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Abstract

We introduce SemCSE, an unsupervised
method for learning semantic embeddings of
scientific texts. Building on recent advances in
contrastive learning for text embeddings, our
approach leverages LLM-generated summaries
of scientific abstracts to train a model that po-
sitions semantically related summaries closer
together in the embedding space. This result-
ing objective ensures that the model captures
the true semantic content of a text, in contrast
to traditional citation-based approaches that do
not necessarily reflect semantic similarity. To
validate this, we propose a novel benchmark de-
signed to assess a model’s ability to understand
and encode the semantic content of scientific
texts, demonstrating that our method enforces
a stronger semantic separation within the em-
bedding space. Additionally, we evaluate Sem-
CSE on the comprehensive SciRepEval bench-
mark for scientific text embeddings, where it
achieves state-of-the-art performance among
models of its size, thus highlighting the benefits
of a semantically focused training approach.

1 Introduction

The rapid growth in scientific publications (Born-
mann et al., 2021) presents significant challenges
for researchers in navigating the expanding body
of knowledge. To address this, various embedding
methods have been developed, both specifically
for the scientific domain (Cohan et al., 2020a; Os-
tendorff et al., 2022) and for text retrieval in gen-
eral (Sturua et al., 2024; Lee et al., 2025). These
methods transform texts into dense vector represen-
tations, enabling efficient assessment of semantic
relatedness through vector comparison, thus sup-
porting a range of downstream applications, includ-
ing classification, clustering, and search (Subakti
et al., 2022; Singh et al., 2023), as well as modern
applications like retrieval-augmented generation
(Gao et al., 2024).

The scientific domain in particular provides an
exceptionally rich environment for both training
and deploying embedding models, as, on the one
hand, paper titles and abstracts are widely available
and effectively encapsulate the core content of a
publication, thus making them especially valuable
for tasks like literature search and retrieval. On the
other hand, this potential is further enhanced by the
presence of citation links, which have long been
recognized as a useful supervision signal indicating
relatedness of scientific papers (Cohan et al., 2020a;
Ostendorff et al., 2022; Mysore et al., 2022).

While citations can serve as a useful proxy for
semantic similarity, they introduce significant noise
due to several factors, including 1) varying citation
practices across disciplines (Hjgrland and Albrecht-
sen, 1995), 2) frequent citation of popular founda-
tional works irrespective of their direct relevance,
3) interdisciplinary research including citations to
fields with little thematic connection, and 4) cita-
tions made out of professional courtesy rather than
genuine relatedness (Pasternack, 1969). Moreover,
the absence of a citation does not necessarily indi-
cate a lack of thematic overlap, as researchers may
simply be unaware of each other’s work.

To address these limitations, we propose Sem-
CSE - a novel, fully unsupervised method for em-
bedding scientific abstracts that emphasizes seman-
tic content over external signals such as citation
patterns. Our approach leverages a large language
model to generate summarizing sentences that cap-
ture the core semantic information of scientific ab-
stracts. These summaries are then used to train an
embedding model to place summaries of the same
abstract at nearby locations in the embedding space
while pushing apart unrelated ones, thus effectively
encouraging the model to learn robust and semanti-
cally meaningful representations of scientific texts.

A key advantage of our method is its unsuper-
vised nature, which enables fast and scalable adap-
tation to new domains without the need for labeled
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data, thus contrasting supervised approaches that
rely on large annotated datasets (Singh et al., 2023)
or large citation networks (Ostendorff et al., 2022).

A central contribution of our work is the
paradigm shift from reliance on citation-based sig-
nals to a direct focus on semantic similarity. As
existing benchmarks do not adequately capture this
distinction, we introduce a novel benchmark specif-
ically designed to assess a model’s ability to encode
the true semantic content of scientific texts. Our
results show that SemCSE outperforms existing
models trained using citation-based supervision,
achieving a significantly stronger semantic sepa-
ration in the embedding space. Furthermore, we
validate the broader effectiveness of our approach
by evaluating it on the comprehensive SciRepEval
benchmark for scientific text representations (Singh
et al., 2023), where SemCSE achieves state-of-the-
art performance among models of comparable size.

2 Related Work

Structured Representations of Texts are widely
adopted for tasks like assessing semantic textual
similarity (Li and Li, 2024), question answering
(Karpukhin et al., 2020), document retrieval (Tang
et al., 2021) and clustering (Hadifar et al., 2019),
and have been trained either using explicit supervi-
sion (e.g., (Reimers and Gurevych, 2019)) or with
unsupervised objectives (e.g., Wu et al. (2020), Gao
et al. (2021), Huang et al. (2021)).

Scientific Document Embeddings are a natu-
ral extension of this general development, and are
commonly used to embed scientific papers for tasks
like document retrieval (Kanakia et al., 2019; Wang
et al., 2023), domain analysis and visualization (Lv
et al., 2024), or as pretraining strategy for creat-
ing domain-specific transformer models (Brinner
et al., 2025). While simple methods leverage basic
word-frequency information (Achakulvisut et al.,
2016; Meijer et al., 2021), recent approaches train
neural network embedding models, for example
by using an unsupervised contrastive objective that
enforces similar embeddings for different parts of
the same document (Tan et al., 2023), or by using
explicit supervision in the form of classification
and regression tasks (Singh et al., 2023).

In contrast to these examples, most embedding
models for scientific texts rely on citation relation-
ships as a proxy for semantic relatedness between
papers, thus enforcing similar embeddings for pa-
pers that share a citation link. Bhagavatula et al.

(2018) use this to train text representations based on
weighted word vectors, while Cohan et al. (2020b)
use the same concept for training a transformer
embedding model, with Ostendorff et al. (2022)
improving the selection of negative samples using
a citation network embedding space.

More recent developments have focused on creat-
ing Task-Specific Embeddings, thus creating mul-
tiple embeddings for a given document encoding
different aspects, or creating embeddings specifi-
cally suitable for certain tasks (Mysore et al., 2022;
Singh et al., 2023; Lee et al., 2025).

A different line of research instead focuses on
leveraging Synthetic Data For Embedding Mod-
els, which was proven to be effective both for use
during training (Lee et al., 2024; Wang et al., 2024;
Chen et al., 2025) or inference (Frank and Afli,
2024; Thirukovalluru and Dhingra, 2025). No-
tably, the use of LLM-generated synthetic data for
training embedding models remains unexplored in
the scientific domain. Further, existing research
focuses on obtaining high-quality training data,
usually by using large proprietary LLMs, which
contrasts our method that proves to be effective
by leveraging small LLMs as tools for simple
semantics-preserving data augmentation.

3 Method

We propose SemCSE, a simple contrastive learning
scheme designed to train a text embedding model
with a strong emphasis on accurate semantic repre-
sentation. While our experiments focus on the sci-
entific domain, we believe our approach is broadly
applicable. Therefore, we present the method in
a general form here and provide domain-specific
details and adaptations in Section 4.

Our embedding approach is based on a
dataset of texts representing the target domain,
denoted as A = {Aj, Ag,...,A,}. Using this
dataset, the first step in our training pipeline
involves using an LLM to generate multi-
ple summarizing sentences for each text in
the training set, resulting in a dataset S =
{(8171, 51,2, ), (5271, 52,2, ), PN (Sn,la Sn,2, )}
This dataset is subsequently used to train the
embedding model via a triplet loss, encouraging
summaries of the same text to be mapped to nearby
locations in the embedding space.

Formally, for each index i; within a batch B =
{i1, ..., 7))} of sampled indices, we randomly se-
lect two summarizing sentences for the correspond-
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ing text Tij and denote them as s;1 and s;2. We
then embed them individually using our model M:

€j71 = M(Sj’l)
€j72 = M(Sj’g)

For each pair of matching summaries, we define
ej1 as the anchor e, and e; o as the positive e,
and sample a third, random, summary as negative
e—_. On these triples, we compute the following
triplet loss (Hoffer and Ailon, 2015):

) = relu(d(eq, e4) — d(eq, e—

L(eq, e, e )+ 1)

Here, m is a margin hyperparameter, and d is a
distance function (e.g., Euclidean distance, which
is used in our experiments). This loss encourages
the model to embed the anchor and positive at least
one unit closer together than the distance between
the anchor and negative. Thus, the model learns to
create embeddings that capture the semantic con-
tent of each sentence to ensure that semantically
similar summaries are positioned close together in
the embedding space. The final loss for the entire
batch is then formulated as:

|BIZ\ \—1 > Llein iz o)

JEB,j#i

This formulation creates |B| — 1 triples for each
positive pair by selecting each positive from other
pairs as negative. This improves training signifi-
cantly since, as the model improves, many triples
will yield a zero loss and incorporating a larger
number of triples increases the likelihood of obtain-
ing informative gradient signals.

In addition to the base objective, we apply a
weak L2 regularization to the embeddings to en-
courage a more compact embedding space.

3.1 A Comparative Analysis

Contrastive loss formulations have proven highly
effective for training embedding models, with key
insights from Wang and Isola (2020) being that
their success largely stems from promoting unifor-
mity - i.e., encouraging embeddings to be evenly
distributed in the embedding space to allow for
better disambiguation - as well as from promot-
ing alignment, meaning that semantically similar
inputs are placed close together.

While alignment is typically enforced by using
positive pairs from supervised datasets, Gao et al.
(2021) created an unsupervised contrastive loss by

using the same sentence as both the anchor and the
positive, thus mainly focusing on improving uni-
formity through pushing unrelated samples apart.
Notably, they show that introducing variance be-
tween the anchor and positive embeddings - en-
abled through dropout in the forward pass - is key
for maintaining alignment, which is otherwise not
promoted due to the lack of related positive pairs.

Our own experiments support this analysis, since
we observed that model performance using unsu-
pervised SimCSE peaked after about 1,000 steps,
suggesting that the training process quickly satu-
rates if uniformity is sufficiently improved, and that
alignment is not further promoted through mean-
ingful information from related samples.

In contrast, our proposed method introduces a
more semantically informative training signal by
using related but clearly distinct summarizing sen-
tences created by leveraging the stochasticity of
autoregressive generation. These summaries serve
as anchor-positive pairs, thus presenting a more
challenging learning task that requires the model to
identify the shared meaning across diverse surface
forms, ultimately preserving alignment within this
broader space of semantically related sentences.

It is important to note that the concepts of align-
ment and uniformity, as defined by Wang and Isola
(2020), are formally grounded in a hyperspheri-
cal embedding space induced by the use of cosine
similarity and thus do not directly transfer to the un-
constrained Euclidean space employed in our study.
Nevertheless, the underlying principles of encour-
aging the separation of unrelated embeddings for
easier disambiguation and bringing related inputs
closer together remain conceptually applicable. For
this reason, we perform an empirical analysis of
the effect of our training scheme on anisotropy of
the embedding space in Appendix B.2.

4 Model Training

We investigate the applicability of our training
scheme to scientific texts, thus creating an embed-
ding model suitable for tasks like literature search.

4.1 Dataset

As training data, we utilize a collection of cor-
pora from the SciRepEval benchmark (Singh et al.,
2023), a large-scale evaluation suite for scientific
text embedding models. From these corpora, we
sample 350K paper titles and abstracts spanning a
variety of domains (for details, see Appendix A).
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Figure 1: A t-SNE visualization of embeddings generated for scientific papers from the SciDocs MAG dataset
(Cohan et al., 2020b), with points colored according to their assigned topic labels.

Our method requires multiple summarizing sen-
tences per sample, which we generate by concate-
nating title and abstract and processing them with
Llama-3-8B (Grattafiori et al., 2024). Specifically,
we append one of five predefined prompts (e.g., "A
comprehensive summary for our work would be
that") to the abstract and generate three continu-
ations, thus effectively summarizing the abstract.
To create a more challenging matching task, these
prompts are designed to extract different types of
information, including the general topic of the re-
search, comprehensive summaries or key findings.

We also performed preliminary experiments with
summaries created by chat LLMs, but found that
these performed slightly worse. We hypothesize
that the continuation-based approach adheres more
closely to the input data distribution, generating
sentences that more naturally resemble those found
in scientific abstracts. A full list of prompts and
other training details are provided in Appendix A.2,
while a discussion about the effect of summary
quality is presented in Appendix B.1.

4.2 Model Training

As base model within our experiments, we use a
pretrained SciDeBERTa model (Kim et al., 2023).

While we only use generated summaries as an-
chors, we increase variance within the positives by
also sampling paper titles or sentences from the ab-
stracts in 15% and 35% of cases, respectively. This
forces the model to learn meaningful relationships
between different representations of the same doc-
ument, leading to a deeper semantic understanding.
This alteration is not applied to the anchors to en-
sure that one representation of the text captures the
underlying semantics comprehensively.

4.3 Baselines

For our evaluation we compare SemCSE to a di-
verse set of embedding models, including those
specifically designed for scientific texts in the form
of SciBERT (Beltagy et al., 2019), SciDeBERTa
(Kim et al., 2023), SPECTER (Cohan et al., 2020a),
SciNCL (Ostendorff et al., 2022), and SPECTER2
(Singh et al., 2023), as well as several state-of-
the-art general-purpose embedding models com-
monly used for document retrieval. These include
all-MiniLM-L6-v2!, jina-embeddings-v2-base-en
(Giinther et al., 2023), jina-embeddings-v3 (Sturua
et al., 2024), NvEmbed-V2 (Lee et al., 2025), and
RoBERTa-SimCSE (Gao et al., 2021).

Since we focus on evaluating a model’s ability
to create generally applicable and task-independent
semantic embeddings, we do not use domain-
specific prompts that allow for task-specific embed-
dings (e.g., for NvEmbed), or task-specific adapters
(e.g., for SPECTER?), and instead rely on the com-
ponent for general semantic embedding.

5 [Evaluating Semantic Embedding
Capabilities

5.1 Generalization to Longer Texts

Since our model is trained exclusively on individ-
ual sentences - i.e., summaries, paper titles, or ran-
domly sampled sentences from abstracts - it is es-
sential to evaluate its ability to generalize to longer
texts and capture their overall semantics.

To this end, we consider the validation dataset
comprising 900 title-abstract pairs and correspond-
ing paper summaries. We assess performance us-
ing a ranking-based retrieval metric: For a given
summary, the model must identify the matching
title-abstract pair from a pool of 900 candidates

1https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2
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Model Parameters | Title-Abstr. | | Abstr.-Segments | | Query | | Clustering 1 | Perf. 1
SciBERT 109M 807.74 214.37 213.45 0.569 0.000
SciDeBERTa 183M 1479.09 861.55 2465.26 0.460 0.000
SPECTER 109M 10.25 12.23 2.18 0.692 0.119
SciNCL 109M 5.68 7.35 2.29 0.702 0.357
SPECTER?2 base 109M 4.52 5.10 1.17 0.666 0.553
SPECTER?2 proximity 110M 5.34 5.80 1.46 0.666 0.395
all-MiniLM-L6-v2 22M 3.09 8.19 1.11 0.730 0.771
Jina-v2 137M 3.29 8.77 1.29 0.703 0.600
Jina-v3 572M 3.45 6.96 1.01 0.719 0.783
RoBERTa SimCSE 355M 23.71 44.24 8.92 0.696 0.116
NvEmbed-V2 7.9B 3.38 3.84 1.02 0.721 0.866
SemCSE (Ours) 183M 2.47 2.68 1.23 0.739 0.925

Table 1: Results for evaluating SemCSE and baseline models on the semantic embedding benchmark. The best

scores are bold, while second-best are underlined.

based on embedding proximity. We report the av-
erage rank at which the correct match is retrieved,
with 1 being optimal and 900 the worst.

Our model achieves an average rank of 1.542, in-
dicating a capability to produce semantically mean-
ingful embeddings for both short and long texts
that supports precise semantic retrieval. When us-
ing only the title or only the abstract instead of
their concatenation, performance drops to 3.0 and
1.801, respectively. These results confirm that the
model does not rely solely on the opening sentence
and is capable of effectively embedding longer and
more complex texts than those seen during train-
ing. Moreover, the results highlight the model’s
ability to embed diverse forms of scientific text
- summaries, titles, and abstracts - into a unified
semantic space.

5.2 Semantic Embedding Benchmark

Building on the analyses from the previous section,
we introduce a benchmark specifically designed to
evaluate a model’s ability to capture the precise
semantic content of scientific texts. While exist-
ing benchmarks such as SciRepEval (Section 6)
include tasks like citation prediction, same-author
identification, and citation count estimation, these
tasks often do not evaluate a model’s semantic em-
bedding capabilities. For example, citation-based
links do not necessarily imply semantic similarity
(see Section 1), authors may shift research topics
over time, and citation counts can vary for reasons
unrelated to a paper’s content

To address these limitations, we propose four
tasks that more effectively evaluate a model’s se-
mantic embedding capabilities for scientific texts.

The Title-~Abstract Matching task measures
a model’s ability to match a paper’s title with its
corresponding abstract. Titles and abstracts both
serve as compressed representations of the same
underlying work, albeit at different levels of detail,
so that a model that captures semantic meaning
should predict similar embeddings for both of these
representations.

The Abstract Segmentation Consistency task
tests the model’s ability to match two halves of the
same abstract. Given that scientific abstracts are
highly condensed summaries of research papers,
both halves should contain considerable informa-
tion about the core theme of the paper, and a model
that effectively captures this information should
again predict similar embeddings.

The Query Matching task evaluates a model’s
ability to associate a scientific paper with a rele-
vant search query. In this case, we pair each title-
abstract pair with a search query generated using
Mistral Small 3.1 (Mistral Al, 2025), a state-of-
the-art 27B-parameter LLM. Despite surface-level
differences, a model with strong semantic under-
standing should assign similar embeddings to both
the query and the corresponding paper.

Similar evaluation strategies have already been
proven successful in the context of passage retrieval
(Vasilyev et al., 2025). To evaluate these tasks, we
create a dataset consisting of 6,000 samples drawn
from 12 datasets of the SciRepEval benchmark
(details in Appendix A), and evaluate them using
the ranking-based metric introduced in the previous
section, thus reporting the average rank at which
the correct match is retrieved from the candidate
pool of 6,000 samples.
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As a fourth task, we propose the Semantic Clus-
tering task, which uses the SciDocs MAG dataset
(Cohan et al., 2020a), containing 21,252 paper ti-
tles and abstracts annotated with thematic cate-
gories from the Microsoft Academic Graph. While
the original benchmark proposed by Cohan et al.
(2020a) focused on training a linear SVM to predict
these categories from the embeddings, we argue
that semantic similarity might not manifest in linear
separability. Instead, we assess whether a model’s
embedding space naturally clusters semantically re-
lated papers. To do this, we embed each paper (title
+ abstract) from both the train and test sets, and -
for each test sample - retrieve its five nearest neigh-
bors from the training set. We report the proportion
of these neighbors that share the same thematic cat-
egory, providing a measure of how well the model
organizes scientific knowledge in a semantically
meaningful structure.

Finally, we compute an overall performance
score by normalizing task-specific results to a scale
from O to 1 and averaging across all tasks. For each
task, the best-performing model is assigned a score
of 1, the median-performing model a score of 0.5,
and intermediate values are linearly interpolated,
with 0 being a threshold at the lower end.

5.3 Results

The results of our semantic embedding evaluation
benchmark are presented in Table 1.

Examining the title-abstract and abstract-
segments matching tasks, we observe that mod-
els not explicitly trained as embedding models
(i.e., SciBERT and SciDeBERTa) struggle to accu-
rately encode the semantics of a given paper title
or abstract. While training on basic citation triples
substantially improves performance (SPECTER,
10.25 and 12.23), scores remain significantly higher
than those achieved by models employing more ad-
vanced training strategies, for example by leverag-
ing improved negative sampling (SciNCL, 5.68 and
7.35) or integrating supervised proximity-based
datasets (SPECTER2-proximity, 5.34 and 5.80).

Interestingly, general-domain retrieval models
such as Jina-v2, Jina-v3, and even the small
MiniLM model, excel at the title-abstract match-
ing task - likely caused by the close resemblance
to document retrieval in general search settings -
but struggle on the less familiar abstract segments
matching task.

Our SemCSE model achieves state-of-the-art
performance in both title-abstract matching and

abstract-segments matching despite being trained
solely on individual sentences, even surpassing the
powerful NvEmbed-V2 model that leverages more
than 43 times as many parameters. We interpret the
especially unrivaled performance on the abstract-
segments task as evidence of a deepened under-
standing of scientific texts, since each half of an
abstract lacks crucial information, so that a strong
performance on this task requires recovering a pre-
cise semantic representation from reduced context.

The query matching task shows improved perfor-
mance compared to the other matching tasks across
most models, suggesting that the LLM-generated
queries are well-aligned with the semantic content
of their corresponding papers, thus avoiding the
challenges posed by ambiguous titles and varying
abstracts. As a result, retrieval-optimized models
such as Jina-v3 and NvEmbed achieve near-perfect
performance, with average ranks of 1.01 and 1.02,
respectively. Our SemCSE model also performs
well, achieving an average rank of 1.23.

In the semantic clustering task, our SemCSE
model achieves a state-of-the-art score of 0.739,
outperforming all other evaluated models. The
closest competitor is MiniLM (0.730), followed by
the significantly larger NvEmbed model (0.721).
All remaining models - including those specifically
trained on scientific literature - score considerably
lower. We hypothesize that this is caused by their
reliance on citation triples as a supervisory sig-
nal, which might link semantically unrelated pa-
pers from different domains, ultimately leading
to a less semantically-separated embedding space.
This is supported by the t-SNE visualization in Fig-
ure 1, where embeddings produced by SemCSE
exhibit clearly separated thematic clusters, with
SPECTER2-base (the best citation-based model on
the SciRepEval benchmark) showing substantially
weaker topic separation.

Evaluating the overall performance score, we
see a clear lead by SemCSE (0.925), with only the
7.9B parameter NvVEmbed model coming remotely
close (0.866), thus again highlighting the strong
semantic embedding capabilities of our approach.

6 SciRepEval Evaluation

We further evaluate our model using the SciRepE-
val benchmark (Singh et al., 2023), which com-
prises 24 tasks designed to assess the performance
of text embeddings across ad-hoc search, proximity,
regression, and classification tasks. The task-type-
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Model Parameters | Classification | Regression | Proximity | Search | Average
SciBERT 109M 63.86 27.34 66.25 68.19 57.42
SciDeBERTa 183M 60.99 27.00 62.74 67.83 55.18
SPECTER 109M 67.73 25.37 80.05 74.89 64.28
SciNCL 109M 68.04 25.22 81.18 77.32 65.08
SPECTER?2 base 109 66.95 27.75 81.10 78.42 65.46
SPECTER?2 proximity 110 66.37 26.85 81.41 77.75 65.15
all-MiniLM-L6-v2 22M 64.04 20.06 80.74 79.63 63.05
jina-v2 137M 63.99 23.76 80.11 80.40 63.69
jina-v3 572M 65.66 24.84 79.98 80.60 64.34
RoBERTa SimCSE 355M 67.16 22.95 75.51 76.97 62.10
NvEmbed-V2 7.9B 65.62 29.94 81.16 82.84 66.19
SemCSE (Ours) 183M 69.52 27.58 80.21 78.56 65.76

Table 2: Results for evaluating SemCSE and baseline models on the SciRepEval benchmark. The best scores are

bold, while second-best are underlined.

aggregated results for all models are presented in
Table 2, with all individual results being included
in Appendix C.

6.1 Average Performance

As seen in the context of the semantic bench-
mark, domain-specific models not explicitly trained
for embedding tasks exhibit below-average perfor-
mance. In contrast, training on citation data leads
to strong overall scores, with models utilizing sim-
ple contrastive loss formulations (e.g., SPECTER,
Average: 64.28) again underperforming compared
to those employing more advanced training strate-
gies, such as SciNCL (Average: 65.08).

While general-domain embedding models show
strong results on some semantic matching tasks,
their performance on SciRepEval is markedly lower
- unsurprising given that many tasks in this bench-
mark are closely aligned with citation-based train-
ing signals used by domain-specific models. A
notable exception is NvEmbed-V2, which achieves
a state-of-the-art average score of 66.19, albeit at
the cost of significantly higher computational cost.

The SemCSE model achieves the second-best
overall score (65.76), outperforming other domain-
specific models despite not being trained with the
same citation-based supervision signals. This result
strongly supports the validity of our method and
further demonstrates that a greater emphasis on
semantic representations can be highly beneficial.

6.2 Task-Specific Performance

Beyond aggregate scores, task-type-specific per-
formance sheds light on the relative strengths of
different pretraining approaches.

Our SemCSE model performs exceptionally well
on classification tasks, achieving the highest score
across all models. This is expected, as such tasks
benefit most from semantically rich embeddings
that facilitate clear class separation.

Regression tasks exhibit more varied outcomes
across models, suggesting that no single training
strategy is uniquely optimized for them.

Proximity-based tasks - many of which rely on
citation information as ground truth - naturally fa-
vor models trained with citation-based supervision.
Remarkably, despite not using such signals, Sem-
CSE achieves strong performance in this category,
suggesting that - although some citations may link
semantically unrelated papers - citation links still
broadly correlate with semantic similarity.

Finally, as expected, retrieval-optimized models
outperform others on ad-hoc search tasks, even
within the scientific domain.

7 Ablation

We conduct several ablations to evaluate the robust-
ness and effectiveness of our training strategy. The
corresponding results are presented in Figure 3.
We begin by assessing the impact of reduced
training data. On the SciRepEval benchmark, per-
formance remains relatively stable, maintaining
scores above 65.0 even when using only 1% of
the original training set. In contrast, the first two
matching tasks from the semantic benchmark show
a more pronounced performance drop, suggesting
that exposure to a large number of samples is criti-
cal for learning high-quality semantic representa-
tions. Interestingly, performance on the clustering
task remains strong even with limited data, con-
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Model Dataset | CIf. | Regr. | Prox. | Search | SRE Avg. | Title-Abstr. | Abstr.-Segments | Query | Clustering
Full 350K | 69.52 | 27.58 | 80.21 | 78.56 65.76 2.47 2.68 1.23 0.739
Full 175K | 69.26 | 27.19 | 80.36 | 78.54 65.67 3.40 3.21 1.29 0.732
Full 87.5K | 69.01 | 27.39 | 80.35 | 78.58 65.65 3.35 2.63 1.24 0.731
Full 35K | 69.32 | 27.18 | 80.18 | 77.81 65.51 3.65 3.24 1.24 0.734
Full 17.5K | 68.31 | 27.00 | 80.04 | 78.37 65.23 3.76 3.47 1.45 0.723
Full 8. 75K | 68.95 | 27.05 | 79.96 | 76.53 65.14 434 3.73 1.99 0.725
Full 35K | 68.36 | 27.07 | 79.94 | 76.73 65.01 5.93 4.04 2.18 0.728
Just Summaries 350K | 68.78 | 26.89 | 80.21 | 77.51 65.28 6.04 3.52 2.11 0.732
Same Input 350K | 66.59 | 27.23 | 74.29 | 69.94 61.48 180.01 59.86 251.46 0.645
Cosine Similarity | 350K | 69.76 | 25.88 | 80.63 | 79.33 65.72 2.84 3.17 1.13 0.735

Table 3: Results for SemCSE trained with different dataset sizes and variations of the loss function.

sistently outperforming most other models. This
indicates that our training scheme is particularly
effective at structuring the embedding space seman-
tically, even under data constraints.

Next, we evaluate the importance of also using
paper titles and abstract sentences as positives in-
stead of solely relying on the generated summaries.
If just summaries are used, results display a slightly
reduced performance on the SciRepEval bench-
mark and notable performance degradation on the
semantic matching tasks, underscoring the impor-
tance of training on diverse input types that reflect
the actual distribution of scientific text.

Third, we explore the effect of employing differ-
ent similarity metrics as basis for the embedding
space. While Euclidean distance is commonly used
in embedding spaces for scientific text represen-
tation, many general-purpose embedding models
instead rely on cosine similarity. To evaluate the
effect of choosing one over the other, we also eval-
uate SemCSE using a cosine-based setting by ap-
plying a standard softmax-based contrastive loss
(see Appendix A.5). The resulting model achieves
nearly equivalent performance on the SciRepE-
val benchmark, although the distribution of results
across task types shifts. Specifically, classification,
proximity, and search tasks show modest improve-
ments, while regression performance declines sub-
stantially. On our proposed semantic benchmark,
on the other hand, the cosine-based model still dis-
plays state-of-the-art performance, but performs
slightly worse compared to the Euclidean-based
model, except for the query matching task where it
performs better. Ultimately, these results validate
the general effectiveness of leveraging matching
LLM-generated summary pairs for injecting se-
mantic understanding into the embedding model,
regardless of the specific distance metric or loss
function employed.

Finally, we investigate the role of using different

but semantically related inputs by training a variant
of our SemCSE model using the same sentence
as both anchor and positive, thus mirroring the
approach of unsupervised SImCSE. In this setup,
positive pairs differ only due to dropout-induced
variance. This strategy has shown strong perfor-
mance on general semantic textual similarity bench-
marks - primarily by improving embedding space
uniformity (see Section 3.1) - so that our goal is to
identify the contribution of distinct summaries in
our method.

The results of this setup (denoted “Same Input”)
confirm that even without distinct input pairs, the
model achieves substantial improvements over the
SciDeBERTa base model, validating the effective-
ness of the overall learning objective when com-
bined with triplet margin loss in Euclidean space.
However, performance across both the semantic
and SciRepEval benchmarks remains significantly
below that of the full SemCSE model. This high-
lights the importance of training with semantically
distinct yet related inputs: identical input pairs fail
to provide the semantic variation necessary for ro-
bust representation learning. This distinction is fur-
ther illustrated in Figure 1, which shows markedly
stronger class separation in the embedding space
when the full SemCSE objective is used.

These findings reinforce the analysis in Section
3.1, which emphasizes the advantages of using se-
mantically diverse input pairs. By replacing Sim-
CSE’s simple data augmentation strategy with a
more meaningful signal, our approach yields a
more challenging training task - ultimately leading
to more effective and generalizable representations
for the scientific domain.

8 Conclusion

In this work, we address the challenge of learn-
ing robust semantic embeddings for scientific texts.
Recognizing the limitations of traditional citation-
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based supervision, we propose a paradigm shift
towards a semantically-focused training and evalua-
tion paradigm, resulting in the proposal of SemCSE
and a novel benchmark for semantic evaluation.

While our proposed paradigm shift is grounded
in existing literature that questions the semantic
relatedness of papers linked by citations, we empir-
ically demonstrate the improved semantic represen-
tation capabilities of SemCSE on several matching
tasks and both quantify and visualize this enhanced
semantic structuring of the underlying embedding
space on a diverse clustering dataset.

Further, the analysis of the SciRepEval bench-
mark shows that our method especially excels at
classification tasks, which benefit from a clear se-
mantic separation in the embedding space and thus
again demonstrates the benefits of the proposed
training scheme.

Finally, our ablation studies further pinpoint the
use of distinct yet semantically related summary
pairs as a critical component of SemCSE’s success,
thus demonstrating the benefit of a semantically
diversified training strategy in contrast to simple
data augmentation.

Ultimately, the evidence presented strongly ad-
vocates for a paradigm shift towards semantically-
oriented training and evaluation for scientific text
embeddings, and we believe our novel evaluation
scheme itself offers valuable insights into the ca-
pabilities of existing embedding models. Beyond
the scientific domain, the core unsupervised train-
ing methodology of SemCSE holds promise as
a broadly applicable strategy for learning high-
quality embeddings across diverse fields.

9 Limitations

A core limitation of SemCSE is the reliance on
LLM-generated summaries, which has the possi-
bility of introducing systemic biases into the em-
bedding model, and also poses a risk of learning
incorrect representations in cases of hallucinations
or factual errors.

Also, while SemCSE generates semantically
meaningful embeddings, the interpretability of
these embeddings remains a challenge. Under-
standing the exact influence that specific pieces of
information within abstracts have on being nearby
or far apart in the embedding space is not straight-
forward, which could limit the model’s utility in
applications where interpretability is crucial.
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A Experimental Details

The code for training and evaluating our models,
the best model checkpoint as well as the gener-
ated training data are available at github.com/inas-
argumentation/SemCSE.

A.1 Dataset Creation

The SciRepEval benchmark comprises six datasets
that are used for training, available at hugging-
face.co/datasets/allenai/scirepeval. We randomly
select subsets of each of these datasets as training
data. The following datasets are used:

* "mesh_descriptors": 50,000 samples, medical
domain

* "fos": 50,000 samples, various domains

* "search": 50,000 samples, various domains
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* "same_author": 50,000 samples, various do-
mains

* "high_influence_cite": 50,000 samples, vari-
ous domains

* "cite_prediction_new": 100,000 samples, var-
ious domains

The dataset used in the semantic evalua-
tion benchmark uses 500 random samples
from the train split of each of the datasets
used in the SciRepEval benchmark: "relish",
"high_influence_cite", "mesh_descriptors”,
"biomimicry", "drsm", "cite_prediction",
"fos", "paper_reviewer_matching",
"peer_review_score_hIndex", "same_author",
"search", "tweet_mentions".

More information on these datasets can be found
in (Singh et al., 2023).

A.2 Summary Generation

We use Llama-3-8B (Grattafiori et al., 2024) to
generate summarizing sentences for our dataset of
scientific paper titles and abstracts. To this end, we
append one of the following prompts to the abstract
and let the LLM generate a continuation:

* To summarize, the key findings of our research,
stated in one sentence that includes all rele-
vant information, are that

e In summary, our research is concerned with

* In summary, a comprehensive and detailed
conclusive statement would be that

* A comprehensive summary for our work
would be that

* The main takeaway from our work is that

The development of this embedding approach
started in a different domain, for which we ex-
perimented with using summaries generated by a
chat LLM instead of using this text-continuation
method. This did lead to worse results. We
hypothesize that the sentences generated by the
continuation-based method adhere more closely to
the input data distribution, since the LLM effec-
tively aims at continuing the abstract in the same
style as before. Additionally, the task specifica-
tion is less precise, since many continuations are
possible. This could lead to a higher variance in
the training set, which seems to be beneficial, as
indicated by our ablations.

A.3 Model Training

We evaluate our SemCSE model after every 1000
batches, with each batch containing 32 pairs of
summaries/abstract sentences.

We compute the evaluation scores on a set of 900
summary-abstract pairs. The evaluation uses the
same ranking-based metric introduced in Section
5.1, thus evaluating the average rank at which the
correct match is retrieved.

We perform two different matching evaluations:
One leverages two summaries per sample and aims
at determining the matching summary score. The
other takes the average embedding for both sum-
maries and uses this to determine the matching
title-abstract text.

If a new best score is achieved, the model is
saved. Training is stopped as soon as the evaluation
score did not decrease for 15 epochs.

We use an L2 regularizer applied to the embed-
dings of the anchors, which is averaged over all
embeddings in the batch and weighted by a factor
of 1/250.

All ablations were trained with the same hyper-
parameter settings.

Hyperparameter search was performed by eval-
uating our model on training data for the training
tasks described in (Singh et al., 2023).

The margin hyperparameter is set to 1, as is usual
within most studies. This parameter does not have a
notable effect, since the resulting embedding space
can adhere to an arbitrarily large margin by sim-
ply scaling up the whole embedding space. Thus,
precise values are not important, with only con-
siderations being to select a value that does not
cause numerical instabilities and reasonably fits to
the magnitude of the embeddings of the pretrained
model.

A.4 SciRepEval Evaluation

We evaluate SemCSE as well as the baselines on
the SciRepEval benchmark (Singh et al., 2023).
To calculate task-specific scores, we average over
all metrics calculated for that task. In case a task
includes full-dataset and few-shot results, all few-
shot scores were averaged, and both few-shot and
full-dataset results contributed evenly to the final
scores.

Task-type averages were calculated by averaging
over all task-specific scores for tasks of the respec-
tive type, while the complete-benchmark average
was calculated by averaging over all scores for the
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Figure 2: Variance of the SciDocs MAG embedding space explained by the first 50 principal components for the

base SciDeBERTa model and the trained SemCSE model.

individual tasks.

A.5 Ablation: Cosine Similarity

We perform an ablation of SemCSE that uses co-
sine similarity as similarity measure instead of
leveraging Euclidean distance. To this end, we
use a loss formulation similar to SimCSE (Gao
et al., 2021):

esim(eiJ 761'72)/T

B esim(e;,1,e5,2)/7

Here, sim denotes the cosine similarity and 7 is
a temperature hyperparameter set to 0.07, which is
in line with similar work.

B Further Discussion

B.1 The Impact of Summary Quality

We use LLamA-3-8B to generate the summariz-
ing sentences used for training. While this model
performs reasonably well, it is surpassed by more
recent and larger language models. This raises the
question of whether the quality of generated sum-
maries significantly affects the performance of our
encoder model.

We argue that the quality of the summaries is not
a substantial limiting factor, for several reasons:

1. Summarization is a relatively easy task for
large language models, especially in the con-
text of scientific abstracts, which are already
highly condensed. Summarizing such short
and structured texts requires minimal long-
range reasoning or content synthesis, and even
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smaller models tend to perform well in this
setting (Xu et al., 2025).

If a model misinterprets a scientific abstract,
the misunderstanding is likely to be systematic
across all generated summaries. This consis-
tency means the summaries still form valid
training pairs, as the relationship between
them remains meaningful even if they deviate
slightly from the ground truth.

Minor factual inconsistencies between sum-
maries do not invalidate their semantic relat-
edness. For instance, if one summary of a
medical abstract states that a treatment was
effective while another states it was not, both
still pertain to the same core topic - the effec-
tiveness of an intervention for this disease -
and should be embedded similarly, since they
would both be reasonable matches for a search
query related to treatment outcomes regarding
this disease.

Our preliminary experiments using chat-based
LLMs (see Appendix A) actually resulted in
lower performance. In these cases, continua-
tions that were arguably lower in quality, but
higher in variability, proved more effective for
training. This suggests that overly polished
summaries with reduced variance may not be
optimal for learning robust semantic represen-
tations.

The query matching task is based on LLM-
generated queries created by a significantly
stronger LLM. Nevertheless, our results
demonstrate that the SemCSE model can



match these - likely more precise - queries
to the corresponding abstracts, indicating that
the model does not struggle with the different
data distribution induced by the higher-quality
model.

While a more detailed evaluation of how differ-
ent language models affect the performance of Sem-
CSE would be valuable, generating 15 additional
summaries for 350,000 input sentences would incur
a substantial computational cost. Given the likely
marginal insight this would provide, we consider
such an investigation unjustifiable from a sustain-
ability perspective.

B.2 Analyzing Anisotropy

Contrastive embedding objectives have been shown
to mitigate the issue of anisotropy (Gao et al., 2019,
2021) - the tendency for sentence embeddings to
cluster within a narrow cone of the embedding
space - an effect that has been shown to degrade the
representational quality of embeddings (Li et al.,
2020). Most prior analyses focus on hyperspheri-
cal embedding spaces induced by cosine similarity,
where embeddings lie on the unit sphere and can
only be distinguished by their angular separation.
In this setting, a uniform distribution on the sphere
is crucial for effective representation learning, as
distances from the origin are no longer informative.

In Euclidean spaces, by contrast, it is theoret-
ically possible for embeddings to occupy only a
few dimensions while extending significantly along
those axes to facilitate semantic disambiguation.
However, in our experiments we apply L2 regu-
larization, which encourages a compact embed-
ding space and discourages extreme variance along
any single dimension. As a result, we hypothesize
that the contrastive objective - by pushing unre-
lated samples apart - promotes a more balanced
use of the available dimensions, thereby reducing
anisotropy even in Euclidean settings.

To empirically test this hypothesis, we embedded
all samples from the SciDocs MAG dataset, applied
mean-centering, and calculated the proportion of
variance explained by each principal component.
Unlike prior studies in hyperspherical spaces that
examine the singular value distribution of the em-
bedding matrix, this approach is more appropriate
for Euclidean spaces, where the embedding ma-
trix can be arbitrarily scaled, making raw singular
values less interpretable.

The results, shown in Figure 2, compare the base

SciDeBERTa model to our SemCSE-trained model.
We observe a clear reduction in the dominance of
the top principal components in the trained model,
resulting in a smoother and more uniform variance
distribution across components. This indicates a
more isotropic embedding space and supports the
conclusion that our training strategy improves the
geometric quality of the learned representations.
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C SciRepEval Individual Results

Biomimicry DRSM Fields of study MeSH | SD MAG | SD MeSH

Model F1  F1(fs-64) F1(fs-16) | Fl1  F1(fs-64) F1 (fs-24) | F1  F1 (fs-10) F1 (fs-5) Fl1 Fl1 Fl1

SciBERT 73.37 37.27 16.00 76.84 56.31 46.05 40.02 30.07 21.61 76.71 79.50 79.99
SciDeBERTa 73.42 35.31 13.86 74.41 58.57 49.08 41.39 25.87 17.59 72.24 72.74 76.26
SPECTER 72.87 39.61 19.49 71.34 61.07 48.88 42.43 32.98 26.12 85.47 79.75 87.80
SciNCL 69.74 40.15 21.26 74.73 61.24 49.68 44.14 32.76 25.00 86.17 81.11 89.11
SPECTER? base 74.21 39.20 14.49 76.42 55.68 43.31 4221 25.56 15.68 86.76 81.03 89.00
SPECTER?2 proximity | 72.26 36.14 11.02 76.20 55.79 43.24 42.07 24.70 14.68 86.44 81.36 88.77
jina-v2 69.98 0.63 0.00 75.46 47.05 36.52 47.14 24.68 11.08 86.18 82.96 88.53
jina-v3 71.96 17.07 0.64 77.15 55.49 41.62 45.19 24.74 10.86 87.89 82.48 88.85
RoBERTa SimCSE 67.98 40.88 16.85 76.29 66.67 57.60 46.01 34.48 26.30 82.60 80.46 84.04
NvEmbed-V2 77.90 6.05 0.23 76.86 49.21 37.40 46.04 17.37 4.12 89.47 84.68 90.60
SemCSE (Ours) 77.21 42.58 21.47 78.00 64.72 54.55 43.31 33.60 25.14 86.34 82.68 88.34

Table 4: Results for Classification tasks on the SciRepEval benchmark. The best scores are bold, while second-best
are underlined.

Citation Count Max hIndex Peer Review Publication Year Tweet Mentions
Model Kendall’s 7 Kendall’s 7 Kendall’s 7 Kendall’s 7 Kendall’s 7
SciBERT 39.59 17.19 23.37 30.87 25.67
SciDeBERTa 38.83 17.40 21.29 32.80 24.69
SPECTER 35.38 15.51 18.12 30.12 27.73
SciNCL 34.71 15.00 20.03 30.02 26.34
SPECTER?2 base 38.42 15.73 20.84 35.57 28.20
SPECTER?2 proximity 38.58 14.56 20.22 33.65 27.22
jina-v2 34.65 13.67 16.50 27.41 26.59
jina-v3 34.46 15.28 17.43 30.39 26.65
RoBERTa SimCSE 36.37 11.59 14.89 27.30 24.62
NvEmbed-V2 39.95 18.44 21.19 41.72 28.38
SemCSE (Ours) 38.90 17.14 22.41 32.04 27.41

Table 5: Results for Regression tasks on the SciRepEval benchmark. The best scores are bold, while second-best
are underlined.

H. Influence Paper-Reviewer Matching RELISH | S2AND | Same Author SD Cite SD CoCite SD CoRead SD CoView
Model MAP P@10h P@5h P@10s P@5s| nDCG B3 F1 MAP MAP nDCG | MAP nDCG | MAP nDCG | MAP nDCG
SciBERT 33.72 24.30 26.92 54.58 60.93 82.81 93.03 79.48 5320 7379 | 5771 71.36 | 55.74 7535 | 59.80 78.10
SciDeBERTa 31.85 24.21 2673 5346 60.00 81.90 92.13 75.28 4594 69.13 | 50.01 7224 | 4927 71.11 | 53.18 73.96
SPECTER 42.89 25.51 3327 5617  65.79 90.07 93.12 86.53 9225 96.71 | 88.16 94.81 | 8535 92.88 | 83.58 91.51
SciNCL 43.39 2542 3421 5542 66.54 90.67 94.63 87.47 93.55 97.35 | 91.66 96.44 | 87.69 94.00 | 85.28 92.23
SPECTER? base 44.96 2542 3402 5551  66.73 91.63 93.00 87.00 91.97 96.69 | 91.70 96.56 | 87.17 93.71 | 85.52 92.50
SPECTER2 prox. 46.07 25.61 34.21 55.61 66.17 91.86 92.80 89.43 9223 96.84 | 91.13 96.28 | 86.85 93.53 | 85.18 92.26
jina-v2 45.36 2570 3439 5551 67.66 90.76 94.15 85.08 87.82 94.82 | 88.56 95.19 | 8525 9285 | 83.60 91.52
jina-v3 45.40 25.33 34.77 55.23 66.54 91.60 94.03 85.24 87.38 94.61 | 87.32 9459 | 84.73 92.57 | 8348 91.40
RoBERTa SimCSE 41.37 25.23 29.91 54.77 63.74 87.61 93.23 80.49 76.48 88.88 | 79.08 90.28 | 76.39 88.14 | 78.70  89.05
NvEmbed-V2 47.38 25.98 34.58 5542  67.10 92.84 93.18 87.87 87.83 94.83 | 90.26 9591 | 86.71 93.54 | 85.38 92.38
SemCSE (Ours) 44.35 25.42 32.34 55.79  66.17 90.85 93.23 88.66 87.24 9439 | 88.84 95.20 | 8539 92.85 | 84.09 91.74

Table 6: Results for Proximity tasks on the SciRepEval benchmark. The best scores are bold, while second-best are
underlined.

32718



NFCorpus Search TREC-CoVID
Model nDCG nDCG nDCG
SciBERT 53.34 71.49 79.73
SciDeBERTa 52.32 70.53 80.65
SPECTER 64.90 73.25 86.53
SciNCL 70.85 73.46 87.66
SPECTER?2 base 72.03 73.76 89.46
SPECTER?2 proximity 70.50 73.45 89.29
jina-v2 76.00 74.45 90.74
jina-v3 75.12 74.80 91.89
RoBERTa SimCSE 70.16 72.82 87.93
NvEmbed-V2 81.47 75.18 91.86
SemCSE (Ours) 72.53 73.32 89.82

Table 7: Results for Ad-hoc Search tasks on the SciRepEval benchmark. The best scores are bold, while second-best
are underlined.
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