc.@5 NDCG@5 Acc.@5 NDCG@5

train-large

mBERT

NN-Rank-mBERT 9.56 24.05 15.81 23.16 17.71 22.87
NN-Rank-XLM-R 11.05 29.39 16.18 26.86 18.09 26.48
LangRank 11.40 26.21 16.22 24.49 17.41 23.75
N-LangRank-mBERT 8.76 20.18 14.99 19.78 16.45 18.40
N-LangRank-XLM-R 8.64 18.14 14.81 19.56 16.21 19.26

XLM-R

NN-Rank-mBERT 9.03 27.39 12.54 24.00 15.61 23.93
NN-Rank-XLM-R 9.57 27.35 12.55 26.19 15.40 25.74
LangRank 8.70 27.16 13.23 23.23 15.70 23.23
N-LangRank-mBERT 8.38 21.11 12.54 19.54 14.99 19.07
N-LangRank-XLM-R 6.82 17.65 11.73 19.79 14.25 19.20

train-medium

mBERT

NN-Rank-mBERT 10.23 30.07 15.48 27.63 17.56 27.60
NN-Rank-XLM-R 11.40 34.22 16.04 32.07 17.90 31.91
LangRank 10.64 26.63 15.52 24.39 16.78 22.64
N-LangRank-mBERT 14.38 18.03 14.73 17.85 14.95 17.75
N-LangRank-XLM-R 10.46 17.35 13.98 18.05 15.22 17.65

XLM-R

NN-Rank-mBERT 9.90 28.18 12.48 27.83 15.73 28.29
NN-Rank-XLM-R 10.20 30.64 12.65 30.23 15.53 30.95
LangRank 9.74 26.05 12.83 22.62 15.42 21.65
N-LangRank-mBERT 15.34 18.31 14.50 17.93 14.89 17.68
N-LangRank-XLM-R 11.38 16.08 13.13 17.92 14.79 17.73

train-all

mBERT

NN-Rank-mBERT 10.83 24.27 16.15 28.00 17.82 27.76
NN-Rank-XLM-R 11.79 22.83 16.80 27.46 18.45 28.55
LangRank 10.45 12.65 12.98 12.21 13.36 11.79
N-LangRank-mBERT 14.16 19.25 15.70 17.65 15.85 17.79
N-LangRank-XLM-R 10.61 16.81 14.10 17.65 15.17 16.56

XLM-R

NN-Rank-mBERT 9.71 21.15 13.85 27.84 16.05 27.62
NN-Rank-XLM-R 10.55 21.90 13.70 26.61 16.23 27.97
LangRank 9.54 12.20 10.98 12.48 12.16 11.79
N-LangRank-mBERT 14.92 17.69 14.84 17.32 15.35 17.03
N-LangRank-XLM-R 11.69 15.57 13.27 17.26 14.66 16.61

Table 9: Main POS results – Full table showing standard deviations across all target languages for all language split
combinations.
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test-large test-medium test-all
Source Split Eval Model Ranking Method Acc.@5 NDCG@5 Acc.@5 NDCG@5 Acc.@5 NDCG@5

train-large

mBERT

NN-Rank-mBERT 20.19 20.50 19.30 20.62 21.81 19.60
NN-Rank-XLM-R 20.07 20.53 19.47 19.90 21.76 20.42
LangRank 21.81 24.59 20.42 24.04 22.53 23.01
N-LangRank-mBERT 20.78 17.34 19.55 17.39 21.58 16.47
N-LangRank-XLM-R 21.39 20.00 20.27 18.87 22.25 17.16

XLM-R

NN-Rank-mBERT 17.94 20.28 16.35 23.81 17.68 25.69
NN-Rank-XLM-R 18.13 18.57 16.82 22.24 17.02 22.29
LangRank 19.10 24.92 17.37 24.07 17.42 23.69
N-LangRank-mBERT 18.57 17.55 16.97 17.68 16.86 17.38
N-LangRank-XLM-R 18.58 19.99 16.73 19.09 17.04 18.06

train-medium

mBERT

NN-Rank-mBERT 20.19 19.64 19.31 20.59 21.70 19.71
NN-Rank-XLM-R 20.07 19.84 19.56 19.93 21.77 21.56
LangRank 22.03 26.26 20.68 24.48 22.77 23.60
N-LangRank-mBERT 20.60 17.34 19.53 17.31 21.48 16.14
N-LangRank-XLM-R 21.46 19.83 20.28 18.91 22.09 17.34

XLM-R

NN-Rank-mBERT 17.89 20.82 16.13 23.67 17.28 24.52
NN-Rank-XLM-R 18.15 18.92 16.59 21.68 16.75 21.60
LangRank 19.55 26.39 17.76 25.93 17.58 24.91
N-LangRank-mBERT 18.39 17.32 16.96 17.56 16.73 16.80
N-LangRank-XLM-R 18.61 20.19 16.69 19.91 16.84 18.80

train-all

mBERT

NN-Rank-mBERT 20.29 20.64 19.58 21.57 21.93 20.72
NN-Rank-XLM-R 19.99 21.84 19.89 22.07 22.23 22.72
LangRank 21.92 25.77 20.82 24.38 22.67 23.03
N-LangRank-mBERT 20.93 17.59 19.90 17.56 21.46 16.33
N-LangRank-XLM-R 21.52 19.77 20.34 18.46 22.09 17.06

XLM-R

NN-Rank-mBERT 18.19 21.28 16.70 23.98 18.30 25.43
NN-Rank-XLM-R 18.31 22.79 17.28 23.68 17.86 24.30
LangRank 19.16 25.88 17.71 25.39 17.37 24.51
N-LangRank-mBERT 18.89 17.41 17.65 17.61 17.25 16.66
N-LangRank-XLM-R 18.68 20.05 16.88 19.81 16.94 18.61

Table 10: Main NER results – Full table showing standard deviations across all target languages for all language
split combinations.
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I Full Results using Bible Data

test-large test-medium test-all
Source Split Task Model Ranking Method F1.@5 NDCG@5 F1.@5 NDCG@5 F1.@5 NDCG@5

train-large

mBERT
NN-Rank-mBERT 71.84 43.55 69.47 41.95 62.34 39.15
NN-Rank XLM-R 71.33 45.26 69.17 43.27 61.98 40.27
LangRank (Rahimi) 69.87 32.03 67.54 30.76 60.55 30.11

XLM-R
NN-Rank-mBERT 69.68 51.44 67.54 46.57 61.68 43.98
NN-Rank XLM-R 69.18 50.47 67.36 46.62 61.18 42.92
LangRank (Rahimi) 67.54 40.92 65.70 36.85 60.39 34.37

train-medium

mBERT
NN-Rank-mBERT 71.56 42.78 69.11 40.37 61.98 36.86
NN-Rank XLM-R 71.18 44.73 68.93 42.46 61.79 39.32
LangRank (Rahimi) 70.06 29.94 67.73 28.97 60.69 28.99

XLM-R
NN-Rank-mBERT 69.36 49.20 67.36 42.94 61.63 41.37
NN-Rank XLM-R 69.10 49.63 67.30 44.84 61.08 41.64
LangRank (Rahimi) 67.59 37.93 65.78 33.74 60.63 32.44

train-all

mBERT
NN-Rank-mBERT 71.62 43.06 68.85 40.57 61.23 36.07
NN-Rank XLM-R 70.14 42.24 67.80 40.61 60.08 35.76
LangRank (Rahimi) 69.37 27.86 67.09 27.53 60.38 27.29

XLM-R
NN-Rank-mBERT 68.96 48.80 66.55 42.67 60.43 39.87
NN-Rank XLM-R 67.54 46.69 65.48 42.56 58.70 37.67
LangRank (Rahimi) 66.27 36.24 64.55 32.35 59.69 30.79

Table 11: Experiment 2 - General rankings with no task dataset - Full NER Results. NN-RANK uses the Bible for
the source dataset and target dataset. LangRank takes lexical features from the Rahimi split (same as main results
but slightly different source/target pools due to bible availability).
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test-large test-medium test-all
Source Split Task Model Ranking Method Acc.@5 NDCG@5 Acc.@5 NDCG@5 Acc.@5 NDCG@5

train-large

mBERT
NN-Rank-mBERT 81.23 54.82 78.15 56.98 75.77 58.62
NN-Rank-XLM-R 76.40 25.30 73.84 29.05 70.97 31.53
LangRank 78.67 46.35 76.22 47.35 72.86 44.42

XLM-R
NN-Rank-mBERT 84.05 55.17 82.61 57.05 79.87 58.45
NN-Rank-XLM-R 80.22 25.12 78.93 26.11 76.07 29.44
LangRank 82.95 46.95 81.77 49.31 78.45 47.26

train-medium

mBERT
NN-Rank-mBERT 80.80 45.79 77.37 46.73 74.70 43.73
NN-Rank-XLM-R 74.75 18.90 72.48 21.09 70.13 23.00
LangRank 77.29 36.27 74.48 35.97 71.59 33.61

XLM-R
NN-Rank-mBERT 83.31 47.00 81.32 47.11 78.49 44.33
NN-Rank-XLM-R 78.18 19.66 76.97 19.69 74.52 21.57
LangRank 79.96 35.74 78.68 36.73 75.53 35.34

train-all

mBERT
NN-Rank-mBERT 81.90 48.03 77.12 40.94 74.85 38.66
NN-Rank-XLM-R 75.18 35.97 71.45 30.43 68.95 28.26
LangRank 55.72 4.92 55.68 5.82 53.20 5.95

XLM-R
NN-Rank-mBERT 84.34 46.67 80.83 40.42 78.57 38.88
NN-Rank-XLM-R 78.61 33.61 75.89 28.76 73.21 26.17
LangRank 59.49 4.13 59.74 4.89 57.00 4.70

Table 12: Domain Mismatch: POS results when no target task data available – full results. Here, the source datasets
are from UD, and the target data is taken from the Bible.
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test-large test-medium test-all
Source Split Task Model Ranking Method F1.@5 NDCG@5 F1.@5 NDCG@5 F1.@5 NDCG@5

train-large

mBERT
NN-Rank-mBERT 71.41 41.26 69.24 40.76 61.92 36.88
NN-Rank-XLM-R 71.06 40.01 68.77 39.07 61.49 37.25
LangRank 71.63 38.12 69.01 35.68 62.05 35.23

XLM-R
NN-Rank-mBERT 69.46 48.19 67.16 42.61 61.06 39.93
NN-Rank-XLM-R 69.20 50.67 67.03 44.32 60.93 42.31
LangRank 69.78 45.87 67.44 41.35 61.87 38.26

train-medium

mBERT
NN-Rank-mBERT 70.92 36.06 68.64 35.97 61.75 33.40
NN-Rank-XLM-R 71.04 37.57 68.55 37.76 61.65 35.95
LangRank 70.99 31.94 68.51 30.21 61.89 31.31

XLM-R
NN-Rank-mBERT 68.78 41.70 66.71 37.81 60.88 36.67
NN-Rank-XLM-R 69.12 45.50 66.83 40.90 61.00 41.13
LangRank 68.89 39.18 66.81 35.01 61.62 33.19

train-all

mBERT
NN-Rank-mBERT 69.61 31.94 67.06 31.87 59.95 28.74
NN-Rank-XLM-R 68.99 33.38 66.43 32.64 58.77 28.72
LangRank 70.02 29.21 67.86 28.77 61.27 29.18

XLM-R
NN-Rank-mBERT 66.18 36.64 63.92 33.70 58.23 32.12
NN-Rank-XLM-R 65.75 40.35 63.16 35.74 56.74 32.80
LangRank 67.00 36.26 65.41 33.59 60.30 31.43

Table 13: Domain Mismatch: NER Results when no target task data available – full results. Here, the source datasets
are from the Rahimi splits, and the target data is taken from the Bible.
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J Full Results Tables: Layer Ablations

test-large test-medium test-all
Source Split Task Model Ranking Method Acc.@5 NDCG@5 Acc.@5 NDCG@5 Acc.@5 NDCG@5

train-large
mBERT

NN-Rank-mBERT 1.38 9.29 1.36 7.92 1.58 6.87
NN-Rank XLM-R 0.06 9.47 0.13 4.50 0.40 3.63

XLM-R
NN-Rank-mBERT 0.70 6.02 0.67 4.74 0.92 3.20
NN-Rank XLM-R -0.47 9.71 -0.26 4.74 -0.01 3.96

train-medium
mBERT

NN-Rank-mBERT 1.98 6.95 2.06 9.01 2.08 9.24
NN-Rank XLM-R 0.94 6.43 0.74 4.27 0.99 3.62

XLM-R
NN-Rank-mBERT 1.64 8.18 1.47 6.26 1.59 7.90
NN-Rank XLM-R 0.47 9.69 0.38 4.39 0.75 3.90

train-all
mBERT

NN-Rank-mBERT 1.90 10.83 3.16 11.85 3.27 12.01
NN-Rank XLM-R -0.01 6.12 1.19 7.56 1.17 7.57

XLM-R
NN-Rank-mBERT 2.42 12.16 2.95 11.28 3.36 12.27
NN-Rank XLM-R 0.51 9.08 1.56 8.24 1.55 7.68

Table 14: Layer ablation: POS results. Difference when using Layer 8 - Layer 0 (positive is better)

test-large test-medium test-all
Source Split Task Model Ranking Method F1.@5 NDCG@5 F1.@5 NDCG@5 F1.@5 NDCG@5

train-large
mBERT

NN-Rank-mBERT 0.24 9.59 0.70 9.32 0.65 7.65
NN-Rank XLM-R 0.91 11.98 1.06 11.86 1.41 11.60

XLM-R
NN-Rank-mBERT 0.38 8.32 0.84 7.67 0.21 5.21
NN-Rank XLM-R 0.96 9.94 0.94 9.18 1.21 9.24

train-medium
mBERT

NN-Rank-mBERT 2.70 15.86 3.19 13.84 0.51 10.21
NN-Rank XLM-R 1.47 13.71 1.87 13.18 2.08 12.87

XLM-R
NN-Rank-mBERT 2.29 9.68 2.92 9.42 0.58 4.16
NN-Rank XLM-R 1.58 13.39 1.54 11.44 1.41 10.74

train-all
mBERT

NN-Rank-mBERT 3.73 13.33 3.03 10.93 2.07 10.53
NN-Rank XLM-R 0.60 8.36 -0.18 6.22 0.55 7.78

XLM-R
NN-Rank-mBERT 3.59 11.45 3.14 7.63 1.24 5.61
NN-Rank XLM-R 0.93 5.89 -0.22 4.03 -0.26 4.02

Table 15: Layer ablation: NER tagging results. Difference when using Layer 8 - Layer 0 (positive is better).
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K Data Ablation Results

Source Split Task Model Ranking Model Subsample Size Avg. Acc@5 Avg. NDCG@5

Mean STD Mean STD

large

mBERT

mBERT

10 73.56 0.0999 57.67 1.0486
25 74.02 0.2591 59.48 0.5208
50 74.48 0.2190 62.06 0.0999
75 74.35 0.2800 61.95 0.7042
100 74.44 0.0677 62.90 0.5349
150 74.43 0.0522 62.22 0.5954
250 74.46 0.0612 62.99 0.6453
500 74.48 0.0679 63.26 0.3153
1000 74.55 0.0324 63.16 0.3059
2000 75.13 0.0314 63.05 0.1436

XLM-R

10 72.64 0.2656 52.46 0.8792
25 72.93 0.1687 55.80 0.7510
50 72.89 0.1090 55.47 0.3483
75 73.09 0.1661 57.04 0.8348
100 73.33 0.1113 57.75 0.1754
150 73.18 0.2106 57.39 0.9737
250 73.32 0.1253 58.57 0.5841
500 73.37 0.0942 58.30 0.2289
1000 73.35 0.1191 58.46 0.1992
2000 73.83 0.0841 58.77 0.3297

XLM-R

mBERT

10 77.81 0.0988 55.75 0.4481
25 78.01 0.1861 57.08 0.7400
50 78.30 0.2015 60.14 0.5176
75 78.23 0.2273 60.17 0.5350
100 78.27 0.0507 60.74 0.8992
150 78.36 0.0364 60.39 0.4339
250 78.28 0.0775 60.53 0.7546
500 78.31 0.0616 60.94 0.4437
1000 78.38 0.0234 61.19 0.1991
2000 79.01 0.0151 61.05 0.2984

XLM-R

10 77.20 0.1125 53.67 1.4657
25 77.42 0.1231 56.56 0.6499
50 77.30 0.1159 56.25 0.7295
75 77.56 0.1931 58.83 0.7268
100 77.62 0.1107 59.39 0.4887
150 77.55 0.1795 59.35 1.1807
250 77.62 0.1000 60.19 0.3460
500 77.70 0.1177 60.59 0.4153
1000 77.66 0.1100 60.44 0.3318
2000 78.17 0.0506 60.65 0.2407

medium mBERT

mBERT

10 73.68 0.3690 50.08 1.9981
25 74.22 0.3696 53.05 1.5703
50 74.53 0.2225 55.32 0.4839
75 74.53 0.2037 54.80 0.4711
100 74.60 0.0304 55.91 0.5138
150 74.61 0.1233 55.53 0.2667
250 74.60 0.0907 55.79 1.1553
500 74.73 0.0621 55.91 0.2530
1000 74.75 0.0310 55.96 0.1029
2000 75.32 0.1101 55.82 0.3875

XLM-R

10 72.10 0.2370 44.67 1.2159
25 72.69 0.2353 48.87 1.4164
50 72.86 0.1843 49.16 0.2496
75 72.74 0.1238 49.88 0.8218
100 73.03 0.1312 50.18 0.3240
150 73.05 0.3915 50.50 0.9673
250 72.99 0.2487 50.03 0.3608
500 72.98 0.0635 50.70 0.0975
1000 72.93 0.0945 50.38 0.3225

Continued on next page
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Source Split Task Model Ranking Model Subsample Size Avg. Acc@5 Avg. NDCG@5
Mean STD Mean STD

2000 73.41 0.1078 50.64 0.1503

medium XLM-R

mBERT

10 77.40 0.2719 48.40 1.8551
25 77.65 0.3435 51.10 1.7390
50 77.89 0.1766 53.58 0.5910
75 77.89 0.1505 53.20 0.8143
100 77.95 0.0438 54.17 0.2357
150 78.02 0.1706 54.10 0.5164
250 77.92 0.0311 54.06 0.5838
500 78.06 0.0560 54.17 0.2143
1000 78.07 0.0402 53.92 0.2182
2000 78.70 0.0901 54.08 0.0361

XLM-R

10 76.10 0.3626 45.51 1.8007
25 76.59 0.2389 48.73 1.6025
50 76.68 0.1508 49.21 0.6561
75 76.63 0.1566 50.16 0.5225
100 76.88 0.1513 50.96 0.2359
150 76.85 0.3256 51.24 0.9151
250 76.86 0.2388 51.49 0.6931
500 76.83 0.0592 51.89 0.3107
1000 76.71 0.1380 51.26 0.5007
2000 77.26 0.0542 51.80 0.4134

all

mBERT

mBERT

10 72.58 0.1915 39.17 1.4141
25 72.78 0.5296 41.88 1.6804
50 73.14 0.1272 43.94 0.3211
75 73.31 0.1674 43.95 0.5767
100 73.28 0.0378 43.88 0.7011
150 73.32 0.0831 44.61 0.6676
250 73.42 0.3133 44.29 0.6229
500 73.30 0.2252 44.22 0.3289
1000 73.35 0.0902 44.23 0.3403
2000 73.88 0.0583 44.16 0.3167

XLM-R

10 70.86 0.2847 35.36 1.6877
25 71.14 0.5082 38.69 1.3061
50 71.64 0.2958 41.12 0.6685
75 71.50 0.2919 41.23 0.8403
100 71.66 0.1017 42.16 0.8231
150 71.59 0.0429 40.91 0.4555
250 71.53 0.1310 41.40 0.3779
500 71.43 0.2147 40.86 0.3017
1000 71.43 0.2595 40.76 0.0447
2000 71.84 0.0482 40.66 0.2772

XLM-R

mBERT

10 74.98 0.2255 35.60 1.2733
25 75.02 0.6532 39.23 1.5762
50 75.33 0.0895 40.94 0.4181
75 75.60 0.1585 41.25 0.5508
100 75.30 0.1640 40.92 0.4279
150 75.62 0.1676 41.48 0.9218
250 75.50 0.2844 42.03 0.7664
500 75.52 0.3166 41.30 0.2536
1000 75.55 0.1301 41.68 0.2655
2000 76.15 0.1159 41.58 0.1400

XLM-R

10 73.90 0.3098 33.60 0.5184
25 74.13 0.6088 36.48 1.2740
50 74.66 0.4388 38.75 1.2252
75 74.46 0.1867 39.36 0.5701
100 74.64 0.0280 40.01 1.3144
150 74.59 0.0899 39.33 0.3540
250 74.55 0.0918 39.93 0.6842
500 74.39 0.2216 39.55 0.3978
1000 74.44 0.2580 39.21 0.1768
2000 74.83 0.0892 39.23 0.4762
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Table 16: All POS Data Ablation Results
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L Development Set Results

Avg. of Accuracy @ 5 NN-Rank k

Task Model Source Split Evaluation Split 5 10 20 25

mBERT train-all dev-all 72.54 72.49 72.52 72.42
dev-large 78.78 78.81 78.85 78.85
dev-medium 75.63 75.57 75.50 75.42

train-large dev-all 74.08 73.91 73.78 73.75
dev-large 78.80 78.92 78.70 78.68
dev-medium 77.11 76.92 76.75 76.73

train-medium dev-all 73.90 73.85 73.73 73.62
dev-large 79.85 79.96 79.89 79.80
dev-medium 77.05 76.96 76.80 76.68

XLM-R train-all dev-all 75.12 75.08 75.09 74.92
dev-large 80.19 80.23 80.33 80.33
dev-medium 78.19 78.15 78.12 78.01

train-large dev-all 78.06 77.93 77.83 77.80
dev-large 81.56 81.69 81.55 81.53
dev-medium 81.22 81.07 80.94 80.91

train-medium dev-all 77.45 77.36 77.18 77.11
dev-large 82.11 82.21 82.15 82.07
dev-medium 80.68 80.57 80.43 80.31

Avg. of NDCG @ 5 NN-Rank k

Evaluation Model Source Split Evaluation Split 5 10 20 25

mBERT train-all dev-all 43.47 43.02 42.88 42.69
dev-large 52.66 52.21 52.24 52.08
dev-medium 46.30 45.89 45.73 45.49

train-large dev-all 61.43 60.90 60.12 59.75
dev-large 69.46 69.15 68.36 67.88
dev-medium 64.35 63.41 62.41 62.19

train-medium dev-all 53.81 53.67 53.39 52.94
dev-large 63.60 63.57 64.04 63.94
dev-medium 57.41 57.30 57.10 56.46

XLM-R train-all dev-all 41.42 41.16 41.19 40.91
dev-large 50.19 49.73 49.84 49.68
dev-medium 44.63 44.49 44.59 44.35

train-large dev-all 60.95 60.21 59.38 59.06
dev-large 67.62 67.16 66.56 66.05
dev-medium 64.20 63.24 62.24 61.87

train-medium dev-all 53.50 53.12 52.67 52.41
dev-large 63.68 63.66 63.57 63.49
dev-medium 57.29 56.91 56.58 56.19

Table 17: POS NN-RANK Development set results. Values are averaged over the two ranking models.
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AVERAGE of F1@5 NN-Rank k

Task Model Source Split Evaluation Split 5 10 20 25

mBERT train-all dev-all 58.41 58.09 57.72 57.64
dev-large 68.41 68.19 68.06 67.98
dev-medium 65.51 65.13 64.91 64.86

train-large dev-all 60.33 60.20 60.10 60.07
dev-large 69.22 69.11 69.01 68.99
dev-medium 67.07 66.98 66.87 66.83

train-medium dev-all 60.43 60.26 60.25 60.23
dev-large 69.34 69.18 69.10 69.05
dev-medium 67.08 66.89 66.81 66.77

XLM-R train-all dev-all 58.00 57.61 57.13 57.06
dev-large 66.64 66.40 66.20 66.18
dev-medium 63.96 63.52 63.26 63.24

train-large dev-all 60.84 60.61 60.42 60.37
dev-large 68.21 68.14 68.01 67.97
dev-medium 66.28 66.19 66.03 65.98

train-medium dev-all 61.09 60.90 60.84 60.82
dev-large 68.12 67.94 67.92 67.88
dev-medium 66.31 66.04 65.98 65.94

Avg. of NDCG@5 NN-Rank k

Task Model Source Split Evaluation Split 5 10 20 25

mBERT train-all dev-all 40.91 40.57 39.89 39.37
dev-large 50.46 50.19 49.93 49.41
dev-medium 45.76 45.34 44.80 44.35

train-large dev-all 46.09 45.49 45.10 44.92
dev-large 53.33 52.58 52.93 52.90
dev-medium 50.48 49.68 49.31 48.99

train-medium dev-all 45.39 44.85 45.06 44.81
dev-large 52.78 51.96 52.18 51.98
dev-medium 49.19 48.45 48.35 48.09

XLM-R train-all dev-all 41.36 40.90 40.14 40.15
dev-large 54.75 54.68 53.88 53.90
dev-medium 47.43 46.97 46.28 46.35

train-large dev-all 47.35 46.48 46.26 45.90
dev-large 60.04 59.25 59.05 58.70
dev-medium 53.54 52.98 52.85 52.50

train-medium dev-all 46.08 45.90 45.79 45.73
dev-large 57.79 57.49 57.58 57.65
dev-medium 51.41 50.97 50.77 50.77

Table 18: NER NN-RANK development set results. Values are averaged over the two ranking models.
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M Language Tables

UD_ISO ISO-3 Language Family Treebank Language Splits

af afr Indo-European UD_Afrikaans-AfriBooms train_all
hy hye Indo-European UD_Armenian-ArmTDP train_all
eu eus - UD_Basque-BDT train_all
zh zho Sino-Tibetan UD_Chinese-GSD train_all
cop cop Afro-Asiatic UD_Coptic-Scriptorium train_all
cs ces Indo-European UD_Czech-CLTT train_all
da dan Indo-European UD_Danish-DDT train_all
en eng Indo-European UD_English-LinES train_all
en eng Indo-European UD_English-ParTUT train_all
fr fra Indo-European UD_French-ParTUT train_all
fr fra Indo-European UD_French-Sequoia train_all
gl glg Indo-European UD_Galician-CTG train_all
gl glg Indo-European UD_Galician-TreeGal train_all
got got Indo-European UD_Gothic-PROIEL train_all
el ell Indo-European UD_Greek-GDT train_all
he heb Afro-Asiatic UD_Hebrew-HTB train_all
hu hun Uralic UD_Hungarian-Szeged train_all
ga gle Indo-European UD_Irish-IDT train_all
it ita Indo-European UD_Italian-ParTUT train_all
it ita Indo-European UD_Italian-PoSTWITA train_all
ko kor Koreanic UD_Korean-GSD train_all
la lat Indo-European UD_Latin-Perseus train_all
sme sme Uralic UD_North_Sami-Giella train_all
fa fas Indo-European UD_Persian-Seraji train_all
pl pol Indo-European UD_Polish-LFG train_all
ru rus Indo-European UD_Russian-GSD train_all
sr srp Indo-European UD_Serbian-SET train_all
sk slk Indo-European UD_Slovak-SNK train_all
sl slv Indo-European UD_Slovenian-SST train_all
sv swe Indo-European UD_Swedish-LinES train_all
sv swe Indo-European UD_Swedish-Talbanken train_all
ta tam Dravidian UD_Tamil-TTB train_all
tr tur Turkic UD_Turkish-IMST train_all
ur urd Indo-European UD_Urdu-UDTB train_all
ug uig Turkic UD_Uyghur-UDT train_all
vi vie Austroasiatic UD_Vietnamese-VTB train_all
grc grc Indo-European UD_Ancient_Greek-Perseus train_all, train_medium
grc grc Indo-European UD_Ancient_Greek-PROIEL train_all, train_medium
ar ara Afroasiatic UD_Arabic-NYUAD train_all, train_medium
bg bul Indo-European UD_Bulgarian-BTB train_all, train_medium
hr hrv Indo-European UD_Croatian-SET train_all, train_medium
cs ces Indo-European UD_Czech-FicTree train_all, train_medium
nl nld Indo-European UD_Dutch-Alpino train_all, train_medium
fi fin Uralic UD_Finnish-FTB train_all, train_medium
id ind Austronesian UD_Indonesian-GSD train_all, train_medium
ja jpn Japonic UD_Japanese-BCCWJ train_all, train_medium
ja jpn Japonic UD_Japanese-GSD train_all, train_medium
ko kor Koreanic UD_Korean-Kaist train_all, train_medium
la lat Indo-European UD_Latin-PROIEL train_all, train_medium
cu chu Indo-European UD_Old_Church_Slavonic-PROIEL train_all, train_medium
pt por Indo-European UD_Portuguese-Bosque train_all, train_medium
ro ron Indo-European UD_Romanian-RRT train_all, train_medium
uk ukr Indo-European UD_Ukrainian-IU train_all, train_medium
ar ara Afroasiatic UD_Arabic-PADT train_all, train_medium, train_large
be bel Indo-European UD_Belarusian-HSE train_all, train_medium, train_large
ca cat Indo-European UD_Catalan-AnCora train_all, train_medium, train_large
cs ces Indo-European UD_Czech-CAC train_all, train_medium, train_large
cs ces Indo-European UD_Czech-PDT train_all, train_medium, train_large
nl nld Indo-European UD_Dutch-LassySmall train_all, train_medium, train_large
en eng Indo-European UD_English-EWT train_all, train_medium, train_large
en eng Indo-European UD_English-GUM train_all, train_medium, train_large
et est Uralic UD_Estonian-EDT train_all, train_medium, train_large
fi fin Uralic UD_Finnish-TDT train_all, train_medium, train_large
fr fra Indo-European UD_French-GSD train_all, train_medium, train_large

Continued on next page
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UD_ISO ISO-3 Language Family Treebank Language Splits

de deu Indo-European UD_German-GSD train_all, train_medium, train_large
hi hin Indo-European UD_Hindi-HDTB train_all, train_medium, train_large
it ita Indo-European UD_Italian-ISDT train_all, train_medium, train_large
la lat Indo-European UD_Latin-ITTB train_all, train_medium, train_large
lv lav Indo-European UD_Latvian-LVTB train_all, train_medium, train_large
no nor Indo-European UD_Norwegian-Bokmaal train_all, train_medium, train_large
no nor Indo-European UD_Norwegian-Nynorsk train_all, train_medium, train_large
pt por Indo-European UD_Portuguese-GSD train_all, train_medium, train_large
ro ron Indo-European UD_Romanian-Nonstandard train_all, train_medium, train_large
ru rus Indo-European UD_Russian-SynTagRus train_all, train_medium, train_large
ru rus Indo-European UD_Russian-Taiga train_all, train_medium, train_large
sl slv Indo-European UD_Slovenian-SSJ train_all, train_medium, train_large
es spa Indo-European UD_Spanish-AnCora train_all, train_medium, train_large
es spa Indo-European UD_Spanish-GSD train_all, train_medium, train_large

Table 19: POS Train Languages and Datasets. There are 78 datasets in the train-all, 42 in train-medium, and 25 in
train-large. The number of unique languages in train-all is 51, 28 in train-medium, and 20 in train-large. In train-all,
there are languages from 11 language families and one language isolate, however this distribution is heavily biased
towards Indo-European languages.

UD_ISO ISO 639-3 Language Family Treebank Language Splits
hy hye Indo-European UD_Armenian-ArmTDP test_all
zh zho Tino-Sibetan UD_Chinese-GSD test_all
zh zho Tino-Sibetan UD_Chinese-GSDSimp test_all
da dan Indo-European UD_Danish-DDT test_all
en eng Indo-European UD_English-Atis test_all
en eng Indo-European UD_English-ESLSpok test_all
en eng Indo-European UD_English-GUMReddit test_all
en eng Indo-European UD_English-ParTUT test_all
fo fao Indo-European UD_Faroese-FarPaHC test_all
fr fra Indo-European UD_French-GSD test_all
fr fra Indo-European UD_French-ParisStories test_all
fr fra Indo-European UD_French-ParTUT test_all
fr fra Indo-European UD_French-Rhapsodie test_all
fr fra Indo-European UD_French-Sequoia test_all
he heb Afro-Asiatic UD_Hebrew-HTB test_all
he heb Afro-Asiatic UD_Hebrew-IAHLTknesset test_all
he heb Afro-Asiatic UD_Hebrew-IAHLTwiki test_all
is isl Indo-European UD_Icelandic-Modern test_all
ga gle Indo-European UD_Irish-IDT test_all
it ita Indo-European UD_Italian-ISDT test_all
it ita Indo-European UD_Italian-MarkIT test_all
it ita Indo-European UD_Italian-Old test_all
it ita Indo-European UD_Italian-ParTUT test_all
it ita Indo-European UD_Italian-TWITTIRO test_all
ko kor Koreanic UD_Korean-GSD test_all
ko kor Koreanic UD_Korean-KSL test_all
lt lit Indo-European UD_Lithuanian-HSE test_all
mt mlt Afro-Asiatic UD_Maltese-MUDT test_all
gd gla Indo-European UD_Scottish_Gaelic-ARCOSG test_all
sl slv Indo-European UD_Slovenian-SST test_all
ta tam Dravidian UD_Tamil-TTB test_all
tr tur Turkic UD_Turkish-Atis test_all
tr tur Turkic UD_Turkish-FrameNet test_all
vi vie Austroasiatic UD_Vietnamese-VTB test_all
wo wol Atlantic-Congo UD_Wolof-WTB test_all
af afr Indo-European UD_Afrikaans-AfriBooms test_all, test_medium
hy hye Indo-European UD_Armenian-BSUT test_all, test_medium
bg bul Indo-European UD_Bulgarian-BTB test_all, test_medium
hr hrv Indo-European UD_Croatian-SET test_all, test_medium
cs ces Indo-European UD_Czech-CAC test_all, test_medium
cs ces Indo-European UD_Czech-CLTT test_all, test_medium
cs ces Indo-European UD_Czech-FicTree test_all, test_medium
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nl nld Indo-European UD_Dutch-Alpino test_all, test_medium
en eng Indo-European UD_English-LinES test_all, test_medium
et est Uralic UD_Estonian-EWT test_all, test_medium
fi fin Uralic UD_Finnish-FTB test_all, test_medium
fi fin Uralic UD_Finnish-TDT test_all, test_medium
ka kat Kartvelian UD_Georgian-GLC test_all, test_medium
de deu Indo-European UD_German-GSD test_all, test_medium
el ell Indo-European UD_Greek-GDT test_all, test_medium
hu hun Uralic UD_Hungarian-Szeged test_all, test_medium
is isl Indo-European UD_Icelandic-GC test_all, test_medium
id ind Austronesian UD_Indonesian-GSD test_all, test_medium
ga gle Indo-European UD_Irish-TwittIrish test_all, test_medium
it ita Indo-European UD_Italian-PoSTWITA test_all, test_medium
it ita Indo-European UD_Italian-VIT test_all, test_medium
ja jpn Japonic UD_Japanese-GSD test_all, test_medium
ja jpn Japonic UD_Japanese-GSDLUW test_all, test_medium
ko kor Koreanic UD_Korean-Kaist test_all, test_medium
la lat Indo-European UD_Latin-LLCT test_all, test_medium
la lat Indo-European UD_Latin-PROIEL test_all, test_medium
la lat Indo-European UD_Latin-UDante test_all, test_medium
lt lit Indo-European UD_Lithuanian-ALKSNIS test_all, test_medium
cu chu Indo-European UD_Old_Church_Slavonic-PROIEL test_all, test_medium
fa fas Indo-European UD_Persian-PerDT test_all, test_medium
fa fas Indo-European UD_Persian-Seraji test_all, test_medium
pl pol Indo-European UD_Polish-LFG test_all, test_medium
pt por Indo-European UD_Portuguese-Bosque test_all, test_medium
pt por Indo-European UD_Portuguese-GSD test_all, test_medium
pt por Indo-European UD_Portuguese-PetroGold test_all, test_medium
ro ron Indo-European UD_Romanian-Nonstandard test_all, test_medium
ro ron Indo-European UD_Romanian-RRT test_all, test_medium
ro ron Indo-European UD_Romanian-SiMoNERo test_all, test_medium
ru rus Indo-European UD_Russian-GSD test_all, test_medium
ru rus Indo-European UD_Russian-Poetry test_all, test_medium
ru rus Indo-European UD_Russian-Taiga test_all, test_medium
sa san Indo-European UD_Sanskrit-Vedic test_all, test_medium
sr srp Indo-European UD_Serbian-SET test_all, test_medium
sk slk Indo-European UD_Slovak-SNK test_all, test_medium
es spa Indo-European UD_Spanish-GSD test_all, test_medium
sv swe Indo-European UD_Swedish-LinES test_all, test_medium
tr tur Turkic UD_Turkish-BOUN test_all, test_medium
tr tur Turkic UD_Turkish-IMST test_all, test_medium
tr tur Turkic UD_Turkish-Kenet test_all, test_medium
tr tur Turkic UD_Turkish-Penn test_all, test_medium
tr tur Turkic UD_Turkish-Tourism test_all, test_medium
uk ukr Indo-European UD_Ukrainian-IU test_all, test_medium
uk ukr Indo-European UD_Ukrainian-ParlaMint test_all, test_medium
ur urd Indo-European UD_Urdu-UDTB test_all, test_medium
ug uig Turkic UD_Uyghur-UDT test_all, test_medium
cy cym Indo-European UD_Welsh-CCG test_all, test_medium
ar ara Afro-Asiatic UD_Arabic-PADT test_all, test_medium, test_large
eu eus - UD_Basque-BDT test_all, test_medium, test_large
be bel Indo-European UD_Belarusian-HSE test_all, test_medium, test_large
ca cat Indo-European UD_Catalan-AnCora test_all, test_medium, test_large
cs ces Indo-European UD_Czech-PDT test_all, test_medium, test_large
nl nld Indo-European UD_Dutch-LassySmall test_all, test_medium, test_large
en eng Indo-European UD_English-EWT test_all, test_medium, test_large
en eng Indo-European UD_English-GUM test_all, test_medium, test_large
et est Uralic UD_Estonian-EDT test_all, test_medium, test_large
gl glg Indo-European UD_Galician-CTG test_all, test_medium, test_large
de deu Indo-European UD_German-HDT test_all, test_medium, test_large
hi hin Indo-European UD_Hindi-HDTB test_all, test_medium, test_large
is isl Indo-European UD_Icelandic-IcePaHC test_all, test_medium, test_large
la lat Indo-European UD_Latin-ITTB test_all, test_medium, test_large
lv lav Indo-European UD_Latvian-LVTB test_all, test_medium, test_large
no nor Indo-European UD_Norwegian-Bokmaal test_all, test_medium, test_large
no nor Indo-European UD_Norwegian-Nynorsk test_all, test_medium, test_large
pl pol Indo-European UD_Polish-PDB test_all, test_medium, test_large
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pt por Indo-European UD_Portuguese-CINTIL test_all, test_medium, test_large
pt por Indo-European UD_Portuguese-Porttinari test_all, test_medium, test_large
ru rus Indo-European UD_Russian-SynTagRus test_all, test_medium, test_large
sl slv Indo-European UD_Slovenian-SSJ test_all, test_medium, test_large
es spa Indo-European UD_Spanish-AnCora test_all, test_medium, test_large
sv swe Indo-European UD_Swedish-Talbanken test_all, test_medium, test_large

Table 20: POS Test Languages and Datasets. There are 118 total dataset in test-all, 83 in test-medium, and 25 in
test-large. There are 56 unique languages in test-all, 46 in test-medium, and 21 in test-large. Languages cover 12
language families and 1 language isolate.
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ckb ckb Indo-European Central Kurdish train_all
la lat Indo-European Latin train_all
br bre Indo-European Breton train_all
hi hin Indo-European Hindi train_all
ga gle Indo-European Irish train_all
af afr Indo-European Afrikaans train_all
tt tat Turkic Tatar train_all
cy cym Indo-European Welsh train_all,train_medium
eu eus - Basque train_all,train_medium
lv lav Indo-European Latvian train_all,train_medium
tl tgl Austronesian Tagalog train_all,train_medium
mk mkd Indo-European Macedonian train_all,train_medium
bn ben Indo-European Bengali train_all,train_medium
lt lit Indo-European Lithuanian train_all,train_medium
it ita Indo-European Italian train_all,train_medium,train_large
sr srp Indo-European Serbian Standard train_all,train_medium,train_large
sl slv Indo-European Slovenian train_all,train_medium,train_large
ko kor Koreanic Korean train_all,train_medium,train_large
eo epo Artificial Language Esperanto train_all,train_medium,train_large
pt por Indo-European Portuguese train_all,train_medium,train_large
ta tam Dravidian Tamil train_all,train_medium,train_large
es spa Indo-European Spanish train_all,train_medium,train_large
et est Uralic Estonian train_all,train_medium,train_large
ja jpn Japonic Japanese train_all,train_medium,train_large
fi fin Uralic Finnish train_all,train_medium,train_large
fr fra Indo-European French train_all,train_medium,train_large
be bel Indo-European Belarusian train_all,train_medium,train_large
nl nld Indo-European Dutch train_all,train_medium,train_large
uk ukr Indo-European Ukrainian train_all,train_medium,train_large
ur urd Indo-European Urdu train_all,train_medium,train_large
de deu Indo-European German train_all,train_medium,train_large
id ind Austronesian Standard Indonesian train_all,train_medium,train_large
el ell Indo-European Modern Greek train_all,train_medium,train_large
ru rus Indo-European Russian train_all,train_medium,train_large
pl pol Indo-European Polish train_all,train_medium,train_large
da dan Indo-European Danish train_all,train_medium,train_large
bg bul Indo-European Bulgarian train_all,train_medium,train_large
vi vie Austroasiatic Vietnamese train_all,train_medium,train_large
sv swe Indo-European Swedish train_all,train_medium,train_large
hu hun Uralic Hungarian train_all,train_medium,train_large
zh zho Sino-Tibetan Chinese train_all,train_medium,train_large
hy hye Indo-European Eastern Armenian train_all,train_medium,train_large
th tha Tai-Kadai Thai train_all,train_medium,train_large
nn nno Indo-European Norwegian Nynorsk train_all,train_medium,train_large
ro ron Indo-European Romanian train_all,train_medium,train_large
ca cat Indo-European Catalan train_all,train_medium,train_large
tr tur Turkic Turkish train_all,train_medium,train_large
sk slk Indo-European Slovak train_all,train_medium,train_large
cs ces Indo-European Czech train_all,train_medium,train_large
hr hrv Indo-European Croatian Standard train_all,train_medium,train_large
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ms msa Austronesian Malay train_all,train_medium,train_large

Table 21: NER Train Languages and Datasets. There are 51 datasets in train-all, 44 in train-medium, and 37 in
train-large. As the WikiANN dataset only has one dataset per language, these counts represent unique languages as
well. There are languages from 10 different languages families, 1 artificial language, and 1 language isolate.

UD_ISO ISO-3 Language Family treebank Language Split
am amh Afro-Asiatic Amharic test_all
my mya Sino-Tibetan Burmese test_all
ceb ceb Austronesian Cebuano test_all
km khm Austroasiatic Central Khmer test_all
ce che Nakh-Daghestanian Chechen test_all
crh crh Turkic Crimean Tatar test_all
ne nep Indo-European Eastern Pahari test_all
fo fao Indo-European Faroese test_all
ig ibo Atlantic-Congo Igbo test_all
ilo ilo Austronesian Iloko test_all
jv jav Austronesian Javanese test_all
rw kin Atlantic-Congo Kinyarwanda test_all
mg mlg Austronesian Malagasy test_all
mi mri Austronesian Maori test_all
pdc pdc Indo-European Pennsylvania German test_all
gd gla Indo-European Scottish Gaelic test_all
sd snd Indo-European Sindhi test_all
so som Afro-Asiatic Somali test_all
tg tgk Indo-European Tajik test_all
ug uig Turkic Uighur test_all
yo yor Atlantic-Congo Yoruba test_all
af afr Indo-European Afrikaans test_all,test_medium
be bel Indo-European Belarusian test_all,test_medium
bn ben Indo-European Bengali test_all,test_medium
br bre Indo-European Breton test_all,test_medium
ckb ckb Indo-European Central Kurdish test_all,test_medium
hy hye Indo-European Eastern Armenian test_all,test_medium
hi hin Indo-European Hindi test_all,test_medium
ga gle Indo-European Irish test_all,test_medium
la lat Indo-European Latin test_all,test_medium
mk mkd Indo-European Macedonian test_all,test_medium
ms msa Austronesian Malay test_all,test_medium
nn nno Indo-European Norwegian Nynorsk test_all,test_medium
tl tgl Austronesian Tagalog test_all,test_medium
ta tam Dravidian Tamil test_all,test_medium
tt tat Turkic Tatar test_all,test_medium
ur urd Indo-European Urdu test_all,test_medium
cy cym Indo-European Welsh test_all,test_medium
eu eus - Basque test_all,test_medium,test_large
bg bul Indo-European Bulgarian test_all,test_medium,test_large
ca cat Indo-European Catalan test_all,test_medium,test_large
zh zho Sino-Tibetan Chinese test_all,test_medium,test_large
hr hrv Indo-European Croatian Standard test_all,test_medium,test_large
cs ces Indo-European Czech test_all,test_medium,test_large
da dan Indo-European Danish test_all,test_medium,test_large
nl nld Indo-European Dutch test_all,test_medium,test_large
eo epo Artificial Language Esperanto test_all,test_medium,test_large
et est Uralic Estonian test_all,test_medium,test_large
fi fin Uralic Finnish test_all,test_medium,test_large
fr fra Indo-European French test_all,test_medium,test_large
de deu Indo-European German test_all,test_medium,test_large
hu hun Uralic Hungarian test_all,test_medium,test_large
it ita Indo-European Italian test_all,test_medium,test_large
ja jpn Japonic Japanese test_all,test_medium,test_large
ko kor Koreanic Korean test_all,test_medium,test_large
lv lav Indo-European Latvian test_all,test_medium,test_large
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lt lit Indo-European Lithuanian test_all,test_medium,test_large
el ell Indo-European Modern Greek test_all,test_medium,test_large
pl pol Indo-European Polish test_all,test_medium,test_large
pt por Indo-European Portuguese test_all,test_medium,test_large
ro ron Indo-European Romanian test_all,test_medium,test_large
ru rus Indo-European Russian test_all,test_medium,test_large
sr srp Indo-European Serbian Standard test_all,test_medium,test_large
sk slk Indo-European Slovak test_all,test_medium,test_large
sl slv Indo-European Slovenian test_all,test_medium,test_large
es spa Indo-European Spanish test_all,test_medium,test_large
id ind Austronesian Standard Indonesian test_all,test_medium,test_large
sv swe Indo-European Swedish test_all,test_medium,test_large
th tha Tai-Kadai Thai test_all,test_medium,test_large
tr tur Turkic Turkish test_all,test_medium,test_large
uk ukr Indo-European Ukrainian test_all,test_medium,test_large
vi vie Austroasiatic Vietnamese test_all,test_medium,test_large

Table 22: NER Test Languages and Datasets. In test-all, there are 72 dataset, 51 in test-medium, and 34 in test-large.
Languages come from 13 language families, in addition to one language isolate and one artificial language.

Treebank UD File Bible ISO Bible File

UD_Lithuanian-ALKSNIS lt_alksnis-ud-dev lit lit-x-bible-lit-v1.txt
UD_English-LinES en_lines-ud-dev eng eng-x-bible-books-v1.txt
UD_Portuguese-PetroGold pt_petrogold-ud-dev por por-x-bible-almeidaatualizada-v1.txt
UD_Czech-FicTree cs_fictree-ud-dev ces ces-x-bible-preklad-v1.txt
UD_Portuguese-CINTIL pt_cintil-ud-dev por por-x-bible-almeidaatualizada-v1.txt
UD_Czech-CLTT cs_cltt-ud-dev ces ces-x-bible-preklad-v1.txt
UD_Romanian-Nonstandard ro_nonstandard-ud-dev ron ron-x-bible-cornilescu-v1.txt
UD_English-ParTUT en_partut-ud-dev eng eng-x-bible-books-v1.txt
UD_Maltese-MUDT mt_mudt-ud-dev mlt mlt-x-bible-mlt-v1.txt
UD_Polish-PDB pl_pdb-ud-dev pol pol-x-bible-gdansk-v1.txt
UD_Icelandic-Modern is_modern-ud-dev isl isl-x-bible-isl-v1.txt
UD_Dutch-Alpino nl_alpino-ud-dev nld nld-x-bible-2004-v1.txt
UD_English-GUM en_gum-ud-dev eng eng-x-bible-books-v1.txt
UD_Turkish-Kenet tr_kenet-ud-dev tur tur-x-bible-tur-v1.txt
UD_Italian-Old it_old-ud-dev ita ita-x-bible-2009-v1.txt
UD_Russian-Taiga ru_taiga-ud-dev rus rus-x-bible-synodal-v1.txt
UD_Ukrainian-IU uk_iu-ud-dev ukr ukr-x-bible-2007-v1.txt
UD_Hindi-HDTB hi_hdtb-ud-dev hin hin-HNDSKV.txt
UD_Wolof-WTB wo_wtb-ud-dev wol wol-x-bible-wol-v1.txt
UD_Korean-GSD ko_gsd-ud-dev kor kor-x-bible-latinscript-v1.txt
UD_Estonian-EDT et_edt-ud-dev est est-x-bible-portions-v1.txt
UD_Persian-PerDT fa_perdt-ud-dev fas fas-x-bible-1995-v1.txt
UD_French-GSD fr_gsd-ud-dev fra fra-FRNPDC.txt
UD_Latin-ITTB la_ittb-ud-dev lat lat-LTNNVV.txt
UD_Vietnamese-VTB vi_vtb-ud-dev vie vie-VIEVOV.txt
UD_Latvian-LVTB lv_lvtb-ud-dev lav lav-x-bible-ljd-youversion-v1.txt
UD_Finnish-FTB fi_ftb-ud-dev fin fin-x-bible-1766-v1.txt
UD_Icelandic-IcePaHC is_icepahc-ud-dev isl isl-x-bible-isl-v1.txt
UD_Latin-PROIEL la_proiel-ud-dev lat lat-LTNNVV.txt
UD_Romanian-RRT ro_rrt-ud-dev ron ron-x-bible-cornilescu-v1.txt
UD_Czech-CAC cs_cac-ud-dev ces ces-x-bible-preklad-v1.txt
UD_English-ESLSpok en_eslspok-ud-dev eng eng-x-bible-books-v1.txt
UD_Russian-SynTagRus ru_syntagrus-ud-dev rus rus-x-bible-synodal-v1.txt
UD_Italian-ParTUT it_partut-ud-dev ita ita-x-bible-2009-v1.txt
UD_Turkish-IMST tr_imst-ud-dev tur tur-x-bible-tur-v1.txt
UD_Swedish-LinES sv_lines-ud-dev swe swe-SWESFV.txt
UD_Russian-GSD ru_gsd-ud-dev rus rus-x-bible-synodal-v1.txt
UD_Icelandic-GC is_gc-ud-dev isl isl-x-bible-isl-v1.txt
UD_Persian-Seraji fa_seraji-ud-dev fas fas-x-bible-1995-v1.txt
UD_Latin-UDante la_udante-ud-dev lat lat-LTNNVV.txt
UD_Greek-GDT el_gdt-ud-dev ell ell-x-bible-hellenic1-v1.txt
UD_Norwegian-Bokmaal no_bokmaal-ud-dev nor nor-x-bible-student-v1.txt
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UD_Turkish-FrameNet tr_framenet-ud-dev tur tur-x-bible-tur-v1.txt
UD_Swedish-Talbanken sv_talbanken-ud-dev swe swe-SWESFV.txt
UD_Danish-DDT da_ddt-ud-dev dan dan-x-bible-1931-v1.txt
UD_Italian-ISDT it_isdt-ud-dev ita ita-x-bible-2009-v1.txt
UD_Slovak-SNK sk_snk-ud-dev slk slk-x-bible-standard-v1.txt
UD_Latin-LLCT la_llct-ud-dev lat lat-LTNNVV.txt
UD_English-EWT en_ewt-ud-dev eng eng-x-bible-books-v1.txt
UD_Welsh-CCG cy_ccg-ud-dev cym cym-x-bible-revised2004-v1.txt
UD_Portuguese-DANTEStocks pt_dantestocks-ud-dev por por-x-bible-almeidaatualizada-v1.txt
UD_Hebrew-IAHLTknesset he_iahltknesset-ud-dev heb heb-x-bible-2009-v1.txt
UD_Portuguese-Porttinari pt_porttinari-ud-dev por por-x-bible-almeidaatualizada-v1.txt
UD_Hungarian-Szeged hu_szeged-ud-dev hun hun-x-bible-revised-v1.txt
UD_Russian-Poetry ru_poetry-ud-dev rus rus-x-bible-synodal-v1.txt
UD_Catalan-AnCora ca_ancora-ud-dev cat cat-x-bible-cat-v1.txt
UD_French-ParTUT fr_partut-ud-dev fra fra-FRNPDC.txt
UD_Italian-VIT it_vit-ud-dev ita ita-x-bible-2009-v1.txt
UD_German-GSD de_gsd-ud-dev deu deu-x-bible-freebible-v1.txt
UD_Armenian-BSUT hy_bsut-ud-dev hye hye-x-bible-eastern-v1.txt
UD_Lithuanian-HSE lt_hse-ud-dev lit lit-x-bible-lit-v1.txt
UD_English-GUMReddit en_gumreddit-ud-dev eng eng-x-bible-books-v1.txt
UD_Italian-PoSTWITA it_postwita-ud-dev ita ita-x-bible-2009-v1.txt
UD_Korean-KSL ko_ksl-ud-dev kor kor-x-bible-latinscript-v1.txt
UD_Spanish-AnCora es_ancora-ud-dev spa spa-SPNBDA.txt
UD_Portuguese-GSD pt_gsd-ud-dev por por-x-bible-almeidaatualizada-v1.txt
UD_Portuguese-Bosque pt_bosque-ud-dev por por-x-bible-almeidaatualizada-v1.txt
UD_Polish-LFG pl_lfg-ud-dev pol pol-x-bible-gdansk-v1.txt
UD_Czech-PDT cs_pdt-ud-dev ces ces-x-bible-preklad-v1.txt
UD_Turkish-Atis tr_atis-ud-dev tur tur-x-bible-tur-v1.txt
UD_Finnish-TDT fi_tdt-ud-dev fin fin-x-bible-1766-v1.txt
UD_Italian-MarkIT it_markit-ud-dev ita ita-x-bible-2009-v1.txt
UD_Romanian-SiMoNERo ro_simonero-ud-dev ron ron-x-bible-cornilescu-v1.txt
UD_German-HDT de_hdt-ud-dev deu deu-x-bible-freebible-v1.txt
UD_Hebrew-IAHLTwiki he_iahltwiki-ud-dev heb heb-x-bible-2009-v1.txt
UD_French-Sequoia fr_sequoia-ud-dev fra fra-FRNPDC.txt
UD_Estonian-EWT et_ewt-ud-dev est est-x-bible-portions-v1.txt
UD_Uyghur-UDT ug_udt-ud-dev uig uig-x-bible-uig-v1.txt
UD_Italian-TWITTIRO it_twittiro-ud-dev ita ita-x-bible-2009-v1.txt
UD_Slovenian-SSJ sl_ssj-ud-dev slv slv-x-bible-slv-v1.txt
UD_English-Atis en_atis-ud-dev eng eng-x-bible-books-v1.txt
UD_Armenian-ArmTDP hy_armtdp-ud-dev hye hye-x-bible-eastern-v1.txt
UD_Korean-Kaist ko_kaist-ud-dev kor kor-x-bible-latinscript-v1.txt
UD_Serbian-SET sr_set-ud-dev srp srp-x-bible-srp-v1.txt
UD_Slovenian-SST sl_sst-ud-dev slv slv-x-bible-slv-v1.txt
UD_Hebrew-HTB he_htb-ud-dev heb heb-x-bible-2009-v1.txt
UD_Old_Church_Slavonic-PROIEL cu_proiel-ud-dev chu chu-x-bible-chu-v1.txt
UD_Urdu-UDTB ur_udtb-ud-dev urd urd-x-bible-revised2010-v1.txt
UD_Norwegian-Nynorsk no_nynorsk-ud-dev nor nor-x-bible-student-v1.txt
UD_Turkish-BOUN tr_boun-ud-dev tur tur-x-bible-tur-v1.txt
UD_Bulgarian-BTB bg_btb-ud-dev bul bul-x-bible-veren-v1.txt
UD_Indonesian-GSD id_gsd-ud-dev ind ind-x-bible-suciinjil-v1.txt
UD_Dutch-LassySmall nl_lassysmall-ud-dev nld nld-x-bible-2004-v1.txt
UD_Turkish-Penn tr_penn-ud-dev tur tur-x-bible-tur-v1.txt
UD_Georgian-GLC ka_glc-ud-dev kat kat-x-bible-kat-v1.txt
UD_Ukrainian-ParlaMint uk_parlamint-ud-dev ukr ukr-x-bible-2007-v1.txt
UD_Afrikaans-AfriBooms af_afribooms-ud-dev afr afr-x-bible-1953-v1.txt
UD_Spanish-GSD es_gsd-ud-dev spa spa-SPNBDA.txt
UD_Basque-BDT eu_bdt-ud-dev eus eus-x-bible-Hautin1571-v1.txt
UD_French-ParisStories fr_parisstories-ud-dev fra fra-FRNPDC.txt
UD_French-Rhapsodie fr_rhapsodie-ud-dev fra fra-FRNPDC.txt
UD_Tamil-TTB ta_ttb-ud-dev tam tam-x-bible-tam-v1.txt
UD_Croatian-SET hr_set-ud-dev hrv hrv-x-bible-hrv-v1.txt
UD_Turkish-Tourism tr_tourism-ud-dev tur tur-x-bible-tur-v1.txt
UD_English-LinES en_lines-ud-train eng eng-x-bible-books-v1.txt
UD_Czech-FicTree cs_fictree-ud-train ces ces-x-bible-preklad-v1.txt
UD_Czech-CLTT cs_cltt-ud-train ces ces-x-bible-preklad-v1.txt
UD_Romanian-Nonstandard ro_nonstandard-ud-train ron ron-x-bible-cornilescu-v1.txt
UD_English-ParTUT en_partut-ud-train eng eng-x-bible-books-v1.txt
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32453



Treebank UD File Bible ISO Bible File

UD_Dutch-Alpino nl_alpino-ud-train nld nld-x-bible-2004-v1.txt
UD_English-GUM en_gum-ud-train eng eng-x-bible-books-v1.txt
UD_Russian-Taiga ru_taiga-ud-train rus rus-x-bible-synodal-v1.txt
UD_Ukrainian-IU uk_iu-ud-train ukr ukr-x-bible-2007-v1.txt
UD_Hindi-HDTB hi_hdtb-ud-train hin hin-HNDSKV.txt
UD_Korean-GSD ko_gsd-ud-train kor kor-x-bible-latinscript-v1.txt
UD_Estonian-EDT et_edt-ud-train est est-x-bible-portions-v1.txt
UD_French-GSD fr_gsd-ud-train fra fra-FRNPDC.txt
UD_Latin-ITTB la_ittb-ud-train lat lat-LTNNVV.txt
UD_Vietnamese-VTB vi_vtb-ud-train vie vie-VIEVOV.txt
UD_Latvian-LVTB lv_lvtb-ud-train lav lav-x-bible-ljd-youversion-v1.txt
UD_Finnish-FTB fi_ftb-ud-train fin fin-x-bible-1766-v1.txt
UD_Latin-PROIEL la_proiel-ud-train lat lat-LTNNVV.txt
UD_Romanian-RRT ro_rrt-ud-train ron ron-x-bible-cornilescu-v1.txt
UD_Czech-CAC cs_cac-ud-train ces ces-x-bible-preklad-v1.txt
UD_Russian-SynTagRus ru_syntagrus-ud-train rus rus-x-bible-synodal-v1.txt
UD_Italian-ParTUT it_partut-ud-train ita ita-x-bible-2009-v1.txt
UD_Turkish-IMST tr_imst-ud-train tur tur-x-bible-tur-v1.txt
UD_Swedish-LinES sv_lines-ud-train swe swe-SWESFV.txt
UD_Russian-GSD ru_gsd-ud-train rus rus-x-bible-synodal-v1.txt
UD_Persian-Seraji fa_seraji-ud-train fas fas-x-bible-1995-v1.txt
UD_Greek-GDT el_gdt-ud-train ell ell-x-bible-hellenic1-v1.txt
UD_Norwegian-Bokmaal no_bokmaal-ud-train nor nor-x-bible-student-v1.txt
UD_Swedish-Talbanken sv_talbanken-ud-train swe swe-SWESFV.txt
UD_Danish-DDT da_ddt-ud-train dan dan-x-bible-1931-v1.txt
UD_Italian-ISDT it_isdt-ud-train ita ita-x-bible-2009-v1.txt
UD_Slovak-SNK sk_snk-ud-train slk slk-x-bible-standard-v1.txt
UD_English-EWT en_ewt-ud-train eng eng-x-bible-books-v1.txt
UD_Hungarian-Szeged hu_szeged-ud-train hun hun-x-bible-revised-v1.txt
UD_Catalan-AnCora ca_ancora-ud-train cat cat-x-bible-cat-v1.txt
UD_French-ParTUT fr_partut-ud-train fra fra-FRNPDC.txt
UD_German-GSD de_gsd-ud-train deu deu-x-bible-freebible-v1.txt
UD_Italian-PoSTWITA it_postwita-ud-train ita ita-x-bible-2009-v1.txt
UD_Spanish-AnCora es_ancora-ud-train spa spa-SPNBDA.txt
UD_Portuguese-GSD pt_gsd-ud-train por por-x-bible-almeidaatualizada-v1.txt
UD_Portuguese-Bosque pt_bosque-ud-train por por-x-bible-almeidaatualizada-v1.txt
UD_Polish-LFG pl_lfg-ud-train pol pol-x-bible-gdansk-v1.txt
UD_Latin-Perseus la_perseus-ud-train lat lat-LTNNVV.txt
UD_Czech-PDT cs_pdt-ud-train ces ces-x-bible-preklad-v1.txt
UD_Finnish-TDT fi_tdt-ud-train fin fin-x-bible-1766-v1.txt
UD_French-Sequoia fr_sequoia-ud-train fra fra-FRNPDC.txt
UD_Uyghur-UDT ug_udt-ud-train uig uig-x-bible-uig-v1.txt
UD_Slovenian-SSJ sl_ssj-ud-train slv slv-x-bible-slv-v1.txt
UD_Armenian-ArmTDP hy_armtdp-ud-train hye hye-x-bible-eastern-v1.txt
UD_Korean-Kaist ko_kaist-ud-train kor kor-x-bible-latinscript-v1.txt
UD_Serbian-SET sr_set-ud-train srp srp-x-bible-srp-v1.txt
UD_Slovenian-SST sl_sst-ud-train slv slv-x-bible-slv-v1.txt
UD_Hebrew-HTB he_htb-ud-train heb heb-x-bible-2009-v1.txt
UD_Old_Church_Slavonic-PROIEL cu_proiel-ud-train chu chu-x-bible-chu-v1.txt
UD_Urdu-UDTB ur_udtb-ud-train urd urd-x-bible-revised2010-v1.txt
UD_Norwegian-Nynorsk no_nynorsk-ud-train nor nor-x-bible-student-v1.txt
UD_Bulgarian-BTB bg_btb-ud-train bul bul-x-bible-veren-v1.txt
UD_Indonesian-GSD id_gsd-ud-train ind ind-x-bible-suciinjil-v1.txt
UD_Dutch-LassySmall nl_lassysmall-ud-train nld nld-x-bible-2004-v1.txt
UD_Afrikaans-AfriBooms af_afribooms-ud-train afr afr-x-bible-1953-v1.txt
UD_Spanish-GSD es_gsd-ud-train spa spa-SPNBDA.txt
UD_Basque-BDT eu_bdt-ud-train eus eus-x-bible-Hautin1571-v1.txt
UD_Tamil-TTB ta_ttb-ud-train tam tam-x-bible-tam-v1.txt
UD_Croatian-SET hr_set-ud-train hrv hrv-x-bible-hrv-v1.txt

Table 23: Mapping from UD datasets to Bible datasets.
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Rahimi ISO Bible ISO Bible File

it ita ita-x-bible-riveduta-v1.txt
sr srp srp-x-bible-srp-v1.txt
sl slv slv-x-bible-slv-v1.txt
so som som-SOMSIM.txt
ko kor kor-x-bible-kor-v1.txt
crh crh crh-CRHIBT.txt
cy cym cym-x-bible-colloquial2013-v1.txt
eo epo epo-x-bible-epo-v1.txt
pt por por-PORARC.txt
ta tam tam-TCVWTC.txt
es spa spa-SPNWTC.txt
la lat lat-x-bible-vulgataclementina-v1.txt
ceb ceb ceb-x-bible-popular-v1.txt
et est est-x-bible-portions-v1.txt
yo yor yor-x-bible-yor-v1.txt
br bre bre-x-bible-bre-v1.txt
fi fin fin-x-bible-1766-v1.txt
eu eus eus-x-bible-batua-v1.txt
hi hin hin-HNDSKV.txt
fr fra fra-x-bible-kingjames-v1.txt
ug uig uig-UI1UMK.txt
lv lav lav-x-bible-1997-v1.txt
ilo ilo ilo-x-bible-ilo-v1.txt
ce che che-CHEIBT.txt
tl tgl tgl-TGLPBS.txt
nl nld nld-x-bible-2007-v1.txt
rw kin kin-x-bible-bird-youversion-v1.txt
mg mlg mlg-MLGRCV.txt
uk ukr ukr-x-bible-2009-v1.txt
mk mkd mkd-x-bible-2004-v1.txt
ur urd urd-x-bible-devanagari-v1.txt
de deu deu-x-bible-greber-v1.txt
id ind ind-INZNTV.txt
el ell ell-x-bible-hellenic1-v1.txt
am amh amh-x-bible-amh-v1.txt
ru rus rus-x-bible-kulakov-v1.txt
af afr afr-x-bible-boodskap-v1.txt
pl pol pol-x-bible-gdansk-v1.txt
da dan dan-x-bible-1931-v1.txt
bg bul bul-x-bible-veren-v1.txt
my mya mya-x-bible-common-v1.txt
vi vie vie-x-bible-bd2011-youversion-v1.txt
tt tat tat-TTRIBT.txt
tg tgk tgk-TGKIBT.txt
sv swe swe-SWESFV.txt
hu hun hun-x-bible-revised-v1.txt
hy hye hye-x-bible-eastern-v1.txt
th tha tha-THATSV.txt
ig ibo ibo-x-bible-ibo-v1.txt
jv jav jav-x-bible-jav-v1.txt
nn nno nno-x-bible-2011-v1.txt
bn ben ben-x-bible-common-v1.txt
mi mri mri-x-bible-mri-v1.txt
lt lit lit-x-bible-1999-v1.txt
ro ron ron-RONBSR.txt
ca cat cat-x-bible-cat-v1.txt
tr tur tur-TRKBST.txt
sk slk slk-x-bible-standard-v1.txt
cs ces ces-x-bible-novakarlica-v1.txt
hr hrv hrv-x-bible-hrv-v1.txt
km khm khm-x-bible-2011-v1.txt
ms msa msa-x-bible-1996-v1.txt

Table 24: Mapping from (Rahimi et al., 2019) datasets to Bible datasets.
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Source Target Tokens Num. Examples
mBERT XLM-R

af_afribooms-ud-dev 8521 7515 398
ar_nyuad-ud-dev 40000 40000 1000
ar_padt-ud-dev 24390 18741 1000
be_hse-ud-dev 26740 20806 1000
bg_btb-ud-dev 25337 19559 1000
ca_ancora-ud-dev 20738 19755 1000
cs_cac-ud-dev 22820 18853 856
cs_cltt-ud-dev 24100 19053 917
cs_fictree-ud-dev 27022 23007 1000
cs_pdt-ud-dev 21609 17678 1000
cu_proiel-ud-dev 22228 39918 1000
cy_ccg-ud-dev 16210 13478 564
da_ddt-ud-dev 15924 14106 711
de_gsd-ud-dev 17983 16517 944
de_hdt-ud-dev 18014 18195 1000
el_gdt-ud-dev 24439 16737 799
en_atis-ud-dev 8875 9388 478
en_eslspok-ud-dev 2420 2697 122
en_ewt-ud-dev 17333 16780 1000
en_gum-ud-dev 15137 15423 1000
en_gumreddit-ud-dev 1755 1555 71
en_lines-ud-dev 18652 18990 1000
en_partut-ud-dev 3181 3351 183
es_ancora-ud-dev 19084 18510 1000
es_gsd-ud-dev 18506 18786 1000
et_edt-ud-dev 25452 21031 1000
et_ewt-ud-dev 18747 15140 699
eu_bdt-ud-dev 23246 20001 1000
fa_perdt-ud-dev 27040 22247 1000
fa_seraji-ud-dev 24608 20241 962
fi_ftb-ud-dev 23579 20469 1000
fi_tdt-ud-dev 23211 18989 1000
fo_farpahc-ud-dev 15190 13542 521
fr_gsd-ud-dev 19507 20455 1000
fr_parisstories-ud-dev 12645 12226 521
fr_partut-ud-dev 2408 2401 124
fr_rhapsodie-ud-dev 16030 15763 684
fr_sequoia-ud-dev 13779 13514 679
ga_idt-ud-dev 18391 15299 643
ga_twittirish-ud-dev 31893 26959 1000
gd_arcosg-ud-dev 20167 17136 669
gl_ctg-ud-dev 18628 17014 1000
he_htb-ud-dev 16549 13905 522
he_iahltknesset-ud-dev 8838 7217 317
he_iahltwiki-ud-dev 13857 11748 514
hi_hdtb-ud-dev 30255 21135 1000
hr_set-ud-dev 22897 19128 1000
hu_szeged-ud-dev 24410 18650 1000
hy_armtdp-ud-dev 13562 9144 456
hy_bsut-ud-dev 26762 16933 977
id_gsd-ud-dev 17783 16168 978
is_gc-ud-dev 21888 16661 786
is_icepahc-ud-dev 29366 23409 1000
is_modern-ud-dev 15990 12184 565
it_isdt-ud-dev 15137 14639 782
it_markit-ud-dev 12895 12992 705
it_old-ud-dev 16504 16190 686
it_partut-ud-dev 3812 3665 200
it_postwita-ud-dev 21299 19585 854
it_twittiro-ud-dev 4871 4577 202
it_vit-ud-dev 18397 17271 1000
ja_bccwj-ud-dev 80653 6395 1000
ja_bccwjluw-ud-dev 80586 6443 1000
ja_gsd-ud-dev 16004 12800 538
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Source Target Tokens Num. Examples
mBERT XLM-R

ja_gsdluw-ud-dev 16004 12800 538
ka_glc-ud-dev 31320 18913 895
ko_gsd-ud-dev 27817 24689 561
ko_kaist-ud-dev 48999 42660 1000
ko_ksl-ud-dev 13806 11485 288
la_ittb-ud-dev 22941 19384 1000
la_llct-ud-dev 24171 20836 1000
la_proiel-ud-dev 23033 19301 1000
la_udante-ud-dev 20738 18207 887
lt_alksnis-ud-dev 25320 19442 985
lt_hse-ud-dev 2205 1822 108
lv_lvtb-ud-dev 24574 19819 1000
mt_mudt-ud-dev 22456 22470 715
nl_alpino-ud-dev 16672 16126 825
nl_lassysmall-ud-dev 20204 19797 1000
no_bokmaal-ud-dev 20175 17823 1000
no_nynorsk-ud-dev 21417 20205 1000
pl_lfg-ud-dev 24459 20574 921
pl_pdb-ud-dev 25627 21685 1000
pt_bosque-ud-dev 20164 19222 1000
pt_cintil-ud-dev 19545 20356 1000
pt_dantestocks-ud-dev 20825 18335 673
pt_gsd-ud-dev 19702 18554 1000
pt_petrogold-ud-dev 19890 18738 1000
pt_porttinari-ud-dev 20162 19148 1000
ro_nonstandard-ud-dev 30543 26920 1000
ro_rrt-ud-dev 23287 20163 1000
ro_simonero-ud-dev 23378 19727 1000
ru_gsd-ud-dev 21848 19077 932
ru_poetry-ud-dev 19372 16107 869
ru_syntagrus-ud-dev 22194 19571 1000
ru_taiga-ud-dev 19948 17288 755
sa_vedic-ud-dev 35281 32561 1000
sk_snk-ud-dev 25869 21288 985
sl_ssj-ud-dev 23134 19058 1000
sl_sst-ud-dev 15180 15014 615
sr_set-ud-dev 20676 17723 896
sv_lines-ud-dev 22032 19407 1000
sv_talbanken-ud-dev 16240 13716 794
ta_ttb-ud-dev 3597 2188 120
tr_atis-ud-dev 10765 8658 481
tr_boun-ud-dev 25020 19336 984
tr_framenet-ud-dev 2998 2616 115
tr_imst-ud-dev 21716 16889 863
tr_kenet-ud-dev 25741 22390 1000
tr_penn-ud-dev 14326 11950 594
tr_tourism-ud-dev 38899 28671 801
ug_udt-ud-dev 25272 22254 863
uk_iu-ud-dev 23320 18934 1000
uk_parlamint-ud-dev 20090 15537 997
ur_udtb-ud-dev 25949 19464 847
vi_vtb-ud-dev 22978 22816 1000
wo_wtb-ud-dev 17495 17275 553
zh_gsd-ud-dev 19099 14906 248
zh_gsdsimp-ud-dev 19099 14553 248

Table 25: POS Target Token Counts

Source Source Tokens Num. Examples
mBERT XLM-R

af_afribooms-ud-train 22032 19344 1000
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Source Source Tokens Num. Examples
mBERT XLM-R

ar_nyuad-ud-train 40000 40000 1000
ar_padt-ud-train 24926 19355 1000
be_hse-ud-train 30807 23987 1000
bg_btb-ud-train 27479 21340 1000
ca_ancora-ud-train 20705 19615 1000
cop_scriptorium-ud-train 12065 22713 1000
cs_cac-ud-train 25907 20818 1000
cs_cltt-ud-train 26619 21440 1000
cs_fictree-ud-train 26956 22541 1000
cs_pdt-ud-train 21379 17393 1000
cu_proiel-ud-train 31190 39693 1000
da_ddt-ud-train 22707 20025 1000
de_gsd-ud-train 19558 17229 1000
el_gdt-ud-train 31139 20363 1000
en_ewt-ud-train 17188 17915 1000
en_gum-ud-train 15677 16395 1000
en_lines-ud-train 18533 18951 1000
en_partut-ud-train 16296 16640 1000
es_ancora-ud-train 18108 17223 1000
es_gsd-ud-train 18481 18543 1000
et_edt-ud-train 25274 20247 1000
eu_bdt-ud-train 23293 20023 1000
fa_seraji-ud-train 26436 22096 1000
fi_ftb-ud-train 23958 21113 1000
fi_tdt-ud-train 24186 19118 1000
fr_gsd-ud-train 19488 20265 1000
fr_partut-ud-train 18435 18196 1000
fr_sequoia-ud-train 20856 20610 1000
ga_idt-ud-train 28360 23489 1000
gl_ctg-ud-train 18809 17081 1000
gl_treegal-ud-train 19181 17820 991
got_proiel-ud-train 29054 27840 1000
grc_perseus-ud-train 39994 44806 1000
grc_proiel-ud-train 41031 41922 1000
he_htb-ud-train 32107 26899 1000
hi_hdtb-ud-train 30541 22278 1000
hr_set-ud-train 23100 19243 1000
hu_szeged-ud-train 24914 20141 1000
hy_armtdp-ud-train 30744 21104 1000
id_gsd-ud-train 18133 16515 1000
it_isdt-ud-train 20357 19516 1000
it_partut-ud-train 17912 16512 1000
it_postwita-ud-train 24636 22727 1000
ja_bccwj-ud-train 80347 6827 1000
ja_gsd-ud-train 29394 23727 1000
ko_gsd-ud-train 49639 44018 1000
ko_kaist-ud-train 48678 43974 1000
la_ittb-ud-train 22431 19385 1000
la_perseus-ud-train 24084 21151 1000
la_proiel-ud-train 23178 19169 1000
lv_lvtb-ud-train 26548 21311 1000
nl_alpino-ud-train 20144 19048 1000
nl_lassysmall-ud-train 19747 19830 1000
no_bokmaal-ud-train 19767 17679 1000
no_nynorsk-ud-train 21361 19908 1000
pl_lfg-ud-train 26914 22629 1000
pt_bosque-ud-train 20416 19109 1000
pt_gsd-ud-train 19664 18483 1000
ro_nonstandard-ud-train 32138 28198 1000
ro_rrt-ud-train 25965 22750 1000
ru_gsd-ud-train 23059 20180 1000
ru_syntagrus-ud-train 25673 21795 1000
ru_taiga-ud-train 21552 17830 1000
sk_snk-ud-train 28149 23430 1000
sl_ssj-ud-train 23635 19730 1000
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Source Source Tokens Num. Examples
mBERT XLM-R

sl_sst-ud-train 24226 24141 1000
sme_giella-ud-train 31075 30260 1000
sr_set-ud-train 23153 19811 1000
sv_lines-ud-train 21788 19220 1000
sv_talbanken-ud-train 19128 16001 1000
ta_ttb-ud-train 18592 11484 609
tr_imst-ud-train 25381 19909 1000
ug_udt-ud-train 29758 25737 1000
uk_iu-ud-train 25311 21342 1000
ur_udtb-ud-train 30512 22656 1000
vi_vtb-ud-train 22842 22841 1000
zh_gsd-ud-train 76547 60503 1000

Table 26: POS Source Token Counts

Target Lang Target Tokens Num. Lines
mBERT XLM-R

af_dev 17736 18092 1000
am_dev 669 1296 100
be_dev 16748 14468 1000
bg_dev 15589 14525 1000
bn_dev 13388 10384 1000
br_dev 12928 13464 1000
ca_dev 9460 9566 1000
ce_dev 2137 2838 100
ceb_dev 1106 1372 100
ckb_dev 8342 16355 1000
crh_dev 1376 1284 100
cs_dev 14561 14109 1000
cy_dev 15155 14544 1000
da_dev 13352 13423 1000
de_dev 14628 16019 1000
el_dev 23649 18368 1000
eo_dev 12316 11864 1000
es_dev 10755 10384 1000
et_dev 16242 15177 1000
eu_dev 15957 17482 1000
fi_dev 16814 16361 1000
fo_dev 1832 1760 100
fr_dev 10486 11192 1000
ga_dev 15008 14162 1000
gd_dev 1634 1537 100
hi_dev 14286 10476 1000
hr_dev 14429 13888 1000
hu_dev 16757 15377 1000
hy_dev 21359 15959 1000
id_dev 10086 9982 1000
ig_dev 1124 1165 100
ilo_dev 808 834 100
it_dev 12340 12520 1000
ja_dev 29334 50743 1000
jv_dev 1001 994 100
km_dev 553 1897 100
ko_dev 17710 17560 1000
la_dev 10895 12183 1000
lt_dev 14285 13411 1000
lv_dev 15584 13843 1000
mg_dev 1621 1758 100
mi_dev 2988 2981 100
mk_dev 18411 17093 1000
ms_dev 9490 9162 1000
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Target Lang Target Tokens Num. Lines
mBERT XLM-R

my_dev 4976 3125 100
ne_dev 1949 1382 100
nl_dev 12195 12649 1000
nn_dev 15423 16451 1000
pdc_dev 1570 1616 100
pl_dev 14440 14606 1000
pt_dev 10296 10399 1000
ro_dev 12034 12160 1000
ru_dev 13738 13835 1000
rw_dev 1387 1326 100
sd_dev 3302 2834 100
sk_dev 15142 14131 1000
sl_dev 13155 12487 1000
so_dev 1800 1394 100
sr_dev 15092 12946 1000
sv_dev 13972 15943 1000
ta_dev 22159 16942 1000
tg_dev 1681 1918 100
th_dev 60413 72584 1000
tl_dev 7327 7352 1000
tr_dev 15011 13392 1000
tt_dev 17031 19500 1000
ug_dev 2663 2360 100
uk_dev 17042 16073 1000
ur_dev 14189 11129 1000
vi_dev 8754 8755 1000
yo_dev 1354 1463 100
zh_dev 22833 37362 1000

Table 27: NER Target Token Counts

Source Source Tokens Num. Examples
mBERT XLM-R

af_train 18515 18890 1000
be_train 16393 14160 1000
bg_train 15437 14366 1000
bn_train 13055 10154 1000
br_train 14047 14708 1000
ca_train 9613 9694 1000
ckb_train 8503 16505 1000
cs_train 15216 14844 1000
cy_train 15764 15279 1000
da_train 12868 13042 1000
de_train 14609 15870 1000
el_train 22705 17864 1000
eo_train 12347 11731 1000
es_train 10965 10681 1000
et_train 16654 15899 1000
eu_train 16099 17887 1000
fi_train 16416 16082 1000
fr_train 10894 11579 1000
ga_train 15228 14307 1000
hi_train 14020 10345 1000
hr_train 14915 14417 1000
hu_train 17808 16664 1000
hy_train 20793 15550 1000
id_train 9783 9839 1000
it_train 11989 12270 1000
ja_train 31087 52334 1000
ko_train 18293 18308 1000
la_train 10372 11720 1000
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Source Source Tokens Num. Examples
mBERT XLM-R

lt_train 14992 14137 1000
lv_train 15948 14318 1000
mk_train 18375 17090 1000
ms_train 9696 9343 1000
nl_train 13036 13436 1000
nn_train 15713 16631 1000
pl_train 14120 14366 1000
pt_train 10089 9931 1000
ro_train 12168 12339 1000
ru_train 13698 13703 1000
sk_train 14820 13884 1000
sl_train 12743 11799 1000
sr_train 15033 12886 1000
sv_train 13362 15089 1000
ta_train 22669 17414 1000
th_train 59299 70855 1000
tl_train 7363 7399 1000
tr_train 14478 12894 1000
tt_train 16811 19726 1000
uk_train 17615 16453 1000
ur_train 14422 11286 1000
vi_train 8981 8983 1000
zh_train 21121 34428 1000

Table 28: NER Source Token Counts
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