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Abstract

Large language model (LLM) reasoning can
be improved by scaling test-time compute with
aggregation, i.e., generating multiple samples
and aggregating over them. While improving
performance, this strategy often reaches a satu-
ration point beyond which additional compute
provides no return. Refinement offers an al-
ternative by using model-generated feedback
to improve answer quality. However, refine-
ment faces three key challenges: (1) Excessive
refinement: Uniformly refining all instances
can cause over-correction and reduce overall
performance. (2) Inability to localize and ad-
dress errors: LLMs struggle to identify and
correct their own mistakes. (3) Insufficient re-
finement: Stopping refinement too soon could
leave errors unaddressed. To tackle these is-
sues, we propose MAGICORE, a framework
for Multi-Agent Iteration for Coarse-to-fine
Refinement. MAGICORE mitigates excessive
refinement by categorizing problems as easy
or hard, solving easy problems with coarse-
grained aggregation, and solving the hard ones
with fine-grained multi-agent refinement. To
better localize errors, we incorporate external
step-wise reward model scores, and to ensure
sufficient refinement, we iteratively refine the
solutions using a multi-agent setup. We eval-
uate MAGICORE on Llama-3-8B and GPT-
3.5 and show its effectiveness across seven
reasoning datasets. One iteration of MAGI-
CORE beats Self-Consistency by 3.4%, Best-
of-k by 3.2%, and Self-Refine by 4.0% even
when these baselines use k¥ = 120, and MAGI-
CORE uses less than 50% of the compute. !

1 Introduction

Imagine a person taking a math exam with prob-
lems of varying difficulty; even before answering
any question, an effective exam-taker might first
distinguish between easier and more challenging

'Code: https://github.com/dinobby/MAgICoRe

problems, deciding how much effort to budget for
each one (Son and Metcalfe, 2000; Dodeen, 2015).
To maximize their score, the student would likely
spend minimal time on the easy problems and fo-
cus more on the harder ones, refining their answers
where needed. Misallocating effort could not only
waste time but even lower their score, as overthink-
ing simple problems might lead to mistakes; sim-
ilarly failing to dedicate enough thought to hard
problems will lead to poor results. For Large Lan-
guage Models (LLMs) performing reasoning tasks,
several test-time approaches dedicate more compu-
tation to improve performance. These approaches
sample multiple solutions to the same question and
aggregate over the resulting answers (e.g. Self-
Consistency (SC; Wang et al., 2022), Best-of-k
sampling (Lightman et al., 2023; Sun et al., 2024;
Wang et al., 2023)). However, applying aggrega-
tion strategies uniformly may waste computation
on easier problems where the performance satu-
rates quickly, and has diminishing gains on the
harder problems even when more samples are gen-
erated. Refinement — where solutions are instead
critiqued and improved upon during resampling —
offers a possible avenue for breaking out of the
aggregation rut. This mirrors human reasoning,
where incorporating feedback (rather than simply
retrying) can improve answers, often in an itera-
tive fashion. For example, a teacher might improve
a student’s understanding by providing multiple
rounds of feedback on a test (Pan and Sana, 2021;
Roediger and Karpicke, 2006; Wojcikowski and
Kirk, 2013).

While refinement seems promising, it faces three
key challenges that current work has yet to fully
address, as outlined in Fig. 1: (1) Excessive re-
finement: the LLM must know when to refine and
when not to. While refinement can help on in-
correctly solved problems, uniformly refining all
instances can cause over-refinement, where solu-
tions that were already correct before refinement
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Figure 1: Top: Three main issues in refinement: (1) Excessive refinement; (2) Inability to localize and address
errors; (3) Insufficient refinement. Bottom: Our joint solution to address these issues. MAGICORE adapts resource
allocation based on problem difficulty and refines only when encountering hard problems to avoid excessive
refinement. For hard cases requiring refinement, we employ a multi-agent setup that iteratively reviews and refines
the solutions based on targeted feedback generated with step-wise PRM scores.

are “overthought” and flipped to incorrect, reduc-
ing the overall performance (Huang et al., 2024;
Shridhar et al., 2024; Stechly et al., 2024). (2)
Inability to localize and address errors: LLMs
struggle to identify their own mistakes (i.e., steps
needing refinement) and struggle to correct them
without explicit instructions. (3) Insufficient Re-
finement: deciding how much refinement is needed
is non-trivial — stopping refinement early could
leave errors unaddressed, i.e., hard problems might
be “underthought” by a single refinement iteration.

To enable better test-time scaling for aggregation
and to address the three issues in refinement, we
propose a unified solution, MAGICORE: Multi-
Agent Iteration for Coarse-to-fine Refinement. As
shown in Fig. 1, our approach leverages external
global and local Reward Models (RMs) that en-
hance both aggregation and refinement processes.
To avoid excessive refinement, we perform selec-
tive refinement (see Fig. 1(a)): we start by generat-
ing multiple reasoning chains from the LLM and
scoring them with the RMs, using the entropy of
the final answer distribution to classify examples
as easy or hard. Given LLMs’ general inability
to localize errors (Tyen et al., 2024), we leverage
step-by-step scores from a process reward model
(PRM) to help the LLM pinpoint low-scoring steps
(which are likely to be incorrect); this process is
shown in Fig. 1(b). Moreover, to help LLMs refine
effectively once the errors have been localized, we
propose a multi-agent system consisting of three
agents: the Solver, the Reviewer, and the Refiner.
For each problem, the Solver generates reasoning

chains, the Reviewer gives targeted feedback based
on step-by-step RM scores, and the Refiner im-
proves the solutions using this feedback. Finally,
to address the issue of insufficient refinement, we
iterate the review-refine process, using the quality
and the entropy of the answers at each iteration as a
stopping criterion (cf. Fig. 1(c)). While these three
issues — selective refinement, error localization, and
iterative refinement — might seem independent, ad-
dressing them jointly is more effective. Empirically,
MAGICORE consistently outperforms baselines
that tackle these issues in isolation, as confirmed
by our ablation studies in Table 3.

We evaluate MAGICORE on seven reasoning
datasets (including math, commonsense and logi-
cal reasoning) with two LLMs: Llama-3-8B and
GPT-3.5. Notably, MAGICORE shows consistent
improvements over all aggregation and refinement
baselines across datasets and models. Specifically,
just one iteration of MAGICORE on Llama-3-8B
already outperforms Best-of-k sampling (Lightman
et al., 2023) by 3.2% and Self-Consistency (Wang
et al., 2022) by 3.4%, while using roughly half
of the test-time compute. MAGICORE also out-
performs a combination of Self-Refine (Madaan
et al., 2023) and Self-Consistency by 4.0% and
these trends also hold true for GPT-3.5. More-
over, MAGICORE effectively decides when to use
refinement and when not to, leading to a 6.4% im-
provement over the strongest Best-of-k baseline
on MATH (Hendrycks et al., 2021b), whereas uni-
formly applying refinement to all samples can re-
sult in a drop of 5.2%, highlighting the key role
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played by selective refinement. MAGICORE also
scales better with more iterations of refinement,
scales to stronger base models and RMs, applies to
both math/reasoning and commonsense tasks, and
continues to improve while the baselines stagnate.

2 Methodology

In MAGICORE, we incorporate three types of mod-
els: (1) an LLM interchangeably performing three
roles: the Solver, the Reviewer, and the Refiner, (2)
an Outcome Reward Model (ORM) for generating
global, solution-level correctness score, and (3) a
Process Reward Model (PRM) for generating local
step-by-step correctness scores. Both the ORM and
PRM contribute to (1) assessing problem difficulty
and (2) final answer selection via Weighted Self-
Consistency (Li et al., 2023) (see Appendix B).

Overview. We present MAGICORE in Fig. 2.
The process begins with the Solver generating &
reasoning chains for each problem, followed by
the ORM and PRM providing solution-level scores.
Next, the input problem’s difficulty is classified
based on two criteria (top-right of Fig. 2): (1) the
quality of the majority answer and (2) the RMs’
answer confidence. Refinement is initiated only
when the problem is deemed difficult, which oc-
curs when the majority answer receives a low aver-
age RM score and the answer distribution is flat —
indicating no single answer is significantly better
than the others (i.e., low confidence). For these
hard samples requiring refinement, we employ a
multi-agent setup with three agents: the Solver, the
Reviewer, and the Refiner (bottom of Fig. 2). The
Reviewer uses the step-wise scores from the PRM
to generate targeted feedback, and the Refiner then
enhances the k solutions based on this feedback.
The review-and-refine cycle can iterate multiple
times to ensure sufficient and effective refinement.

2.1 Classifying Problem Difficulty

We categorize each problem’s difficulty as easy or
hard using the following conditions (cf. Fig. 2).

a) Is the Majority Answer of High Quality? The
Solver generates k solutions for the input question
and we group them by their final answers. From
the largest cluster of solutions, we calculate the
average RM score and normalize it by the aver-
age score across all solutions, denoted as Sqyg4. If
Savg = 0 after normalization, this condition will
be true, meaning the majority answer is already
high-quality (as measured by both ORM and PRM

scores, see Appendix C), and hence no refinement
is needed. Otherwise, we deem the example to be a
possible candidate for refinement and evaluate the
second condition below.

b) Is Reward Models’ Answer Confidence High?
In this condition, we check if the RMs are confi-
dent in any single answer; if this is not the case, the
problem is a possible candidate for refinement. We
measure confidence via the entropy of the distribu-
tion over answers, obtained by weighting answer
clusters by their average RM scores, in line with
Weighted Self-Consistency (Li et al., 2023).

Coarse-to-Fine Decision. If either of the condi-
tions is met (the quality of the answer is high or
the RMs are confident on an answer), an instance
is marked as easy and delegated to the coarse-
grained method: Weighted Self-Consistency (Li
et al., 2023), using the sum of the solution-level
scores generated by both ORM and PRM. Con-
versely, if both conditions are not satisfied, the
instance is marked as hard and delegated to the
fine-grained method (as described in Section 2.2),
addressing Issue 1 (excessive refinement) by only
refining solutions for the hard problems.

2.2 Fine-Grained Multi-Agent Refinement

For hard instances that fail both conditions, we
need to employ refinement to unlock improvements
(see the bottom part of Fig. 2). Our refinement
setup has three agents: (1) the Solver, which gen-
erates the initial solution (2) the Reviewer, which
takes step-wise PRM scores and a reasoning chain
as input, and generates targeted feedback that pin-
points the errors within the chain, and (3) the Re-
finer, which takes the feedback generated by the
Reviewer to refine the previous chain.

Solver generates %k solutions. The Solver is re-
sponsible for generating the initial k£ solutions. Re-
call that in Section 2.1, we assess problem difficulty
using k generated solutions. When a problem is
classified as easy, we aggregate the k solution with-
out refinement. When a problem is classified as
hard, we can directly re-use the k solutions already
generated by the Solver.

Reviewer generates targeted feedback. To assist
the Reviewer in generating useful feedback to local-
ize errors better (“Issue 2” in Fig. 1), we supply the
Reviewer with external step-wise PRM scores for
each step of the solution. The goal of the Reviewer
is to incorporate these step-wise correctness scores
to generate actionable feedback. We append these
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Figure 2: MAGICORE classify problem difficulty based on two conditions: (1) the quality of the majority answer
and (2) the RM’s answer confidence. A problem is considered hard when the majority answer receives a low average
RM score and the answer distribution is flat (i.e., low confidence). For these hard problems, we employ a multi-agent
setup — The Solver generates k reasoning chains, passing them to the PRM to pinpoint errors. The Reviewer
turns scores into targeted feedback, and the Refiner improves the & solutions using the Reviewer’s feedback. This
review-refine process repeats until either of the two conditions passes, or a maximum iteration is reached.

scores to the end of each step and pass the result
to the Reviewer. That is, it takes a chain with the
PRM scores as input, and is prompted to identify
problematic steps that need refinement and possi-
ble ways to fix them.

Refiner improves solutions w/ feedback. Inspired
by the finding that LLLM can resolve errors when ex-
plicitly pointed out (Tyen et al., 2024), the Refiner
agent focuses exclusively on how the step should
be modified so as to resolve the error based on feed-
back from the Reviewer. That is, the Refiner uses
the targeted feedback generated by the Reviewer
to refine the reasoning chain that was generated by
the Solver. The prompts for the Reviewer and the
Refiner are shown in Appendix E.

Iterating the refinement process. For some hard
instances, one round of refinement may be insuf-
ficient, as the Reviewer may have generated some
irrelevant feedback or the Refiner may not have
fixed the highlighted step adequately (“Issue 3” in
Fig. 1). Thus, the Reviewer and the Refiner need
to collaborate with each other over the course of
multiple refinement iterations. To prevent exces-
sive refinement, we re-evaluate the two conditions
described in Section 2.1 in each iteration. The re-
finement continues until (a) one of the conditions

is met, or (b) a predefined maximum number of
iterations is reached.

Final answer selection. The refinement process
described above operates on all k£ chains simul-
taneously, producing k refined chains in each it-
eration. At the end of each iteration, we use the
ORM to assess whether the refined solution has
improved based on its global correctness score. In
other words, by the end of each iteration, we have
2k reasoning chains — k initial and & refined — but
retain only the top k based on their global ORM
scores. Here we choose to base the decision on
the ORM score because the targeted feedback is
generated with PRM’s step-wise scores, so select-
ing the solution via another scoring model avoids
overfitting. Finally, the answer is selected using
Weighted Self-Consistency over these retained top
k chains, at the end of each iteration.

3 Experimental Setup

Implementation Details. We develop MAGI-
CORE with Llama3-8B-Instruct (Al@Meta,
2024) and GPT-3.5-Turbo (OpenAl, 2022) as the
base LLMs. Based on their strong performance
on standard reward modeling evaluations (Lambert
et al., 2024), we choose InternLM-7B (Cai et al.,
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2024) as the ORM, and Math-Shepherd-7B (Wang
et al., 2023) as the PRM for computing the RM
scores. By default, we sample k = 40 reasoning
chains in each iteration for MAGICORE, and the
decoding temperature is set to 0.8. The maximum
number of iterations is set to 3, with additional
analysis in Fig. 3 and Table 15; we find that after 3,
performance saturates, leading us to choose 3 given
budget considerations. We compare against differ-
ent categories of strong baselines as follows, and
leave more comparisons against prompting-based
baselines to Table 9 in the Appendix.

* Vanilla Prompting. The first baseline we com-
pare to is zero-shot Chain-of-Thought (Wei et al.,
2022); note that this only generates one reason-
ing chain per question without aggregation.

* Iterative Prompting. We also compare MAGI-
CORE to an iterative prompting method, Self-
Refine (SR) (Madaan et al., 2023), which refines
the initial CoT answer via iteratively prompting
the LLM to generate feedback and refine the pre-
vious output accordingly.

* Aggregation-based Methods. The third cate-
gory generates multiple samples for each ques-
tion. Here, we sample k solutions from the same
LLM and select the final answer either via k-way
Self-Consistency (SC) (Wang et al., 2022) or
according to the highest ORM score (Best-of-k)
(Lightman et al., 2023; Sun et al., 2024; Wang
et al., 2023). Note that we give these baselines
more samples than MAGICORE.

* Iterative Baseline with Aggregation. To enable
a fair comparison, we also report a stronger ver-
sion of self-refine by combining Self-Refine and
Self-Consistency (SR+SC), i.e., a baseline that
is iterative, refines, and aggregates. Specifically,
this baseline applies Self-Refine for k& samples
in parallel, and the final answer is derived by
aggregating the k refined solutions.

Datasets. We evaluate MAGICORE mainly on

five math reasoning datasets. Later in Section 4.2,

we further show MAGICORE’s effectiveness on

commonsense (ARC-challenge; Clark et al. (2018))

and logical reasoning (Date Understanding; Srivas-

tava et al. (2022)) tasks. The first class of math
datasets is math word problems: GSMS8K (Cobbe
et al., 2021), SVAMP (Patel et al., 2021), and

MATH (Hendrycks et al., 2021b). GSMS8K and

SVAMP consist of grade school-level math prob-

lems, with 1,312 and 1,000 test samples. MATH

comprises high-school math competitions span-

ning diverse topics and a total of 5,000 problems.
Following previous works (Lightman et al., 2023;
Wang et al., 2023), we evaluate MATH perfor-
mance on a representative subset of 500 samples.
We also evaluate on math splits of general bench-
marks that test language models’ world knowledge
and problem-solving abilities over various subjects
such as MMLU-Math (Hendrycks et al., 2021a;
Yue et al., 2024) and SAT (Zhong et al., 2023) with
974 and 220 test instances respectively.

4 Results and Analysis

4.1 Main Results

MAGICORE outperforms all baselines at the
first iteration. We present our main results in
Table 1. First, one iteration of MAGICORE al-
ready outperforms all baselines. Compared to
aggregation-based methods, which generate mul-
tiple responses for each problem without refine-
ment, MAGICORE improves over Best-of-120 by
3.2% (absolute) averaged across the five datasets
on Llama-3-8B, despite using 2x fewer samples.
Note that our method’s first iteration only involves
40 samples for easy problems and 40 refined chains
for the subset of hard problems, making our & = 55
on average. When compared to 120-way SC, our
method shows an even greater average improve-
ment of 3.3% on Llama-3-8B and 3.2% on GPT-
3.5. Turning to refinement-based methods, we run
them with up to 5 iterations and only report the best
in Table 1 (denoted as “Best Iter”), leaving a more
detailed comparison in Fig. 3 and Table 15. On
average, MAGICORE shows 17.1% and 13.5% im-
provements over SR for Llama-3-8B and GPT-3.5.
As SR alone is a weaker baseline without aggregat-
ing multiple samples, we also compare to SR + SC,
and find that even with its best iteration, MAGI-
CORE outperforms SR + SC by 5.4% (Llama-3-
8B) and 4.9% (GPT-3.5) on average. This suggests
that adaptively addressing challenging instances
with targeted refinement improves overall perfor-
mance, while reducing compute for easy problems.
MAGICORE continues to improve with more
iterations. While MAGICORE already beats all
baselines after the very first iteration, in Table 1, we
also observe a clear upward trend in performance
as the number of iterations increases. We illustrate
this further in Fig. 3, which presents the accuracy
across successive iterations. Our comparison in-
cludes Best-of-k and SR + SC with k£ = 40, with
accuracy averaged across five datasets. We find that
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MMLU MATH SVAMP GSMSK SAT Avg.
Llama3-8B-Instruct
Zero-shot CoT 50.4 24.2 72.4 80.1 58.2 57.1
Self-Refine (Best Iter) 49.8 24.0 72.6 79.6 59.6 57.1
Best-of-k (k = 120) 62.6 414 88.7 90.1 72.4 71.0
k-way SC (k = 120) 63.0 40.6 89.8 90.3 70.5 70.8
Self-Refine + k-way SC (Best Iter) 62.3 41.0 89.2 90.3 68.0 70.2
MAGICORE (Iter=1) 67.3 46.0 914 91.1 75.0 74.2
MAGICORE (Iter=2) 68.4 47.2 91.1 92.3 76.4 75.1
MAGICORE (Iter=3) 68.9 (+5.6%) 47.8 (+52%) 91.3 (+1.7%) 91.6 (+1.3%) 78.2 (+5.8%) 75.6 (+4.3%)
GPT-3.5-Turbo

Zero-shot CoT 62.5 37.2 78.1 78.5 76.8 66.6
Self-Refine (Best Iter) 61.1 37.4 77.9 78.4 77.1 66.4
Best-of-k (k = 120) 70.1 50.6 87.7 90.5 87.8 773
k-way SC (k = 120) 70.4 51.2 86.9 89.8 87.6 77.1
Self-Refine + k-way SC (Best Iter) 70.1 494 88.1 88.1 84.5 76.0
MAGICORE (Iter=1) 73.7 57.2 89.4 91.1 90.1 80.3
MAGICORE (Iter=2) 73.3 57.8 90.1 91.1 90.9 80.6
MAGICORE (Iter=3) 73.6 (+3.5%) 58.6 (+8.0%) 90.1 (+2.4%) 91.4 (+0.9%) 90.9 (+3.1%) 80.9 (+3.6%)

Table 1: Performance comparison of methods and models. (+x%) is compared to the strongest baseline (Best-of-k)
shown in blue. Across models and datasets, MAGICORE consistently improves. Notably, MAGICORE surpasses
all baselines after the first iteration of refinement, even when the baselines use a larger sample size (k = 120).

Ours ——- Best-of-k —— SR + SC
76 A
> 74 A
o
3 72 -
(@]
< ————————————————
710 e — T ——
68 T T T T T T
0 1 2 3 4 5
Iteration

Figure 3: Comparison with baselines across iterations
(avg. of 5 datasets with k = 40). Full results: Table 15.

while SR + SC fluctuates around the same range of
70%, MAGICORE continues to improve and stabi-
lize at the third iteration with 75.6% accuracy (with
a noticeable 1.4% improvement compared to the
first iteration). This highlights the importance of
our iterative refinement and the ability to overcome
insufficient refinement for hard instances, and in-
dicates that the issue of over-refinement does not
reappear in MAGICORE even after more iterations.
MAGICORE outperforms aggregation-based
methods despite using less computation. In
Fig. 4, we further compare the cost and perfor-
mance of MAGICORE with Best-of-k and SC on
MATH and MMLU using Llama-3-8B, studying
how performance changes as we increase the num-

Ours —8#— Best-of-k
50.0 1~~~ Ours (k=15) —e— k-way SC
47.5 A
> 45.0 A
[}
o
g4 T TR
< 40.0 - ——
37.5 A
35-0 T T T T T
1020 40 100 120

Effective Sample Size (k)

Figure 4: Comparison of MAGICORE, k-way SC, and
Best-of-k with different £ on MATH.

ber of reasoning chains generated per question k.
Note that we sample k reasoning chains per ques-
tion for baselines, whereas, in our method, we add
k more samples in each iteration for a subset of
hard problems, and plot the average number of
samples in Fig. 4. The trend in Fig. 4 shows that
MAGICORE consistently outperforms k-way SC
and Best-of-k at any given k. Moreover, while SC
saturates and stops improving at around k£ = 40,
MAGICORE continues to improve with increas-
ing k. Notably, MAGICORE with k£ = 15 already
performs better than Best-of-120 and 120-way SC,
highlighting the cost-effectiveness of our method.
We also show that MAGICORE is also more cost-
efficient in terms of token count in Fig. 5.
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Method MMLU MATH SVAMP GSMSK SAT Avg.
Qwen2.5-Math-7B 73.9 78.8 91.8 94.9 923 863
k-way SC (k = 40) 81.3 87.0 95.5 97.2 97.3 917
k-way SC (k = 120) 82.0 86.8 95.4 97.3 97.3 918
Best-of-k (k = 120) 82.6 86.0 934 96.9 95.2 90.8
MAGICORE 84.6 914 95.8 97.3 97.3 933

Table 2: MAGICORE scales with the strength of reward models while also improves stronger base model like
Qwen2.5-Math-7B. Here we use Skywork-Reward-Llama-3.1-8B as the ORM and Qwen-Math-PRM-7B as the
PRM. Note that all the baselines are using the same models.

4.2 Additional Analyses

MAGICORE scales with stronger models. To
evaluate the scalability of MAGICORE on more
recent and capable models, we experiment with
Qwen2.5-Math-7B (Yang et al., 2024), using
Skywork-Reward-Llama-3.1-8B (Liu et al., 2024a)
as the ORM and Qwen-Math-PRM-7B (Yang et al.,
2024) as the PRM. As shown in Table 2, MAGI-
CORE achieves the largest gains compared to Self-
Consistency and Best-of-k under the same model
setup. These results indicate that MAGICORE not
only benefits stronger models like Qwen2.5-Math-
7B but also generalizes well across datasets.

Method MMLU MATH
Only Address Issue 1 64.7 44.0
Only Address Issue 2 65.9 45.4
Only Address Issue 3 60.3 36.4
MAgICoRE 68.9 47.8

Table 3: Ablation study on addressing each refinement
(c.f. Fig. 1) issue one at a time.

All three issues must be addressed jointly. To
investigate the importance of each refinement issue
and component in MAGICORE, we conduct an
ablation study to address each issue individually
in Table 3 under the following settings: (1) Only
Address Issue 1 (Excessive Refinement): Here, we
apply selective refinement only, without PRM step-
wise scores for feedback generation and without
iterations. (2) Only Address Issue 2 (Inability to
Localize and Address Errors). Here, we use PRM
scores for feedback generation and refine all in-
stances uniformly (i.e. no selective refinement) for
one iteration. (3) Only Address Issue 3 (Insufficient
Refinement): Here, we iteratively refine all samples
without incorporating PRM scores (i.e. no error
localization) and without performing selective re-
finement. The results show that only addressing

one single refinement issue at a time leads to a per-
formance drop, highlighting the need for a joint
solution as we proposed in MAGICORE. We find
that only addressing insufficient refinement (Issue
3) causes the highest drop in performance, as it
fails to efficiently localize errors (without the help
of PRM) and also performs excessive refinement.

PRM ORM  Acc.
MS-7B ILM-7B  47.8
QM-7B  ILM-7B  52.6

QM-72B  ILM-7B 554
MS-7B SRL-8B 494

Table 4: Performance of MAGICORE with different
RMs, which can be swapped in without modification.

Modularity of MAGICORE. In Table 1 we re-
port performance using InternLM-7B (ILM-7B)
as the ORM and Math-Shepherd-7B (MS-7B) as
the PRM. Here, we illustrate the modularity of
MAGICORE by incorporating different ORM and
PRMs; note that this can be done without changes
to the code. In Table 4, we report the performance
of MAGICORE on MATH when using different
ORMs and PRMs, holding the other fixed. We test
Qwen-Math PRM 7B and 72B (QM-7B and 72B;
Zhang et al., 2025) as PRMs and Skywork-Reward-
Llama-3.1-8B (SRL-8B; Liu et al., 2024a) as an
alternate ORM. In all cases, we find that M AGI-
CORE benefits from other RM selections, and that
these changes can be made trivially.

Selective refinement avoids over-correcting and
improves overall performance. In Section 1, we
noted that excessive refinement could potentially
hurt performance by flipping correct answers to
incorrect ones. Here, we provide a quantitative
analysis of this claim. Recall that we have two
methods: coarse aggregation (Weighted SC) and
fine refinement (multi-agent iteration) which we
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Method MMLU MATH
Aggregation-Only 64.7 44.0
Refinement-Only 60.9 38.8
MAGICORE 67.3 46.0

Table 5: Comparison when uniformly adopting aggrega-
tion (i.e., Weighted SC) or refinement to all instances.

apply selectively depending on predicted problem
difficulty (c.f. Section 2.1). In Table 5, we mea-
sure the performance of each method when applied
uniformly to all instances, regardless of the prob-
lem difficulty. We find that uniformly applying
refinement actually degrades performance; com-
paring Weighted SC (the “Aggregation-Only” in
row 1) to refinement-only (row 2), we see that re-
fining all samples leads to 3.8% and 5.2% drops
on MMLU and MATH, respectively, pointing to
the over-correction issue. Conversely, one iteration
of our selective refinement (row 3) targets only the
challenging instances where the weighted majority
vote is unlikely to succeed, resulting in up to 2.6%
improvement compared to uniformly applying ag-
gregation (row 1). This demonstrates that our selec-
tive refinement not only avoids over-correction but
also enhances overall performance by effectively
allocating more resources to harder problems.

Refinement Variants MMLU MATH
LLM Self-Refinement 65.9 44 .4
Random Step Score 66.4 43.8
ORM Score (No Step Score)  66.8 45.2
Ours (PRM Step Score) 67.3 46.0

Table 6: Refinement variants in MAGICORE. Using
PRM scores for refinement performs the best.

PRM-based feedback enables better refinement.
Having demonstrated that selectively applying re-
finement is crucial for achieving improvements,
we now compare the refinement process with and
without using a PRM. To this end, without using
a PRM, we ask the LLM to generate an updated
solution based on its own previous reasoning, re-
ferring to this as LLM Self-Refinement. Compared
to MAGICORE in row 4 of Table 6, using LLM’s
self-refinement (row 1) results in an average drop
of 1.5%, indicating that using the LLM for refine-
ment is less effective than using a PRM. To further
examine how sensitive the refinement process is
to the score quality, in row 2, we replace the ac-
tual PRM scores with random scores. The result is

Method ARC Date
Zero-shot 66.5 52.5
40-way SC 855 725
120-way SC 86.0 725

MAgZICoRE (Iter=1) 87.5 79.5
MAGgICoRE (Iter =2)  88.0 79.5
MAgZICoRE (Iter=3) 88.5  80.5

Table 7: MAGICORE also generalizes to commonsense
reasoning and logical reasoning tasks.

worse than row 4, indicating that PRM scores help
in localizing errors. Finally, we test whether the
global ORM score can offer a similar advantage as
using the local PRM score. Result in ow 3 shows
that it performs slightly worse than using the PRM
score, suggesting that while global correctness is
also a strong signal, local correctness scores help
identify and correct errors more effectively.
MAGICORE generalizes to other domains.
Table 1 shows the benefits of MAGICORE on
math reasoning; however, LLMs have been ap-
plied to a wide variety of tasks beyond math. Here,
we explore expanding MAGICORE to other do-
mains, specifically to a commonsense reasoning
task: ARC-Challenge (Clark et al., 2018), and a
logical reasoning task: Date Understanding (Sri-
vastava et al., 2022). We sample 200 instances
from each dataset and use GPT40-mini as a PRM
for the experiments, as existing standalone PRMs
generally only exist for math. Specifically, we
prompt GPT40-mini to provide step-wise correct-
ness scores without any textual explanations or rea-
soning, acting the same as a PRM. The prompt is
provided in Appendix F. This approach ensures that
our agents do not have access to explanations from
a stronger model. We conduct this experiment with
Llama3-8B-Instruct as the base LLM. Table 7
shows that MAGICORE transfers to commonsense
and logical reasoning, outperforming 120-say SC
by 2.5% and 8.0%, respectively.

Method Accuracy
Zero-shot 72.0
40-way SC 79.2
40-way SC + PRM 79.4

MAGgEICoRE (Tter = 1) 80.2
MAgICoRE (Iter = 2) 80.4
MAgICoRE (Iter = 3) 80.4

Table 8: MAGICORE can also improve GPT40-mini.

MAGICORE also improves stronger models like
GPT40-mini. Table 1 shows results with GPT-
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3.5-Turbo; here, we show that MAGICORE scales
to its stronger variant as well. Specifically, we
run MAGICORE using GPT40-mini on a subset of
MATH data. Due to the high cost and the fact that
Fig. 4 shows decreasing performance at k = 120
for MATH, we only compare to the 40-way SC
with the weighted variation that incorporates PRM
scores for vote weighting (40-way SC + PRM).
Table 8 demonstrates that MAGICORE can also
enhance stronger model’s performance, albeit with
a smaller margin of improvement compared to
Llama3-8B and GPT-3.5 shown in Table 1.

5 Conclusion

Building on the observation that different problems
require varying amounts of computation, we in-
troduced MAGICORE, a method that adaptively
allocates more computational resources to more
challenging problems and selectively applies re-
finement where appropriate, i.e., on harder prob-
lems. MAGICORE addresses three key issues in
refinement: excessive refinement on easy exam-
ples, the inability of LLMs to detect and correct er-
rors, and insufficient refinement on hard instances.
Our approach tackles these issues by employing
both global and local reward models to decide
which samples to refine. We then incorporate local
correctness scores to generate targeted feedback
and an iterative multi-agent communication frame-
work to refine solutions for hard problems. Results
across five math datasets and two models show that
our coarse-to-fine method consistently outperforms
both coarse-grained aggregation and fine-grained
refinement alone at any given budget, and even out-
performs baselines using substantially more com-
putation. In our ablations, we demonstrate the im-
portance of selective refinement, showing that per-
formance generally drops when refining all samples
uniformly. We also highlight the role of iteration
in our framework, showing increased performance
across iterations even as baselines stagnate.

Limitations

Like all test-time scaling, MAGICORE improves
performance by adding computation via additional
samples, trading some efficiency for better perfor-
mance. We show that MAGICORE makes better
use of additional compute than the baselines by
performing targeted refinement and thus better us-
ing inference-time compute; indeed, while base-
lines like Best-of-k and Self-Consistency stagnate

with additional compute, MAGICORE continues
to improve. Nevertheless, our method increases the
computational cost of inference, and relies on start-
ing with a base number of samples to establish the
difficulty and quality of existing solutions. In addi-
tion to requiring multiple solutions, MAGICORE
uses feedback from both ORMs and PRMs to im-
prove refinement. These models must be separately
trained to provide rewards for a given domain and
therefore do not exist for all problem types. How-
ever, we also note that MAGICORE is modular,
and thus allows for newer and better ORMs and
PRMs to be swapped in as they become available.
MAGICORE is designed to improve the reasoning
of LLMs, and thus has no additional risks beyond
those inherent to LLMs generally.
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Appendix
A Related Work

Improving Reasoning by Aggregation. Self-
Consistency (SC; Wang et al., 2022) generates k
reasoning chains and marginalizes over the chains
to obtain answer clusters; the most frequent answer

is selected as the final prediction. While simple and
effective, it generates k solutions for every sample,
as both past work and our work show that SC satu-
rates when k increases (Chen et al., 2024b; Li et al.,
2024a). Several studies adaptively determine the
number of samples (k) required for each instance to
address this (Aggarwal et al., 2023; Li et al., 2024b).
However, the performance of such approaches is
upper-bounded by SC — they address the cost issue
but do not enhance overall performance. To sur-
pass SC, Yin et al. (2024) propose using the LLM
to evaluate answer clusters, taking into account
both frequency and the LLM-evaluated quality of
the answers. Instead, we propose using external
RMs to decide between coarse-grained aggrega-
tion and fine-grained refinement, identify errors,
and aid refinement; this allows us to improve over
aggregation or refinement alone.

LLM-based Verification and Refinement. Past
work mostly uses RMs for verification purposes
(Li et al., 2023; Khalifa et al., 2023; Cobbe et al.,
2021; Lightman et al., 2023). Havrilla et al. (2024)
considers local correctness for refinement in a non-
adaptive way and requires specific data curation
with fine-tuning, while our work is adaptive and
uses off-the-shelf global and local models. Another
line of work has proposed using the LLM itself
as a verifier, in place of an RM (Liu et al., 2024b;
Zhang et al., 2024; Aggarwal et al., 2023; Madaan
et al., 2023). However, recent work shows the
inability of LLMs to “self-verify” their own reason-
ing (Huang et al., 2024; Stechly et al., 2023; Kamoi
et al., 2024; Tyen et al., 2024; Kamoi et al., 2024).
Hence, MAGICORE uses external global and lo-
cal reward models (Wang et al., 2023; Cai et al.,
2024) for selective coarse-to-fine refinement. Shrid-
har et al. (2024) trained specific models to decide
when to refine and when to trust refined solutions.
This contrasts with our method, where the decision
to refine is based on a coarse-to-fine resource al-
location method that differentiates easy from hard
problems (for which we use global and local re-
ward models), and where refinement is done based
on off-the-shelf models. Past work has also used
RMs to guide MCTS search for math problems
(Guan et al., 2025). We do not compare to such
methods, as their use of multiple rollouts makes
generation-matched comparisons like the kind we
do challenging. Moreover, while MAGICORE ex-
plores how reward models can effectively address
issues in refinement, MCTS-based methods primar-
ily investigate how reward models can guide the
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search toward the final answer. These distinct goals
make direct comparison less meaningful. We also
iteratively refine guided by global correctness to
ensure sufficient refinement, whereas Shridhar et al.
(2024) refine only once. Wadhwa et al. (2024) pro-
pose a multi-agent detect-critique-refine pipeline
for generation tasks. MAGICORE instead focuses
on reasoning tasks and uses external RMs for se-
lective coarse-to-fine refinement (whereas Wadhwa
et al. (2024)’s detection uses the same metric as
their evaluation, which is infeasible in reasoning
where the metric — accuracy — requires access to
the gold answer).

Multi-Agent Systems with LLMs. LLMs can be
used in multi-agent systems, where the agents in-
teract, collaborate, and compete (Wang et al., 2024;
Lu et al., 2024; Feng et al., 2024). Related to our
work, one line of multi-agent research focuses on
structured debates or discussions between LLM
agents, where the interaction helps refine and im-
prove previously generated solutions (Du et al.,
2023; Liang et al., 2023; Yin et al., 2023; Chen
et al., 2024a). These studies show improvements
over single-agent systems, but a major challenge in
multi-agent systems is achieving a correct consen-
sus among LLMs; external feedback can help pre-
vent this consensus from aligning with the agents’
internal and possibly erroneous outputs. Therefore,
MAGICORE’s multi-agent refinement incorporates
external RMs for more objective scoring, enabling
the generation of targeted feedback for better re-
finement.

B Self-Consistency and Weighted
Self-Consistency

Self-Consistency (Wang et al., 2022) is a popular
decoding method that uses majority voting to ag-
gregate predictions from different reasoning chains,
thus marginalizing over chains. It generates k& so-
lutions per question and selects the most frequent
final answer from these samples. While simple
and effective, this method assigns uniform weight
to each reasoning chain, which fails to account
for the quality of each solution. To address this
limitation, Li et al. (2023) propose Weighted Self-
Consistency, accounting for each solution’s qual-
ity. Formally, both Self-Consistency and Weighted
Self-Consistency choose a final answer via:

k
g = arg m;xxz Ly, =y V(g;7:)
i=1

where V(-) is a constant 1 in Self-Consistency
and the quality measurement (e.g., RM score) in
Weighted Self-Consistency. In MAGICORE’s final
answer selection, we use the sum of the solution-
level scores generated by both ORM and PRM as
V(-). Throughout MAGICORE, in cases where
we need solution-level PRM scores (compatible
with ORM scores), we accumulate the PRM step
scores by taking their product (Sun et al., 2024),
so that the aggregated PRM score corresponds to a
solution.

C Details of the Conditions

Condition 1: Is the Majority Answer of High
Quality? Given a problem ¢, to determine the
difficulty of the problem at hand, the Solver gen-
erates k solutions R = {ry,..., 7} and final an-
swers A = {aq,...,ax} per question and cluster
the solutions by their final answer. This produces a
partition A with elements A;, where A; = {r; €
R | aj = a;}. The majority cluster A, has the
most “votes”, i.e., A; = argmax;c 4 [Ail. We
evaluate the majority answer quality by both ORM
and PRM separately but with the same procedure,
as described below. First, we score every reason-
ing chain r; within the majority cluster A,. Both
ORM and PRM are able to produce a solution-level
score, which we denoted as S}™. Note that we per-
form this check using ORM and PRM separately,
but for simplicity, we use the same notation for
solution-level score, which either comes from the
ORM or the PRM. We calculate the average of the
solution-level scores from the majority group:

A

SRM _

|
]' RM
T A 2

i=1

This average score informs us of the majority an-
swer’s quality. To set a threshold, we normalize
Spvg by using the sample average RM scores (by
computing St for each sample and then take the
average of these scores). Importantly, this process
does not require any labeled data. After normaliza-
tion, if the average reward of the majority group
S}fvl\g > 0, indicating that the quality of the major-
ity answer is high, Condition 1 will be frue. Oth-
erwise, if SNV < 0, Condition 1 will be false,
suggesting that even the most frequent answer is
of poor quality and that the instance might benefit

from refinement.

Condition 2: Are Reward Models’ Answer Con-
fidence High? Besides the quality of the major-
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ity answer, we also consider whether the RMs are
confident enough in any single answer among the
answer clusters. Again we evaluate both ORM and
PRM’s answer confidence separately but with the
same procedure, as described below. First, the an-
swer distribution is formed by (1) the frequency of
each unique answer and (2) the total RM score of
each answer cluster. We estimate the RM’s confi-
dence according to this distribution. If the distribu-
tion is concentrated, meaning that only one answer
cluster stands out, the RM’s answer confidence is
treated as high. Conversely, if the distribution is
diffused and the clusters’ scores are more uniform,
then there is no single answer for which the RM
has high confidence, i.e., the RM’s confidence is
low. This motivates a targeted step-wise refinement
process to select a more definite answer. Again we
use both ORM and PRM to generate the solution-
level score S’M. Given the k reasoning chains
generated along with the solution-level score, we
compute the RM’s answer confidence (denoted as
() using the entropy of the answer cluster weighed
by the RM scores, passing the result through a sig-
moid function to normalize it onto [0, 1]. Formally,
the calculation of the entropy can be expressed as:

Zp ) log p(As),
=1

Z'A il SRM
Z Z\A \SRM

p(A;) =

where n is the number of unique answers among
the k chains, A; is the i-th answer cluster (a set
of reasoning chains leading to the same answer)
and A is the set of all clusters. Each answer in a
cluster is weighed by its unnormalized solution-
level score SZRM. To normalize entropy onto a
confidence scale, we invert it so that high entropy
corresponds to low confidence. We then apply a
sigmoid function o(.), mapping the values to the
range [0,1]: C = o(a* (1 — H)). We set a to
2 to let the distribution stretch more evenly be-
tween 0 and 1. This transformation establishes 0.5
as a natural threshold for differentiating low and
high confidence, thereby eliminating the need for
any threshold tuning. That is, if an instance has
C > 0.5, Condition 2 is frue, meaning that the
RMs are confident on a single answer cluster. Oth-
erwise, if C' < 0.5, Condition 2 is false, suggesting
that the RMs’ uncertainty among the k chains is
high, necessitating a finer refinement.

D Additional Experimental Results

Comparison with additional baselines. In ad-
dition to Table 1, we also compare with the fol-
lowing baselines: (1) 120-way SC + PRM: The
product of step-wise PRM scores is used as the
solution-level score. This score is then employed
for weighted Self-Consistency, following (Li et al.,
2023). (2) Self-correct + 120-way SC: We use the
“Self-Correct RCI” prompt from (Kim et al., 2024)
to generate 120 solutions per question, which are
subsequently aggregated using Self-Consistency.
(3) Least-to-Most + 120-way SC: We use the zero-
shot Least-to-Most prompt from (Zhou et al., 2023)
to generate 120 solutions per question, followed
by aggregation via Self-Consistency. (4) Multi-
Agent Debate + SC: Following Du et al. (2023),
we conduct a three-agent debate over four rounds,
repeating this process ten times. The final answers
from these ten debates are aggregated using Self-
Consistency, yielding 120 generations per question.

We use L1ama3-8B-Instruct as the base model.
Results show that a single iteration of MAGICORE
already outperforms methods that rely on PRM for
aggregation (120-way SC + PRM), as well as ap-
proaches like Self-Correction, advanced prompting,
and multi-agent debate. On average, MAGICORE
outperforms 120-way SC + PRM by 2.8% despite
using fewer samples, highlighting the limitations
of using PRM solely for aggregation. Addition-
ally, MAGICORE exceeds Least-to-Most by 5.3%,
showcasing superior adaptability to problem diffi-
culty. Finally, MAGICORE surpasses Multi-agent
Debate by 3.9%, indicating that our aggregation
and refinement mechanisms scale more effectively
at test time.

Separating Reviewer and Refiner roles outper-
forms combining these roles. In Appendix D,
we examine the effects of combining the roles of
Reviewer and Refiner by merging their prompts,
instructing the model to simultaneously generate
both feedback and a refined solution. This method
is referred to as “Joint Roles”. In MAGICORE, the
Reviewer and Refiner have distinct, clearly defined
roles, which we refer to as the “Distinct Agents”
approach. As before, the performance comparison
18 based on the first iteration, with all other vari-
ables held constant. Our findings show that main-
taining separate roles (as in our multi-agent setup)
leads to better performance, with the “Joint Roles”
configuration resulting in a 0.6% drop in MMLU
and a 1.2% decrease in MATH. The larger drop in
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Method MMLU MATH SVAMP GSMSK SAT Avg.
120-way SC 63.0 40.6 89.8 90.3 70.5 70.8
120-way SC + PRM (Li et al., 2023) 65.4 44.6 90.8 90.7 72.5 72.8
Self-correct + 120-way SC (Kim et al., 2024) 62.1 38.6 86.2 88.1 65.6 68.1
Least-to-Most + 120-way SC (Zhou et al., 2023) 62.6 40.6 89.0 90.3 68.9 70.3
Multi-Agent Debate + SC (Du et al., 2023) 64.6 41.0 89.6 90.8 72.5 T1.7
MAgICoRE (Iter=1) 67.3 46.0 914 91.1 75.0 742
MAgICoRE (Iter=2) 68.4 472 91.1 92.3 76.4 75.1
MAgICoRE (Iter=3) 68.9 47.8 91.3 91.6 78.2 75.6

Table 9: Performance comparison with additional baselines using L1ama3-8B-Instruct. Notably, MAGICORE
with only one iteration outperforms all baselines despite using fewer samples.

Aggregation MMLU MATH

ORM-Only 669 454
PRM-Only 66.1 45.0
Both 673  46.0

Table 10: Ablation study on the final answer selection,
using ORM-only, PRM-only or both.

MMLU MATH

66.7 44.8
67.3 46.0

Joint Roles
Distinct Agents (Ours)

Table 11: MAGICORE’s separation of the Reviewer
and Refiner roles is more effective than combining them
into a single role.

MATH suggests that its problems are more com-
plex and often require extended reasoning, making
the combined roles less effective, whereas main-
taining separate roles proves to be more beneficial.

Ablations on reward models for final answer se-
lection. We report MAGICORE up to three itera-
tions in Table 1 and only report the best-performing
iteration of Self-Refine + k-way SC. Here, we pro-
vide extended results in table Table 15. We also
conducted another ablation study to evaluate the
performance when using ORM, PRM, or a the sum-
mation of both scores for final answer selection.
As shown in Appendix D, utilizing ORM’s global
correctness score yields better results than aggre-
gating PRM’s local correctness score. However,
the best performance is achieved when both scores
are combined for the final answer aggregation.

Reliable step-wise scores enable LLM refine-
ment. To compare with an oracle PRM, we sam-
ple 500 instances from the Math-Shepherd dataset
(Wang et al., 2023), which includes gold label cor-

Refinement Variants Accuracy
No feedback (LLM self-refine) 48.30
Random PRM score 49.60
PRM predicted score 51.20
Oracle PRM score 52.40

Table 12: Comparison of different refinement variants
in MAGICORE.

Criterion for Refinement MMLU MATH

Prompt (classification) 65.2 45.0
Prompt (confidence) 64.7 44.4
Condition 1 only 66.4 43.6
Condition 2 only 66.1 44.2
Cond. 1 & Cond. 2 67.3 46.0

Table 13: Different ways of detecting hard problems
(i.e. criterion for refinement). Our two conditions, when
used together, are the most effective.

rectness for each step. Besides the three settings
we evaluated in Table 6, we also evaluate the oracle
PRM score, where feedback uses the gold correct-
ness labels. Appendix D shows that the oracle PRM
score performs the best, followed by the predicted
PRM score, suggesting that given reliable stepwise
scores, LL.Ms can effectively refine their solutions
and improve.

P R Fl

Random 68.4 49.6 57.5
Prompt-based (classification) 65.9 10.3 17.8
Prompt-based (confidence) 00 0.0 0.0
MAGICORE 86.3 67.6 75.8

Table 14: The Precision (P), Recall (R) and F1 of the
model predicted problem difficulty.
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Effectiveness of the two conditions for classi-
fying problem difficulty. In MAGICORE, we
use reward models to classify each instance as
easy or hard. Given that the RMs are also fine-
tuned LLMs, we investigate whether prompting
the LLM to perform this classification directly
could replace the external RMs. We compare two
settings in the first two rows, where we prompt
Llama3-8B-Instruct to evaluate the difficulty of
an instance. In the first setting (classification), the
LLM generates a binary label. In the second setting
(confidence), it produces a confidence score rang-
ing from O to 1, indicating whether refinement is re-
quired — that is, whether the example is easy or hard.
Results in Table 13 show that the LLM is less ef-
fective at determining instance difficulty compared
to a reward model, as evidenced by a performance
drop of 1.6% — 2.6%. In rows 3 and 4, we also
examine the performance when only one of the con-
ditions of MAGICORE (c.f. Section 2.1) is used
to decide difficulty. Specifically, when only condi-
tion 1 is applied, an instance is classified as hard
if the majority answer’s quality is low. Conversely,
when only condition 2 is applied, an instance is
classified as hard if the RM’s answer confidence
is low, regardless of the majority answer’s quality.
Results indicate that while each condition individu-
ally outperforms LLM self-verification, combining
both yields the best performance. Indeed, in Ap-
pendix D, we find that MAGICORE’s assessment
of problem difficulty shows the highest agreement
with human-annotated labels.

Model-Predicted vs. Human-Annotated Prob-
lem Difficulty. We analyze the model’s predic-
tion of problem difficulty. Specifically, we uti-
lize the MATH dataset, which includes human-
annotated difficulty levels ranging from 1 to 5, with
higher levels indicating increased problem com-
plexity. For our analysis, we split the problems as
follows: (1) Easy: Levels 1 and 2 and (2) Hard:
Levels 4 and 5. We exclude Level 3 problems to
create a clearer distinction between easy and hard
categories. We compare the overlap between our
model’s predictions and these human-annotated lev-
els. We treat hard as the positive label. The results
are presented in Table 14. To provide a compar-
ative analysis, we include: (1) a random baseline
that assigns easy and hard labels at random, (2)
a prompt-based baseline that directly prompts the
LLM to classify the problem difficulty, and (3) an-
other prompt-based baseline that prompts the LLM

to generate a confidence score when answering,
where a confidence score of > 0.5 is classified
as “easy”. Results show that our conditions sub-
stantially outperform all baselines. Interestingly,
the prompt-based methods perform worse than the
random baseline, particularly the one relying on
confidence scores, which classifies all problems as
easy; this method scores O for both precision and
recall since we treat “hard” as the positive label,
so it has O true positives. This suggests that our
framework is highly effective at distinguishing true
problem difficulty based on the conditions outlined
in our methodology.

Token Count Analysis. In Fig. 4, we are mainly
comparing the number of generations (k) per ques-
tion with the baselines. To provide a more gran-
ular analysis, we break down the generations at
the token level and compare costs in terms of to-
ken counts. The results are detailed in Fig. 5. For
Self-Consistency, the input tokens are counted only
once per question, as it uses the same input to gener-
ate k responses. In contrast, the input token count
for MAGICORE includes all prompts across all
agents — Solver, Reviewer, and Refiner. We also
include the token count for the ORM and PRM
in MAGICORE. Since the cost of input tokens is
typically 0.25x that of output tokens?, we present
the normalized total token cost as 0.25x input +
1x output. Results in Fig. 5 show that (1) scal-
ing Self-Consistency from k£ = 40 to k = 120
largely increases token overhead while yielding
marginal improvements. (2) MAGICORE exhibits
superior scalability, achieving substantially higher
performance gains with increased token usage. On
MMLU, MATH and SAT, we observe a clear up-
ward trend with an increased token count; MAGI-
CORE consistently improves with additional to-
kens (unlike SC which tends to stagnate). (3) The
first iteration of MAGICORE outperforms 120-way
SC fewer tokens.

Discussion of external reward models. External
reward models play an important role MAGICORE
and are used in the solutions to all three problems
(excessive refinement, inability to localize and ad-
dress errors, and insufficient refinement). While
MAGICORE does utilize external reward models,
our framework is modular and can readily incor-
porate new reward models as they emerge. As

2See https://openai.com/api/pricing, https://

www.anthropic.com/pricing#anthropic-api, and https:
//ai.google.dev/pricing#1_5pro
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MMLU MATH SVAMP GSMSK SAT Avg.
Llama3-8B-Instruct

Zero-shot CoT 50.4 24.2 72.4 80.1 582 57.1
Self-Refine (Iter=1) 49.6 24.6 72.0 79.0 577 56.3
Self-Refine (Iter=2) 50.2 23.8 72.8 79.6 59.3 57.1
Self-Refine (Iter=3) 49.8 24.0 72.6 79.6 59.6 57.1
Best-of-k (k = 120) 62.6 414 88.7 90.1 724 71.0
k-way SC (k = 120) 63.0 40.6 89.8 90.3 70.5 70.8
Self-Refine + k-way SC (Iter=0) 62.1 40.4 88.6 90.1 68.2 699
Self-Refine + k-way SC (Iter=1) 61.3 40.6 88.9 89.7 67.7 69.6
Self-Refine + k-way SC (Iter=2) 62.7 40.0 88.9 90.1 68.6 70.1
Self-Refine + k-way SC (Iter=3) 62.3 41.0 89.2 90.3 68.0 70.2
Self-Refine + k-way SC (Iter=4) 62.1 41.4 89.2 90.1 67.7 70.1
Self-Refine + k-way SC (Iter=5) 62.7 40.4 88.6 89.7 67.7 69.8
MAGICORE (Iter=1) 67.3 46.0 91.4 91.1 75.0 742
MAGICORE (Iter=2) 68.4 47.2 91.1 92.3 764 75.1
MAGICORE (Iter=3) 68.9 47.8 91.3 91.6 78.2 75.6
MAGICORE (Iter=4) 68.9 48.0 91.3 91.1 782 75.5
MAGICORE (Iter=5) 68.4 48.0 91.1 91.6 782 755
GPT-3.5-Turbo
Zero-shot CoT 62.5 37.2 78.1 78.5 76.8 66.6
Self-Refine (Iter=1) 62.4 374 71.7 77.4 773 664
Self-Refine (Iter=2) 61.6 37.6 78.6 77.9 769 66.5
Self-Refine (Iter=3) 61.1 374 77.9 78.4 77.1 664
Best-of-k (kK = 120) 70.1 50.6 87.7 90.5 87.8 77.3
k-way SC (k = 120) 70.4 51.2 86.9 89.8 87.6 71.1
Self-Refine + k-way SC (Iter=0) 69.4 49.8 86.9 88.1 85.6 76.0
Self-Refine + k-way SC (Iter=1) 69.8 49.0 87.1 88.3 85.0 75.8
Self-Refine + k-way SC (Iter=2) 70.1 494 88.1 88.1 84.5 76.0
Self-Refine + k-way SC (Iter=3) 69.6 48.8 87.3 87.8 852 75.7
Self-Refine + k-way SC (Iter=4) 69.8 48.4 87.1 87.1 85.0 75.5
Self-Refine + k-way SC (Iter=5) 69.6 48.6 87.3 87.4 84.5 75.5
MAGICORE (Iter=1) 73.7 57.2 89.4 91.1 90.1 80.3
MAGICORE (Iter=2) 73.3 57.8 90.1 91.1 90.9 80.6
MAGICORE (Iter=3) 73.6 58.6 90.1 914 90.9 80.9
MAGICORE (Iter=4) 73.6 58.0 89.9 91.4 90.9 80.8
MAGICORE (Iter=5) 73.4 57.6 89.4 91.1 90.9 80.5

Table 15: Extended version of Table 1. Here we show all more iterations for Self-Refine + k-way SC and
MAGICORE. While SR + SC does not show a clear improvement with more iterations, MAGICORE continues to
improve, peaking at the third iteration.
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Figure 5: Token count comparison with Self-Consistency across different datasets. Scaling Self-Consistency from
k = 40 to k = 120 introduces substantial token overhead while providing marginal improvements. In contrast,
MAGICORE demonstrates superior scalability, delivering much higher performance gains with an increased token
count. Notably, the first iteration of MAGICORE consistently outperforms 120-way SC while using fewer tokens.

the community is actively advancing the perfor-
mance of reward models evidenced by a bench-
mark for reward models (Lambert et al., 2024),
MAGICORE is thus complementary to and en-
hanced by progress in reward modeling, rather than
constrained by it. While it is possible to train a
custom error-identification model, this approach is
often data-dependent and prone to obsolescence.
In contrast, MAGICORE’s modular design over-
comes this limitation by enabling the integration of
new state-of-the-art models as they become avail-
able. Moreover, our experiments in Table 7 indicate
that when trained reward models are unavailable,
we can use sufficiently strong LLMs in place of
trained RMs. For example, we use GPT40-mini
as a reward model for commonsense and logical
reasoning.
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E Prompt for the Reviewer and the Refiner

Reviewer’s Prompt

Your task is to provide step-by-step feedback to the current solution.
You will be given a math problem and a current solution, along with the scores for each step based
on its correctness.
- You will find (Score: n/10) at the end of each step.
- The maximum (best) score is 10, which means that this step is 100% correct (and 0% incorrect).
- The minimum (worst) score is 0, which means that this step is 100% incorrect (and 0% correct).
- Pay attention to the steps having scores lower than 6, and carefully identify the errors in those steps.
- Provide your explanation of the error and how it can be fixed. DO NOT propose a new solution, just
the explanation.
Question:
{question}
Current Solution:
{solution}
Let’s review the steps with lower scores and identify the errors.
L {feedback}

.

Refiner’s Prompt

Your task is to fix the error in the given solution, based on the teacher’s feedback.
- After reviewing the solution and feedback, provide a better solution to fix the mistakes you found.
Question:

{question}

Current Solution:

{solution}

Teacher Feedback:

{reviewer_feedback}

Revised Solution:

Let’s review the solution and the feedback, and then refine the current solution.
After reviewing the solution and feedback, let’s solve this math problem again.
{refined_solution}

-
.
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F Prompt for GPT40-mini as PRM

GPT40-mini as PRM Prompt

You will be given a question and its corresponding step-by-step solution.

Your task is to evaluate the correctness of each step in the solution by assigning a score between 1
and 10.

Your response should be formatted as follows:

score: <comma separated scores>

where the length of the list corresponds to the number of steps in the solution.

Each step is clearly separated in the solution by <Step 1:>, <Step 2:> ... <Step k:>, your output score
list should be the exact same length as k.

Question: {question}

Solution: {solution}

_ score:

G Dataset Statistics and Licenses

We provide the sample sizes and licenses of the datasets used in this work in Table 16. All the datasets are
in English and all datasets are used in a fashion consistent with their intended use.

Sample Size License
MMLU-Math (Hendrycks et al., 2021a) 974 MIT License
MATH (Hendrycks et al., 2021b) 500 MIT License
SVAMP (Patel et al., 2021) 1,000 MIT License
GSMS8K (Cobbe et al., 2021) 1,312 MIT License
SAT (Zhong et al., 2023) 220 MIT License
ARC-Challenge (Clark et al., 2018) 200 CC-by-SA-4.0
Date Understanding (Srivastava et al., 2022) 200 Apache License

Table 16: The statistics and licenses of the datasets used in this study.
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H Qualitative Examples of Refinement

QUESTION: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000
in repairs. This increased the value of the house by 150%. How much profit did he make? (Gold
answer: 70000)

SOLVER’S OUTPUT (BEFORE REFINEMENT):

Step 1: Calculate the value of the house after repairs. The house is worth 80,000 after repairs. It is
150% higher than before. So the value is (1 + 150/100) * 80,000. 80,000 * (3/2) is 120,000. So the
house is worth 120,000 after repairs. (Score: 2/10)

Step 2: Calculate the cost of repairs. The cost of repairs is 50,000. (Score: 2/10)

Step 3: Calculate the profit. The profit is the difference between the value after repairs and the cost
before repairs. 120,000 - 80,000 - 50,000 is 30,000 (incorrect).

REVIEWER’S OUTPUT:

Step 1: The low score of 2 suggests an error in this step. The problem states that the value of the house
increased by 150%, not that the value is 150% higher than before.

Step 2: The cost of repairs is indeed $50,000.

Step 3: The low score of 3 suggests an error in this step. The profit would be: 200,000 (value after
repairs) - 80,000 (cost before repairs) - 50,000 (cost of repairs) = 70,000

REFINER’S OUTPUT:

Step 1: Calculate the value of the house after repairs. The house is worth 80,000 after repairs. It is
increased by 150%. So the value is 80,000 x (1 + 150/100) = 80,000 x 2.5 = 200,000.

Step 2: Calculate the cost of repairs. The cost of repairs is 50,000.

Step 3: Calculate the profit. The profit is the difference between the value after repairs and the cost
before repairs. 200,000 - 80,000 - 50,000 is 70,000 (correct).

Table 17: A qualitative example of our multi-agent refinement on GSMS8K using L1ama3-8B-Instruct . The score
at the end of each step is provided by the PRM.
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QUESTION: The Greek army contained two types of soldiers: the upper class and the lower class
soldiers. If there were a total of 5 upper class soldiers, and 10 lower class soldiers in a certain part of
Athens, and the battle of Thermopylae demands a force of 4 upper class soldiers and 8 lower class
soldiers, how many different battalions can be sent? (Gold answer: 225)

SOLVER’S OUTPUT (BEFORE REFINEMENT):

Step 1: Find out the number of upper class soldiers left. We have 5 upper class soldiers and we need 4.
So we have 5 - 4 = 1 upper class soldiers left. (Score: 9/10)

Step 2: Find out the number of lower class soldiers left. We have 10 lower class soldiers and we need 8.
So we have 10 - 8 = 2 lower class soldiers left. (Score: 9/10)

Step 3: Find out the number of different battalions. We have 1 upper class soldier and 2 lower class
soldiers. The number of different battalions is the number of ways we can arrange 1 upper class soldier
and 2 lower class soldiers. This is 3. (Score: 5/10) (incorrect).

REVIEWER’S OUTPUT:

Step 1 and Step 2: The scores of 9/10 suggest that these steps are mostly correct. However, we should
be careful when calculating the number of upper and lower class soldiers left.

Step 3: The low score of 5 suggests an error in this step. The problem asks for the number of different
battalions, not the number of ways to arrange the soldiers. The correct solution is to find the number of
ways to choose 4 upper class soldiers from the available 5 and 8 lower class soldiers from the available
10.

REFINER’S OUTPUT:

Step 1: Find out the number of upper class soldiers needed. We need 4 upper class soldiers.

Step 2: Find out the number of lower class soldiers needed. We need 8 lower class soldiers.

Step 3: Find out the number of different battalions. We can choose 4 upper class soldiers from the 5
available in 5C4 =5 ways. We can choose 8 lower class soldiers from the 10 available in 10C8 =45
ways. The number of different battalions is the number of ways to choose 4 upper class soldiers and 8
lower class soldiers, which is 5 x 45 = 225. (correct).

Table 18: A qualitative example of our multi-agent refinement on MATH using L1ama3-8B-Instruct . The score
at the end of each step is provided by the PRM.
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I Qualitative Examples of Over-Correction

QUESTION: A new program had 60 downloads in the first month. The number of downloads in the
second month was three times as many as the downloads in the first month, but then reduced by 30%
in the third month. How many downloads did the program have total over the three months? (Gold
answer: 366)

SOLVER’S OUTPUT (BEFORE REFINEMENT):

Step 1: Determine the number of downloads for the second month. The number of downloads for the
second month was three times as many as the first month, so it was 60 * 3 = 180. (Score: 10/10)

Step 2: Determine the number of downloads for the third month. There was a reduction of 30%, so we
calculate 180 * (1 - 0.30) = 180 * 0.7 = 126. (Score: 10/10)

Step 3: Determine the total number of downloads for the three months. There were 60 downloads in
the first month, and 180 downloads in the second month. So the total number of downloads for the
first two months is 60 + 180 = 240. Then, there were 126 downloads in the third month. So the total
number of downloads over the three months is 240 + 126 = 366. (Score: 6/10) (correct).

REVIEWER’S OUTPUT:

Step 1-2: The high scores of 10 suggest that these steps are correct.

Step 3: The score of 6 suggests that this step is mostly correct. However, the improvement you could
make is to explicitly state the calculation for the total number of downloads, rather than just stating the
result.

REFINER’S OUTPUT:

Step 1: Determine the downloads in the second month. Three times 60 is 3 x 60 = 180. Then 30% of
1801s 180 x 0.3 =54. 180 - 54 is 126. So 126 downloads in the second month.

Step 2: Determine the total downloads over the three months. 60 downloads in the first month, and 126
downloads in the second month, and 126 - 54 = 72 downloads in the third month. 60 + 126 + 72 is 258.
The answer is 258. (incorrect).

Table 19: A qualitative example of over-correction on GSM8K using L1ama3-8B-Instruct.
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QUESTION: If f(z) = 3222 what is the value of f(—2) + f(—1) + f(0)? Express your answer as a
14

common fraction. (Gold answer: =

SOLVER’S OUTPUT (BEFORE REFINEMENT):
Step 1: Determine the values of f(—2), f(—1), and f(0) by plugging the values into the expression

for f(x).

f(-2) =255 = = ==,

f(=1) = 3=D)=2 _ —3-2_ -5

f(0) = 3(00252 = % = :—3 = 1. (Score: 10/10)
Step 2: Add the values of f(—2), f(—1), and f(0) to obtain f(—2) + f(—1) + f(0) =2+ % +1

6 , 5,3 _ 14
3T3t3=73

14
Final Answer: The final answer is 3t I hope it is correct. (Score: 7/10) (correct).

REVIEWER’S OUTPUT:

Step 1: The scores of 10/10 suggest that this step is correct.

Step 2: The high score of 7 suggests that this step is mostly correct. However, it might be beneficial to
include intermediate steps for clarity.

REFINER’S OUTPUT:

Step 1: We can calculate f(—2), f(—1), and f(0) using the given expression for f(z): f(-2) =
3(=2)—-2 _ —4 _ 1

—2-2 T 4

-y =32 - =8

0y =22 = 5 =1,
Step 2: Now we can add these values together: f(—2) + f(—1)+ f(0)=1+1+1=2

3
Final Answer: The final answer is m I hope it is correct. (incorrect).

Table 20: A qualitative example of over-correction on MATH using L1ama3-8B-Instruct .
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