
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 32930–32942
November 4-9, 2025 ©2025 Association for Computational Linguistics

Planning-Aware Code Infilling via Horizon-Length Prediction

Yifeng Ding1* Hantian Ding2 Shiqi Wang3∗ Qing Sun2 Varun Kumar2 Zijian Wang3∗
1University of Illinois Urbana-Champaign 2AWS AI Labs 3Meta

yifeng6@illinois.edu {dhantian,qinsun,kuvrun}@amazon.com
{tcwangshiqi,zijianwang}@meta.com

Abstract

Fill-in-the-Middle (FIM), or infilling, has become
integral to code language models, enabling
generation of missing code given both left and
right contexts. However, the current FIM training
paradigm which performs next-token prediction
(NTP) over reordered sequence often leads to
models struggling to generate content that aligns
well with the surrounding context. We hypothesize
that NTP alone is insufficient for models to learn
effective planning conditioned on the distant
right context, a critical factor for successful
code infilling. To overcome this, we propose
Horizon-Length Prediction (HLP), a novel
training objective that teaches models to predict
the number of remaining middle tokens at each
step. HLP advances FIM with lookahead planning,
enabling models to inherently learn infilling
boundaries for arbitrary left and right contexts
without relying on dataset-specific post-processing.
Our evaluation across different model families and
sizes shows that HLP significantly improves FIM
performance by up to 24% relatively on diverse
benchmarks, across file-level and repository-level.
Furthermore, the enhanced planning capability
gained through HLP boosts model performance on
code reasoning. Importantly, HLP incurs negligible
training overhead and no additional inference cost,
ensuring its practicality for real-world scenarios.

1 Introduction

Fill-in-the-Middle (FIM), or infilling, has become
essential for modern code development, where program-
mers frequently need to insert or modify code between
existing sections rather than writing linearly from
start to end (Bavarian et al., 2022; Fried et al., 2023).
While large language models have shown remarkable
capabilities in code generation, the FIM task poses
unique challenges that go beyond traditional left-to-
right generation. A model must not only generate code
that follows from the preceding context (prefix), but
also smoothly connect to the subsequent code (suffix)
– a task that requires careful planning and foresight.

*Work done at AWS AI Labs.

Support for voice interactions
class SpeechMixin(object):

def __init__(self, audio_threshold = 1000):
self.voice = win32com.client.Dispatch("SAPI.SpVoice")
self.recognizer = speech.Recognizer()
self.recognizer.energy_threshold = audio_threshold
…

Reference # Support for voice interactions
class SpeechMixin(object):

def __init__(self, audio_threshold = 1000):
self.recognizer = speech.Recognizer()
self.voice = win32com.client.Dispatch("SAPI.SpVoice")Recognizer()
self.recognizer.energy_threshold = audio_threshold
…

Answer
prefix

suffix

middle

Support for voice interactions
class SpeechMixin(object):

def __init__(self, audio_threshold = 1000):
self.voice = win32com.client.Dispatch("SAPI.SpVoice")
self.recognizer = speech.Recognizer()
self.recognizer.energy_threshold = audio_threshold
…

Reference # Support for voice interactions
class SpeechMixin(object):

def __init__(self, audio_threshold = 1000):
self.recognizer = speech.Recognizer()
self.voice = win32com.client.Dispatch("SAPI.SpVoice")Recognizer()
self.recognizer.energy_threshold = audio_threshold
…

Answer
prefix

suffix

middle

Model Generation

Figure 1: Successful FIM requires planning capabilities.
Given prefix and suffix, the model is asked to infill the
middle part. Compared with the ground truth, LLM fails
to connect to suffix due to lack of planning capability: the
last part of the generation needs to connect with the member
function Recognizer().

Current approaches to FIM typically reorder the input
sequence and apply standard next-token prediction
(NTP) training (Lozhkov et al., 2024; Guo et al., 2024;
DeepSeek-AI et al., 2024; Hui et al., 2024). However,
as illustrated in Figure 1, this methodology has a
fundamental limitation: models struggle to maintain
coherence over longer sequences and often fail to
create smooth transitions to the right context (Bavarian
et al., 2022). While existing benchmarks attempt to
address this through rule-based post-processing (e.g.,
truncating generated code based on line count (Zhang
et al., 2023; Wu et al., 2024) or program structure (Ding
et al., 2023; Gong et al., 2024)), such methods rely on
dataset-specific assumptions that do not generalize to
real-world scenarios where both left and right contexts
can be arbitrary.
We hypothesize that the core challenge lies in the
model’s limited ability to plan ahead while filling in the
middle. Standard next-token prediction training only
requires considering one token at a time, but successful
code infilling demands awareness of the entire missing
section to ensure both local coherence and proper
connection to the right context. This planning capability
is particularly crucial because generated code must
satisfy both syntactic requirements and semantic
constraints from both surrounding contexts.
To address this limitation, we propose Horizon-Length
Prediction (HLP), a novel training objective that teaches

32930

Post-processing Criteria

RepoEval (Zhang et al., 2023) Truncate generation to the same number of lines as in ground truth.CrossCodeLongEval (Wu et al., 2024)

CrossCodeEval (Ding et al., 2023) Truncate generation at the first complete statement.

SAFIM (Gong et al., 2024) Stop when the target program structure in ground truth is generated.

Table 1: Post-processing criteria used in existing FIM benchmarks. Text in bold denotes restrictive dataset-specific knowledge
they employ in evaluation.

models to predict the number of remaining tokens
needed to complete the middle section at each gener-
ation step. HLP advances NTP by encouraging models
to develop awareness of the generation horizon and plan
accordingly. Unlike post-processing approaches, HLP
is generalizable as it does not rely on any task-specific
knowledge. Instead, it strengthens models’ innate
ability to plan and execute coherent code completions.
Our comprehensive evaluation across different models
and model sizes demonstrates that HLP significantly
improves FIM performance, achieving up to 24%
relative improvement on diverse benchmarks at both
file-level and repository-level without relying on any
dataset-specific post-processing. Furthermore, the
enhanced planning capability gained through HLP
training also boosts model performance on code
reasoning tasks. Importantly, HLP incurs negligible
training overhead and no additional inference cost,
making it practical for real-world deployment.
Our key contributions are as follows:

• We identify planning capability as a fundamental
bottleneck in current FIM approaches and quantita-
tively demonstrate how post-processing methods in
existing benchmarks obscure this critical limitation.

• We propose Horizon-Length Prediction (HLP), a
novel training objective that advances fill-in-the-
middle capability by teaching models to plan over
arbitrarily long horizons, with negligible training
and zero inference overhead.

• We demonstrate up to 24% improvement in FIM
performance across multiple benchmarks and model
families without relying on any post-processing.

• We show that HLP’s benefits extend beyond FIM to
improve performance on code reasoning tasks, and
present various analyses that illuminate the under-
lying mechanism that enable these improvements.

2 Post-processing for Fill-in-the-Middle

Most existing FIM works rely on post-processing to
truncate code completions generated by LLMs for
infilling tasks (Gong et al., 2024; Zhang et al., 2023;
Ding et al., 2023; Wu et al., 2024). While such post-
processing can enhance the FIM performance, we argue

that they fundamentally depend on dataset-specific
assumptions that make them impractical for real-world
scenarios (§2.1). Through evaluation, we show that
the performance of FIM existing code models drops
significantly without post-processing, suggesting that
post-processing conceals the fundamental struggles
of models with code filling (§2.2). Furthermore, we
show that this limitation stems from models’ inability
to plan coherent completions given a fixed suffix – a
challenge that post-processing alone cannot address.

2.1 Post-processing
Requires Task-Specific Knowledge

Post-processing methods adopted by recent FIM bench-
marks typically assume a certain completion type and
perform rule-based truncation accordingly. Table 1 sum-
marizes the post-processing criteria of four popular FIM
benchmarks, highlighting the specific rule used for each
dataset. These criteria do not transfer across datasets,
nor are they generalizable to FIM in the real-world
scenario where both left and right contexts can be arbi-
trary. Given the complexity of programming languages,
developing universally applicable post-processing rules
for infilling is infeasible. Instead, models need to learn
the intrinsic patterns that make for good completions.

2.2 LLMs Fail to Plan Coherent Completions
To further demonstrate to what extent post-processing
conceals LLMs’ inability of connecting to suffix, we
conduct a comprehensive experiment on SAFIM. We
compare FIM performance of four different code LLMs,
with or without post-processing. As shown in Table
2, removing post-processing leads to up to a substantial
13.8% Pass@1 drop across all models. This reveals that
current models have not truly mastered the fundamental
task of generating code that properly connects prefix
and suffix contexts. Post-processing creates an illusion
of competence by artificially “fixing” problematic
generations rather than addressing the core limitation.

2.3 FIM Requires Planning Capability
The challenges in FIM stem from models’ inability
to plan coherent completions. Consider the example
in Figure 1, where a model needs to implement a
speech recognition initialization: while the model

32931

SAFIM Avg
Algo Algov2 Control API

DS-1.3B
w/ post 43.9 49.2 55.6 62.9 52.9
w/o post 39.8 42.4 52.4 56.1 47.7

rel. diff -9.3% -13.8% -5.8% -10.8% -9.9%

DS-6.7B
w/ post 54.9 58.9 68.1 71.0 63.2
w/o post 53.4 56.7 66.6 69.0 61.4

rel. diff -2.7% -3.7% -2.2% -2.8% -2.8%

SC2-3B
w/ post 48.1 53.5 60.1 68.4 57.5
w/o post 45.4 49.7 57.1 61.3 53.4

rel. diff -5.6% -7.1% -5.0% -10.4% -7.2%

SC2-7B
w/ post 50.4 55.8 62.3 70.3 59.7
w/o post 48.4 53.1 60.4 63.9 56.5

rel. diff -4.0% -4.8% -3.0% -9.1% -5.4%

Table 2: Effect of post-processing techniques for different
code LLMs on SAFIM, where “w/ post” refers to using post-
processing, “w/o post” refers to not using post-processing,
and “rel. diff” refers to the relative performance difference
between the two. We follow the same settings used in §4.1.

demonstrates knowledge of the required components
(using Recognizer), it fails to order them properly.
Without careful planning, it prematurely places the
Recognizer call, leading to both syntactic and
semantic errors. Importantly, this type of failure cannot
be fixed through post-processing, as truncating the
generation would lose essential statements while
keeping it results in invalid code.
Such an example illustrates that successful FIM
requires not only knowledge of individual components
but also the model’s ability to plan coherent sequences
that smoothly connect to both contexts. The model
must reason about the entire completion considering
both local coherence and global structure, and that
points to a clear need for models to develop intrinsic
planning capabilities to succeed at FIM.

3 Horizon-Length Prediction

Given a document D={xt}Tt=1 that contains T tokens
x1, x2,···, xT , existing FIM training scheme can be
divided into three steps: (1) Split the document D into
three parts: prefix-middle-suffix1, (2) Construct a new
FIM-style document D′ by reordering the three parts
as prefix-suffix-middle, and (3) Conduct next-token
prediction (NTP) training on the document D′.
Specifically, we define the three parts in document
D as prefix = x1···P , middle = xP+1···P+M , and

1We opt to use PSM setting in this work given our base models
DeepSeek-Coder and StarCoder2 were both pre-trained with PSM.
We expect that our method is generalizable to SPM setting as well.

suffix = xP+M+1···T . Then, the new document D′

will be formatted as follows:
D′=<PRE> prefix <SUF> suffix <MID> middle <EOI>

=<PRE> x1···P <SUF> xP+M+1···T <MID>

xP+1···P+M <EOI>
∆
=y1···T−M+3 xP+1···P+M <EOI>,

(1)
where the last step re-indexes the leading tokens up
until <MID> to y1···T−M+3 to focus on the FIM part,
as LLMs are expected to start infilling after <MID>
token and to end generation with <EOI> token to
connect to suffix accurately.
Next-token prediction (NTP) training is conducted
on the document D′, which aims to minimize the
following cross-entropy loss (where Pθ refers to the
LLMs being trained):

LNTP =−
T−M+2∑

t=1

logPθ(yt+1|y1···t)

−
M−1∑

t=1

logPθ(xP+t+1|y1···T−M+3,xP+1···P+t)

−logPθ(<EOI>|y1···T−M+3,xP+1···P+M).

(2)

While NTP provides basic FIM capabilities, it has a
fundamental limitation: the model only learns to predict
one token at a time without developing awareness of the
overall horizon. This makes it difficult to plan coherent
sequences that properly connect to both contexts.
Horizon-Length Prediction (HLP). To mitigate this
issue, we propose horizon-length prediction (HLP) as
an auxiliary training objective. As shown in Figure
2, the key idea is to teach models to predict the number
of remaining tokens needed to complete the middle
section at each generation step. This creates an explicit
training signal for planning awareness.
Specifically, at each position t in middle, HLP predicts

yt=
M−t

M
∈(0,1]. (3)

where M is the total length of middle. This normalized
value represents the portion ofmiddle that remains to be
generated and ensures the target is always within (0,1]
interval regardless of the model’s context window size.
HLP is implemented as a linear layer on top of the
transformer model (i.e., hlp_head in Figure 2) with
weight whlp, whose input is the hidden state ht from
the last attention layer. The output w⊤

hlpht is converted
to a value between 0 and 1 through a sigmoid layer σ to
represent the final prediction. We use L1 loss for HLP:

LHLP =
M∑

t=1

|σ(w⊤
hlpht)−yt|. (4)

32932

Transformer

X1

hlp_head
(Horizon-Length Prediction)

<PRE> ··· <SUF> ··· <MID> <EOI>X2 X3 X4 X5

lm_head
(Next-Token Prediction)

X3 0.6

hidden_state

Middle TokensPrefix & Suffix Tokens EOI Token

··· ··· ··· ······ ···

Figure 2: Overview of Horizon-Length Prediction (HLP). In this example, we set the length of middle to five tokens.
Following the flow of arrows, we illustrate how the second token of middle (i.e., “x2”) is processed through both next-token
prediction objective and horizon-length prediction objective.

The full training objective is a weighted sum of NTP
loss and HLP loss:

L=LNTP+λ·LHLP , (5)

where λ is the tunable weight. In experiments, we set
λ = 0.1, which achieves good results across bench-
marks empirically. We further study the relationship be-
tween the values of λ and the FIM performance of mod-
els trained with HLP. As discussed in Appendix A.1, the
performance of HLP is robust to different values of λ.

Overhead Analysis. While HLP introduces the
additional hlp_head during training, the number of
added parameters is < 0.01% of the base model, which
incurs almost zero training overhead. Furthermore,
the additional head will not be used during inference,
leading to zero inference overhead.

SAFIM Average
Algo Algov2 Control API

DS-1.3B 39.8 42.4 52.4 56.1 47.7

+ HLP 41.3 46.1 53.4 59.0 50.0∗

DS-6.7B 53.4 56.7 66.6 69.0 61.4

+ HLP 53.5 57.4 66.9 69.7 61.9∗

SC2-3B 45.4 49.7 57.1 61.3 53.4

+ HLP 47.2 52.1 58.7 64.5 55.6∗

SC2-7B 48.4 53.1 60.4 63.9 56.5

+ HLP 49.4 54.5 61.8 65.8 57.9∗

Table 3: Pass@1 results of training w/o and w/ HLP for dif-
ferent code LLMs on SAFIM (Gong et al., 2024) computed
with greedy decoding. We perform statistical significance
tests on “Average” and show that all results are significant.
The same notation applies hereafter.

4 Experiments

Training. We conduct continual pre-training on a set of
code LLMs of different model families and sizes to val-
idate the effectiveness of HLP. Specifically, DeepSeek-
Coder-Base 1.3B/6.7B (Guo et al., 2024) and Star-
Coder2 3B/7B (Lozhkov et al., 2024) are involved in our
experiments. We use AdamW (Loshchilov and Hutter,
2019) as the optimizer withβ1=0.9 andβ2=0.95. We
use a cosine learning rate scheduler with a peak learning
rate equal to that at the pre-training end. All models are
trained for 200K steps with a global batch size of 512.
Dataset. We use a subset of the-stack-v2 (Lozhkov
et al., 2024) including Python, Java, C++, and C#. Fol-
lowing existing works (Guo et al., 2024; Lozhkov et al.,
2024), FIM rate is set to 0.5. We employ Best-fit Pack-
ing (Ding et al., 2024) to group multiple files into each
training sequence while masking out cross-file attention.
The prefix-middle-suffix split is applied to each file
independently rather than the whole training sequence.
We conduct controlled experiments for all the studied
code LLMs in our experiments. Specifically, we
conduct two continual pre-training experiments for
each model as follows:

• NTP: existing pre-training scheme with next-token
prediction (NTP) objective only.

• NTP + HLP: our newly proposed objective that in-
corporates horizon-length prediction (HLP) objective
with next-token prediction (NTP) objective.

Throughout this section, we determine the end of
generation solely based on <eoi> generated by the
model without any rule-based post-processing, unless
otherwise specified (§4.4). We also conduct statistical
analysis: results marked with * are statistically
significant (p<0.05) based on paired t-tests.

32933

CrossCodeEval / CrossCodeLongEval Average
Line Chunk Function

EM ES EM ES EM ES EM ES

DS-1.3B 15.23 49.64 22.48 56.40 4.58 33.96 14.10 46.67

+ HLP 18.99 55.47 24.32 58.77 5.12 35.25 16.14∗ 49.83∗

DS-6.7B 26.23 62.07 28.90 62.37 7.50 41.42 20.88 55.29

+ HLP 27.35 63.54 30.08 63.18 7.22 40.99 21.55∗ 55.90∗

SC2-3B 24.17 59.89 22.20 52.69 6.80 38.13 17.72 50.24

+ HLP 25.67 62.62 30.66 62.01 7.18 39.42 21.17∗ 54.68∗

SC2-7B 26.00 61.68 27.14 56.52 7.66 39.54 20.27 52.58

+ HLP 27.58 63.84 32.86 64.07 8.44 41.03 22.96∗ 56.31∗

RepoEval Average
Line API Function

EM ES EM ES EM ES EM ES

DS-1.3B 24.50 50.42 18.81 58.15 3.96 29.73 15.76 46.10

+ HLP 27.25 53.45 21.81 59.79 5.93 31.92 18.33∗ 48.39∗

DS-6.7B 26.62 52.59 22.69 61.94 7.47 36.24 18.93 50.26

+ HLP 30.31 55.97 25.12 63.06 7.69 37.22 21.04∗ 52.08∗

SC2-3B 21.88 46.74 18.81 56.66 4.40 29.99 15.03 44.46

+ HLP 26.56 50.56 23.06 61.02 7.25 33.79 18.96∗ 48.46∗

SC2-7B 27.94 51.60 21.56 58.98 6.81 32.80 18.77 47.79

+ HLP 34.19 57.29 27.31 63.04 8.35 35.40 23.28∗ 51.91∗

Table 4: Exact Match (EM) and Edit Similarity (ES) results of training w/o and w/ HLP for different code LLMs on
CrossCodeEval (Ding et al., 2023), CrossCodeLongEval (Wu et al., 2024), and RepoEval (Zhang et al., 2023) using greedy
decoding, following the experimental setting of existing work (Wu et al., 2024). Our evaluation is conducted in “Retrieval”
mode, where evaluation prompts are constructed by prepending the retrieved cross-file context to the current file, to show the
performance of repository-level cross-file code completion.

4.1 Syntax-Aware Multilingual Code FIM

We use SAFIM (Gong et al., 2024), a syntax-aware
and multilingual code Fill-in-the-Middle benchmark,
to evaluate the effectiveness of HLP. SAFIM focuses
on syntax-aware completions of program structures,
covering algorithmic block (i.e., Algo and Algov2),
control-flow expression (i.e., Control), and API
function call (i.e., API). It consists of 17,720 examples
from four different programming languages, including
Python, Java, C++, and C#. SAFIM employs execution-
based evaluation and reports pass@1 as the evaluation
metric. As shown in Table 3, compared with NTP
only, adding HLP achieves up to 5% improvements on
average across all the studied code LLMs. Importantly,
the improvement is consistent across languages and
program structures, demonstrating HLP’s ability to

enhance FIM capabilities regardless of language or
completion context.

4.2 Repository-Level Cross-File Code FIM

In addition to single-file FIM evaluation with
SAFIM, we also evaluate the effectiveness of HLP on
repository-level code Fill-in-the-Middle in cross-file
scenarios via CrossCodeEval (Ding et al., 2023),
CrossCodeLongEval (Wu et al., 2024), and RepoEval
(Zhang et al., 2023). CrossCodeEval (Python) and
CrossCodeLongEval are two repository-level cross-file
benchmarks that leverage more than 1500 raw Python
repositories to construct 12,665 examples across line,
chunk, and function completion tasks, which are used
for a more rigorous evaluation. RepoEval is another
repository-level cross-file code completion benchmark

32934

consisting of 3,655 line, API, and function completion
tasks created from 32 Python repositories. We follow
existing work (Wu et al., 2024) to evaluate the model’s
FIM performance on these benchmarks and use Exact
Match (EM) and Edit Similarity (ES) as our evaluation
metrics. As shown in Table 4, adding HLP provides
consistent improvements for all models across different
benchmarks and completion tasks. Specifically, HLP
achieves up to 24% improvements on EM and 9%
improvements on ES relatively, showing its significant
effectiveness.

Code Repair Code Reasoning

Defects4J CRUXEval-I CRUXEval-O

DS-1.3B 33 42.0 31.0

+ HLP 39 44.7∗ 31.8∗

DS-6.7B 58 52.1 39.2

+ HLP 59 52.4 39.6

SC2-3B 39 42.8 32.1

+ HLP 41 43.9∗ 32.6∗

SC2-7B 41 44.4 35.9

+ HLP 47 45.5∗ 36.1∗

Table 5: Code fixing and reasoning performance of models
trained w/o and w/ HLP on Defects4J and CRUXEval. On
Defects4J, following the convention, we report the number
of patches that passed test suites under greedy decoding. On
CRUXEval, we follow the original setting to do sampling
with T=0.2 and n=10 and to extract accurate input/output
values from raw generation.

4.3 Code Repair via Fill-in-the-Middle
To assess HLP’s impact on practical applications
beyond code completion, we evaluate the performance
of code repair using Defects4J (Just et al., 2014).
Defects4J consists of open-source bugs found across
15 Java repositories. Following existing works (Xia
et al., 2023; Xia and Zhang, 2023), we collect 313
single-hunk bugs from Defects4J that can be fixed by
replacing or adding a continuous code hunk. Specif-
ically, for each bug, models are prompted to generate
the correct code hunk (i.e., patch) given the left and
right contexts of the buggy code hunk, with correctness
verified by project test suites. As shown in the “Code
Repair” section of Table 5, adding HLP during training
results in relatively up to 18% more bugs fixed by the
model2, suggesting that enhanced planning capabilities
translate directly to better bug-fixing performance.

4.4 Code Reasoning via Fill-in-the-Middle
We further examine whether HLP’s planning benefits
extend to code reasoning tasks. We use CRUXEval

2Note that Defects4J is a small dataset with only 313 examples
and models can only solve 30-60 out of those, which makes it hard
to obtain statistically significant differences with greedy decoding.

(Gu et al., 2024) which comprises 800 Python functions
paired with two distinct tasks: CRUXEval-I, where
LLMs need to predict the input from the known output,
and CRUXEval-O, where LLMs are required to predict
the output based on the given input.
We reformat prompts of CRUXEval-I into FIM style
and leave CRUXEval-O as L2R generation, both of
which are evaluated in zero-shot setting. Different
from previous subsections where post-processing is
not used, we follow the same pipeline as in the original
CRUXEval paper to extract accurate input/output
values from generation because we are focusing on
evaluating the reasoning capability of LLMs rather
than their capability of generating correct code3. As
shown in the “Code Reasoning” section of Table
5, HLP demonstrates up to 6% improvements on
both CRUXEval-I and CRUXEval-O tasks for all the
code LLMs consistently, which shows that HLP also
improves intrinsic code reasoning capabilities of LLMs.

5 Discussion

5.1 NTP Alone Cannot Yield Horizon Awareness
A key question of interest is whether standard next-
token prediction (NTP) inherently provides models with
awareness of generation horizons. Through systematic
analysis, we demonstrate that hidden states of models
trained with NTP alone do not capture meaningful
information about required completion lengths.
To quantify this, we design a probing task that attempts
to predict the remaining completion length from
models’ hidden states. We extract hidden states from
20K code snippets (approximately 7.8M tokens) using
models trained with and without HLP and split the
data to ensure no sequence-level overlap between
train and test. Using these hidden states as input and
normalized remaining token counts as targets, we fit
linear regression models while keeping the underlying
transformer parameters frozen.

Test ↑ DS-1.3B DS-6.7B SC2-3B SC2-7B

NTP 0.440 0.519 0.356 0.410

NTP+HLP 0.915 0.913 0.932 0.932

Table 6: Probing results of models trained w/o and w/ HLP.
We report the coefficient of determination (R2) of prediction,
which is the higher the better.

Figure 3 shows predicted versus actual remaining token
3In CRUXEval-I, we only want to evaluate the correctness of

the input value infilled by LLMs in the given assertion. However,
FIM-style prompts we use in the experiments does not restrict
LLMs from writing multiple assertions before starting infilling
the given assertion, which is useless in this task. So we use post-
processing techniques to extract the input value infilled for the given
assertion to better evaluate the reasoning capabilities.

32935

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Token Position

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ed
ic

te
d

Pe
rc

en
ta

ge w/o HLP
w/ HLP
ground truth

(a) DS-Coder 1.3B

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Token Position

0.0

0.2

0.4

0.6

0.8

1.0

(b) DS-Coder 6.7B

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Token Position

0.0

0.2

0.4

0.6

0.8

1.0

(c) StarCoder2 3B

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Token Position

0.0

0.2

0.4

0.6

0.8

1.0

(d) StarCoder2 7B

Figure 3: Predicted percentage of remaining future tokens (as defined in Eq. (3)) from models trained w/o and w/ HLP at
different token positions, where the position of each token is normalized to the corresponding percentage over the sequence.

percentages at different positions, while Table 6 reports
the coefficient of determination (R2). Models trained
with NTP alone show poor fit, indicating their hidden
states lack horizon information. In contrast, models
trained with HLP show much stronger correlations
between hidden states and remaining lengths. This
result demonstrates that horizon awareness must be
explicitly trained rather than emerging naturally from
NTP. We also carried out a non-linear probing exper-
iment with the same inputs and targets by replacing
linear regression models with an MLP regressor that
uses logistic activation function (Appendix A.2), which
further confirms our finding here.

5.2 Why Horizon-Length Prediction works?

The effectiveness of Horizon-Length Prediction (HLP)
stems from its ability to address a critical limitation
of standard next-token prediction (NTP) in autoregres-
sive models: the absence of global planning awareness.
While NTP optimizes for local token-level coherence
by maximizing the likelihood of immediate next tokens,
it inherently struggles to enforce long-horizon structural
consistency between the generatedmiddle and the given
suffix in FIM. This limitation becomes pronounced
when the model must align generated code with both
preceding logic and subsequent constraints (e.g., API
calls or variable dependencies defined in the suffix).
HLP bridges this gap by teaching models to explicitly
condition the model on the remaining generation hori-
zon at every decoding step. By regressing the normal-
ized count of future tokens required to completemiddle,
HLP effectively decomposes the infilling task into a
sequence of length-aware subgoals, where each gen-
erated token is tied to a dynamically updated “budget”
of remaining steps. This mechanism mirrors human
problem-solving strategies, where progress estimation
(e.g., "30% of steps remaining") guides iterative refine-
ment of intermediate actions to meet global objectives.
The success of HLP is rooted in its complementary
role to NTP. While NTP ensures local fluency, HLP
provides a global scaffold for planning. By unifying
local token prediction with global horizon awareness,
HLP bridges the gap between autoregressive decoding

and holistic reasoning, enabling models to dynamically
adapt their generation strategy to long-horizon con-
straints. This synergy is particularly critical in code in-
filling, where the correctness ofmiddle depends on both
preceding logic (i.e., prefix) and subsequent context (i.e.,
suffix), demanding a balance between immediate token
likelihood followed by prefix and forward-looking
structural coherence constrained by distant suffix.
Our in-depth attention analysis provides direct evidence
of this enhanced planning capability. Figure 4 shows
that models trained with HLP pay significantly more
attention to suffix context, particularly at the start of the
generation. This indicates that HLP enables proactive
planning by considering long-horizon constraints from
the beginning. Furthermore, the consistent improve-
ments across FIM, bug-fixing, and reasoning tasks
demonstrate that this enhanced planning capability
generalizes beyond simple completion scenarios.
In summary, HLP transforms code generation from
a myopic token-by-token process into a structured
planning task. It enables models to dynamically adapt
their generation strategy to long-horizon constraints,
ensuring that each step not only satisfies local fluency

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Token Position

1.0

1.2

1.4

1.6

1.8

2.0

At
te

nt
io

n
W

ei
gh

t R
at

io

Attentionw/ HLP
Attentionw/o HLP

baseline

Figure 4: Attention analysis of DeepSeek-Coder-Base 1.3B
on SAFIM, showing the ratio of attention paid to suffix
between models trained with and without HLP. The X-axis
shows the normalized position in the sequence, and the
Y-axis shows the attention ratio. Values above 1 indicate
that the HLP model pays more attention to suffix than the
baseline model. We observe that the model trained with
HLP generally pays more attention to suffix, especially at the
beginning, demonstrating its lookahead planning behavior.

32936

but also contributes to a globally coherent solution. This
dual focus on immediate actions and overarching goals
positions HLP as a pivotal advancement in code LLMs.

5.3 HLP Mitigates Planning Failures in FIM
We conduct a quantitative analysis to empirically
demonstrate the frequency of planning failures in FIM
and evaluate the effectiveness of HLP in addressing
these failures. As presented in Figure 1 (§2), a prevalent
manifestation of planning failures in FIM is the "correct
code but incorrect order" pattern, wherein the model
generates the final line of ground truth code accurately
but positions it incorrectly within the completion.
To maintain analytical tractability, our study focuses
specifically on planning failures that result in this
particular pattern. We establish the following criteria
to identify instances of the "correct code but incorrect
order" pattern in model’s FIM completions:

• Completion fails to pass all the unit tests.

• Completion contains the last line from ground truth.

• Completion does not end with this last line.

Testing on SAFIM’s Algorithmic and Algorithmic_v2
partitions which focus on multi-line FIM, we find that
models trained without HLP exhibit the “correct code
but incorrect order” pattern in 5-10% of problems
across the benchmark, as shown in Table 7. With HLP
training, this drops to 4-6%, demonstrating that HLP
helps alleviate lack-of-planning failures effectively.

SAFIM Avg
Algo Algov2

DS-1.3B 9.34% 10.48% 9.91%

+ HLP 6.83% 6.52% 6.68%

DS-6.7B 5.16% 5.93% 5.55%

+ HLP 4.36% 4.44% 4.40%

SC2-3B 7.25% 7.35% 7.30%

+ HLP 5.65% 5.43% 5.54%

SC2-7B 5.79% 6.26% 6.03%

+ HLP 4.69% 4.29% 4.49%

Table 7: Quantitative analysis on the frequency of lack-of-
planning issue in models trained w/ and w/o HLP on SAFIM.
We follow the same settings used in §4.1.

6 Related Work

Fill-in-the-Middle for Code Language Models
Large language models trained on massive source

code data have demonstrated great potential in various
applications for software development. While early
models such as Codex (Chen et al., 2021) and CodeGen
(Nijkamp et al., 2023) only support Left-to-Right (L2R)
generation, Fill-in-the-Middle (or infilling) has attracted
increased attention because right context naturally
carries an indispensable part of information for com-
pleting code in the middle (Fried et al., 2023; Bavarian
et al., 2022). Subsequently, FIM training has become a
common practice widely adopted by most code LLMs,
such as StarCoder (Li et al., 2023; Lozhkov et al., 2024),
DeepSeek-Coder (Guo et al., 2024; DeepSeek-AI et al.,
2024), and Code Llama (Rozière et al., 2023).
Existing models generally tackle the infilling problem
by breaking a code snippet into prefix-middle-suffix,
and reordering them into prefix-suffix-middle (PSM)
or suffix-prefix-middle (SPM), which are then used for
next-token prediction (NTP) training. We point out
that the infilling task cannot be effectively learned with
NTP alone, as it requires planning capability for the
model to fluently and meaningfully connect the middle
completion to suffix through forward looking during
auto-regressive decoding.
An alternative approach is to train two language models
in different directions, with one generating from left to
right and the other from right to left, and have the two
generations meet in the middle (Nguyen et al., 2023).
Nevertheless, the L2R model does not have access
to the right context, and vice versa, which impedes
holistic planning that takes into account the context
from both sides.
Planning and Lookahead in Language Generation
Standard decoder-only models are trained with
next-token prediction and used to sequentially predict
one token at a time, conditioned only on past tokens,
in an auto-regressive manner. One drawback of this
paradigm is that models are not aware of future tokens
during decoding. The token that maximizes the condi-
tional probability at current step may lead to suboptimal
continuation, and consequently the model can fail to
compose a fluent and sensible generation that meets
human requirements. Various decoding techniques
have been proposed to address the problem through tree
search with lookahead heuristics, particularly for con-
strained generation problems (Lu et al., 2022; Huang
et al., 2024). While these methods are training-free, they
inevitably incur additional cost of inference complexity.
Apart from those, Gloeckle et al. (2024) proposed to
predict multiple tokens from a single hidden state dur-
ing both training and inference, which was shown to
achieve stronger performance on coding tasks with no
computation overhead. While multi-token prediction en-
hances models’ planning capability within the n tokens
predicted together (n≤8), we argue that with a small n,

32937

the limited horizon is usually insufficient for planning
in the case of infilling as the connection from middle to
suffix only happens towards the end of the generation.
In contrast, HLP adopts a global and arbitrary long hori-
zon over all future tokens by counting the remaining
generation budget, which more effectively helps models
to close the generation fluently with early planning4.

7 Conclusion and Future Work

Fill-in-the-Middle is ubiquitous in code completion,
reflecting the iterative nature of software development
where code is frequently inserted between existing
sections, and thus has become an important consid-
eration in the development of code language models.
The current FIM training paradigm splits and reorders
training sequences for next-token prediction. However,
this approach frequently results in models struggling
to generate content that smoothly aligns with the
right context. While existing FIM benchmarks rely
on different post-processing methods to circumvent
this problem, we emphasize that such methods
typically require dataset-specific assumptions, which
are impractical in real-world scenarios.
To address this limitation and enhance the infilling ca-
pability of code language models, we propose Horizon-
Length Prediction (HLP). HLP teaches models to pre-
dict the portion of remaining tokens at every step, en-
abling them to develop planning awareness over arbitrar-
ily long horizons. Experiments across different model
families and sizes show that HLP improves infilling per-
formance on diverse FIM benchmarks, across file-level
and repository-level, and without using any dataset-
specific post-processing. Moreover, the enhanced plan-
ning capability acquired through HLP training also
boosts models’ performance on code reasoning tasks,
suggesting broader benefits for language models’ rea-
soning capabilities. Importantly, HLP achieves these
improvements while maintaining efficiency, with negli-
gible training overhead and no additional inference cost.
Our work marks a significant advancement in
developing more effective code language models for
real-world applications. Future work could explore
extending HLP to other generation tasks requiring
long-horizon planning and investigate its potential for
enhancing general reasoning capabilities.

Limitations

While HLP has proven effective through extensive
evaluation in the paper, our pre-training experiments are
restricted to models of ≤7B parameters due to the com-
putation budget. It is prohibitively expensive to perform
pretraining experiments for LLM, and unfortunately we

4Please refer to Appendix §A.3 for more details.

do not have enough resources to demonstrate the impact
of HLP on larger models. This highlights a broader
challenge in open science for pre-training research.
In addition, this work has mainly focused on the code
domain, but the idea of horizon-length prediction can
be broadly applicable for improving models’ reasoning
capability in natural language and mathematical
domains as well, which we leave to future work.

References
Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,
Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton.
2021. Program synthesis with large language models. ArXiv
preprint, abs/2108.07732.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John
Schulman, Christine McLeavey, Jerry Tworek, and Mark
Chen. 2022. Efficient training of language models to fill
in the middle.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, and 39 others. 2021. Evaluating large language
models trained on code.

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian
Yang, Peiyi Wang, Runxin Xu, Y. Wu, Yukun Li, Huazuo
Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu,
Hanwei Xu, Damai Dai, Kai Dong, Liyue Zhang, Yishi
Piao, and 21 others. 2024. Deepseek-coder-v2: Breaking
the barrier of closed-source models in code intelligence.

Hantian Ding, Zijian Wang, Giovanni Paolini, Varun Kumar,
Anoop Deoras, Dan Roth, and Stefano Soatto. 2024. Fewer
truncations improve language modeling.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian
Ding, Ming Tan, Nihal Jain, Murali Krishna Ramanathan,
Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xi-
ang. 2023. Crosscodeeval: A diverse and multilingual bench-
mark for cross-file code completion. In Advances in Neural
Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih, Luke
Zettlemoyer, and Mike Lewis. 2023. Incoder: A generative
model for code infilling and synthesis. In The Eleventh In-
ternational Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David
Lopez-Paz, and Gabriele Synnaeve. 2024. Better & faster
large language models via multi-token prediction. ArXiv
preprint, abs/2404.19737.

32938

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2207.14255
https://arxiv.org/abs/2207.14255
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2404.10830
https://arxiv.org/abs/2404.10830
https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL
https://arxiv.org/abs/2404.19737
https://arxiv.org/abs/2404.19737

Linyuan Gong, Sida Wang, Mostafa Elhoushi, and Alvin
Cheung. 2024. Evaluation of llms on syntax-aware code
fill-in-the-middle tasks.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang. 2024.
Cruxeval: A benchmark for code reasoning, understanding
and execution.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu, Y. K.
Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. 2024.
Deepseek-coder: When the large language model meets
programming – the rise of code intelligence.

James Y. Huang, Sailik Sengupta, Daniele Bonadiman,
Yi an Lai, Arshit Gupta, Nikolaos Pappas, Saab Mansour,
Katrin Kirchoff, and Dan Roth. 2024. Deal: Decoding-time
alignment for large language models. ArXiv preprint,
abs/2402.06147.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng
Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Kai
Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren,
Xuancheng Ren, Jingren Zhou, and Junyang Lin. 2024.
Qwen2.5-coder technical report.

René Just, Darioush Jalali, and Michael D. Ernst. 2014.
Defects4j: a database of existing faults to enable controlled
testing studies for java programs. In Proceedings of the
2014 International Symposium on Software Testing and
Analysis, ISSTA 2014, page 437–440, New York, NY, USA.
Association for Computing Machinery.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu,
Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang,
Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, and 48 others. 2023. Starcoder:
may the source be with you!

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and
Lingming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language models
for code generation. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight
decay regularization. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico
Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang,
Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu,
Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada,
Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul,
and 47 others. 2024. Starcoder 2 and the stack v2: The next
generation.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo
Kasai, Daniel Khashabi, Ronan Le Bras, Lianhui Qin,
Youngjae Yu, Rowan Zellers, Noah A. Smith, and Yejin

Choi. 2022. NeuroLogic a*esque decoding: Constrained
text generation with lookahead heuristics. In Proceedings
of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, pages 780–799, Seattle, United
States. Association for Computational Linguistics.

Anh Nguyen, Nikos Karampatziakis, and Weizhu Chen.
2023. Meet in the middle: A new pre-training paradigm.
In Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong.
2023. Codegen: An open large language model for code
with multi-turn program synthesis. In The Eleventh Inter-
national Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu
Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt,
Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, and 7 others. 2023. Code llama: Open
foundation models for code.

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Krishna
Ramanathan, and Xiaofei Ma. 2024. Repoformer: Selective
retrieval for repository-level code completion.

Chunqiu Steven Xia, Yifeng Ding, and Lingming Zhang.
2023. The plastic surgery hypothesis in the era of large
language models. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pages 522–534.

Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the
conversation going: Fixing 162 out of 337 bugs for $0.42
each using chatgpt.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and Weizhu
Chen. 2023. RepoCoder: Repository-level code completion
through iterative retrieval and generation. In Proceedings
of the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 2471–2484, Singapore.
Association for Computational Linguistics.

Lin Zheng, Jianbo Yuan, Zhi Zhang, Hongxia Yang, and
Lingpeng Kong. 2024. Self-infilling code generation.
Preprint, arXiv:2311.17972.

A Appendix

A.1 Effect of λ Value Selection
Following the original experimental settings (but
with 100k training steps given limited computational
resources), we studied a series of λ values and report
both HLP validation loss and SAFIM pass@1. As
shown in Table 8, our method is robust to hyperpa-
rameter selection: all non-zero λ values improve over

32939

https://arxiv.org/abs/2403.04814
https://arxiv.org/abs/2403.04814
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2402.06147
https://arxiv.org/abs/2402.06147
https://arxiv.org/abs/2409.12186
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2403.10059
https://arxiv.org/abs/2403.10059
https://doi.org/10.1109/ASE56229.2023.00047
https://doi.org/10.1109/ASE56229.2023.00047
https://arxiv.org/abs/2304.00385
https://arxiv.org/abs/2304.00385
https://arxiv.org/abs/2304.00385
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://arxiv.org/abs/2311.17972

the baseline (λ=0). Moreover, we observe that HLP
loss quickly decreases within the first few thousand
training steps with all positive λ’s, indicating that
a large λ isn’t necessary for models to learn HLP
well. This also coincides with our observation on
downstream performance: while lower HLP loss
generally correlates with better SAFIM performance,
the improvement plateaus beyond a certain threshold,
suggesting that once the model acquires basic horizon
awareness, further optimization of HLP loss provides
diminishing returns for downstream performance.

λ HLP Valid Loss SAFIM (pass@1)

0 0.254 47.40%

0.01 0.060 48.98%
0.1 0.048 49.10%
0.2 0.045 48.74%
0.5 0.043 49.34%

Table 8: Study over the effect of λ value selection on HLP
valudation loss and SAFIM performance.

A.2 Non-Linear Probing for Horizon Awareness
By replacing the linear regression models in the original
linear probing experiment with an MLP regressor that
uses logistic activation function, we further conduct a
non-linear probing experiment to study whether NTP is
able to yield horizon awareness. As shown in Table 9,
even under the assumption of the non-linear relationship,
models trained without HLP cannot effectively extract
horizon information from their hidden states. This
demonstrates that horizon awareness must be explicitly
trained rather than emerging naturally from NTP.

Test ↑ DS-1.3B DS-6.7B SC2-3B SC2-7B

NTP 0.392 0.431 0.180 0.226

NTP+HLP 0.897 0.885 0.856 0.871

Table 9: Non-linear probing results of models trained w/o
and w/ HLP. We report the coefficient of determination (R2)
of prediction, which is the higher the better.

A.3 Comparing HLP with Multi-token Prediction
As discussed in §6, we argue that multi-token predic-
tion (Gloeckle et al., 2024) is insufficient for planning
in FIM, because multi-token prediction only enhances
models’ planning capability for a short and limited
horizon, which does not suites FIM well as the connec-
tion from middle to suffix happens over a long horizon.
Instead, HLP focuses on long-horizon planning and
is more effective for FIM. We conduct an experiment
following the same settings in §4 to compare HLP with

multi-token prediction on DeepSeek-Coder-Base 1.3B
by predicting the next 4 tokens (Gloeckle et al., 2024).
We report their performance on SAFIM. As shown in
Table 10, while adding HLP to NTP largely improves
the model’s performance on SAFIM, multi-token pre-
diction fails to do so. These results provide empirical ev-
idence that long-horizon planning capabilities brought
by HLP is essential for advancing FIM performance.

A.4 HLP Improves Self-Infilling Performance

Recently, some strategies have been proposed to con-
duct L2R code generation based on FIM capabilities
and self-infilling (Zheng et al., 2024) is one of the rep-
resentative strategies of this kind. Given an initial input
prompt prefix, self-infilling performs L2R code genera-
tion by using FIM decoding to (1) generate suffix based
on prefix and then (2) generate middle based on prefix
and previously generated suffix. Furthermore, self-
infilling proposes a looping mechanism to improve the
generated code iteratively, where it first uses L2R decod-
ing to generate a new suffix ′ based on prefix and previ-
ously generated middle and then uses FIM decoding to
generate a new middle ′ based on prefix and this newly
generated suffix ′. This looping procedure can be contin-
ued for multiple rounds to obtain greater improvements.
Since self-infilling relies on FIM capabilities for L2R
code generation, it is interesting to study whether
HLP can also enhance its performance. To this
end, we evaluate the self-infilling performance of
DeepSeek-Coder-Base 1.3B trained with and without
HLP on HumanEval using greedy decoding, following
the setting of the original paper (Zheng et al., 2024).
We report models’ performance on HumanEval with
N ranging from 0 to 4, where N denotes the number
of times the decoding process goes through the loop
and N =0 represents that the looping mechanism is
not activated. As shown in Table 11, the model trained
with HLP consistently outperforms the model trained
without HLP across different number of self-improving
steps. Furthermore, with more self-improving steps,
while the performance of the model trained without
HLP gets stuck, the performance of the model trained
with HLP continues to showcase steady improvements.

A.5 Effect of HLP on Left-to-Right Performance

While HLP have significantly improved the FIM perfor-
mance of LLMs, we also study its impact on the L2R
code completion. To this end, we evaluate L2R perfor-
mance on HumanEval (Chen et al., 2021) and MBPP
(Austin et al., 2021) with DeepSeek-Coder-Base 1.3B.
We further employ HumanEval+ and MBPP+ from
EvalPlus (Liu et al., 2023) for more rigorous evaluation
with better test coverage. As shown in Table 12, with
HLP applied to FIM data only (i.e., HLPFIM), the perfor-

32940

SAFIM Average
Algo Algov2 Control API

DS-1.3B 39.8 42.4 52.4 56.1 47.7

+ HLP 41.3 46.1 53.4 59.0 50.0
+ multi-token prediction 38.1 41.3 51.7 55.8 46.7

Table 10: Pass@1 results of training w/ HLP and w/ multi-token prediction for DeepSeek-Coder-Base 1.3B on SAFIM
(Gong et al., 2024) computed with greedy decoding.

HumanEval N=0 1 2 3 4

DS-1.3B 27.4 29.3 31.7 31.7 31.7

+ HLP 30.5 31.7 31.7 32.3 32.9

Table 11: Self-infilling HumanEval performance of models
trained w/o and w/ HLP, with N ranging from 0 to 4. N
denotes the number of times the decoding process goes
through the loop and N = 0 represents that the looping
mechanism is not activated. We report pass@1 results using
greedy decoding.

mance on L2R tasks sometimes shows a slight degrada-
tion. We hypothesize that applying HLP to middle only
causes unbalanced training on prefix and suffix parts.
To mitigate such effect, we need to devise another
HLP task that can be applied to L2R training (i.e.,
HLPL2R). However, the original design of HLP in §3
is not directly applicable to L2R data. While the end of
middle in FIM data is strictly bounded by the beginning
of suffix, the end of L2R data does not have any clear
signals, as it is often possible to add additional contents
(e.g., another line of code or a new helper function) to
the end of document fluently without any restrictions.
Therefore, instead of taking the entire code file as the
prediction horizon, we ask the model to predict the
number of future tokens required to complete current
line in L2R training, which is a natural semantic unit in
code. Furthermore, to avoid conflicts between HLPFIM
and HLPL2R, we use two independent hlp_heads to let
the model learn HLPFIM and HLPL2R separately. As
shown in Table 12, by applying HLPFIM and HLPL2R
simultaneously, the performance degradation on L2R
tasks is recovered, with the improvement on FIM
tasks largely retained. These results demonstrate the
generalizable effectiveness of HLP and shows the huge
potential of applying the idea of HLP to more general
training scenarios.

A.6 Additional Ablation Studies

We conduct several ablation studies to justify the design
choices of HLP. In this section, we conduct experiments
using DeepSeek-Coder-Base 1.3B, follow the same set-

tings in §4, and report models’ performance on SAFIM.
Complexity of hlp_head.We conduct an experiment
to study the effect of the complexity of hlp_head by
replacing the original linear layer (i.e., “HLP (linear)”)
with a two-layer MLP with ReLU (i.e., “HLP (mlp)”).
As shown in Table 13, increasing the complexity of
hlp_head does not bring significant improvements.
We have also conducted a paired t-test between “HLP
(linear)” and “HLP (mlp)” and did not see any clear
directional statistical significance between them. Such
results indicate that the complexity of hlp_head does
not have a major impact on performance.
Applying HLP to all tokens v.s. first token only.
While it is easy to see that knowing the HLP loss
on the first token is sufficient to infer the horizon
length in theory, having HLP loss on every token
provides denser and more consistent supervision
signals which makes learning easier (as discussed in
§3). It also helps regularize the hidden representation
of every subsequent token. To empirically show this,
we conduct an experiment by applying HLP to the
first token only (i.e., “HLP (first)”) and compared its
performance with our original HLP design (i.e., “HLP
(all)”). As shown in Table 14, while applying HLP
only to the first token performs better than NTP only,
applying HLP loss for each token can achieve better
performance than applying it to just the first token.
Normalized v.s. unnormalized targets. We use nor-
malized targets in our original HLP design (i.e., using
M−t
M rather than M−t) is that the scale of HLP loss

will be otherwise in a huge range, e.g., some examples
has single digit loss while some might have thousands.
To further study the effect of normalization, we conduct
an experiment by using M−t as the target (i.e., “HLP
(raw)”) rather than M−t

M (i.e., “HLP (normalized)”). To
achieve this, we remove the sigmoid function from the
original HLP. As shown in Table 15, setting the target
as M−t fails to improve FIM performance, likely due
to the large-scale HLP loss after using M− t as the
target interferes with NTP pre-training.

32941

Left-to-Right Fill-in-the-Middle

HumanEval (+) MBPP (+) SAFIM

DS-1.3B 26.3 (22.0) 45.8 (36.7) 47.7

+ HLP FIM 25.5 (21.3) 45.8 (36.5) 50.0

+ HLP FIM + HLP L2R 26.2 (22.0) 45.7 (36.6) 49.6

Table 12: Effect of HLPFIM only and HLPFIM+HLPL2R for DeepSeek-Coder-Base 1.3B on L2R and FIM tasks. On L2R
tasks including HumanEval (+) and MBPP (+), we do sampling with T=0.8 and n=200. We report pass@1 performance of
all the models, where numbers outside and inside parenthesis “()” indicate base and plus versions of EvalPlus, respectively.
For FIM experiments on SAFIM, we follow the same settings used in §4.1.

SAFIM Average
Algo Algov2 Control API

DS-1.3B 39.8 42.4 52.4 56.1 47.7

+ HLP (linear) 41.3 46.1 53.4 59.0 50.0
+ HLP (mlp) 41.6 45.9 54.0 57.4 49.7

Table 13: Pass@1 results of HLP w/ linear layer as hlp_head (i.e., “HLP (linear)”) and w/ MLP layer as hlp_head (i.e.,
“HLP (mlp)”) for DeepSeek-Coder-Base 1.3B on SAFIM (Gong et al., 2024) computed with greedy decoding.

SAFIM Average
Algo Algov2 Control API

DS-1.3B 39.8 42.4 52.4 56.1 47.7

+ HLP (all) 41.3 46.1 53.4 59.0 50.0
+ HLP (first) 40.0 44.4 52.3 57.4 48.5

Table 14: Pass@1 results of applying HLP to all tokens (i.e., “HLP (all)”) and first token only (i.e., “HLP (first)”) for
DeepSeek-Coder-Base 1.3B on SAFIM (Gong et al., 2024) computed with greedy decoding.

SAFIM Average
Algo Algov2 Control API

DS-1.3B 39.8 42.4 52.4 56.1 47.7

+ HLP (normalized) 41.3 46.1 53.4 59.0 50.0
+ HLP (raw) 27.7 29.8 34.4 47.7 34.9

Table 15: Pass@1 results of using normalized targets (i.e., “HLP (normalized)”) and unnormalized targets (i.e., “HLP (raw)”)
in HLP for DeepSeek-Coder-Base 1.3B on SAFIM (Gong et al., 2024) computed with greedy decoding.

32942

