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Abstract

Proficient multilingual speakers often intention-
ally switch languages in the middle of a con-
versation. Similarly, recent reasoning-focused
bilingual large language models (LLMs) with
strong capabilities in both languages ex-
hibit language mixing—alternating languages
within their chain of thought. Discouraging this
behavior in DeepSeek-R1 was found to degrade
accuracy, suggesting that language mixing may
benefit reasoning. In this work, we study lan-
guage switching in Chinese-English bilingual
reasoning models. We identify reinforcement
learning with verifiable rewards (RLVR) as the
critical training stage that leads to language
mixing. We show that language mixing can en-
hance reasoning: enforcing monolingual decod-
ing reduces accuracy by 5.6 percentage points
on MATH500. Additionally, a lightweight probe
can be trained to predict whether a potential lan-
guage switch would benefit or harm reasoning,
and when used to guide decoding, increases
accuracy by 2.92 percentage points. Our find-
ings suggest that language mixing is not merely
a byproduct of multilingual training, but is a
strategic reasoning behavior.!

1 Introduction

Multilingual speakers sometimes mix languages
during reasoning, which is a phenomenon known in
linguistics as code-switching (Appel and Muysken,
2005; Ozkara et al., 2025). Though switching
languages seems to disrupt coherence, multilin-
gual speakers persist in this behavior for practical
reasons. Languages vary in how they organize
thoughts and some express certain concepts (e.g.,
numbers) more efficiently than others (Boroditsky,
2001; Haun et al., 2011; Pica et al., 2004; Miura
et al., 1988). Language mixing helps them express
ideas more precisely, fill lexical gaps when one lan-
guage falls short (Kuzyk et al., 2020), and reduce

!Code available at https://github.com/1iyihao0302/
language-mixing-in-11lm-reasoning

cognitive load by directing more mental effort to-
ward the reasoning task itself (Lehti-Eklund, 2013).
Large Language Models (LLMs) have evolved
from English-centric models to those with strong
multilingual abilities, with some achieving true
bilingualism through balanced English-Chinese
training (Liu et al., 2024; Qwen et al., 2025). How
these bilingual models differ from primarily mono-
lingual LLMs raises intriguing questions for com-
putational linguists. One striking phenomenon in
this space is language mixing, with recent state-
of-the-art RL-trained English-Chinese bilingual
LLMs such as DeepSeek-R1 (Guo et al., 2025)
and QwQ-32B (Team, 2024) displaying human-
like language mixing behavior in their chain-of-
thought: they respond in languages different from
the prompt and switch languages (sometimes re-
peatedly) during their reasoning process.

Q: Convert the point (0,3) in rectangular coordinates to polar coordinates.
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Figure 1: An illustration of bilingual code-switching
improving reasoning performance. Two monolingual
speakers, one in Chinese and the other in English, fail
to solve a math problem, while an LLM robot that
code-switches between both succeeds. Black text de-
notes language-agnostic content.

Proficient multilingual speakers of both lan-
guages can benefit from reasoning with code-
switching. Can LLMs similarly benefit? (Fig-
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Figure 2: Overview of our analysis of language mixing in LLM reasoning. (a) We identify common language
mixing patterns and triggers that lead to increased language mixing (Section 2). (b) We compare unconstrained
bilingual outputs with constrained monolingual outputs to evaluate the impact of language mixing on reasoning
performance (Section 3). (c) We train a probe to classify code-switches as {Beneficial, Neutral, or Harmful},

and use it to guide decoding (Section 4).

ure 1). The parallel seems plausible: both humans
and LLMs potentially share needs for expressivity,
precision, reduced cognitive load, and efficiency
(which for LLMs translates to using fewer tokens
and shorter context windows). Supporting this,
DeepSeek-R1 demonstrates a performance degra-
dation when a language consistency reward is in-
troduced during training (Guo et al., 2025). These
findings motivate our study into how language mix-
ing affects LLM reasoning, centered on a key ques-
tion: Do LLMs reason better or worse with English-
Chinese language mixing?

To study whether language mixing causally im-
proves reasoning performance, we first observe
that stronger reasoning correlates with increased
mixing, and identify reinforcement learning with
verifiable rewards (RLVR) (Lambert et al., 2024)
as the critical training stage that induces it (Sec-
tion 2). We then test causation through interven-
tions in both directions: a) decreasing language
mixing through constrained monolingual decoding
degrades performance (Section 3); b) strategically
enhancing language mixing through probe-guided
decoding improves performance (Section 4). To-
gether, these findings suggest language mixing is
not a random artifact but a potentially deliberate,
useful strategy for enhancing LLM reasoning.

Our contributions are summarized as follows:

* We demonstrate that bilingual chain-of-thought
reasoning with language mixing causally en-
hances performance: unconstrained bilingual out-
puts significantly outperforming monolingually
constrained ones (p<0.05), and probe-guided
yields further gains.

* We identify RLVR as the critical training stage
that triggers language mixing, suggesting this

behavior may emerge from natural optimization.

* We introduce probe-guided decoding, which inte-
grates a lightweight real-time probe in the gener-
ation loop to trigger beneficial bilingual switches,
improving reasoning with minimal overhead.

2  Where does Language Mixing Occur?

2.1 Detecting Code-Switches

Code-switching, by definition, means switching
between languages in a single conversation. As
illustrated in Fig.2(a), segments of Chinese (in
green) and segments of English (in purple) alter-
nate, and these transitions represent code-switching
occurrences. In written text, elements such as
mathematical expressions or code (typically com-
posed of English tokens) are language-agnostic and
universally used across speakers of different lan-
guages. Thus, a paragraph written in Chinese that
includes mathematical expressions using English
tokens should not be considered language mixing.
We define a code-switching position as the first
text token (in either English or Chinese) where the
language switches from one to another, excluding
any language-agnostic content such as math ex-
pressions. These positions correspond to the arrow
markers shown in Fig. 2(a).

Based on this definition, we implement a rule-
based procedure to detect Chinese-English code-
switching. We first filter out language-agnostic
tokens (e.g., LaTeX math) and then distinguish
English from Chinese tokens using ASCII encod-
ing (see Appendix A.4 for details). We evalu-
ate code-switching behavior with three key statis-
tics on bilingual datasets that contain parallel En-
glish—Chinese versions of each problem (by trans-
lating from the original language):
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Table 1: Language-mixing statistics across QwQ and DeepSeek-R1 series for Chinese (ZH) and English (EN)
prompts. %Prob.: percentage of problems with code-switch; Switch: average number of switches per problem;
Tokens/Switch: mean tokens between consecutive switches; Non-prompt (%): fraction of tokens in a language
different from the prompt; White: pretraining only; Grey: SFT + RLHF; Pink: RLVR. DeepSeek-V3-Base is
excluded from interpretation due to frequent generation of irrelevant content.

ZH EN
Model % Prob. Switch Tokens/Switch Non-prompt (%) % Prob. Switch Tokens/Switch Non-prompt (%)
Qwen2.5-32B 14.8% 1.98 667.96 1.42% 0.0% 0.00 0.00 0.00%
Qwen2.5-32B-Instruct 8.8% 0.36 1986.71 0.23% 0.0% 0.00 0.00 0.00%
QwQ32B-Preview 77.4% 7.22 217.03 4.28% 0.6% 0.02 1.50 x 10° 0.00%
QwQ32B 29.2% 6.20 585.85 0.48% 0.5% 0.01 2.85 x 10° 0.00%
DeepSeek-V3-Base 32.2% 9.95 190.78 2.53% 4.2% 1.51 980.76 1.18%
DeepSeek-V3 8.4% 0.39 3574.98 0.08% 0.4% 0.01 1.50 x 10° 0.02%
DeepSeek-R1-Zero 10.9% 0.21 7048.94 0.82% 0.0% 0.00 0.00 0.00%
DeepSeek-R1 27.1% 4.39 688.31 0.38% 0.0% 0.00 0.00 0.00%
DeepSeek-R1-Distill-Llama-8B 23.6% 2.46 1128.53 0.31% 0.0% 0.00 0.00 0.00%
DeepSeek-R1-Distill-Qwen-32B  21.2% 1.94 1292.15 0.24% 0.0% 0.00 0.00 0.00%

* Switch count: The total number of switches
(back and forth) between languages when pro-
cessing problems under English and Chinese
prompts.

* Tokens between switches: The average num-
ber of tokens generated between consecu-
tive language switches, quantifying how fre-
quently the model alternates between lan-
guages measured in tokens.

* Non-prompt language fraction: The frac-
tion of tokens generated in a language dif-
ferent from the prompt language (shown as
the shaded area between arrows in Fig. 2(a)),
measuring how long the model stays in the
non-prompt language. This evaluates the ex-
tent and persistence of language mixing.

2.2 Tracing the Evolution of Language
Mixing in LLMs

The development of multilingual reasoning LLMs
has followed a temporal progression of introducing
training strategies, with the introduction of gen-
erative pre-training, post-training methods such
as supervised fine-tuning (SFT), reinforcement
learning with human feedback (RLHF) (Ouyang
et al., 2022), and most recently, reinforcement
learning with verifiable rewards (RLVR). RLVR
replaces learned reward models with simple "pass/-
fail" checks that assign fixed rewards for correct
outcome (Lambert et al., 2024), achieving remark-
able gains in reasoning (Chen et al., 2025a; Xie
et al., 2025). Frequent English—Chinese mixing
between the two highest-resource languages in
open-weight models like QwQ32B (Team, 2024)

and DeepSeek-R1 (Guo et al., 2025) is a recent
observation, likely triggered by the newly popu-
larized RLVR training strategy. Here, we aim to
identify exactly which training stage(s) trigger such
pronounced English—Chinese mixing.

To do so, we trace the evolution of language-
mixing behavior across iterations of QwQ32B
and DeepSeek-R1 models. For the QwQ series,
we examine Qwen2.5-32B (base model with pre-
training only), Qwen2.5-32B-instruct (post-trained
with SFT and RLHF) (Qwen et al., 2025), and
two generations trained with RLVR: QwQ32B-
preview (Team, 2024) and QwQ32B (Team, 2025).
For the DeepSeek-R1 series, we analyze DeepSeek-
V3-base (the foundation model with only pre-
training), DeepSeek-V3 (with SFT and RLHF ap-
plied) (Liu et al., 2024), DeepSeek-R1-zero (a ver-
sion without language consistency reward, where
language mixing was documented), DeepSeek-R1
(with language consistency reward implemented),
and various DeepSeek-R1 distilled variants (Guo
et al., 2025). We evaluate language mixing occur-
rences across these models using MATHS00 (in
both English and Chinese versions). To ensure
comparable analysis, we prompt base and instruct
models for lengthy chain-of-thought reasoning to
match output lengths (see Appendix A.3).

Comparing the three model groups in Ta-
ble 1—base (white), SFT/RLHF (grey), and RLVR
(pink)—we observe that RLVR models exhibit the
most language mixing, followed by pre-trained
base models, while SFT/RLHF models demon-
strate the least mixing behavior.

Pretraining. During large-scale pretraining,
LLMs are exposed to web-scale multilingual
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(Phrase—level Switching for Precision or Efficiency

> ez x = 0 AT, FAABRIES undefined,

For example, when x=0, the division becomes undefined.

> Now, since AB is parallel to DE, the height from DE
to C is the same as from AB to C, scaled by the ratio
offB{LL triangles.

\\( Using English for Technical Terminology

> XELFERE Cauchy HiEHIEH,

This looks somewhat like a variant of the Cauchy equation.

>Fi0/8HE— Pythagorean identity:1 — sin®x = cos?x,
| remember there's a Pythagorean identity.

>E127548 polynomial long division I Xf 7572,

similar triangles
.

\ J

| remember there’s a method called polynomial long division.

(Switching to Match Reasoning/Answer Formats

> wait a minute , FFEZEHIA— FIXNEIL,
Wait a minute, / need to double-check this conclusion.

>maybeFRFEEHKEI—NZIH r(x),
Maybe [ need to find a polynomial r(x),

> frll , AR 213535, **Final Answer**
So, the final answer is 13535. **Final Answer**

.

) (Full Switching when Facing Cognitive Challenges

. /

>R EBIR | S ERMEERE T, 5
perhaps the problem is to show that CD = 4, ...[EN]
Maybe there’s an error in the question, or | misunderstood
something. Or, perhaps ...

> IFRIRREH—SHE. & , maybe | made a
mistake in calculating the cross product. ...[EN]
Maybe | still need to simplify further. Or, maybe ...

Figure 3: Four patterns of code-switching observed in LLM outputs. Top left: Phrase-level switching, often short
and used for precision or efficiency. Top Right: Switching to English for technical terms. Bottom left: Switching
to match reasoning or answer formats. Bottom right: Full switch to another language when the model is unable to

find a solution.

corpora, yet they rarely encounter natural code-
switched input, which is far more common in
speech than in text. But training data contains
natural code-switching (Wu et al., 2025), so LLMs
may learn to code-switch to some extent. As
Table 1 shows (white rows), Qwen2.5-32B exhibits
minimal but non-zero code-switching, while
DeepSeek-V3-Base displays frequent switches.
However, we discount DeepSeek-V3-Base’s be-
havior as it tends to ramble with irrelevant content
without proper ability to terminate generation with
[EOS].

SFT and RLHF. Supervised fine-tuning (SFT)
trains on human curated, high-quality responses
that are predominantly monolingual for human
readability, and reinforcement learning from hu-
man feedback (RLHF) (Ouyang et al., 2022) re-
inforces these monolingual outputs by assigning
them higher rewards. As a result, language mix-
ing is strongly suppressed: Qwen2.5-32B-Instruct
and DeepSeek-V3-Instruct exhibit the fewest
code-switching instances among the model fam-
ilies.

RLVR. RLVR does not constrain the reasoning
chain—what matters most is reaching the correct
outcome. By optimizing directly for outcome-
based rewards, it explores a much larger search
space without relying on human priors (similar to
the shift from AlphaGo to AlphaZero (Silver et al.,

2017)). We observe that RLVR models produce fre-
quent code-switching in both families, with QwQ-
32B-preview exhibiting the most mixing at 77.4%
for Chinese problems and 0.6% for English prob-
lems. As we later show, trajectories that mix lan-
guages tend to achieve higher accuracy, suggesting
that RLVR’s outcome-focused optimization natu-
rally encourages language mixing when it leads to
better performance.

To understand why RLVR triggers language
mixing, we analyze checkpoints from multiple
training steps using Tina-Open-RS1 (Wang et al.,
2025a). Our findings reveal that language mix-
ing increases progressively with RL training steps,
with code-switching responses consistently out-
performing monolingual responses within trajec-
tory groups. GRPO consequently upweights these
higher-advantage code-switching responses, rein-
forcing the mixing behavior (detailed experimental
settings and results in Appendix A.3).

Finally, we note findings within model families.
Contrary to claims in their paper (Guo et al., 2025),
DeepSeek-R1-Zero displays fewer code-switching
instances than DeepSeek-R1 in our testing. This
discrepancy may result from our use of greedy de-
coding. QwQ32B-preview exhibits substantially
more code-switching than the newer QwQ?32B re-
lease, potentially hinting at added language consis-
tency constraints in the updated model. We select
QwQ32B-preview for our subsequent analyses.
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Figure 4: Quantitative analysis of language-mixing behavior in Math500 responses. (a) Correlation between
problem difficulty level and response token count for Chinese prompts. (b) Normalized switch count and non-
prompt language fraction as functions of token count, showing both code-switching frequency and non-prompt
language use increase as chain-of-thought reasoning lengthens.

2.3 Characterizing Code-Switching Behavior

Code-switching patterns. Based on analysis of
QwQ32B-Preview outputs, we identify four main
patterns of switches as shown in Figure 3. The
most common pattern is phrase-level switching in
the top-left examples of Figure 3, driven primar-
ily by a need for precision or efficiency. Certain
concepts may be more clearly expressed in one lan-
guage, with less ambiguity and often using fewer
tokens. For instance, the use of undefined in the
first example is more precise and less ambiguous
than its Chinese counterparts: J&7& . (which can
mean “meaningless,” as in “He felt his effort was
meaningless”) or 7 i€ X (which may imply some-
thing is not yet defined but could be). It also re-
quires fewer tokens—undefined is a single token,
while both Chinese alternatives require two.

The second pattern (top right) involves switch-
ing to English for domain-specific terminology,
likely because the model has limited capacity to
store specialized translations across multiple lan-
guages. The third pattern (bottom left) shows lan-
guage switching to conform to specific reasoning
or answer formats, such as interjecting "wait, let
me double check this" or concluding with "Final
answer: ..." in English within otherwise Chinese
responses. These formats may originate from su-
pervised fine-tuning on data containing such pat-
terns or reflect the model’s emergent self-reflective
cues that aren’t well-aligned across languages. The
fourth pattern (bottom right) involves switching
entirely to another language when the model en-
counters difficulties or recognizes errors in its rea-
soning. This behavior may suggest a strategy to
"clear its mind" or to seek cues in another language.
However, this pattern typically appears in more

challenging problems, and even after switching lan-
guages, the model often fails to reach the correct
solution.

These patterns, particularly the first two, mirror
common human multilingual behavior and reveal
the specific mechanisms through which language
mixing may enhance reasoning.

Quantifying language mixing behavior. In
QwQ-32B-preview responses to the MATH500
dataset, 77.4% of answers to Chinese prompts ex-
hibit language mixing, with an average of 7.22
code-switches per problem, compared to just 0.6%
for English prompts. It is already notable that En-
glish prompts (with math expressions fully in En-
glish tokens) occasionally trigger Chinese token
generation. However, Chinese-to-English switch-
ing occurs far more frequently, indicating that En-
glish remains the model’s dominant or preferred
language for reasoning.

We analyze how language mixing behavior re-
lates to problem complexity and response length.
Figure 4(a) demonstrates the correlation between
token count in responses to Chinese prompts and
MATH500 problem difficulty levels (5 discrete lev-
els). Figures 4(b) and (c) quantify switch frequency
and non-prompt language fraction as functions of
token count. Since these statistics are normalized
by token count, we can conclude that longer chain-
of-thought reasoning exhibits slightly increased
code-switching frequency and a growing fraction of
non-prompt language use. This indicates that when
tackling more difficult problems, the model adopts
as a strategy to use greater language mixing—both
switching between languages more frequently and
shifting more toward the non-prompt language.
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Figure 5: Token-level constrained decoding: We mask
out tokens from the undesired language, forcing genera-
tion in the target language.

3 Do LLMs reason better or worse with
language mixing?

3.1 Constrained Decoding

We expect that reasoning trajectories differ between
monolingual and bilingual thinking, as languages
have different structural focuses and are tied to dis-
tinct contexts (Keysar et al., 2012). Our goal is to
determine whether these trajectories actually differ
in practice and if one is superior to others in reason-
ing outcomes. Similar to how bilingual humans can
be instructed to respond in a single language, we
can constrain LLMs to generate outputs exclusively
in one language. By applying this constraint, we
ablate code-switching capabilities from the model,
enabling direct comparison between unconstrained
bilingual outputs and constrained monolingual out-
puts in terms of reasoning performance.

Specifically, during decoding we enforce token-
level language constraints by allowing only tokens
from the designated language (Fig. 5). We apply
two types of constraints. In the no-switch mode,
we prohibit the model from generating tokens in a
particular language by masking those tokens in the
vocabulary, which enforces strictly monolingual
output. In the forced-switch mode, the model is
required to switch languages at a specified token
position, at which point only tokens from the target
switch-to language are allowed.

3.2 Constrained vs. Unconstrained Decoding

Language mixing can enhance reasoning. Un-
der the default unconstrained decoding, overall
accuracy for MATH500 in English and Chinese is
balanced. We then compared unconstrained bilin-
gual outputs with constrained monolingual outputs
under Chinese prompts (Figure 6(a)) and English
prompts (Figure 6(b)). Forcing responses to be
monolingual Chinese under Chinese prompts re-

duces accuracy by 5.6 pp. A paired t-test confirms
this drop is statistically significant (p = 0.0017).
These results provide strong evidence that LLMs
can reason more effectively with language mixing
than when restricted to monolingual outputs on cer-
tain reasoning tasks, potentially by leveraging the
strengths of both languages.

Language mixing may also hurt reasoning. We
then analyzed responses on Gaokao Cloze prob-
lems (Figure 7). Unconstrained responses to Chi-
nese prompts outperform those to English prompts.
This is as expected, since Gaokao-like problems
(from the Chinese college entrance examination)
would predominantly appear in Chinese within the
pretraining data.

But contrary to our observations in MATH500,
constrained monolingual Chinese decoding out-
performs unconstrained bilingual decoding (Fig-
ure 7(a)). We attribute this to an imbalance in
monolingual reasoning capabilities where Chinese
performance exceeds English for these problems.
However, the model still defaults to switching into
English, a strategy that is generally helpful but
detrimental in this setting.

These negative results for Gaokao Cloze do not
imply that language mixing is inherently harm-
ful. Rather, they suggest that QwQ32B-preview’s
built-in mixing strategy is suboptimal. In the next
section, we show that strategic language mixing,
guided by a probe to decide when to switch, consis-
tently improves LLM performance across datasets.

4 Can we steer the model toward
strategic language mixing?

4.1 Probe-Guided Decoding

As we’ve shown in the previous section, language
mixing is not always beneficial for reasoning.
Code-switching can help, harm, or have no impact
on the reasoning trajectories, which consequently
impacts the overall reasoning outcome. Harm-
ful code-switches may disrupt coherent reasoning
chains, while helpful ones can reduce cognitive de-
mands, address lexical gaps, or beneficially reset
problematic reasoning directions. Here, we hypoth-
esize that the beneficial, harmful, or neutral impact
of each code-switch follows predictable patterns
that could be decoded from model activations dur-
ing generation.

To quantify the impact of code-switching, we
compare full generations with and without a switch
at each token position and label switches as
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Figure 6: Comparison of accuracies for unconstrained, constrained, and probe-guided decoding on MATH500.
(a) Chinese prompts (green); (b) English prompts (purple). Bar charts show accuracy for Chinese-only (solid
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Figure 7: Comparison of accuracies for unconstrained, constrained, and probe-guided decoding on Gaokao Cloze.

(a) Chinese prompts (green); (b) English prompts (purple).

{Beneficial, Neutral, or Harmful}. We apply
constraints at a single token position, either by
preventing a natural switch (no-switch mode) or
forcing a switch where one would not naturally
occur (forced-switch mode). A switch is labeled
Beneficial if it leads to a correct answer that the
monolingual version does not; Harmful if it causes
an otherwise correct answer to become incorrect;
and Neutral if it has no effect on the final output.

In practice, we collect all natural switch-
ing positions and synthesize additional switches
at high language entropy positions. We then
train a lightweight three-layer MLP probe (Fig.8)
on hidden activations extracted from the LLM.
We augment activations with three meta fea-
tures: @ is_natural (natural or synthetic switch),
@ switch_direction (Chinese to English or vice
versa), and @ language_entropy (entropy of the
model’s predicted language distribution).

With the trained probe, we can control the decod-
ing process by predicting online whether a code-
switch is beneficial or harmful, and applying token-
level constraints accordingly. If a natural switch
is classified as Harmful, we suppress it using con-
strained decoding in no-switch mode. If a high lan-
guage entropy position is classified as Beneficial,
we trigger a forced switch at that step using forced-
switch mode. This allows us to steer the model
toward strategic language mixing with minimal
computational overhead, using only a lightweight
and easily deployable MLP probe during decoding.

4.2 Performance of Probe-Guided Decoding

Probe achieves positive utility score. Since
the probe is ultimately used to guide decoding
decisions rather than to precisely classify code-
switching impacts, its effectiveness should be as-
sessed in terms of its practical impact on multilin-
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gual reasoning, i.e., the overall performance gain
compared to unconstrained decoding, rather than
classification metrics like F1 score. Here, we use
decision utility as a measure to approximate the ef-
fectiveness of the probe given the helpful/ neutral/
harmful ground truth labels we collected from a
large number of reasoning chains with code-switch
interventions. (see Appendix A.7).

Specifically, we assign a utility score of +1
when the probe correctly classifies a Harmful or
Beneficial switch, and a score of —1 when it sup-
presses a Beneficial switch or allows a Harmful
one. We achieve positive utility score for all
trained datasets, with the highest utility score be-
ing s = 0.0107 ~ 1/93. While this score may
appear small, each Chinese prompt naturally re-
sults in about 8 potential code-switches on average.
This means that 1 in 12 questions is expected to
benefit directly from a correctly identified helpful
switch, corresponding to a potential 8.3 pp gain in
accuracy.

2: Concat. Meta Features
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Figure 8: Architecture of the probe. The model
classifies each code-switch as {Beneficial, Neutral,
Harmful} using hidden activations at the switching step
along with meta features.

Probe-Guided decoding further improves rea-
soning. We integrated the trained probe with
optimal thresholds into our end-to-end decoding
pipeline to assess its practical impact on LLM rea-
soning accuracy. We evaluate this intervention on
the MATH500 and Gaokao Cloze, where it yields
accuracy improvements of 1.62 pp and 2.92 pp,
respectively.

We evaluate the probe’s effectiveness both
within and across datasets. Given the relatively
small problem sets, we conducted five random
train/test splits to ensure robust evaluation. As
shown in Table 2, our results demonstrate consis-
tent improvements in both MATH500 and Gaokao
Cloze. We further applied probes trained on one
dataset to different test sets. Results show consis-
tent accuracy improvements across most scenarios

(Table 3), demonstrating that our probe learns gen-
eralizable patterns that enhance reasoning through
strategic language mixing.

Without improving the LLM’s inherent reason-
ing ability in either language, we achieve noticeable
performance improvements solely by training a lan-
guage decision module (the probe) to guide strate-
gic language mixing. This is analogous to teach-
ing a bilingual speaker to mix languages wisely
without teaching them more math—the underlying
knowledge remains unchanged, but the strategic
mix of languages enhances problem-solving effec-
tiveness. Importantly, these gains are not due to
simple language dominance effects. For Gaokao
Cloze, where Chinese dominates, our probe-guided
strategy does not simply constrain all outputs to
Chinese but instead introduces strategic English
mixing, with 66.8% of interventions promoting En-
glish usage.

Examining the probe’s switching strategy re-
veals interesting patterns. Examples of helpful
switches include converting "1 F5-Jitil FU 7% A~ 55
3" to "Cauchy-Schwarz inequality” to use more
grounded English terminology, and in response to a
Chinese prompt, switching from "FiAZ" to "no-
tation" to create stronger referential coherence with
the previously introduced notation (see full context
in Appendix A.10).

Overall, as shown in the left panels of Figures 6
and 7, probe-guided strategic language mixing
consistently outperforms the monolingual base-
line (dashed line) by selecting near-optimal mixing
strategies that boost reasoning performance.

5 Related Work

Multilingual Reasoning in LLMs. As LLMs
have evolved from primarily English-centric sys-
tems to incorporate more balanced multilingual
corpora, they have developed substantial multilin-
gual capabilities (Cui et al., 2023; Faysse et al.,
2025; Yang et al., 2024; Liu et al., 2024). How-
ever, these models still underperform when rea-
soning in non-English languages, particularly low-
resource ones. This is evidenced by their superior
performance on English-translated questions (Shi
et al., 2022) and their tendency to switch to En-
glish against instructions (Marchisio et al., 2024;
Hinck et al., 2024; Guo et al., 2025), a limitation
long attributed to training data imbalance (Kew
et al., 2024; Papadimitriou et al., 2023). Mech-
anistic interpretability studies have investigated
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Table 2: Within-dataset evaluation of probe-guided decoding on MATH500 and Gaokao Cloze. Accuracy gain is

reported in percentage points (pp).

Dataset Test Utility (mean + std) Accuracy Gain (pp; mean + std)
MATHS00 0.0056 + 0.0029 +1.62 +1.01
Gaokao_Cloze 0.00014 +£ 0.0040 +2.92 +2.12

Table 3: Cross-dataset generalization of probe-guided decoding, indicating some transferability across datasets.

Train — Test

Test Utility Accuracy Gain (pp)

MATHS500 — Gaokao_Cloze —0.0004 +2.12

Gaokao_Cloze — MATHS500 +0.0024 +3.00
Evaluation on AIME2024

MATHS500 — AIME2024 +0.0036 +0.00

Gaokao_Cloze — AIME2024 +0.0054 +3.33

MATH500 + Gaokao_Cloze — AIME2024 +0.0033 +3.00

whether multilingual LLMs truly reason in non-
English languages, revealing that some models can
"think" in latent non-English languages for specific
tasks (Wendler et al., 2024; Zhong et al., 2024a)
and that distinct language-specific neural circuits
exist within these systems (Zhao et al., 2024; Tang
et al., 2024; Zhang et al., 2024). With the same aim
of understanding multilingual reasoning in LLMs,
we focus on bilingual code-switching within re-
sponses to examine how polyglot models reason
differently from proficient monolingual systems.

Code-Switching in LLMs. Code-switching can
emerge in LLMs from exposure to human-
generated mixed-language text in training cor-
pora (Wang et al., 2025b). The unintended mix-
ing of languages in LLM outputs has been nega-
tively characterized as language confusion, primar-
ily observed when models processing low-resource
languages shifted toward English during genera-
tion (Marchisio et al., 2024; Chen et al., 2025b;
Wang et al., 2025b).

Only recently have models begun to more
frequently mix English and Chinese-two high-
resource and structurally distinct languages-within
their reasoning chains. This behavior has emerged
in models trained with reinforcement learning (Guo
et al., 2025; Team, 2024; Xie et al., 2025), where
optimizing for outcome-based rewards appears
to override the preference for monolingual out-
put. Notably, enforcing language consistency in
DeepSeek-R1 resulted in a measurable drop in
performance, suggesting a trade-off between lan-
guage consistency and reasoning ability (Guo et al.,
2025). Though a follow-up study using a smaller

model claimed language mixing harms reasoning,
this conclusion was based on a single logic puz-
zle dataset and lacks generalizable evidence (Xie
et al., 2025). Given these conflicting findings, our
work aims to systematically evaluate the impact of
code-switching on reasoning performance.

6 Conclusion

We investigate the impact of English-Chinese lan-
guage mixing on LLM reasoning. First, we find
that language mixing correlates with question diffi-
culty, and by tracing model development, we show
that RLVR training is the key trigger for this behav-
ior. To establish causality between increased mix-
ing and reasoning gains, we compare unconstrained
bilingual decoding to constrained monolingual de-
coding on MATH500, finding a statistically signifi-
cant accuracy boost for the bilingual outputs. Next,
we train a lightweight probe to predict the utility
of each potential switch and incorporate it into the
decoding process across all datasets, resulting in
consistent performance improvements over mono-
lingual responses. Altogether, these results suggest
that language mixing is not a random artifact of
multilingual training but a deliberate strategy that
LLMs adopt to improve complex reasoning.

For multilingual LLM reasoning, our findings
suggest that language mixing can be beneficial,
calling for caution before applying rigid language
constraints and motivating future causal analyses.
More broadly, we propose that language mixing
can extend beyond spoken languages, occurring
across modalities (Jiang et al., 2022; Chern et al.,
2025). We encourage future research to explore
these broader forms of language mixing in LLMs.
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7 Limitations

Our study is limited in scope. The benchmarks
we tested are limited to math tasks, and evaluating
other domains such as science or logic puzzles is
needed to assess the generality of our conclusions
on LLM reasoning. We only focus on English-
Chinese mixing, and it remains an open question
whether similar patterns extend to other language
pairs. Intervention analyses focus on QwQ32B-
Preview, as broader evaluation across models is
limited by the lack of access to RL-trained mod-
els that exhibit language mixing (public models
such as DeepSeek-R1 and its distilled variants are
constrained by enforced language consistency).

We also lack strictly controlled comparisons
across training stages. RLVR models are typically
trained with additional stages such as SFT, prevent-
ing us from isolating the specific contribution of
RLVR. Our claim that RLVR promotes language
mixing is therefore preliminary, and future work
should test this more systematically on controlled
model variants.

Finally, our use of hard constrained decoding
may inherently reduce performance by imposing
an extra language constraint. Future work could
explore finer or continuous control over switching
frequency and provide stronger empirical compar-
isons between unconstrained and constrained de-
coding.
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A Appendix
A.1 Overall Setup

All model inference is conducted using half-
precision (float16) quantization. For the Qwen
model series, we run inference on either three
NVIDIA V100 GPUs (32 GB each) or a single
NVIDIA A100 GPU (80 GB). Tasks involving
probing and probe-guided decoding, which require
extracting model activations are executed exclu-
sively on the A100 GPUs. The DeepSeek family of
models (including V3 and R1 variants) are queries
with OpenRouter APL.

Decoding is performed using greedy decoding
with a temperature of 0.0, ensuring deterministic
outputs across runs. We use flexible token limits,
allowing each response to continue until the model
emits an end-of-sequence token. In practice, we
iteratively doubled the token budget until EOS or
until a looping pattern was detected.

A.2 Evaluation datasets

We evaluate model behavior across four math rea-
soning benchmarks:

* Math500 (Lightman et al., 2023): A cu-
rated dataset of 500 high school and early
undergraduate-level math word problems, de-
signed to test symbolic reasoning and arith-
metic across diverse topics.

* AIME2024 (Mathematical Association of
America, 2024) Invitational Mathematics Ex-
amination): A benchmark of 30 challeng-
ing math problems targeted at advanced high
school students.

* Gaokao Cloze: A set of standardized math
questions from the Chinese college entrance
examination. These problems are extracted
from the AGIEval benchmark (Zhong et al.,
2024b). Gaokao Cloze contains 118 fill-in-
the-blank problems.

All problems are translated into both English and
Chinese to support code-switching and bilingual
evaluation. Translations are first generated using
GPT-4o, followed by manual review and correc-
tion.

We evaluate model performance using Pass@1
accuracy, defined as the percentage of problems
correctly solved on the first attempt. Specifically,
We extract the final answer from the model’s output
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Table 4: Pass@1 and token usage statistics by dataset and prompt language.

Dataset Prompt Language Pass@1 Token Count (mean =+ std, max)
MATH500 Chinese 0.906  2093.32 + 3492.81 (32768)
English 0.926  2224.41 + 2609.91 (32768)
AIME2024 Chinese 0.367  11094.57 4+ 10110.03 (32768)
English 0.533  6741.53 + 3738.44 (16384)
Chinese 0.877  1516.70 £ 1050.03 (5972)
GAOKAO_CLOZE English 0.843  2473.74 + 1811.84 (8192)

using a pattern-based parser (\boxed) and compare
it against the ground truth. For outputs that do not
exactly match the reference, we perform manual
evaluation to account for correct answers expressed
in alternative formats. When compared to the
QwQ32B-preview (Team, 2024) report (MATH500
90.6%, AIME 50.0%), we observe no discrepan-
cies in reasoning outcome (Table 4).

A.3 RLVR Triggers Language Mixing

Identifying training stages that trigger language
mixing. To ensure a fair comparison, we ex-
plicitly prompt both base and SFI/RLHF mod-
els to produce extended chain-of-thought reason-
ing. On MATHS500, their average token counts
closely match those of the RLVR models but re-
main slightly lower (Table 5).

How does RLVR trigger language mixing? We
examine RLVR checkpoints at successive train-
ing steps, where outcome rewards rise monotoni-
cally. Using Tina-Open-RS1 (LoRA+GRPO on
DeepSeek-R1-Distill-Qwen-1.5B) (Wang et al.,
2025a), we generate responses to a held-out set
of English MATHS500 problems and compare in Ta-
ble 6(a) degree of language mixing and (b) average
reward relative to group average for code-switching
(CS) vs monolingual (Mono) responses. We find
that:

* Language mixing increases progressively with
RL training steps (25.0% -> 100%).

* Code-switching responses consistently out-
perform monolingual responses within tra-
jectory groups (Avg Score CS > Avg Score
Mono). GRPO thus upweight these higher-
advantage code-switching responses, reinforc-
ing the mixing behavior.

A4

First, we remove domain-specific mathematical
content, which is language-agnostic by nature. We
strip LaTeX-style math expressions using regular
expressions that match content enclosed in dollar
signs, () delimiters, and [] environments. In addi-
tion, we filter digits, parentheses, brackets, mathe-
matical operators, and Greek letters, as these sym-
bols are typically language-agnostic in reasoning
contexts.

Second, we detect language boundaries by iden-
tifying continuous runs of characters belonging
to either the Chinese Unicode range (U+4E@0Q to
U+9FFF) or ASCII alphabetic characters. To im-
prove precision, we implement the following filter-
ing rules for English token candidates: @ We ex-
clude domain-specific terms common in mathemat-
ical discourse, including mathematical functions
(e.g., sin, cos, In), standard variable names (e.g.,
ab, bc), and geometric designations (e.g., ABCD).
0 Single-letter English tokens are discarded to pre-
vent false positives from isolated variable names.
® All-capitalized sequences of 2-3 characters are
filtered, as these typically represent geometric enti-
ties rather than English words.

Finally, we identify language transitions by
tracking adjacent language segments. A code-
switch is recorded when the language classification
of adjacent valid segments changes (e.g., from Chi-
nese to English or vice versa). For each switch, we
capture the switch direction, the text content at the
boundary, and the position within the full response.
Additionally, we track the starting language of each
response to establish the baseline language context.

Rule-Based Code-Switch Detection

A.5 Detailed Implementation of Constrained
Decoding

We apply constrained decoding using the same de-
tection rule as in Appendix A.4, but perform code-
switch detection online. Our state-transition model
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Table 5: Mean token counts for Chinese (CH) and English (EN) prompts on MATH500 (float16, V100 x 3, truncated

at 4096).
Model CH Token Count EN Token Count
Qwen2.5-32B (Length-matched) 1041.37 970.75
Qwen2.5-32B-Instruct (Length-matched) 671.66 1008.99
QwQ32B-Preview 1580.44 1869.58
QwQ32B 3419.92 3546.39
DeepSeek-V3-Base (Length-matched) 1556.07 1792.66
DeepSeek-V3 (Length-matched) 1441.09 1604.09
DeepSeek-R1-Zero 1863.33 2145.74
DeepSeek-R1 2413.32 2457.40
DeepSeek-R1-Distill-Llama-8B 2467.37 2600.42
DeepSeek-R1-Distill-Qwen-32B 2185.93 2473.86

Table 6: Evolution of Code-Switching (CS) and Monolingual (Mono) performance across RL steps. Mean scores

relative to the group average are shown in parentheses.

RL Step Avg. Score (CS) Avg. Score (Mono) % CS
00 0.438 (+0.118) 0.281 (-0.039) 25.00%
400 0.524 (+0.047) 0.386 (-0.091) 65.63%
600 0.662 (+0.107) 0.407 (-0.148) 57.81%
800 0.681 (+0.064) 0.441 (-0.176) 73.44%
1200 0.555 (-0.007) 0.611 (+0.049) 85.94%
1800 0.688 (+0.000) N/A 100.00%

2400 0.688 (+0.000) N/A 100.00%

is defined as follows:

e Math mode: Enter math mode when a left
bracket—{ , [ or (—is detected. Exit math
mode when the matching right bracket—7} , ]
or )—appears.

* Chinese/English mode: Switch to Chinese
mode if a token’s Unicode code point falls
within the CJK range. Otherwise, remain or
switch to English mode.

To handle composite Chinese tokens—pairs of
tokens that only form Chinese characters when
combined—we scan for these specific sequences.
Upon detection of any such composite token, we
transition into Chinese mode.

A.6 Probing for Beneficial Code-Switches

To identify code-switching positions that are bene-
ficial to reasoning accuracy, we train a lightweight
probe (Figure 8) on hidden representations ex-
tracted from QwQ-32B-Preview. Specifically, we
concatenate activations from a selected set of

transformer layers and project it into a lower-
dimensional space using a PCA transformation fit-
ted on the training set. We also add three related
Meta Features: @ is natural (whether a switch
is natural or synthetic), @ switch direction
(whether the switch direction is from Chinese to En-
glish or not), ® language entropy (the entropy
calculated from the model probability of output
Chinese or English token). These feature are ap-
pended to the hidden embedding after PCA.

The probe comprises two separate three-layer
MLP heads—one for “no-switch” and one for
“forced-switch” decoding. We train it by jointly
minimizing (1) the negative decision utility and
(2) a weighted cross-entropy loss against an ap-
proximated three-class distribution (beneficial/neu-
tral/harmful). Rather than using one-hot labels,
we infer this distribution from the change in token
count: if decoding without a switch produces sub-
stantially more tokens, we treat code-switching as
more likely to be beneficial.

To address class inbalance, we use a class
weight of {1.0, 0.1, 1.0} for {Beneficial,
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Neutral, Harmful} to downweight the majority
class (Neutral) and upweight the minority class
(Beneficial and Harmful). During inference, the
probe outputs predicted probabilities for each class
after softmax. To maximize decision utility, we
apply a thresholding strategy: if the predicted prob-
ability of a harmful switch exceeds a threshold
Tharm» We suppress the switch; if the predicted prob-
ability of a beneficial switch exceeds a threshold
Thelp» W€ enforce the switch. Thresholds are se-
lected via a grid search on a held-out validation set
to maximize a custom utility metric that penalizes
missed beneficial switches and incorrectly allowed
harmful switches.

A.7 Probe Performance and Utility

Training Data Collection and Statistics. We
collect training data for the probe using token-level
constrained decoding focused on positions of natu-
ral switches or with high language entropy. We be-
gin by identifying natural code-switching positions
and apply the no switch mode to collect exam-
ples where switching is suppressed. If the number
of natural switches falls short of a threshold, we
supplement the dataset by introducing synthetic
switches using the forced switch mode. We pro-
vide detailed statistics of the activation data we
collected for Math500 and Gaokao Cloze in Table
7 and Table 8, respectively. The statistics reveal
a strong class imbalance: the majority of code-
switching instances fall into the Neutral category.

Table 7: Class distribution of the MATH 500 dataset
across train, validation, and test splits.

Class Train Validation Test
Harmful 773 127 204
Neutral 7,120 803 1,699
Helpful 894 125 241
Total 8,787 1,055 2,144

Table 8: Class distribution of the Gaokao Cloze dataset
across train, validation, and test splits.

Class Train Validation Test
Harmful 172 23 73
Neutral 1,427 199 394
Helpful 260 36 86
Total 1,859 258 553

The language entropy at each token position is
defined as, where p.,n and p/.h is reweighted to sum
to 1.

H = —p;n Ing(p,en) - p:;h 10g2(p,ch)v

where pl,,, and p/; are renormalized to satisfy p[, +
Pl = 1.

Hepnal = (pen +pch) H.

This ensures that we only consider positions
where both CH and EN are probable and uncer-
tainty is high.

Hyperparameters and Experimental Setup.
We use a stratified train/validation/test split of
70%/10%/20% by problem ID, ensuring that code-
switch examples from the same problem do not
appear in multiple splits. All experiments are con-
ducted on a single NVIDIA A100 GPU. The probe
uses intermediate layer activation derived from five
transformer layers (layers 63, 47, 31, 15, and 0),
with additional metadata features. We reduce the
input dimensionality using PCA, followed by a pro-
jection layer of dimension 512 and a hidden layer
of size 512. Training is run for 30 epochs with a
batch size of 256 and a learning rate of le—4.

Table 9: Hyperparameters for the probe model used
across all datasets.

Hyperparameter Value
Selected Layers [63, 47, 31, 15, 0]
Use Metadata True
PCA Dimension 512
Projection Dimension 512
Hidden Dimension 512
Coecfficient for CE loss 0.5
Class Weights [1.0,0.1, 1.0]
Number of Epochs 30
Batch Size 256
Learning Rate 1x1074

Decision Utility. We use decision utility as an
approximate measure of the probe’s effectiveness,
based on our ground-truth labels of helpful, neutral,
and harmful interventions collected from extensive
reasoning chains with code-switch interventions.
These utility matrices (Table 10 and 11) reveal
a strong asymmetry in decision costs—for exam-
ple, in Case 1 any non-harmful prediction (N or
B) yields zero utility, even though a balanced F1
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Table 10: The utility matrix for Case 1: natural switch (we block when pred = Harmful)

GT | Pred— ‘Harmful (H) Neutral (N) Beneficial (B)

Harmful (H) +1
Neutral (N) 0
Beneficial (B) -1

0 0
0 0
0 0

Table 11: The utility matrix for Case 2: no natural switch (we inject when pred = Beneficial)

GT| Pred— ‘Harmful (H) Neutral (N) Beneficial (B)

Harmful (H) 0
Neutral (N) 0
Beneficial (B) 0

0 -1
0 0
0 +1
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Figure 9: Comparison of accuracies for unconstrained, constrained, and probe-guided decoding on AIME2024. (a)

Chinese prompts (green); (b) English prompts (purple).

would penalize N vs B errors equally. By focus-
ing on decision utility, we target only those errors
that actually affect decoding outcomes, making it a
more appropriate measure than balanced classifica-
tion metrics.

Evaluating Performance Gain. The lightweight
probe is integrated into the decoding loop at each
step. At every token position, we first generate
the model’s natural output without intervention,
then classify the position into Case 1—where a
natural code-switch occurred—or Case 2—where
no switch was generated but the language entropy
exceeds a predefined threshold. In Case 1, the
probe issues a decision to suppress the detected
switch; in Case 2, it decides whether to inject a
switch into the decoding stream.

With a strict train/validation/test partition, we
measure net gains by contrasting probe-guided
decoding with unconstrained decoding on the
test set across five random splits. In Figures 6
and 7, the “probe-guided” bars represent the uncon-

strained baseline plus the average gain over those
splits—not the raw performance, which would be
inflated by training-set leakage.

A.8 Performance Comparison on AIME2024

We compare reasoning performance across uncon-
strained decoding, constrained monolingual de-
coding, and probe-guided decoding in Figure 9.
For this experiment, the probe is trained solely on
Gaokao Cloze and applied to AIME2024 with no
AIME?2024 training data. Unlike Figures 6 and 7,
the probe-guided bar in Figure 9 shows raw perfor-
mance, revealing a 3.33 pp net gain. This demon-
strates both the probe’s cross-dataset generalization
and the consistent benefit of strategic language mix-
ing.
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A.9 Examples of Language Mixing in

QwQ-32B-Preview

Question: Ff 5(0, 3) WE AR R FE#r
NIRRT EIBIN N IR AEr 1
W0 . WALFREZR N (r,0), HHr >0
Ho<0 < 27o

Answer: B5E, [E{Z—T HARRFARK
ARTRIEE I AN

1.7 = /22 + 32

2.0 =tan"! (¥

HRE, XEAXELZEENLTFERS
AIANE, tinZEe = 0 B, FEANERE
2undefined o

given point is (0,3),soz = 0and y = 3 -
EEmEEE

r= VLB ==3
FrLL, r=3
BN RAE0:
HE, 0 = tan_l( ) B 7 X

0, Ffr U\L/I\%Qﬁifundeﬁnedo

ﬁ%%%ﬁﬁy Mo BARRUL, since
= 0 and y = 3, which is positive y-

axis o

FERAFR AR A, 0 & M IEx BlIIR £ Bk

W2 21E ﬁ@%éﬁﬁjf

%f Fpositive y-axis, ¢ is 5 radians (or 90

degrees) o

FREL, 0=12

B, HAAHRR (3,

{121 jjTﬁﬁﬂ%/xﬁ’%awe

.

4.(0,3) AT B A AR & Bpositive y-axis

k.

e A FR A, ¢

B, whichis 3, IE# -

6 7& Mpositive x-axis E|%E

LEWAE,

NE . X E, FAEHRERE

SE, RIEETEr 7 -

}J\positive x-axis 1 I 51 #5 F|positive y-

axis 757 radians »

B, =% z R IEFHRYT .

LERERE—

PN BN D

LN 1PN
JREST 5t B8 5T, BUR T
£

A, "%Eﬁﬂ}\é’ﬁ’l/aﬁﬁ%o <0 <
27, which 3 T satisfies o
L, BERR (3, T)

**Final Answer**

()
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Question: In the land of Ink, the money
system is unique. One Trinket is equal to
4 Blinkets, and 3 Blinkets are equal to 7
Drinkets. In Trinkets, what is the value of
56 Drinkets?

Answer: Let’s tackle this problem step by
step. So, in the land of Ink, they have these
different units of money: Trinkets, Blinkets,
and Drinkets. The relationships between
them are given, and I need to find out what
56 Drinkets are worth in Trinkets.

First, I need to understand the relationships
between these units. It says that one Trinket
is equal to 4 Blinkets. So, if I have one
Trinket, it’s the same as having 4 Blinkets.
Got it.

Next, it says that 3 Blinkets are equal to 7
Drinkets. So, 3 Blinkets = 7 Drinkets. That
means that one Blinkey must be worth 7/3
Drinkets, but maybe I don’t need to go that
far yet.

I need to find out what 56 Drinkets are worth
in Trinkets. To do that, I probably need to
convert Drinkets to Blinkets first, and then
convert Blinkets to Trinkets.

So, let’s start by converting Drinkets to Blin-
kets. If 3 Blinkets = 7 Drinkets, then how
many Blinkets are there in 56 Drinkets?

I can set up a proportion for this. If 3 Blin-
kets are equal to 7 Drinkets, then x Blinkets
are equal to 56 Drinkets. So, 3/7 = x/56.
Wait, actually, that might not be the right
way to set it up. If 3 Blinkets = 7 Drin-
kets, then the ratio of Blinkets to Drinkets
is 3:7. So, to find out how many Blinkets
correspond to 56 Drinkets, I can set up the
proportion like this:

Then, to find out how many Trinkets are in
56 Drinkets, I divide 56 by the number of
Drinkets per Trinket, which is 28/3.

So, Trinkets = 56 / (28/3) = 56 * 3/28 = 6
Trinkets.

—E{ 45 2R 26 Trinkets.

I think it’s safe to conclude that 56 Drinkets
are worth 6 Trinkets.

**Final Answer**
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A.10 Examples of Probe-Guided Decoding

In the example below, the model initially switches
to English for “Wait, no, in standard notation. ..,
then immediately switches back to Chinese with
“HTLL, RIEFREnotation.’(So, according to the
standard notation.) The probe intervenes at “3%
153, forcing it into English so that “notation”
(marked in red) clearly refers back to the earlier
“notation” mentioned in the preceding sentence.

B

Question: ZEAABC H, B = 60°, AC =
V3, MAB + 2BC K& KER( ).
Answer: fE — fff JEABCH , © 41
fB=60/% , AC=v3, % KAB +
2BCHIENIE -

BHiE, XEN=AFNE-E, Dim—7
AR, AT R IEL EEEE R
ZEHERA T .

& #1 ABAI iHAC ( Rl iJa, S
fAB) |, RIBIEILEH:

a/sinB =b/sinA =c/sinC = 2R

H i, a=v3, B=60°, R&Z 7 [H

1%
L., 2R =a/sinB =+3/sin60° =3/
(+v312)=2

FfLA, b=2R sinA =2 sinA

¢ =2R sinC = 2 sinC

FfA, AB=c =2 sinC

BC=a=+"3

Wait, no, in standard notation:
a=BC,b=AC,c=AB

Frl, tR¥EFrEnotation:

b=AC=."3

a=BC

c=AB

FfLL, a/sinA =b/sinB =c/sinC = 2R
FfLA, 2R=b/sinB =+/3/sin60° = +3 /
(v32)=2

i R o

27

In the following example, the probe switches
“fLFE” to “elegant” in the sentence "I prefer to find
a more elegant approach.” In Chinese, calling a
solution “elegant” can sound immodest, but En-
glish freely uses “elegant” in technical contexts.
By switching languages, the probe avoids cultural
awkwardness and uses a term that feels natural for
describing a mathematical solution.
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Question: X TH-L(H, 0 < 2 < 180,

tan 53° tan 81° tan z°

= tan 53° + tan 81° + tan z°.

Answer:
FTEE TP =ARE RS, A

=]

rE:

TR E, 0<x<180, A

tan 53° * tan 81° * tan x° = tan 53° + tan 81°
+ tan X° o

SKxHI{E -

B, RFEEEBINEANER . F
ERE— DR TIEVRE &S, Wk
B=1"MAE: S3E. 1IZMxE. X&
A ERIEVHEZ R EMFRAE T EA]
FA -

FEMZ T —F = M R £ Widentities, &
ERHEEMN 2 AXTUEENAEX
BH. REBE-NT2XERXRT=1H1
IEVIIME A, FFALRIES = At
HKETISOEHIN R ... (B2, FEA
B E|—Helegant B G TE, AL
HE{£tangent values -
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