Making VLLMs More Robot-Friendly:
Self-Critical Distillation of Low-Level Procedural Reasoning

Chan Young Park™
Seoho Yun'

"University of Washington

Jillian Fisher™!
Abhishek Gupta'

’Independent Researcher
chanpark@cs.washington.edu

Marius Memmel' Dipika Khullar?

Yejin Choi®

3Stanford University
jrfish@uw.edu

© https://github.com/chanOpark/SelfReVision

Abstract

Large language models (LLMs) have shown
promise in robotic procedural planning, yet
their human-centric reasoning often omits the
low-level, grounded details needed for robotic
execution. Vision-language models (VLMs) of-
fer a path toward more perceptually grounded
plans, but current methods either rely on ex-
pensive, large-scale models or are constrained
to narrow simulation settings. We introduce
SelfReVision, a lightweight and scalable self-
improvement framework for vision-language
procedural planning. SelfReVision enables
small VLMs to iteratively critique, revise,
and verify their own plans, without exter-
nal supervision or teacher models, drawing
inspiration from chain-of-thought prompting
and self-instruct paradigms. Through this
self-distillation loop, models generate higher-
quality, execution-ready plans that can be used
both at inference and for continued fine-tuning.
Using models varying from 3B to 72B, our re-
sults show that SelfReVision not only boosts
performance over weak base VLMs but also
outperforms models 100X the size, yielding im-
proved control in downstream embodied tasks.

1 Introduction

Large language models (LLMs) have recently
gained traction as a source of background knowl-
edge for robotic applications, particularly in proce-
dural planning tasks (Huang et al., 2024; Ahn et al.,
2022; Shi et al., 2025; Brahman et al., 2023). Their
broad pretraining and strong instruction-following
capabilities make them appealing tools for gener-
ating step-by-step action sequences that, from a
human perspective, appear sensible and coherent.
Yet, a fundamental challenge remains: because
LLMs are trained with human language and human
preferences, they tend to generate plans in a way
that is intuitive and meaningful to humans, rather

"Equal contribution.

“Could you fill
this bucket
with water?”

SelfReVision
—_—
criticize
v

revise

¥

verify

X

Figure 1: Overview of SelfReVision. VLMs tend to
generate human-readable plans that are not detailed
enough for robotic execution. SelfReVision employs an
iterative self-critique, revision, and verification process,
to transform initial plans into actionable steps.

than encoding the precise sensory or perceptual
details that a robot would need to execute them.
As a result, their plans often omit low-level, spa-
tially grounded details essential for execution in the
physical world. Consequently, when these plans
are applied to robots, they may lead to uncertainty
or mistakes in downstream tasks.

Bridging this gap calls for vision-language mod-
els (VLMs) that can reason over visual inputs to
generate low-level procedural reasoning plans. Yet,
current approaches face two critical shortcomings:
they either (1) rely on overly specialized setups in
simulation environments with limited real-world
applicability (Shi et al., 2025), or (2) depend on
massive, high-capacity models that are expensive
to train and impractical to deploy in many real-
world settings (Cheng et al., 2025; OpenAl et al.,

32590

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 32590-32611
November 4-9, 2025 ©2025 Association for Computational Linguistics

mailto:chanpark@cs.washington.edu
mailto:jrfish@uw.edu
https://github.com/chan0park/SelfReVision

2024; Yang et al., 2024b). In contrast, many use
cases, like in education, robotics, and resource-
constrained environments, require solutions that
are lightweight, data-efficient, and robust without
relying on massive compute. We argue that strong
vision planning can emerge even in smaller VLMs,
if they are trained with the right inductive biases
and self-improvement strategies.

We present SelfReVision, a self-improvement
framework for vision-language procedural plan-
ning based on iterative self-critiquing and self-
refining. We show that this method enables small
VLM s ranging as small as 3B to 72B, to enhance
their performance through self-distillation, with-
out any external supervision or teacher models.
Inspired by chain-of-thought reasoning and self-
instruct methods, we break the task into a three-
stage loop: the model first generates an initial plan
from a prompt and image, then self-critiques it
with minimal guidance, self-revises the plan ac-
cordingly, and finally selects the better of the two
via a self-verification step. This cycle repeats until
the model produces a plan it deems better. The
final plans, generated entirely by the model, can
be used directly at inference or as self-supervised
data to further fine-tune the model and reinforce
improvements.

While self-critiquing and self-distillation has
been explored in the LLM space (Madaan et al.,
2023; Gou et al., 2024), its application to vision-
language planning is largely underexplored. To
our knowledge, SelfReVision is the first to adapt
this paradigm for procedural planning with VLMs.
Notably, we apply this method using small, weak
base models to emphasize its potential as a tool for
enhancing the capabilities of lightweight systems.
In addition, we provide a comprehensive ablation
study of SelfReVision, showing insights into the
role of each component and demonstrating why the
iterative loop contributes to performance gains.

To rigorously assess our approach, we introduce
a new vision-language evaluation dataset blending
real-world and simulation-based visual procedural
tasks, an underexplored combination in prior work.
We demonstrate our improved VLM plans not only
outperform their original base versions, but also
surpass state-of-the-art VLMs of 100X larger size.
Finally, we show that these enhanced procedural
plans translate into better control and execution in
downstream embodied agent tasks.

2 Related Works

Procedural Planning LLMs have become in-
creasingly attractive for complex procedural plan-
ning tasks (Huang et al., 2024). Pretrained, off-
the-shelf LL.Ms have shown strong performance
in this area (Huang et al.; Ahn et al., 2022), and
Brahman et al. (2023) further demonstrate that task-
specific finetuning can boost their effectiveness
even more. Beyond finetuning, another approach
used to achieve procedural planning in LLMs is
prompting pretrained models to interleave reason-
ing and action, improving adaptability and decision-
making (Huang et al., 2022; Yao et al.). Lastly,
some methods instead aim to leverage LLMs for
low-level action execution directly, bypassing high-
level planning. For example, the Code-as-Policy
framework prompts LL.Ms to produce structured,
code-like plans that can be directly interpreted and
executed as action sequences (Liang et al., 2023a).

Although LL.Ms have shown promising results
in procedural planning, incorporating vision con-
tent can further broaden their practical utility and
impact (Ma et al., 2025; Lu et al., 2023). One ap-
proach to incorporating visual content is to adopt
modular architectures, using specialized encoders
to integrate multimodal information from differ-
ent models (Ilaslan et al., 2024; Kalithasan et al.,
2022; Li et al., 2024a; Song et al., 2023; Yang
et al., 2023; Zhu et al., 2023). Others enhance per-
formance through finetuning (Driess et al., 2023;
Shi et al., 2025) or by optimizing the prompts used
with off-the-shelf models (Chen et al., 2024). How-
ever, these systems are either large and resource-
intensive (Driess et al., 2023) or rely on training
data derived from even larger models (Shi et al.,
2025).

Self-Distillation and Self-Refinement With the
advancement of vision and language models, re-
search has explored using larger, more capable
models to generate training data for fine-tuning
smaller models, a process commonly referred to as
knowledge distillation (Moslemi et al., 2024; Liu
et al., 2023; Xu et al., 2024). More recently, how-
ever, attention has turned toward self-distillation,
in which a weaker model is used to improve itself
without relying on a stronger teacher model.

A prominent form of self-distillation involves
training data augmentation, where the model gener-
ates additional data to further fine-tune itself. This
approach has yielded promising results across vari-
ous domains, including instruction tuning (Wang

32591

et al., 2023), preference modeling (Yang et al.,
2024a), and value alignment (Sun et al., 2023). Be-
yond simply increasing the quantity of data, several
studies have demonstrated that filtering the self-
generated data can significantly enhance quality.
Effective filtering strategies include promoting di-
versity (Wang et al., 2023), selecting samples based
on quality metrics (Jung et al., 2024), and applying
external scoring functions to encourage alignment
with human values (Gulcehre et al., 2023).

In addition to data generation and filtering, re-
cent work has begun to explore ways in which
models can analyze and guide themselves. For
instance, some methods use interactive, chain-of-
thought-style feedback to help weaker models ar-
rive at correct answers for objective tasks such
as math problems and question-answering tasks
(Huang et al., 2023; Yu et al., 2024). Similarly,
Zheng et al. (2023) employed an LLM-as-Judge
approach, using the weaker model itself as a reward
model to learn stronger outputs on chatbot tasks.
Lastly, similar to our approach, self-feedback and
self-refinement techniques have shown promise for
LLM tasks such as reasoning (Xie et al., 2023),
dialogue response (Madaan et al., 2023), and math-
ematics (Gou et al., 2024; Madaan et al., 2023).
However, these techniques have so far been primar-
ily limited to objective tasks or use outside tools
for critiquing (Gou et al., 2024; Xi et al., 2024).

Self-distillation through self-refinement has been
explored less frequently in the context of multi-
modal models, but there are notable exceptions,
particularly in image captioning. For example, Wu
et al. (2025) proposed a method where the model
generates intermediate reasoning hidden states,
which are then used to retrain the base model,
effectively improving performance through inter-
nal feedback. Other studies have leveraged self-
distillation to augment human-annotated datasets,
enriching the training corpus with additional syn-
thetic examples (Deng et al., 2024; Fang et al.,
2024). These approaches suggest that even in multi-
modal settings, self-distillation can provide valu-
able improvements when carefully designed.

3 Methods

Procedural planning involves generating a step-
by-step plan to achieve a goal. We focus on open-
ended, multi-step tasks with diverse, valid solutions.
Unlike prior work relying on powerful LLMs in
purely textual settings, we tackle a harder, more re-

Algorithm 1 SelfReVision

Input: Model 6, Image z, Instruction I,
Generate initial plan: py < 6(z, I)
Initialize: peurr < Po
repeat

Critique: ¢ < Crit(peyrr)
Revise: prev < Rev(peurr, €)
improved plan
Verify: Poest < Ver(pcurr; prev)
better plan
if poest = Prev then
break // Improvement found; terminate
loop
else
continue // No improvement; keep current
plan and revise again
end if
until Convergence or max iterations reached
return Final plan peyr

/I Self-critique
// Generate

// Choose

alistic problem: vision-grounded procedural plan-
ning using only weak VLMs. This multimodal
setup adds complexity, plans must align with user
intent and visual constraints like spatial layout, se-
mantics, and object presence. We further restrict
ourselves to low-capacity models, reflecting de-
ployment in resource-limited settings without large
teacher models or gold labels. To meet this chal-
lenge, we propose a self-distillation framework
where a weak model improves through its own
reasoning, via a structured loop of critique, revi-
sion, and verification, without external supervision
or extra data.

Self-Distillation via Self-Improvement We
build on the principle of self-distillation, a training
paradigm where a model improves itself by learn-
ing from its own outputs. Unlike classical knowl-
edge distillation, which requires a stronger teacher
model, our approach is entirely self-supervised. Let
0 denote a base model. We define a self-distilled
dataset D as:

D = (xaya¢sd($vy)) | z~ X,y Np9(y | va)a

where x is an input prompt, [is an instruction
or task description, and y is the model’s own initial
plan output. The transformation function ¢gq re-
fines this output via a structured process involving
targeted critique and revision.

SelfReVision = We introduce SelfReVision, a
three-stage Criticize—Revise—Verify pipeline to in-
stantiate ¢sq. This process encourages the model

32592

Places Simulation
Coverage Ordering Complete Image. Overall Imp.t +#Inf | Coverage Ordering Complete Image. Overall Imp.t +#Inf
< GPT-40 195 6383 197 360 0&97 97 0 495 T7&8 2898 550 198 97 0
% < PaliGemma 918 89«&5 W08 824 N7 -85 0 954 8&7 BT 83 9Se4 =91 0
§ < Basic Distillation 2764 33&53 2672 25430 2769 42 0 2564 3444 28672 2015 2866 38 0
5 < Best-of-N 3144 32641 4154 18428 38&58 20 6 4635 4323 5340 1621 51440 -1 6
< SelfReVision 952 1728 662 912 1561 46 9.1 652 2020 674 11e18 12467 55 7.2
< SelfReVision+SFT 2559 2549 29668 2526 30 68 38 0 29458 3037 3463 1725 32461 29 0
m & GPT-4o 880 1569 1281 1354 118 78 0 1559 2853 3168 22&35 2573 48 0
1 < PaliGemma 973 92&4 1000 874 9763 -94 0 B2 9563 98 =1 Il=1 982 -96 0
E < Basic Distillation 6422 6919 7524 53618 7622 -54 0 7118 7217 8le14 4713 82418 -64 0
g < Best-of-N 2644 3035 3054 18:32 33&57 24 6 28439 2930 4051 1427 3952 13 6
< SelfReVision 873 26053 68 1642 8486 78 8.9 1073 3353 590 1725 1382 69 7.0
< SelfReVision+SFT 3256 3357 3958 27441 3660 24 0 33445 35447 38656 2845 3654 11 0
< GPT-40 1176 1966 118 1048 1080 76 0 1176 1866 1087 1044 108 76 0
’Ei < PaliGemma 90 952 1000 823 9e1 -98 0 982 96e1 9 &1 871 RBe2 -96 0
§ < Basic Distillation 4335 3633 53e42 2720 5437 -17 0 4331 3831 47446 2314 5144 T 0
3 < Best-of-N 29448 3143 4251 12436 38458 20 6 35441 3225 43647 1525 4149 8 6
< SelfReVision 371 3031 391 1738 982 73 9.2 275 38e21 58 12&16 786 79 10.0
< SelfReVision+SFT 2064 3546 2077 2243 18«75 57 0 1775 3744 1979 1922 2175 54 0
] < GPT-40 2449 2254 3756 25431 32456 24 0 3841 32652 44654 22632 44655 11 0
— <« PaliGemma 1000 971 1000 90«0 1000 -100 0 1000 1000 1000 91«1 1000 -100 0
£ <« Basic Distillation 1812 6617 8512 4415 8712 -75 0 7011 6613 86«12 538 89«9 -80 0
5 < Bestof-N 23240 3133 3355 1933 2954 25 6 1841 2146 2955 8&26 28<61 38 6
© & SelfReVision 879 S5le3l 6«91 3635 1080 70 6.7 884 5035 693 29&19 11«81 70 6.6
< SelfReVision+SFT 24 <64 4345 22677 3820 2372 49 0 1671 49&32 1781 32&22 2470 46 0
8 & GPT-4o 3145 2950 42453 3131 39&53 14 0 3834 3046 4647 34e17 4648 2 0
N;q < PaliGemma 1000 98«2 1000 98«2 1000 -100 0 99 &1 %<2 99l 51 9e1 -98 0
g < Basic Distillation 828 5522 88«9 48 B<10 -76 0 748 819 8Te1l 48«10 8«=11 -75 0
8 & Best-of-N 22437 2628 3455 1724 35&53 18 6 2338 2728 3754 15420 3158 27 6
< SelfReVision 685 5034 197 28&21 786 79 6.6 489 3948 397 3622 788 81 6.2
A & GPT4o 5120 28440 7420 2629 6332 31 0 5219 314 7417 25627 7126 45 0
‘:.:’ < PaliGemma 1000 90 1000 90«2 1000 -100 0 1000 98<1 1000 900 1000 -100 0
£ < Basic Distillation 6813 5020 7719 36413 8113 -68 0 6l =13 5124 7221 34613 7422 -52 0
O & Best-of-N 2243 27129 3165 2125 3754 17 6 1852 2144l 2465 1717 27465 38 6
< SelfReVision 260 2823 162 2199 3656 53 16 069 2831 078 15&14 472 68 12.7
A < GPT4o 461 2059 1776 1735 1576 61 0 1162 15670 1979 1643 1382 69 0
'; < PaliGemma 98 =1 954 1000 884 981 97 0 991 981 1000 9490 991 -98 0
£ < Basic Distillation 6614 5328 7621 35622 7322 51 0 4830 3938 5934 2522 5937 22 0
O & Best-of-N 2356 2352 2572 1537 2572 47 6 1260 2140 1185 1427 13&81 68 6
< SelfReVision 48 4939 298 2138 685 79 7.3 59 3153 297 2526 889 81 6.5

Table 1: Win rate comparison of baseline models and SelfReVision against initial plan p,, across two datasets
(PLACES and SIMULATION). Evaluation is done using GPT40 as judge across five dimensions, with overall
improvement (Imp.) showing the win rate difference and higher values indicating better plan quality. The +#Inf
column shows the average number of inference calls required by each method (O for single-pass methods, 6 for
Best-of-N with N=5, and 7-16 for SelfReVision depending on when the verification step accepts an improved plan).

to iteratively refine its outputs via structured intro-
spection:

e Criticize (Crit): The model generates an ini-
tial plan py = 60(z,I), which may be vague,
image-agnostic, or incomplete. We then prompt
the model to produce a critical self-assessment
Crit(pg).

* Revise (Rev): Using its self-generated cri-
tique, the model produces a revised plan p; =
Rev(po, Crit(pg)). This phase encourages lo-
calized, meaningful improvements, including
action-grounded comments, splitting complex
revisions into manageable subgoals via chain-
of-thought prompting.

* Verify (Ver): Finally, the model evaluates both
po and p; to decide which is superior: ppest =
Ver(po, p1). If the revised plan is preferred, the
process terminates, if is not preferred then the
process continues recursively until a better plan
is produced.

The iterative nature of this loop is formalized in
algorithm 1, and can be used to run for any thresh-
old amount of refinement loops (i.e. rounds). It can
also be used to generate a set amount of final plans
Peurr that can then be compared to the baseline or
each-other. This closed-loop formulation mimics
aspects of human self-improvement, which identi-
fies flaws, attempt revision, and critically evaluate
the result.

Inference vs. Finetuning SelfReVision gener-
ates curated outputs through self-distillation, which
can be leveraged in two ways: used directly at infer-
ence time or as training data for finetuning. Using
SelfReVision at inference time requires no model
updates and allows fast deployment, but may incur
computational overhead or complexity in orches-
tration. In contrast, finetuning incorporates the im-
provements directly into the model, enabling faster
inference and better generalization, but requires
additional training time and resources. The choice

32593

“‘Could you bring me thered “Pack two cookies and one fruit
poster from the wall?” which is high in potassium for
asnack”

Figure 2: Evaluation examples from the real-world
PLACES dataset (Zhou et al., 2017) (right) and from the
SIMULATION dataset, VirtualHome (Puig et al., 2018)
and BEHAVIOR-100 (Srivastava et al., 2022) (left).

depends on the desired balance between flexibility,
performance, and scalability.

4 Experiments

We conduct two types of experiments to evaluate
SelfReVision for planning: image-based procedu-
ral planning (§4.1) and embodied agent tasks (§4.2).
The image-based procedural planning experiments
assess the effectiveness of SelfReVision in vision-
language planning and provide insights into the
types of self-reflection that are helpful for plan-
ning. We then evaluate directly on embodied agent
tasks to demonstrate how SelfReVision results in
direct improvements in vision-language procedural
planning for embodied agents.

SelfReVision Implementation Details We used
a diverse range of base models to experiment with
SelfReVision; Qwen-2.5-VL-Instruct (3B, 7B, 32B,
72B) (Bai et al., 2025) and Gemma 3 (4B, 12B,
27B) (Team et al., 2024). Among open-sourced
VLMs, these models have been shown to perform
well on visual reasoning tasks (Cheng et al., 2024).

Guided by a scaling experiment with number of
revisions per round, we set the number of revisions
to 2 for our main experiments. We set the number
of maximum rounds to 5. For training, we set
the temperature of the critique and refine stage to
0.5, while we use greedy decoding for the initial
planning and validation stage.

We implement the SelfReVision as both an
inference-time method (SelfReVision) and as
supervised-finetuning (SelfReVision+SFT). For the
SelfReVi+SFT method we curated a n = 160K
subset of images from the PLACES Dataset (Zhou
et al., 2017), which contains real-world scenes
categorized by location type (e.g., airport lounge,
kitchen, barn). We selected a diverse range of both

indoor and outdoor scenes. Next, we used GPT-
40 (OpenAl et al., 2024) to generate a variety of
plausible goals that a user might want to achieve
in each given setting. Full experimental details are
provided in Appendix A.

4.1 Goal-Based Procedural Planning

Evaluation Dataset We evaluated SelfReVision
on both real-world and simulation settings, as both
settings frequently require procedural planning.
For the real-world setting, we used a held-out test
set of n = 100 image and user-input pairs sampled
from the PLACES Dataset (Zhou et al., 2017), and
the corresponding user inputs were generated using
GPT-40 (OpenAl et al., 2024).

For the SIMULATION setting, we used a modi-
fied version of the MFE-ETP dataset (Zhang et al.,
2024), which consists of n = 100 image and
user-prompt pairs drawn from the popular proce-
dural simulation environments VirtualHome (Puig
et al., 2018) and BEHAVIOR-100 (Srivastava et al.,
2022). Since this dataset includes multi-image sce-
narios, we adjusted some user inputs to correspond
to a single selected image when necessary. Exam-
ple inputs and visualizations are shown in Figure 2,
with additional details provided in Appendix A.2.

Evaluation Metrics Prior work (Brahman et al.,

2023; Huang et al.) has evaluated procedural plans

based on four dimensions: Coverage, Ordering,

Completeness, and Overall Quality. We extend this

framework by introducing a fifth criterion—Image

Groundedness—to assess how well a plan aligns

with the visual context. Specifically we define these

criteria as:

* Coverage: How well the plan addresses the
user’s input.

* Ordering: Whether the steps follow a logical
and coherent sequence.

* Completeness: Whether the plan is sufficiently
detailed and informative.

* Image Groundedness: Whether the plan is plau-
sible given the visual scene.

¢ Overall Quality: The overall effectiveness and
appropriateness of the plan.

Given the strong performance of LLMs-as-
judges (Zheng et al., 2023), we use GPT-40 (Ope-
nAl et al., 2024) as an automated evaluator via
prompting. To validate this approach, we measured
inter-rater reliability on a sample of n = 60 and
found an average agreement of 0.54 between three
GPT-40 judgements and three human annotators.

32594

Places

Simulation

Coverage Ordering Complete Image. Overall Imp.t | Coverage Ordering Complete Image. Overall Imp.T
< Qwen-3B 917 829 917 566 92&3 -89 839 8e5 813 529 93&3 -90
< Gemma-4B 4732 73417 5643 48418 5736 21 4437 7123 4748 45414 58438 20
£ < Qwen-7B 5427 6921 542 4415 6030 30 | 5530 7515 61«37 4215 62431 -31
E' < Gemma-12B 2367 6921 1682 45&25 26465 39 1774 7322 1584 3920 25468 43
O & Gemma-27B 15473 46440 1188 38&24 2070 50 1082 4142 792 34<19 9481 72
< Qwen-32B 1176 5332 991 3420 1582 67 583 4436 791 3812 1084 74
< Qwen-72B 2763 7218 1978 42433 32458 26 1971 6525 1981 32&17 25469 44

Table 2: Win rate comparison of GPT4o0 and SelfReVision plans directly, across two datasets (PLACES and
SIMULATION). Evaluation is done using GPT4o0 as judge across five dimensions, including overall improvement

(Imp.). Higher improvement indicates better plan quality.

Coverage Ordering Complete Image Overall ‘ Imp. 1

, CRV 576727 3596341 36«84l 2114279 834766 | 683
8§ CR 94670 374307 71781 256244 113703 | 59.0
& RV 74347 1446194 716566 66264 133600 | 46.7
R 9.6 327 129184 1034521 80240 1694550 | 38.1

§ CRV 50760 341381 39&883 207200 89807 | 719
s CR 636713 344364 44817 216203 96737 | 64.1
E RV 864319 1514183 906543 63226 1616554 | 393
@A R 84&311 153186 99&551 716234 161&57.1 | 41.0

Table 3: Ablation models’ win rate comparison
against pg across five evaluation dimensions and overall
improvement (Imp.).

This level of agreement is in line with the average
agreement between humans. See Appendix B for
full details.

For our primary evaluation metric, we report the
win rate, which is the percentage of samples in
which the revised plan (or model output) is pre-
ferred over that of the base model (i.e. pg).

Baselines To demonstrate the effectiveness of
SelfReVision, we first compare the refined plans
to the initial plans generated by the models using
few-shot prompting. We also evaluate responses
from other baselines such as GPT-40 (represent-
ing a powerful large model) (OpenAl et al., 2024),
PaliGemma (a domain-specific model trained for
planning) (Beyer et al., 2024), Basic Distillation
(inspired by Shi et al. (2025), we use a more de-
tailed self-distillation prompting that includes in-
structions for physical and spatial grounding) and
best-of-N (an inference-time algorithm that gen-
erates multiple outputs and selects the best one).
The prompts and examples provided for GPT-40
and PaliGemma match those given to the base mod-
els. For the best-of-N baseline, we use N =5: we
sample five different plans with a temperature of
0.5, followed by a final inference step to select the
best plan among them. This setup approximately
matches the number of additional inferences made
by both SelfReVision and the baseline. For the
prompts used in all methods see Appendix A.

Results: SelfReVision yields large and consistent
improvements over baselines. Table 1 shows
that across all model sizes and both datasets, Self-

ReVision consistently outperforms the initial plans
po by wide margins. Specifically, there is an aver-
age win rate 68% on PLACES and 72% on SIMU-
LATION, with the most dramatic gains in complete-
ness and coverage, often surpassing 80% win rates
against the base plans. These results demonstrate
that iterative self-improvement through SelfReVi-
sion is highly effective in enhancing the structure,
richness, and plausibility of plans, regardless of
model size. Notably, larger models tend to benefit
even more from SelfReVision, both in absolute win
rates and in the consistency of gains across metrics.
For example, models over 12B have on average
74% gain overall using SelfReVision compared to
68% for models 12B and under.

Compared to alternative methods such as BEST-
OF-N sampling, Basic Distillation prompting, and
PaliGemma, SelfReVision shows clear superior-
ity. While Best-of-N offers modest improvements
for small models (8% — 38%), SelfReVision pro-
vides substantially higher gains (60% across most
settings). Somewhat unexpectedly, PaliGemma,
a strong pretrained VLM, consistently underper-
forms, losing over 90% of matchups across both
datasets. Despite being trained on image distri-
butions similar to those in PLACES, it appears to
lack the procedural reasoning abilities required for
grounded multi-step planning, suggesting its limi-
tations in this domain. Lastly, we see similar poor
performance from the detailed prompting used in
Basic Distillation with only moderate gains using
the smallest model Qwen-3B. This underscores the
need for more principled self-distillation methods
like our proposed SelfReVision.

Lastly, we also assess the impact of SFT on
SelfReVision outputs. While SelfReVision+SFT
achieves moderate gains in some settings (e.g.,
57%/54% for Qwen-7B in PLACES and SIMU-
LATION), it often underperforms compared to
the inference-time method and in several cases
yields no improvement. This performance gap
stems from their fundamentally different mecha-

32595

— Coverage
100

Ordering — Completeness —Image Groundedness — Overall

80 T —

Average Winrate Diff

1 5 1 5

2 3
of refinement per round
Simulation

2 3
of refinement per round

Places

Figure 3: Average win rate difference (win rate of
SelfReVision - pg) over number of refinement per round.

nisms: the inference-time SelfReVision leverages
the model’s full reasoning capacity through itera-
tive self-critique and revision, while SFT trains the
model to directly imitate the final refined outputs
in a single pass. Our results suggest that this imita-
tion approach cannot fully capture the underlying
iterative reasoning process that generated the im-
provements. The gap is particularly pronounced
for larger models (12B+), where SFT may overfit
to surface patterns in the refined plans rather than
learning the deeper reasoning process. Thus, while
SFT offers significant efficiency gains, requiring
only one forward pass at inference, this comes at
the cost of plan quality for complex tasks that ben-
efit from iterative refinement.

Results: SelfReVision produce better plans than
GPT40. To assess how SelfReVision stacks up
against significantly larger models, we compare
the win rate of plans it generates with those pro-
duced by GPT4o, as shown in Table 2. Our re-
sults reveal that for models with 12B parameters
or more, SelfReVision achieves a win rate at least
25% higher than GPT-40. This highlights the effec-
tiveness of self-critical, self-revision strategies in
enabling even smaller models to outperform much
larger ones.

Results: Tradeoffs in Refinement Scaling
We examined how SelfReVision’s performance
changes with more refinement cycles in its self-
refinement loop. As shown in Figure 3, the aver-
age Overall win rate rises from 75% to 81% on
PLACES and from 78% to 81% on SIMULATION
as the number of rounds increases from 1 to 5.
However, the gains vary by metric: Coverage and
Completeness steadily improve (e.g., +11 and +10
on PLACES), suggesting that additional rounds help
produce more thorough plans. In contrast, Order-

ing and Image-Groundedness decline slightly (=5
and -3), indicating that later rounds may introduce
speculative or less visually anchored content. Early
refinements tend to add useful specifics (e.g., “80%
fill”), while later ones often bring more tentative
phrasing (e.g., “if there is water in the cup”), reflect-
ing a trade-off between elaboration and precision.

Notably, most of the improvement occurs within
the first 2-3 rounds, showing that a few iterations
are often enough to achieve strong results with-
out sacrificing clarity. This finding has important
practical implications: while the full SelfReVision
pipeline averages 8 forward passes at maximum
5 rounds, practitioners can achieve most benefits
with just 2-3 rounds, significantly reducing infer-
ence overhead. This computational cost remains
competitive with API-based alternatives like GPT-
40, which incur high costs and network latency.
For deployment scenarios requiring single-pass in-
ference, SelfReVision+SFT provides a viable al-
ternative by distilling these improvements into the
model weights.

Results: Ablation of Pipeline Steps To eval-
uate the contribution of each component in Sel-
fReVision self-refinement loop, we conducted a
series of ablation experiments by selectively re-
moving individual stages. Table 3 presents the
ablation results on both the PLACES and SIMULA-
TION datasets, averaged across the seven VLMs.
We compare four configurations: the full CRV
(Criticize-Revise-Verify) pipeline, CR (Criticize-
Revise), RV (Revise-Verify), and R (Revise-only).
The details on ablation model variants can be found
in Appendix A.2.

The full CRV pipeline yields the strongest per-
formance, with average win-rate improvements of
68.3% on the PLACES dataset and 71.9% on the
SIMULATION dataset. This result confirms that in-
tegrating all three stages produces the most robust
improvements in procedural plan quality. Notably,
compared to CR, we observe significantly larger
performance drops with RV and R. These variants
especially show reduced improvements in Cover-
age and Completeness, indicating the essential role
of the Criticize step in generating more comprehen-
sive plans that better address user requests.

While the CR variant demonstrates the best
performance among the ablated configurations, it
still exhibits notable performance drops (-9.3% on
PLACES and -7.8% on SIMULATION) relative to
the full CRV. In some cases, the refined plans were

32596

Goal Initial State Py SelfReVision

P W

Create a smiley
face.

Addition: 'place the green tupper-
ware lid on the green tupperware"

Form a rainbow.

0.

Removal: "pick up and place the pink
(a) Block-building goals, initial state, Pp, and SelfReVision outputs. scrub brush into the red bag”

(b) Object manipulation with SelfRe-
Vision in hierarchical planning.

Figure 4: Examples from two embodied agent tasks: (a) block-building goals, initial setting, and then finalized
setting after running Py, and SelfReVision plans. The first two rows show examples from Gemma 12B and the last
row is from Gemma 27B.; (b) examples of correct addition and removal of SelfReVision plan in hierarchal planning.

even worse than the initial plans in terms of Or-
dering and Image Groundedness. These results
suggest that the Verify step plays a critical role
in filtering out suboptimal revisions—particularly
those that disrupt the correct order or misalign with
visual context. Together, these findings underscore
that each stage in SelfReVision contributes distinct
and complementary benefits to plan refinement.

Qualitative Analysis Figure 5 provides an ex-
ample of an initial plan generated by Gemma-27B,
along with the self-feedback and refined plan pro-
duced by SelfReVision. Although the initial plan
seems sufficiently clear at first glance, the self-
critique step identifies critical shortcomings such
as positioning the hose after turning on the water
and potential interference by placing the towel too
close to the bucket. The refined plan explicitly ad-
dresses these issues (e.g. “place the towel away
from the bucket,” “secure the end of the hose inside
the bucket before turning on the water”). Addi-
tionally, the refined version includes explicit in-
structions regarding robot-specific considerations—
monitoring for leaks or splashes— details intuitive
to humans but essential for robotic execution. This
iterative refinement thus results in a more robust
and executable plan.

4.2 Application to Embodied Agents

To study the ability of SelfReVision to improve
planning in embodied settings, we construct two
challenging scenarios: (1) a simulated pick-and-
place environment (Zeng et al., 2020) controlled
by code-as-policies (Liang et al., 2023b) and (2) a
real-world planning environment based on path pre-
diction inspired by HAMSTER (Li et al., 2024b).
We limit our evaluation to the models that were the
best in baseline procedural planning, Gemma 12B
and 27B (Team et al., 2024).

Evaluation Dataset For the simulated pick-and-
place environments, we first curated 14 seman-
tically unique manipulation goals (e.g., “Form a
shape of an uppercase X with the blocks”, “Create
a smiley face”) and paired them with 8 different
initial block configurations involving 6 or 8 blocks
from Zeng et al. (2020). This yielded a total of
n = 112 samples. For the real-world setting, we
created 10 real scenarios across three environments
— kitchen, workshop, and office — each involving a
high-level task (e.g., “Pack items for a children’s
lunch”).

Evaluation Metrics For the simulated pick-and-
place environment, we ran each plan using a code-
as-policies simulator (Liang et al., 2023b) which
generated a static image for each step. Then, a hu-

32597

1. Locate the faucet with the attached
hose and towel

2. Remove the towel from the faucet/
hose apparatus. Place the towel on top
of the washing machine.

3. Turn the faucet handle to initiate
water flow into the hose.

4. Position the end of the hose directly
over the open grey bucket on top of
the washing machine.

5. Monitor the water level in the
bucket.

6. When the bucket is approximately
80% full, turn the faucet handle to stop
the water flow.

7. Verify the bucket is filled to a
suitable level, adjusting water flow if
necessary to avoid overflow.

« The plan does not address the

possibility of the towel interfering with
the hose or bucket (...)

« The plan assumes the faucet is

functional (...) There is no step to verify
water flow *before* positioning the
hose.

- The plan lacks a step to secure the hose

in the bucket. The current plan relies
on "carefully position[ing]" which is not
robust (...)

« The plan does not account for the

potential for water splashing (...) There's
no step to carefully control the initial
water flow to avoid this.

« The plan does not include a step to deal

with potential leaks or drips from the

—

1. Approach the faucet apparatus and use visual
analysis to determine the mechanism for
controlling water flow (...)

2. Gently remove the towel from the faucet
apparatus and place it on top of the washing
machine, away from the bucket.

3. Test the water flow mechanism identified in step
1. If no water flows, report failure to user and halt.
4. Secure the hose end inside the grey bucket
before turning on the water (...)

5. Slowly turn on the water flow to a low rate.

6. Monitor water flow and adjust the faucet to
maintain a gentle stream into the bucket,
minimizing splashing (...)

7. Fill the bucket to a pre-programmed volume,
approximately 80% of its capacity.

8. Turn off the water flow completely.

9. Observe the faucet apparatus for any leaks or

8. Turn the faucet off completely.

9. Report completion of task to user. turned off (...)

faucet apparatus once the water is

drips and report them to the user.
10. Report completion of task to user.

Initial Plan

Self-Feedback

Refined Plan

Figure 5: Initial plan, feedback, and refined plan generated by Gemma-27B for the example in Figure 1.

Gemma-12b Gemma-27b
Po SelfReVis. | po SelfReVis.
6 Blocks | 0.16 0.45 | 0.36 0.59
8 Blocks | 0.14 0.39 | 0.29 0.39

Table 4: Results of the simulated block manipulation
tasks, showing the average success rate for both the
baseline py and SelfReVision plans on settings with 6
or 8 blocks over Gemma 12B and 27B.

man rater evaluated the final configuration, judging
whether the plan achieved the stated goal. For real
world settings, we used Li et al. (2024b) to gen-
erate a trace path for each step in each generated
plan. Then, a human rater assessed whether each
individual step was completed successfully by the
generated trace.

Results: SelfReVision improves downstream
performance on block manipulation task and
real-world planning scenarios As shown in Ta-
ble 4, the plans enhanced by SelfReVision out-
performed the base model plans by 26% (12B)
and 17% (27B), respectively. Qualitatively, the im-
provements were especially notable in more com-
plex tasks like "Create a smiley face" or "Form a
rainbow". For the smaller 12B model, SelfReVi-
sion often transformed failed attempts into success-
ful plans (see Figure 4a). In contrast, for the larger
27B model, the improvements were more subtle,
enhancing already successful outputs, such as mak-
ing the structure more rounded in the final example
of Figure 4a. These results indicate that the crit-
ical revision process introduced by SelfReVision
can produce higher-quality plans that more reliably
complete manipulation tasks.

For the hierarchical task, we found that the Self-

ReVision plans resulted in 70% successful traces
creation by the HAMSTER action model compared
to only 61% of the base model plans. These im-
provements stemmed from both meaningful ad-
ditions and removals within the plans, resulting
in more accurate downstream traces. Figure 4b
presents two illustrative examples of such revisions
and their downstream impact. In the top image,
where the goal was to pack a kid’s lunch, SelfRe-
Vision correctly added a final missing step to place
the lid on the Tupperware. In contrast, the bottom
image shows an error in the base plan for the goal
“pack toys for a kid,” where the model mistakenly
included an action involving a blue scrub brush,
misidentifying it as a toy. SelfReVision success-
fully removed this unnecessary step. These ex-
amples highlight how SelfReVision enhances plan
precision by correcting both omissions and errors,
leading to more reliable task execution.

5 Conclusion

We showed that SelfReVision, a self-improvement
framework for vision-language procedural plan-
ning, can significantly boost the performance of
small models through iterative self-critiquing and
refinement.

Limitations

While our method demonstrates promising results
for low-level procedural planning in small-scale
VLMs, it is not without limitations.

A primary limitation of SelfReVision is its in-
creased inference cost. Unlike the SFT approaches
that generate a complete plan in a single forward

32598

pass, SelfReVision requires iterative refinement
across multiple calls, averaging around 8 inference
steps per example. This iterative process enables
more accurate and grounded reasoning, but may
pose challenges for latency-sensitive or real-time
applications.

Second, our self-improvement strategy assumes
that the model can recognize and correct its own
planning errors during training. However, if the
model’s internal reward signal or critique mecha-
nism is flawed, this could reinforce incorrect be-
haviors or lead to overfitting on superficial plan
heuristics. Although we do see improvement in all
models tested, a weaker model might not benefit
from the same method.

Lastly, currently we only experiment with added
visual inputs and do not incorporate other poten-
tially useful modalities such as robot propriocep-
tion, or tactile feedback. This unimodal design
limits the method’s ability to adapt to multimodal
real-world scenarios where contextual or embodied
cues are critical for accurate planning. It would
be interesting for future work to attempt to incor-
porate more versatile type of information in the
self-critiquing loop.

Acknowledgement

This work was supported by funding from the Army
Research Lab.

References

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alexan-
der Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz,
Brian Ichter, Alex Irpan, Eric Jang, Rosario M Jau-
regui Ruano, Kyle Jeffrey, Sally Jesmonth, and 24
others. 2022. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on
Robot Learning.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shi-
jie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu,
Mingkun Yang, Zhaohai Li, Jiangiang Wan, Pengfei
Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 oth-
ers. 2025. Qwen2.5-vl technical report. Preprint,
arXiv:2502.13923.

Lucas Beyer, Andreas Steiner, André Susano Pinto,
Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael
Tschannen, Emanuele Bugliarello, Thomas Un-
terthiner, Daniel Keysers, Skanda Koppula, Fangyu
Liu, Adam Grycner, Alexey Gritsenko, Neil Houlsby,
Manoj Kumar, Keran Rong, and 16 others. 2024.
Paligemma: A versatile 3b vim for transfer. Preprint,
arXiv:2407.07726.

Faeze Brahman, Chandra Bhagavatula, Valentina Py-
atkin, Jena D. Hwang, Xiang Lorraine Li, Hi-
rona Jacqueline Arai, Soumya Sanyal, Keisuke Sak-
aguchi, Xiang Ren, and Yejin Choi. 2023. Plasma:
Making small language models better procedural
knowledge models for (counterfactual) planning.

ArXiv, abs/2305.19472.

Robert L. Brennan and Dale J. Prediger. 1981. Co-
efficient kappa: Some uses, misuses, and alterna-

tives. Educational and Psychological Measurement,
41(3):687-699.

Hongyi Chen, Yunchao Yao, Ruixuan Liu, Changliu
Liu, and Jeffrey Ichnowski. 2024. Automating robot
failure recovery using vision-language models with
optimized prompts. Preprint, arXiv:2409.03966.

An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Zaitian
Gongye, Xueyan Zou, Jan Kautz, Erdem Biyik,
Hongxu Yin, Sifei Liu, and Xiaolong Wang. 2025.
Navila: Legged robot vision-language-action model
for navigation. Preprint, arXiv:2412.04453.

Kanzhi Cheng, Yantao Li, Fangzhi Xu, Jianbing Zhang,
Hao Zhou, and Yang Liu. 2024. Vision-language
models can self-improve reasoning via reflection.
Preprint, arXiv:2411.00855.

Yihe Deng, Pan Lu, Fan Yin, Ziniu Hu, Sheng Shen,
Quanquan Gu, James Zou, Kai-Wei Chang, and Wei
Wang. 2024. Enhancing large vision language mod-
els with self-training on image comprehension. In
Advances in Neural Information Processing Systems,
volume 37, pages 131369—131397. Curran Asso-
ciates, Inc.

32599

https://api.semanticscholar.org/CorpusID:247939706
https://api.semanticscholar.org/CorpusID:247939706
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2407.07726
https://api.semanticscholar.org/CorpusID:258987371
https://api.semanticscholar.org/CorpusID:258987371
https://api.semanticscholar.org/CorpusID:258987371
https://arxiv.org/abs/2409.03966
https://arxiv.org/abs/2409.03966
https://arxiv.org/abs/2409.03966
https://arxiv.org/abs/2412.04453
https://arxiv.org/abs/2412.04453
https://arxiv.org/abs/2411.00855
https://arxiv.org/abs/2411.00855
https://proceedings.neurips.cc/paper_files/paper/2024/file/ed45d6a03de84cc650cae0655f699356-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ed45d6a03de84cc650cae0655f699356-Paper-Conference.pdf

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe
Yu, Wenlong Huang, Yevgen Chebotar, Pierre Ser-
manet, Daniel Duckworth, Sergey Levine, Vincent
Vanhoucke, Karol Hausman, Marc Toussaint, Klaus
Greff, and 3 others. 2023. Palm-e: An embod-
ied multimodal language model. In arXiv preprint
arXiv:2303.03378.

Yunhao Fang, Ligeng Zhu, Yao Lu, Yan Wang, Pavlo
Molchanov, Jan Kautz, Jang Hyun Cho, Marco
Pavone, Song Han, and Hongxu Yin. 2024. Vila?:
Vila augmented vila. Preprint, arXiv:2407.17453.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024.
CRITIC: Large language models can self-correct
with tool-interactive critiquing. In The Twelfth Inter-
national Conference on Learning Representations.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alexa Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, A. Doucet,
Orhan Firat, and Nando de Freitas. 2023. Reinforced
self-training (rest) for language modeling. ArXiv,

abs/2308.08998.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2023.
Large language models can self-improve. In EMNLP
2023 - 2023 Conference on Empirical Methods in
Natural Language Processing, Proceedings, EMNLP
2023 - 2023 Conference on Empirical Methods in
Natural Language Processing, Proceedings, pages
1051-1068. Association for Computational Linguis-
tics (ACL).

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. Language models as zero-shot plan-
ners: Extracting actionable knowledge for embodied
agents. International Conference on Machine Learn-

ing.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet,
Noah Brown, Tomas Jackson, Linda Luu, Sergey
Levine, Karol Hausman, and Brian Ichter. 2022. In-
ner monologue: Embodied reasoning through plan-
ning with language models. CoRR, abs/2207.05608.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. 2024. Understand-
ing the planning of llm agents: A survey. ArXiv,

abs/2402.02716.

Muhammet Ilaslan, Ali Koksal, Kevin Qinghong Lin,
Burak Satar, Mike Zheng Shou, and Qianli Xu. 2024.
Vg-tvp: Multimodal procedural planning via visually
grounded text-video prompting. In AAAI Conference
on Artificial Intelligence.

Jaehun Jung, Peter West, Liwei Jiang, Faeze Brahman,
Ximing Lu, Jillian Fisher, Taylor Sorensen, and Yejin
Choi. 2024. Impossible distillation for paraphras-
ing and summarization: How to make high-quality
lemonade out of small, low-quality model. In Pro-
ceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 4439-4454, Mexico City,
Mexico. Association for Computational Linguistics.

Namasivayam Kalithasan, Himanshu Gaurav Singh,
Vishal Bindal, Arnav Tuli, Vishwajeet Agrawal,
Rahul Jain, Parag Singla, and Rohan Paul. 2022.
Learning neuro-symbolic programs for language
guided robot manipulation. 2023 IEEE International
Conference on Robotics and Automation (ICRA),
pages 7973-7980.

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen,
Mozheng Liao, Fangyun Wei, Yu Deng, Sicheng Xu,
Yizhong Zhang, Xiaofan Wang, Bei Liu, Jianlong Fu,
Jianmin Bao, Dong Chen, Yuanchun Shi, Jiaolong
Yang, and Baining Guo. 2024a. CogACT: A Founda-
tional Vision-Language-Action Model for Synergiz-
ing Cognition and Action in Robotic Manipulation.

Yi Li, Yuquan Deng, Jesse Zhang, Joel Jang, Marius
Memmel, Caelan Garrett, Fabio Ramos, Dieter Fox,
Angqi Li, Abhishek Gupta, and Ankit Goyal. 2024b.
Hamster: Hierarchical action models for open-world
robot manipulation. In CoRL 2024 Workshop on
Language and Robot Learning: Language as an In-
terface.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2023a. Code as policies: Language model
programs for embodied control. In 2023 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 9493-9500.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2023b. Code as policies: Language model
programs for embodied control. In 2023 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 9493-9500. IEEE.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. Preprint,
arXiv:2304.08485.

Yujie Lu, Pan Lu, Zhiyu Chen, Wanrong Zhu, Xin Eric
Wang, and William Yang Wang. 2023. Multimodal
procedural planning via dual text-image prompting.

ArXiv, abs/2305.01795.

Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye
Hao, and Irwin King. 2025. A survey on vision-
language-action models for embodied ai. Preprint,

arXiv:2405.14093.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,

32600

https://arxiv.org/abs/2407.17453
https://arxiv.org/abs/2407.17453
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://api.semanticscholar.org/CorpusID:261031028
https://api.semanticscholar.org/CorpusID:261031028
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://par.nsf.gov/biblio/10366294
https://par.nsf.gov/biblio/10366294
https://par.nsf.gov/biblio/10366294
https://doi.org/10.48550/ARXIV.2207.05608
https://doi.org/10.48550/ARXIV.2207.05608
https://doi.org/10.48550/ARXIV.2207.05608
https://api.semanticscholar.org/CorpusID:267411892
https://api.semanticscholar.org/CorpusID:267411892
https://api.semanticscholar.org/CorpusID:274776716
https://api.semanticscholar.org/CorpusID:274776716
https://doi.org/10.18653/v1/2024.naacl-long.250
https://doi.org/10.18653/v1/2024.naacl-long.250
https://doi.org/10.18653/v1/2024.naacl-long.250
https://api.semanticscholar.org/CorpusID:253180551
https://api.semanticscholar.org/CorpusID:253180551
https://doi.org/10.48550/arXiv.2411.19650
https://doi.org/10.48550/arXiv.2411.19650
https://doi.org/10.48550/arXiv.2411.19650
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/ICRA48891.2023.10160591
https://arxiv.org/abs/2304.08485
https://api.semanticscholar.org/CorpusID:258461059
https://api.semanticscholar.org/CorpusID:258461059
https://arxiv.org/abs/2405.14093
https://arxiv.org/abs/2405.14093

Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 46534-46594. Curran Associates, Inc.

Amir Moslemi, Anna Briskina, Zubeka Dang, and Jason
Li. 2024. A survey on knowledge distillation: Recent
advancements. Machine Learning with Applications,
18:100605.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Ting
Wang, Sanja Fidler, and Antonio Torralba. 2018. Vir-
tualhome: Simulating household activities via pro-
grams. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Presents VirtualHome and proposes a model to pre-
dict programs from videos or descriptions. The pre-
dicted program is finetuned using RL to be executable
in the simulator.

Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liy-
iming Ke, Karl Pertsch, Quan Vuong, James Tan-
ner, Anna Walling, Haohuan Wang, Niccolo Fusai,
Adrian Li-Bell, Danny Driess, Lachy Groom, Sergey
Levine, and Chelsea Finn. 2025. Hi robot: Open-
ended instruction following with hierarchical vision-
language-action models. ArXiv, abs/2502.19417.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M. Sadler, Wei-Lun Chao, and Yu Su. 2023.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV).

Sanjana Srivastava, Chengshu Li, Michael Lingelbach,
Roberto Martin-Martin, Fei Xia, Kent Elliott Vainio,
Zheng Lian, Cem Gokmen, Shyamal Buch, Karen
Liu, Silvio Savarese, Hyowon Gweon, Jiajun Wu,
and Li Fei-Fei. 2022. Behavior: Benchmark for
everyday household activities in virtual, interactive,
and ecological environments. In Proceedings of the
5th Conference on Robot Learning, volume 164 of
Proceedings of Machine Learning Research, pages
477-490. PMLR.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin
Zhang, Zhenfang Chen, David Cox, Yiming Yang,
and Chuang Gan. 2023. Principle-driven self-
alignment of language models from scratch with min-
imal human supervision. In Proceedings of the 37th
International Conference on Neural Information Pro-
cessing Systems, NIPS ’23, Red Hook, NY, USA.
Curran Associates Inc.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam
Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros,
Ambrose Slone, and 89 others. 2024. Gemma: Open
models based on gemini research and technology.
Preprint, arXiv:2403.08295.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484—13508, Toronto, Canada. Association
for Computational Linguistics.

Guande Wu, Huan Song, Yawei Wang, Qiaojing Yan,
Yijun Tian, Lin Lee Cheong, and Panpan Xu. 2025.
Sdrt: Enhance vision-language models by self-
distillation with diverse reasoning traces. Preprint,
arXiv:2503.01754.

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang,
Guanyu Li, Yiwen Ding, Wei He, Boyang Hong,
Shihan Dou, Wenyu Zhan, Xiao Wang, Rui Zheng,
Tao Ji, Xiaowei Shi, Yitao Zhai, Rongxiang Weng,
Jingang Wang, Xunliang Cai, Tao Gui, and 5 others.
2024. Enhancing 1lm reasoning via critique models
with test-time and training-time supervision. CoRR,
abs/2411.16579.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu
Zhao, Min-Yen Kan, Junxian He, and Michael Xie.
2023. Self-evaluation guided beam search for reason-
ing. In Advances in Neural Information Processing
Systems, volume 36, pages 41618-41650. Curran As-
sociates, Inc.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. 2024. A survey on knowl-
edge distillation of large language models. ArXiv,
abs/2402.13116.

Kevin Yang, Dan Klein, Asli Celikyilmaz, Nanyun Peng,
and Yuandong Tian. 2024a. Rlcd: Reinforcement
learning from contrastive distillation for language
model alignment. Preprint, arXiv:2307.12950.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. 2023. Mm-
react: Prompting chatgpt for multimodal reasoning
and action. ArXiv, abs/2303.11381.

Zhutian Yang, Caelan Garrett, Dieter Fox, Tomds
Lozano-Pérez, and Leslie Pack Kaelbling. 2024b.
Guiding long-horizon task and motion plan-
ning with vision language models. Preprint,
arXiv:2410.02193.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. React:

32601

https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://doi.org/10.1016/j.mlwa.2024.100605
https://doi.org/10.1016/j.mlwa.2024.100605
https://arxiv.org/abs/2303.08774
https://virtual-home.org
https://virtual-home.org
https://virtual-home.org
https://api.semanticscholar.org/CorpusID:276618098
https://api.semanticscholar.org/CorpusID:276618098
https://api.semanticscholar.org/CorpusID:276618098
https://proceedings.mlr.press/v164/srivastava22a.html
https://proceedings.mlr.press/v164/srivastava22a.html
https://proceedings.mlr.press/v164/srivastava22a.html
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://arxiv.org/abs/2503.01754
https://arxiv.org/abs/2503.01754
https://doi.org/10.48550/arXiv.2411.16579
https://doi.org/10.48550/arXiv.2411.16579
https://proceedings.neurips.cc/paper_files/paper/2023/file/81fde95c4dc79188a69ce5b24d63010b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/81fde95c4dc79188a69ce5b24d63010b-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:267760021
https://api.semanticscholar.org/CorpusID:267760021
https://arxiv.org/abs/2307.12950
https://arxiv.org/abs/2307.12950
https://arxiv.org/abs/2307.12950
https://api.semanticscholar.org/CorpusID:257637012
https://api.semanticscholar.org/CorpusID:257637012
https://api.semanticscholar.org/CorpusID:257637012
https://arxiv.org/abs/2410.02193
https://arxiv.org/abs/2410.02193
https://par.nsf.gov/biblio/10451467

Synergizing reasoning and acting in language models.
International Conference on Learning Representa-
tions (ICLR).

Xiao Yu, Baolin Peng, Michel Galley, Jianfeng Gao,
and Zhou Yu. 2024. Teaching language models to
self-improve through interactive demonstrations. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 5127-5149, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan
Welker, Rowan Armstrong, Eric Tzeng, and Lerrel
Pinto. 2020. Transporter networks: Rearranging the
visual world for robotic manipulation. In Conference
on Robot Learning (CoRL). Project Website, PDF
available online.

Min Zhang, Jianye Hao, Xian Fu, Peilong Han, Hao
Zhang, Lei Shi, Hongyao Tang, and Yan Zheng. 2024.
Mfe-etp: A comprehensive evaluation benchmark for
multi-modal foundation models on embodied task
planning.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
lIm-as-a-judge with mt-bench and chatbot arena. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS °23,
Red Hook, NY, USA. Curran Associates Inc.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude
Oliva, and Antonio Torralba. 2017. Places: A 10
million image database for scene recognition. /[EEE
Transactions on Pattern Analysis and Machine Intel-
ligence.

Deyao Zhu, Jun Chen, Xiaoqgian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. Preprint, arXiv:2304.10592.

A Experimental Details

In this section, we provide full details of the ex-
perimentation used in this paper. We start with
implementation of our method Appendix A.1, and
then discuss the experimental setup of both the
procedural planning Appendix A.2 and embodied
agents Appendix A.3.

Al

Training Data We used a subset of images from
the Places365 Dataset (Zhou et al., 2017), which
contains real-world scenes categorized by loca-
tion type (e.g., airport lounge, kitchen, barn).
This dataset originally contains 2.5 million images
which are categorized into 205 types of scenes (e.g.
barn, living room, beauty salon). Some of these
categories were not conducive to our experiments,
specifically ones that might not allow for many
tasks to be done (e.g. barndoor, batters box, ice
shelf). To determine which categories to use, we
had two researchers independently rate all 205 cat-
egories based on perceived eligibility to the task
of procedural planning on a 4-point likert scale (1
= best category, 4 = worst category). We then in-
cluded all categories which had an average score
of 1.5. This resulted in the following diverse 55
categories:

Method Implementation

* Places365 Categories: airplane cabin, air-
port terminal, apartment building outdoor,
aquatic theater, arcade, archaeological excava-
tion, archive, army base, art gallery, art studio,
atrium public, banquet hall, bar, barn, base-
ment, bathroom, bazaar indoor, beach house,
biology laboratory, bookstore, chemistry lab,
childs room, classroom, clothing store, coffee
shop, dinette home, dorm room, florist shop in-
door, florist shop outdoor, gallery, game room,
gymnasium indoor, hardware store, home of-
fice, home theater, hospital, hospital room,
hotel room, kindergarten classroom, kitchen,
kitchenette, laundromat, living room, lobby,
nursery, office, pharmacy, playroom, pub in-
door, reception, recreation room, repair shop,
restaurant kitchen, storage room, utility room.

We aimed to based our dataset on a diverse range
of real-world images, including both indoor and
outdoor scenes.

Then, within each category there is a wide range
of types of images. Since this dataset uses images
from a wide range of online sourced, not all the

32602

https://par.nsf.gov/biblio/10451467
https://doi.org/10.18653/v1/2024.naacl-long.287
https://doi.org/10.18653/v1/2024.naacl-long.287
https://transporter-net.github.io/
https://transporter-net.github.io/
https://doi.org/10.48550/arXiv.2407.05047
https://doi.org/10.48550/arXiv.2407.05047
https://doi.org/10.48550/arXiv.2407.05047
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592

images are of the same quality. For our task, we
wanted to have scenes which were clear, easy to
see, and not too focused on one object or too broad
to not be able to have tangible tasks. Therefore, we
choose to filter the images based on the following
criteria:

* Too Blurry: slight blurriness is acceptable
if objects remain identifiable, but excessively
blurry images should be excluded.

* Too Dark: some darkness is acceptable as
long as objects can still be discerned. How-
ever, images that are too dark to identify ob-
jects should be filtered out.

* Too Zoomed-In/Too Zoomed-Out: images
that are overly focused on a single detail (e.g.,
close-ups of flowers or a single individual) and
lack broader environmental context should be
excluded./images taken from too far away, like
more than 100 feet away, or those that primar-
ily capture abstract landscapes, making it dif-
ficult to infer meaningful tasks specific to the
environment, should be filtered out

We did this filtering automatically using GPT-40
(OpenAl et al., 2024) by prompting. The exact
prompt can be see in prompt 1. In total we ran-
domly selected 51997 (1000 images per category)
images, resulting in 35619 final images after filter-
ing.

Next, we took each of these filtered images and
again prompted GPT-40 to generate a plausible
user-input (see prompt 2). This resulted in a final
dataset of n = 107013 image/user-input pairs for
training.

Prompt 1. You are evaluating an image to decide
whether it should be filtered out for data generation
purposes. An ideal image should provide clear en-
vironmental context for robots, as these images will
be used to generate a list of tasks that robots can
perform based on the given situation. Specifically,
images should be filtered out if they meet any of the
following criteria: 1) too blurry (slight blurriness
is acceptable if objects remain identifiable, but ex-
cessively blurry images should be excluded.), 2) too
dark (some darkness is acceptable as long as ob-
jects can still be discerned. However, images that
are too dark to identify objects should be filtered
out.), 3) too zoomed-in (images that are overly fo-
cused on a single detail (e.g., close-ups of flowers

or a single individual) and lack broader environ-
mental context should be excluded.), 4) too far-out
(images taken from too far away, like more than 100
feet away, or those that primarily capture abstract
landscapes, making it difficult to infer meaningful
tasks specific for the environment, should be filtered
out).

Please provide feedback for each crite-
rion and the overall decision in JSON
format as shown in the example
“blurry”:"blurry/ok", "darkness": "too dark/quite
dark/slightly dark/ok", "zoomed-in": "too zoomed-

in/somewhat zoomed-in/ok", 'far-out":"too far-
out/somewhat far-out/ok", "decision": "keep/filter"

below:

Prompt 2. Given an image generate 3 plausible
user inputs from someone in the image directed
at a robot, which would then cause the robot to
do a task. The user inputs can be statements or
questions.

Also, for each input, generate a list of high-level
steps for the robot to finish the task. Make sure
the high-level steps are specific to the setting in the
image.

Lastly, for each input, generate a short response
by the robot that indicates what it plans to do.

Do not mention the image or picture. The
user inputs should be very different from each
other and specific to the scene. Separate the
high-level steps using "I". Respond strictly in
JSON format with 9 keys: ‘User_Inputl’, ‘Stepsl’,
‘Robot_Responsel’,..., ‘User_Input3’, ‘Steps3’,
‘Robot_Response3’. Do not use any markdown
formatting or code block symbols (such as triple
backticks).

** Multiple like-version of this prompt was used,
see Github code for full list**

Self-Distillation/Improvement In order to gen-
erate the high-level plans (the labels of our training
data) we used the base model itself through prompt-
ing in a process called self-distillation. First, we
use a general prompt to get an initial plan pg (see
prompt 3.

However, given the weak nature of the base
model, this prompt is not going to be well grounded
to the given scene. Therefore, we use a series of
self-critique, self-revise, and self-evalute prompts
to generate a better final plan. First, we self-
critique the initial plan using an open-ended prompt
Crit(pg), see prompt 4. Then, we used the output
from this prompting along with the original plan pg
to revise the original plan Rev(pg,Crit(py)) = p1,

32603

see prompt 5. Lastly, we prompted the base model
to verify if the revised plan is better than the origi-
nal plan using prompt 6 Ver(pg, p1)-

Prompt 3. You are writing instructions for a robot
in the image. Make a detailed plan which responds
to the users input. You can only use the items you
see in the given image and must make your plan
specific to this setting.

You should respond with only the numbered
plan which starts with “<plan>" and ends with
“</plan>". No other text should be outputted. Do
not use any markdown formatting, code block sym-
bols (such as triple backticks), headings, sum-
maries, or nested bullet points

User Input: “{user_input}”

Prompt 4. You are reviewing a high-level plan for
a robot based on a user request and an image of
the environment.

Your goal is to identify critical flaws, gaps, or
missed opportunities that would significantly im-
prove the plan’s feasibility, clarity, or alignment
with the depicted environment. Focus on major
missing steps, unrealistic assumptions, or vague
actions that reduce the quality of the plan. Avoid
nitpicking or commenting on minor stylistic issues.

Ground your feedback in the visual context and
user intent. Prioritize issues that would materi-
ally impact the robot’s ability to execute the task
successfully.

Output a clean, single-level numbered list of
feedback enclosed between <critic> and </critic>.
Each item should describe one clear issue or sug-
gestion for meaningful improvement.

Do not suggest rewordings or edits—focus only
on diagnosing problems.

User Input: “{user_input}”

Current Plan: “{current_plan}”

Prompt 5. You are revising a high-level robot plan
based on critical feedback, the user’s request, and
an image of the environment.

Use the feedback to identify key flaws and ad-
dress them with substantive improvements. Focus
on clarity, feasibility, and grounding the plan in
the actual visual context. Prioritize corrections
that enable the robot to effectively and realistically
complete the task.

Make **meaningful changes**, not surface-
level edits. Omit redundant or overly detailed in-
structions that don’t improve execution. Avoid spec-
ulative details unless they’re clearly justified by the
visual context.

Output a clean, single-level numbered list of
steps enclosed between <plan> and </plan>. Do
not include titles, nested lists, extra commentary,
or any formatting besides the numbering.

User Input: “{user_input}”

Current Plan: “{current_plan}”

Feedback: “{criticism}”

Prompt 6. You are evaluating two sets of instruc-
tions for a robot in the image. You will be given a
user input and two high-level plans. Compare the
two plans and respond with "yes" if Plan 2 better
fulfills the user request than Plan 1; otherwise, re-
spond with "no". Good plans generally use only
items visible in the image and are specific to the
setting shown. A better plan more effectively uses
only items visible in the image and is more specific
to the setting shown. It also demonstrates stronger
coverage, more logical order, greater completeness,
and better grounding in the image. Do not use any
markdown formatting or code block symbols (such
as triple backticks).”

User Input: "{user_input}”

Plan 1: ”{initial_plan}”

Plan 2: 7{revised_plan}”

Training We used a diverse range of base models
to experiment with SelfReVision Qwen-2.5-VL-
Instruct (3B, 7B, 32B, 72B) (Bai et al., 2025) and
Gemma 3 (4B, 12B, 27B) (Team et al., 2024). We
performed supervised fine-tuning of the base mod-
els using plans generated with SelfReVision During
training, all models were cast to the torch.bfloat16
data type and trained for 4 epochs. The best model
was selected based on cross-entropy loss on a de-
velopment set consisting of 100 randomly held-out
examples from the training data. Final evaluation
results (win rates) were computed on a separate set
of 100 held-out samples. We experimented with
three learning rates (le-5, 3e-5, and Se-5) for each
model and report results for the best-performing
one. Weight decay was fixed at 0.01, and the maxi-
mum number of tokens was set to 500 for all mod-
els.

A.2 Goal-Based Procedural Planning Details

In this section we outline the experimental de-
tails for the goal-based procedural planning experi-
ments.

Evaluation Dataset We evaluated our method
on both real-world setting and simulation setting
datasets. For the real-world setting, we used a

32604

randomly selected held-out test set of n = 100
image and user-input pairs from our training data.
These images were sampled from the Places365
Dataset (Zhou et al., 2017), and the corresponding
user inputs were generated using GPT-4o0 (OpenAl
et al., 2024). See Appendix A.1 for full details.
For the simulation setting, we used a modified
version of the MFE-ETP benchmark dataset (Zhang
et al., 2024), which consists of n = 100 image and
user-prompt pairs drawn from the popular proce-
dural simulation environments VirtualHome (Puig
etal., 2018) and BEHAVIOR-100 (Srivastava et al.,
2022). This dataset was created as a challenging
benchmark for embodied reasoning and procedu-
ral planning. However, for some of the original
MFE-ETP samples, there are multiple images of
the initial conditions which might be needed to
create a plan for the given task. Since, we want
to focus on only one image for a user-input, we
hand-selected teh best image for the given task. If
no image captured enough information to complete
the task, we randomly selected an image and wrote
a new task. The full list of the n = 100 choosen
images and tasks can be found on our github.

Baselines To demonstrate the effectiveness of
SelfReVision, we first compare the refined plans
to the initial plans generated by the models using
few-shot prompting. We also evaluate responses
from other baselines such as GPT-40 (represent-
ing a powerful large model) (OpenAl et al., 2024),
PaliGemma (a domain-specific model trained for
planning) (Beyer et al., 2024), a Basic Distillation
(inspired by Shi et al. (2025), we use a more de-
tailed self-distillation prompting that includes in-
structions for physical and spatial grounding) and
best-of-N (an inference-time algorithm that gen-
erates multiple outputs and selects the best one).
The prompts and examples provided to GPT-40
and PaliGemma match those given to the base. The
prompt for the Basic Distillation technique can be
found in prompt 8.

For the best-of-N baseline, we use N =5: we
sample five different plans with a temperature of
0.5, followed by a final inference step to select the
best plan among them. This setup approximately
matches the number of additional inferences made
by both SelfReVision and the baseline.

prompt 7 shows the exact prompt used to do
few-shot generation with baselines.

Prompt 7. You are writing instructions for a robot
in the image. Make a detailed plan which responds

to the users input. You can only use the items you
see in the given image and must make your plan
specific to this setting. You should respond with
only the numbered plan and no other text should
be outputted. Do not use any markdown formatting
or code block symbols (such as triple backticks).

Example 1 User Input: Hmm, I don’t think the
time on that clock is correct. Plan: 1. Navigate to
the Clock 2. Grab the Clock 3. Adjust the Time to
12:15 4. Return the Clock

Example 2 User Input: Can you make my drink
colder? Plan: 1. Navigate to the Fridge 2. Open
the Freezer Door 3. Locate the Ice Tray 4. Collect
the Ice 5. Close the Freezer Door 6. Navigate back
to the Person 7. Put the Ice in the Drink

Example 3 User Input: Can you hang this picture
for me? Plan: 1. Pick up the Hammer and Nail
2. Insert Nail into the Wall with Hammer 3. Put
Down the Tools 4. Pick up Picture 5. Hang the
Picture

User Input: user_input

Plan:

Prompt 8. You are writing a detailed plan for a
robot to carry out a user request based on a given
image of the environment.

Your plan must: - Use only the objects and el-
ements visible in the image. - Be grounded in the
physical layout shown—consider spatial relation-
ships, object accessibility, reachability, and pos-
sible obstructions. - Avoid assumptions that can-
not be confirmed visually. - Break the task into
clear, atomic steps that the robot can execute. -
Consider practical challenges the robot might face
(e.g., needing to navigate around an obstacle or
pick up an object from a specific angle).

Do **not** output any explanations, justifica-
tions, or summaries. Your response should contain
only the numbered list of steps, enclosed between
<plan> and </plan>.

Begin your response with "<plan>" and end it
with "</plan>". Do not include markdown format-
ting, headings, code block symbols, or any extra
text.

User Input: user_input

Plan:

Ablation Study Details To evaluate the contri-
bution of each component in SelfReVision self-
refinement loop, we conducted a series of abla-
tion experiments by selectively removing individ-
ual stages. Table 3 presents the ablation results
on both the PLACES and SIMULATION datasets,

32605

averaged across the seven VLMs. We com-
pare four configurations: the full CRV (Criticize-
Revise-Verify) pipeline, CR (Criticize-Revise), RV
(Revise-Verity), and R (Revise-only).

prompt 9 shows the revision prompt for variants
that do not go through the self-criticism process
(RV and R).

Prompt 9. You are revising a high-level plan for
a robot. You will be given a user’s input and the
current plan. Your task is to revise and improve the
plan.

When revising: 1. Make sure to use only objects
visible in the image 2. Provide a step-by-step plan
specific to the setting 3. Address all aspects of the
user input 4. Ensure logical ordering of actions
5. Add spatial details where needed 6. Ensure all
actions are feasible in the environment shown

Respond only with the revised, numbered
steps which starts with "<plan>" and ends with
"</plan>". Do not include any additional text. Do
not use markdown formatting or code block sym-
bols (such as triple backticks).

User Input: user_input

Current Plan: current_plan

Evaluation Methodology and Other Details In
line with prior work (Brahman et al., 2023; Huang
et al.), we evaluate procedural plans using the fol-
lowing five criteria:

* Coverage — How well the plan addresses the
user’s input.

* Ordering — Whether the plan follows a co-
herent and logical sequence.

* Completeness — Whether the plan is suffi-
ciently detailed and informative.

* Image Groundedness — Whether the plan is
plausible given the specific visual scene.

* Overall Quality — The overall effectiveness
and appropriateness of the plan.

We include the Image Groundedness criterion to
reflect the visual nature of our model: unlike prior
work focused solely on language models (LLMs),
our goal is to develop a vision-language model
(VLM) that generates plans tailored to specific im-
ages.

Given the strong performance of LLMs-as-
judges (Zheng et al., 2023), we use GPT-40 (Ope-
nAl et al., 2024) as an automated evaluator via

prompting. See Appendix B for full details on val-
idation of this method. The prompt we used to
evaluate can be seen in prompt 10.

Prompt 10. You will be given an image of a
setting, a user input and a corresponding plan
with high-level steps that can be used by a robot
to respond to the user input in that setting. Only
output a valid json (python dictionary) and keep
any explanation brief < 10 words. Your task is
to evaluate the plan based on the following five
criteria:

Coverage (Does the plan fully address the user
input?)**
- **5 (Definitely): The plan thoroughly addresses
all aspects of the user input without omissions.
- **4 (Mostly): The plan covers the main points of
the user input, but might miss a few minor details.
- **3 (Somewhat): The plan addresses some
aspects of the user input, but not comprehensively.
- *%2 (Slightly): The plan barely touches on the
user’s input and misses several key points.
- **] (Not at all): The plan fails to address the
user input or is irrelevant.

Ordering (Is the plan well-ordered?)**
- **5 (Definitely): ** The ordering does not need
any changes.
- **4 (Mostly):** The ordering is generally good,
but there might be a few minor adjustments.
- *¥%3 (Somewhat): ** I could see reordering some
of these, but it would be more of a stylistic change.
- *¥%2 (Slightly): ** The ordering could use some
improvements, but it’s not entirely bad.
- *¥*] (Not at all): ** Ordering is bad or nonsensical.

Completeness (Is the plan complete and
informative?)**
- **5 (Definitely): ** The plan provides a complete
and informative picture of what needs to be done
to respond to the user input.
- **4 (Mostly):** The plan is mostly complete and
informative, with only a few minor gaps.
- **%3 (Somewhat): ** The steps are somewhat
general, but overall you get what you need. You
might need a few minor details.
- **%2 (Slightly): ** The plan is missing several key
details and is not fully clear.
- **] (Not at all): ** The plan is really bland and
dominated by unnecessary, irrelevant, and/or
repetitive steps, or key steps are missing.

32606

Image Grounded (Can this plan be carried out
in the specific setting shown in the image?)**
— **5 (Definitely): All objects and actions men-
tioned are clearly present in the image; the plan is
specific to the setting seen in the image.
— **%4 (Mostly): The plan makes sense for the setting
seen in the image, with only minor mismatches
(e.g., one object might be assumed but not shown,
or include vague actions to be done in the image
presented).
— *%3 (Somewhat): The plan is partially grounded
in the setting shown in the image, but some steps
rely on questionable assumptions about what’s
available or possible to be done.
— **2 (Slightly): Several actions or objects don’t
appear to match the specific setting in the image,
making the plan hard to execute as described.
— **] (Not at all): The plan feels unrealistic or un-
related to the specific setting in the image—objects
are used that are not in the image, actions are
implausible or vauge, or it seems like the setting
was ignored entirely.

Overall (Is the plan overall good?)**
- **5 (Definitely): ** The plan is overall good. A
good plan should be well-ordered, complete, and
contain no repetitive or unnecessary steps.
- *%4 (Mostly): ** The plan is mostly good. It’s gen-
erally well-organized and complete but could use
some improvements in detail or clarity.
- *%3 (Somewhat): ** The steps are somewhat gen-
eral, but overall you get what you need.
- *%2 (Slightly): ** The plan is lacking in key details,
and some steps feel unnecessary or unclear, but it
somewhat meets the requirements.
- **] (Not at all): ** The plan is really bland and
not good with repetitive or unnecessary steps.
**Example 1 Input®*
"user_input": "Can you take my picture with this
background?",
"high_level_plan": [
"1. Navigate to the Arch”,
"2. Position at the Ideal Angle",
"3. Adjust Camera Settings",
"4. Capture the Panoramic Photo"
I
Example 1 Output
"Coverage": 5,
"Coverage Explanation": "The plan is completely
relevant to the user input.”,

"Ordering": 5,

"Ordering Explanation": "The steps are in the
correct order.”,

"Completeness": 4,

"Completeness Explanation": "The plan is mostly
complete but lacks specific details about how to
adjust the settings.",

"Image Grounded": 4,

"Image Grounded Explanation”: '"The plan
includes only objects in the setting, but it maybe be
hard to navigate through the rocks without more
directions.",

"Overall": 4,

"Overall Explanation”: "The plan is mostly good
with minor gaps in detail."”

**Example 2 Input™*
"user_input": "I'm going on a roadtrip, can you
grab me a snack?",
"high_level_plan": [
"1. Navigate to the Fridge",
"2. Open the Fridge",
"3. Grab a Grape",
)
Example 2 Output
"Coverage": 4,
"Coverage Explanation": "Although the plan does
get food, one grape might not be enough food for a
roadtrip."”, "Ordering": 5,
"Ordering Explanation": "The steps are in the cor-
rect order.",
"Completeness": 2,
"Completeness Explanation": "The plan does not
bring the food to the human.",
"Image Grounded": 5,
"Image Grounded Explanation”:
cludes objects in the setting.",
"Overall": 3,
"Overall Explanation”: "The plan is only slightly
address the user input but does not complete it."
Respond strictly in JSON format with the key
"Coverage", "Coverage Explanation”, "Ordering",
"Ordering Explanation”, "Completeness", "Com-
pleteness Explanation”, "Image Grounded", "Im-
age Grounded Explanation”, "Overall”, and "Over-
all Explanation”. Do not use any markdown for-
matting or code block symbols (such as triple back-
ticks).

"The plan in-

A.3 Embodied Agents Details

In our second set of experiments we aimed to see
how our SelfReVision ight result in better down-

32607

stream performance for embodied agents. We used
two simulated experiments to test this hypothesis.

Evaluation Set We used two distinct simulation
environments for evaluation: (1) block manipula-
tion tasks from Ravens (Zeng et al., 2020), and (2)
complex, hierarchical tasks from HAMSTER (Li
et al., 2024b). For the Ravens environment, we
curated 14 unique manipulation goals, each paired
with 8 different initial block configurations involv-
ing 6 or 8 blocks—yielding a total of n = 112 sam-
ples. Each configuration had blocks of unique col-
ors. Figure 6 shows the 8 individual block scenes
and here is the full list of 14 goals are:
* Form a shape of an uppercase X with the
blocks.
* Form a shape of an uppercase O with the
blocks.
* Form a shape of an uppercase Y with the
blocks.
* Form a shape of an uppercase V with the
blocks.
* Form a shape of an uppercase W with the
blocks.
* Form a diagonal line.
* Form two diagonal lines.
* Form two vertical lines.
* Form two horizontal lines.
 Create a smiley face.
* Create a frowning face.
» Form a shape of triangle with the blocks.
* Form the shape of a house.
* Form a rainbow.

For the hierarchical setting, we designed 10
realistic task scenarios across three environ-
ments—Xkitchen, workshop, and office—each in-
volving a high-level task (e.g., ”Pack items for a
children’s lunch”). Appendix A.3 shows the 10
realistic task with corresponding goals.

Metric For the simulated pick-and-place environ-
ment, we run each plan using a code-as-policies
simulator (Liang et al., 2023b) which generated a
static image for each step. Then, a human rater eval-
uated the final configuration, judging whether the
plan achieved the stated goal. We then calculated
the average number of samples where the code-as-
policy successfully ran the plan and achieved the
final state. For the real-world settings, we used Li
et al. (2024b) to generate a trace path for each step
in each generated plan. Then, a human raters as-
sessed whether each individual step was completed

(a) 6 Block Image 1 (b) 6 Block Image 2

(c) 6 Block Image 3 (d) 6 Block Image 4

).

(e) 8 Block Image 1 (f) 8 Block Image 2

(g) 8 Block Image 3

(h) 8 Block Image 4

Figure 6: Eight initial scenes used for the block manip-
ulation task.

32608

(a) There is water in the (b) I need to pack a(c) Pack items a kid (d) Please organize the (¢) Can you place ob-

kettle.
me a cup of tea?

Can you make lunch for my kid in the would like into the red trash into the right bins. jects in the bowl in order
clear tupperware. Only bag. If you do not know Note that the paper to clean the counter?

include foods a kid what an object is, don’t towel is not used.

would like. include it.

(f) Can you clean the (g) Can you declutter the (h) Hammer the nail in (i) What is the easiest (j) Can you tell me how

counter to look less workshop table? the wood.
messy? No need to wipe
the counter, just consoli-

date all the things.

way to water the plant? to charge my phone with
what is in this setting?

Figure 7: Images used in the real-world simulation experiments with corresponding goals.

successfully by the generated trace. We then in-
dicated the success rate, which is the number of
traces that were deemed successful for a step di-
vided by all steps. Note, we did not include steps
that would not result in a trace such as "Move to
<object>".

Baselines We compared the plans generated by
SelfReVision with the initial base plan created by
the model. For this task we used only Gemma 12B
and 27B (Team et al., 2024).

A4 Software
We used Python 3.12.9, Pytorch 2.6.0, and Hug-

gingFace Transformers 4.51.0.All code is licensed
under the Apache License 2.0.

A.5 Hardware

All experiments were run on a cluster with 24 NI-
VIDIA A100 GPUs with 80B memory. For most in-
ference jobs we used one GPU but for 72B models
we needed two GPUs. For supervised fine-tuning,
we used on GPU for Qwen 3B, two GPUs for
Gemma 4B and Qwen 7B, four GPUs for Gemma
12B. The training for four epochs took about two
days.

A.6 Artifact Terms of Use
Places365 (Zhou et al., 2017): MIT License

B LLM-as-Judge Analysis

In our study, we used LLLM-as-Judge as the main
metric for comparison between plans. In this sec-
tion, we outline our process for evaluating the ro-
bustness of using an LLM instead of human raters.

We did a test on a sample of n = 60 examples
where we evaluated the quality of two robot plans:
Plan 0 and Plan n using both human annotators
and GPT-40 as an LLM-as-a-Judge. To reduce
positional bias during annotation, we randomly as-
signed these two plans to anonymized labels Plan A
and Plan B for each sample shown to human raters.
Each plan pair (Plan A and Plan B) is scored on five
criteria: Coverage, Ordering, Completeness, Image
Groundedness, and Overall. The full annotation
instruction can be found in Figure 8.

To measure agreement, we collected annotations
from three human annotators and three GPT-40
runs at temperature 0.6. Model outputs were gen-
erated using identical prompts and image inputs,
with variation arising only from randomized sam-
pling. This setup allowed us to capture inter-model
variability due to sampling while maintaining a

32609

consistent evaluation protocol.

We chose the Brennan-Prediger coefficient as
our agreement metric because it adjusts for chance
agreement and handles categorical labels (Plan A",
Plan B", or "Tie"). Unlike raw accuracy, it remains
robust under label imbalance and is well-suited for
comparing multiple raters with potentially different
labeling tendencies.

We report Brennan-Prediger agreement coeffi-
cients (Brennan and Prediger, 1981) between all
pairs of raters. The top-level results are summa-
rized below, where we report the mean pairwise
agreement between:

1. Human-Human pairs (3 combinations)

2. Model-Model pairs (3 combinations)

3. Human-Model pairs (9 combinations)

These are computed for each of the five evalua-
tion criteria, and the table below reflects averages
across the respective pairings.

To better understand how often annotators
reached full consensus, we measured the percent-
age of plan pairs where all three human annotators
selected the same label:

* Coverage: 60% agreement

* Ordering: 43% agreement

* Completeness: 40% agreement

* Image Groundedness: 50% agreement

* Overall: 27% agreement

Model-model agreement reflects intra-model
consistency under sampling variation. The high
model-model agreement across criteria (e.g., 0.94
for Ordering and Overall, 0.89 for Coverage) in-
dicates that GPT-40 produces stable and repeat-
able judgments across independent runs. Moreover,
model-human agreement scores are consistently
competitive with human-human agreement—e.g.,
0.55 vs. 0.58 for Image Groundedness, 0.56 vs.
0.43 for Completeness, and 0.60 vs. 0.74 for Cov-
erage. These results suggest that GPT-40 is not
only internally consistent but also meaningfully
aligned with human judgment, supporting its use
as a reliable automated judge in comparative plan
evaluation tasks.

C Information About Use Of Al
Assistants

In this project, Al assistants were used for results
visualization code (e.g., figures and tables) and for
minor writing edits.

You will be given a user input and two cor-
responding plans (Plan A and Plan B) with
high-level steps that can be used by a robot
to respond to the user input in a specific
setting. I will also provide an image of the
setting when available.

Your task is to evaluate which plan is better
based on the following criteria:

Coverage (Does the plan fully address
the user input?) - Does the plan thoroughly
address all aspects of the user input with-
out omissions? - Does the plan cover the
main points of the user input, or does it miss
details?

Ordering (Is the plan well-ordered?)
- Is the sequence of steps logical and ef-
ficient? - Would any reordering of steps
improve the plan?

Completeness (Is the plan complete and
informative?) - Does the plan provide a
complete picture of what needs to be done?
- Are the steps specific and detailed enough?
- Are there any gaps in the plan?

Image Groundedness (Can this plan be
carried out in the specific setting shown in
the image?)** - Are all objects and actions
mentioned clearly present or possible in the
given setting in the image? - Is the plan
specific and well grounded to the setting
seen in the image?

Overall Assessment - Considering all
criteria above, which plan is better overall?

Figure 8: The instruction given to the human annotators

32610

Criterion Human-Human Model-Model Human-Model

Coverage 0.74 0.89 0.61
Ordering 0.48 0.94 0.46
Completeness 0.43 0.84 0.56
Image Grounded 0.58 0.81 0.55
Overall 0.26 0.94 0.44

Table 5: Brennan-Prediger agreement coefficients for human-human, model-model, and human-model rater pairs,
averaged across all combinations and 60 plan comparison samples. GPT-4o0 was run with temperature 0.6.

32611

