Convergence and Divergence of Language Models
under Different Random Seeds

Finlay Fehlauer,™™ Kyle Mahowald,  Tiago Pimentel ™

EMETH Ziirich

‘\‘University of Texas at Austin

ffehlauer@ethz.ch, mahowald@utexas.edu, tiago.pimentel@inf.ethz.ch
C) Triple-F/convergence-and-divergence-of-llms

Abstract

In this paper, we investigate the convergence
of language models (LMs) trained under differ-
ent random seeds, measuring convergence as
the expected per-token Kullback—Leibler (KL)
divergence across seeds. By comparing LM
convergence as a function of model size and
training checkpoint, we identify a four-phase
convergence pattern: (i) an initial uniform
phase, (ii) a sharp-convergence phase, (iii)
a sharp-divergence phase, and (iv) a slow-
reconvergence phase. Further, we observe that
larger models reconverge faster in later train-
ing stages, while smaller models never actually
reconverge; these results suggest that a certain
model size may be necessary to learn stable
distributions. Restricting our analysis to spe-
cific token frequencies or part-of-speech (PoS)
tags further reveals that convergence is uneven
across linguistic categories: frequent tokens
and function words converge faster and more
reliably than their counterparts (infrequent to-
kens and content words). Overall, our findings
highlight factors that influence the stability of
the learned distributions in model training.

1 Introduction

At their core, language models (LMs) are distri-
butions over strings, p,(s), trained to approximate
a data-generating distribution p(s). Their mas-
sive improvements in recent years—typically at-
tributed to increasing data, compute, and archi-
tecture size (Kaplan et al., 2020; Henighan et al.,
2020)—suggests that LMs are getting ever more
similar to this data-generating distribution. Notably,
if LMs could perfectly fit this data-generating distri-
bution p, they would all converge to the same p,.!
In practice, however, this convergence might: (i)
not happen uniformly for all contexts; (ii) not hap-
pen at all for some contexts. This is the focus of our
'See Huh et al. (2024) for an even stronger claim: mod-

els not only converge in distribution, but all models across
modalities will converge to true “platonic representations”.
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Figure 1: Estimated E[conv] across training steps (-
axis). Shaded areas represent 1o confidence intervals.?

study: the convergence (and potential divergence)
of LMs across scales, training, and contexts.

Given the scientific and engineering import of
language models’ training dynamics, a large body
of work has examined it (Saphra and Lopez, 2019;
Wei et al., 2022; Chen et al., 2024; van der Wal
et al., 2025, inter alia). We highlight two important
previous findings here. First, early in training, LMs
reach a unigram-output stage, outputting a mostly
context-agnostic distribution which matches word
frequencies; only afterward, they start leveraging
context (Chang and Bergen, 2022; Chang et al.,
2024; Belrose et al., 2024). Second, and also early
in training, transformers go through induction-
head formation, which enables in-context learning
(Olsson et al., 2022; Tigges et al., 2024).

ICL scores were measured as the expected difference in
surprisal of a sentence’s 500*" token when: conditioned on
the preceding 50 tokens of context vs. on 400 tokens.
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Prior work has also shown that different aspects
of input are learned at different rates. Lexical learn-
ing studies, for instance, show that words with dif-
ferent PoS are acquired at different rates (Chang
and Bergen, 2022; Ficarra et al., 2025), suggesting
token-specific convergence dynamics. Relatedly,
Evanson et al. (2023) show that sentences with
more complex structures are learned slower.

As mentioned above, we wish to analyse the
convergence of language models here. To this end,
we first define LMs’ convergence as the negative
expected Kullback-Leibler divergence of a model
when trained under different seeds. Relying on this
metric, we empirically find that larger models do
not simply achieve stronger final convergence, but
that convergence happens faster on them. However,
we see that convergence is not monotonic through-
out training (see Fig. 1, top). After a short ini-
tial uniform phase, there is a sharp-convergence
phase; interestingly, this convergence phase coin-
cides with the unigram-output stage found by prior
work (Fig. 1, mid-top). Afterwards, models fol-
low a sharp-divergence phase, where they start
learning to use context. Finally, we see a slow-
reconvergence phase, in which model predictions
seem to stabilise and (at least for larger models)
slowly reconverge to a unified solution; interest-
ingly, the transition to this final phase seems to co-
incide with induction-head formation (Fig. 1, mid-
bottom). Notably, these four phases happen while
the models monotonically improve (Fig. 1, bottom);
multiple seeds of the same model p, may thus get
less similar to each other while simultaneously be-
coming more similar to the target distribution p.

Additionally, as in Chang et al. (2024), we study
how convergence differs depending on the fre-
quency, part of speech, or final surprisal of a pre-
dicted token. To this end, we define LM condi-
tional convergence similar to LM convergence,
but conditioning the expectation on a feature of the
text (e.g., the target word being a noun). Using
this metric, our analyses show that, while models’
outputs seem to converge when predicting frequent
or function words, their final-step convergence on
other tokens may be worse than at initialisation.

2 Convergence and Divergence

In our study, we will measure convergence by
analysing whether different models output simi-
lar probability distributions. To that end, we first
assume there exists a distribution over model pa-

rameters p(60), induced by a choice of architecture
and the optimisation process. In other words, p(60)
represents a distribution over models trained under
different random seeds. Given this distribution, we
define convergence as:

Definition 1. We quantify convergence in context
S<; as the negative expected divergence between
two models 0 and 0’ sampled from this distribution:

conv(sy) = 9}::9/ [ — ds<t(p0ap8’):| 1)

In theory, we could use any divergence function
as d. Here, we will measure it as the Kullback-
Leibler (KL) divergence:3

doci(posP) = KL (pol- [ 520) [| o | 520)) @

S|S
:ZPQ(S | s<¢) log Pols | 51

ses ps/(s | S<t)

An increase in conv(s.;) thus indicates conver-
gence, while a decrease in this value indicates di-
vergence. We chose the KL as it is a standard
measure for comparing probability distributions.
In practice, analysing LM convergence for each
specific token—context pair can be challenging, and
we thus define a global measure of convergence
using its expectation.

Definition 2. We quantify expected convergence
as the expectation of convergence across contexts:

E[conv] = E
S<t

com(s)| @

Notably, while expected convergence gives an
overall notion of how convergence behaves across
a dataset, it can hide variations in convergence de-
pending on the context and target token. To address
this, we take inspiration from Chang et al.’s (2024)
analyses, defining conditional convergence. Con-
ditional convergence measures a model’s expected
convergence conditioned on a specific property.

3Prior work quantifies the convergence of LMs by comput-
ing the correlation across seeds in models’ predictions (opera-
tionalised as, e.g., per-token surprisal, or a downstream task’s
outputs; Chang et al., 2024; van der Wal et al., 2025). We
believe these correlations may hide nuances which E[conv]
captures. E.g., two randomly initialised models (which output
noisy uniform distributions), output per-token surprisals with
near-zero correlations, independently of how close to uniform
both their distributions are. Relatedly, two unigram language
models which differ only in their temperature would output
surprisals with near-one correlations.
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Definition 3. Ler Sy be a set of tokens which have
a specific target property to be conditioned on. We
quantify a model’s conditional convergence as the
expectation of convergence across tokens and con-
texts which have this property:

E[conv] = E |conv(sy) | st € St 4

t S<t

By computing conditional convergence for dif-
ferent token categories (e.g., nouns, verbs, function
words), we can analyse how convergence varies
across different tokens.

3 Experimental Setup

We now present the main choices made for our
experiments. See App. A for more details.

Model. We analyse language models from the
(Poly)Pythia suite here (Biderman et al., 2023;
van der Wal et al., 2025).* For each model size,
these LMs’ architecture and optimisation proce-
dure induce a distribution p,(6) over parameters,
which we use in our definition of convergence
(in Definition 1). This suite contains a set of 10
independently trained models per model size, sim-
ulating the set of samples 8, 60" ~ p(0) we need to
estimate conv (in Eq. (1)). Furthermore, we anal-
yse models with {14m, 31m, 70m, 160m, 410m}
parameters—the sizes available in PolyPythia—
at  logarithmically-spaced  training  steps:
{0,1,2,4,8,...,512, 1k, 2k, 4k, ..., 128k}. Due
to computational restrictions, we selected seeds
1,3,5,7,9 for our analyses (ignoring other seeds).

Data. For our analyses, we use a subset of the
Pile’s validation set (Gao et al., 2020) covering
4,662 tokens; these tokens’ contexts form a dataset:
D= {s(<nt) N_|. We assume this data is sampled

from the data-generating distribution s(<"t) ~ p(S<t)s
allowing us to compute an unbiased estimate of
expected convergence (in Definition 2).

Conditioning Properties. Finally, we also anal-
yse how models converge while controlling for
three properties: a token s;’s frequency, its part-of-
speech (PoS), and its final-surprisal. We estimate
tokens’ frequencies by counting them on the Pile’s
validation set. We estimate PoS using the NLTK
part-of-speech tagger (Bird and Loper, 2004). We

*We also present similar results for MultiBERT in §4.1.
SWe detail how we convert from word- (output by NLTK)
to subword-level tags (Pythia’s tokens) in App. A.

compute final-surprisal by—for a specific model
size—using its last checkpoint to compute each
token’s surprisal: —log p,(s; | s<;). To estimate
conditional convergence (Definition 3), we then de-
fine S; using either log-spaced frequency or final-
surprisals bins, or PoS classes.

4 Four Phases of Expected Convergence

Fig. 1 (top) presents our estimates of the expected
convergence, i.e., E[conv], for models of different
sizes and across training steps. In this figure, we
see that convergence progresses across training in
four clearly distinct phases.

Uniform Phase. This initial phase is roughly ob-
served until step 16 and reflects a shared starting
point of training, with models of different sizes
presenting similar convergences. This has a sim-
ple explanation. As shown in Fig. 1 (mid-top), all
LMs’ outputs start similar to the uniform distribu-
tion, which is enforced by their parameters’ initial-
isation. Interestingly, there is almost no change
in convergence during this phase, which may be
explained by the small learning rates used at these
steps. (For convenience, we present Pythias’ learn-
ing rates across training in Fig. 6 in App. B).

Sharp-convergence Phase. This second phase is
roughly observed between steps 16 and 256, being
characterised by a sharp increase in model similar-
ity. Interestingly, as can be seen in Fig. 1 (mid-top),
this phase corresponds quite clearly to a shift in
LMs from mimicking a uniform to a unigram distri-
bution.® As shown by prior work, these are also the
training steps at which models’ predictions (either
in terms of surprisal, or downstream tasks outputs)
seem to have maximal correlations with one an-
other (Chang et al., 2024; van der Wal et al., 2025).

Sharp-divergence Phase. This third phase of
training occurs between steps 256 and 2k, being
characterised by a sharp decrease in model similar-
ity. Interestingly, this phase coincides with the mo-
ment LMs start diverging from the unigram distri-
bution, implying that, at least initially, LMs use of
context differs significantly across seeds. Notably,
the cross-entropy of Pythia models decreases mono-
tonically throughout training (see Fig. 1, bottom),
making such a sharp-divergence phase surprising:
these LMs seem to monotonically approximate p,
but each does so in a different way.

®As discussed in §1, Chang and Bergen (2022) originally
reported this unigram-output stage of LM learning.
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Figure 2: Estimated E[conv] across training steps: (left) on the Pythia model suite on BLIMP with 15 confidence
intervals, (right) on the MultiBERT model suite on masked language modelling with 1o confidence intervals.

Slow-reconvergence Phase. This final phase
starts around step 2k, and is characterised by a slow
increase in model similarity. Interestingly, as can
be seen in Fig. 1 (mid-bottom), the step at which
this phase starts coincides with an increase in in-
context learning (ICL) scores (Olsson et al., 2022)
and thus to induction-heads formation. This sug-
gests that induction heads may not only enable in-
context learning in large models, but also stabilise
the training of transformer-based LMs. Further, the
steepness of this final downward trend depends on
model size, with larger models converging faster
than smaller ones. In fact, for the smallest models,
model convergence seems to mostly stabilise at this
point, and they end training with higher E[conv]
than they begin with, implying that these models
do not in fact converge to a shared solution.

4.1 Convergence on Other Tasks and Models

We now assess whether model convergence dynam-
ics are similar in: (i) downstream tasks, conduct-
ing experiments on BLiMP (Warstadt et al., 2020);
(i1) other models, conducting experiments with the
MultiBERT model suite (Sellam et al., 2022).

Convergence on Downstream Tasks. BLiMP is
a dataset composed of pairs of grammatical and
ungrammatical sentences, D = {s(/n), s)((n) N
and whose task is to identify the grammatical one.
For each of these pairs, models are then evaluated
on whether they place more probability on s, than
on sx. In this task, we thus restrict the support of
our models’ distribution to these two sentences:
Po(sv) Po(sx)

Po(8/) + po(sx)’ Po(Ss) + Po(sx)
We then use this limited-support distribution to
compute models’ convergence as in §2, but with:

S el 2E )

Do (s)
SG{S‘(/") ,s)((m}

Do(sy) = Do(sx) =

dn(pﬂa pe/) =

We present these downstream convergence results
in Fig. 2 (left). This figure reveals that the down-
stream convergence pattern broadly mirrors the
phases observed before, supporting the hypothe-
sis that these training dynamics manifest at the
task-level as well.

Convergence on Masked LMs. The MultiB-
ERT model suite is composed of bidirectional
transformers—as opposed to Pythia’s autoregres-
sive models—and allows us to evaluate whether
convergence dynamics are similar in such masked
language models. Unfortunately, the available
checkpoints do not include steps between 0 and
20k, which prevents us from observing (i) an ini-
tial uniform phase or (ii) a sharp-convergence
phase. However, the remaining dynamics appear
consistent with the results on Pythia, including:
(iii) a sharp-divergence phase followed by (iv) a
slow-reconvergence phase (see Fig. 2, right).

5 Conditional Convergence

We now analyse conditional convergences: i.e.,
how convergence changes as a function of differ-
ent contextual properties of a token. These results
are presented in Fig. 3, where conditional conver-
gences are presented for tokens based on either
frequency, PoS, or final-surprisal.” Notably, for all
these conditioning properties, the two initial phases
of training (the uniform and sharp-convergence
phases) present similar trends. This is likely be-
cause until the third phase of training (the sharp-
divergence phase), LMs are not using context to
make predictions. We will thus focus on the third
and fourth convergence phases here.

Frequency. Fig. 3 (left) presents the conditional
convergence Eg, [conv] for tokens in varying fre-
"We note that, within any of these categories—similarly

to the general case— LMs present (almost) monotonically de-
creasing cross-entropy curves (see Fig. 9 in App. E).
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Figure 3: Eg, [conv] of selected models with 1o confidence intervals. Conditioning property: (left) frequency;

(center) parts of speech; (right) final surprisal.

quency bins. During the third training phase, fre-
quent tokens’ convergence stabilises at a relatively
small value. In contrast, infrequent tokens fully
suffer from a sharp-divergence, highlighting their
greater variability and sensitivity to random seed.
Interestingly, final convergence in infrequent to-
kens is smaller than initial convergence, suggesting
LMs diverge on these tokens across training.

PoS Tags. Fig. 3 (center) presents the conditional
convergence Eg, [conv]| for tokens with varying
PoS tags. This figure shows that content words
(nouns, adjectives (JJ) and verbs) diverge more
once entering the sharp-divergence phase than func-
tion words (determiners (DT), personal pronouns
(PRP), prepositions or subordinating conjunctions
(IN), and modal auxiliary words (MD)). Further-
more, function words achieve higher final conver-
gence, whereas content words are more divergent.®

Final Surprisal. Fig. 3 (right) presents the con-
ditional convergence Eg, [conv] for tokens within
varying final-surprisal bins. This figure reveals
that a token’s convergence may be fairly different
depending on how predictable it is. In particu-
lar, this figure shows that tokens with very low
final-surprisal show strong convergence by the end
of training. Convergence behaviour across tokens
with higher final-surprisals (from 1 to 8+ bits), how-
ever, seems quite similar, with final-surprisal thus
not greatly impacting convergence for these tokens.

5.1 Variance in Convergence across Tokens

Finally, we also analyse the variance of conv(s_;)
across contexts s.; throughout training. Fig. 4
presents these results. Interestingly, this figure
shows that the initial two phases have very little
variance in convergence across contexts s_;. The

8See App. C for a detailed analysis of how convergence
changes across subclasses of nouns and verbs. Further, as
different conditioning properties may be correlated (function
words are typically frequent), we present a linear regression
analysis of conv(s<¢) in App. D to jointly analyse these prop-
erties impact; this analysis supported our main results here.

E 0.0 14m i i
8 s | —
L 0.2 70m | ! i
g 160m | ! i
410 ) i i
& -04 B : :
5 ] i i
o 1 I 1
z | ! :
S 0.6 ] | ]
@] ] i i
k] ] i i
Q 1 1 1
g -0.8 ! ! !
g 10° 10t 102 10° 10* 10°
&4} Training Step

Figure 4: conv(s.;) across training, with shaded areas
representing its standard across contexts s;.

final two phases, however, present a significant
increase in this variance. This again highlights
the non-contextual nature of the two initial conver-
gence phases.

6 Conclusion

Our analyses reveal that convergence in language
models is far from uniform. While global met-
rics like cross-entropy steadily improve, they con-
ceal substantial variation in how individual tokens
and contexts behave across training. We find that,
across training, LMs’ convergence goes through
four phases, each with distinct characteristics. Ad-
ditionally, we find that token frequency plays a
dominant role in convergence: frequent tokens con-
verge quickly and consistently, whereas rare tokens
often diverge. Similarly, convergence is strongly
shaped by linguistic features: function words ex-
hibit stable predictions, while content words remain
volatile (a result reminiscent of Chang and Bergen,
2022). Finally, we find that larger models tend to
converge more consistently.

Limitations

Our analysis is limited in several ways. First,
our analysis of a conv(s.;) measure based on the
token-level KL prevents us from comparing differ-
ent model families that rely on different tokenisers,
as different distribution supports in p,(s; | s;)
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would prevent us from calculating the KL diver-
gence. This could potentially be mitigated by con-
verting these distributions to the byte- or word-level
(Pimentel and Meister, 2024; Phan et al., 2025), but
we leave that for future work. Second, due to com-
putational constraints, our experiments were con-
ducted on a small subset of the Pile’s validation set.
Third, our analysis is restricted to English-language
data, leaving open questions about whether similar
convergence dynamics occur in other languages
and in multilingual settings. Finally, the presence
of learning rate warm-up phases during early train-
ing, where we observe the most rapid shifts in
model behaviour, may introduce artifacts that affect
our interpretation of convergence and divergence.
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A Detailed Experimental Setup

In this section, we expand on experimental choices
used to estimate convergence.

Choice of p(6) (Or, Analysed Model Architec-
ture and Optimisation Process). Our defini-
tion of convergence (in Definition 1) relies on a
distribution over models p(@), which is itself in-
duced by a choice of model architecture and op-
timisation process. Here, we will use the dis-
tribution p(@) induced by Pythia’s training pro-
cess (Biderman et al., 2023); see their paper for
details. The Pythia model suite includes model
architectures of different sizes, and we analyse
here models with {14m, 31m, 70m, 160m, 410m}
parameters.” Further, 154 checkpoints were re-
leased for each of these model sizes, allowing us to
analyse how convergence evolves across training.
Here, we analyse training steps at logarithmically-
spaced intervals; specifically, we analyse check-
points: {0,1,2,4,8,...,512, 1k, 2k, 4k, ..., 128k}.

Estimating Convergence (Or, Analysed Model).
To compute conv(s.;) we need not only to choose
a distribution p(@), but to take an expectation over
it. This is infeasible for large language models. We
can, however, estimate conv(s.;) using pairs of in-
dependently sampled models 6, 0" ~ p(0). Luck-
ily, van der Wal et al. (2025) recently presented
the PolyPythia model suite, an extension of the
original Pythia model suite with multiple trained
models—using different randomisation seeds—for
each model size. We treat each pair of models in the
PolyPythia suite as a sample 6, 0" ~ p(8), which
we use to estimate convergence. Due to computa-
tional restrictions, we selected seeds 1, 3,5, 7,9 for
our analyses (ignoring the other 5 seeds).

Estimating Expected Convergence (Or, Anal-
ysed Data). To compute E[conv], we must take
an expectation over contexts s_; ~ p(s.;), which
is again computationally infeasible. To avoid this
issue, we use a data set D = {s(<nt) N_| of samples
which we assume to be drawn from the true distribu-
tion p(s-,); this allows us to compute an unbiased
estimate of expected convergence. More specifi-
cally, we used samples from the Pile validation set
(Gao et al., 2020) that covered the 4662 tokens.

9We restrict our analyses to these model sizes, as only those
are covered by the PolyPythia model suite, whose relevance
we expand on in the next paragraph.
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Choice of S; (Or, Analysed Token Property).
Our definition of conditional convergence (Defi-
nition 3) relies on a choice of token property we
which to condition on. Here, we will consider
three such properties: a token s;’s frequency, its
part-of-speech (PoS), and its final surprisal. We
estimate a tokens’ frequency by counting the num-
ber of times it appears on our dataset D; we then
define log-spaced bins &; which we use to anal-
yse tokens within those frequencies. We estimate
a token’s PoS tag using the NLTK part-of-speech
tagger (Bird and Loper, 2004). Since our dataset
is primarily in English, we use the standard PoS
tags for this language. However, because NLTK
and Pythia employ different tokenisation methods,
we implement a mapping procedure to align PoS
tags with the tokenised outputs. First, PoS tags
are assigned at the word level using NLTK. These
tags are then mapped to individual characters in
the raw text. Finally, after tokenisation, each token
inherits the tag that corresponds to the majority of
its characters. Tokens without a majority label or
with an "UNK" (unknown) label are excluded from
our analysis. This process is illustrated in Fig. 5:

s h e d i n Text Input
5 h e d i -
(NN} | (NN} | (NN) | (NN} (RP} | (RP) NLTK Tags

Al

UMK | NN | NN | NN | NN |UNK 6 RP | RP

N N I B
v v

Tags to Chars

_shed _in Chars to Tokens

Figure 5: Illustration of the mapping of part of speech
tags to tokens.

Finally, we estimate a tokens’ final surprisal by,
for each analysed model, using the model’s final
checkpoint to estimate the token’s surprisal; sim-
ilarly to our frequency analysis, we then define
log-spaced bins S; which we use to analyse tokens
within those surprisal ranges.

B Pythias’ Learning Rates

0.0010 am i ;
3lm | i i

0.0008 70m | | :

Q 1 1 1
é:“a’ 160m | i ]
0.0006 : : :

o 410m i i i
=] | i ]
£ 0.0004 : : '
[} I ] ]
Q 1 1 i
— : : |
0.0002 : : |
0.0000 i i |

10° 10! 102 103 10 10°

Training Step

Figure 6: Learning rates for the different Pythia models.

C Conditional Convergence on Nouns
and Verbs PoS

Differences in Nouns. Fig. 7 (left) shows
Es,...[conv] for the 410m parameter model. All
three noun types—regular singular (NN), regu-
lar plural (NNS) and proper singular (NNP)—are
roughly equally challenging for the model and their
final convergence values are either similar or lower
than the starting point at training step 0.

Differences in Verbs. Fig. 7 (right) shows the
conditional convergence for the tokens where a
verb is being predicted. Unlike nouns, verbs gener-
ally converge more throughout training. However,
gerund or present participle (VBG) and past par-
ticiple verbs (VBN) converge less than 3rd person
singular present (VBZ), past tense (VBD) and base
form verbs (VB). The latter might be simpler forms
that could be more easily derived from context.

NNS i i -0.15 VBZ
NN i VB

NNP | -0.20 VBD

H VBG

-0.25 VBN

-0.2
-03

04 i ~0.30
-0.35
-0.5
040

10° 10 10° 10° 10t 10° 100 10' 10 10°

0 10t 10°
Training Step

Figure 7: Es, [conv] of selected models with 1o confi-
dence intervals. Conditioning property: (left) Nouns’
PoS; (right) Verbs’ PoS.
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D Predicting Convergence with a Linear
Regression

To explore which factors influence convergence the
most, we follow (Chang et al., 2024) in performing
a linear regression analysis. Our model consists of
fitting the equation:

conv(s) = a - log(freq(s¢)) (6)
+ Z Bp  Liag(s)=p
pE P.o.S. tags
+ Z Vp 1tag(5t—1)=P

pE P.o.S. tags

Y

me&EModel Sizes

5m . 1m’:m

across contexts s.; € D. We fit one such model per
training step for all analysed model sizes m/’. This
allows us to analyse the influence of our different
conditional parameters across the training process.

Frequency (measured by the fitted parameter
«) emerges as a significant factor influencing KL
divergence, exhibiting a distinct pattern over the
course of training (see Fig. 8, left). Initially, its
influence is negligible, remaining close to zero.
Around step 256, frequency begins to play a
stronger role, positively influencing conv (a ~
0.05), indicating that frequent tokens stabilise ear-
lier and exhibit lower KL divergence across random
seeds. Beyond this point, the correlation slightly in-
creases again, suggesting that while frequent tokens
converge more quickly, their stabilisation process
becomes less distinct as training progresses. This
trajectory aligns with our observations of token
convergence by frequency in Fig. 3.

The influence of model size on conv initially
shows an unstable pattern, but later a trend emerges
where larger models increase conv, while smaller
models decrease conv relatively (see Fig. 8, right).
It should be noted that while the learning rate is the
same for the 3 smallest models, their influence on
convergence is not. This suggests that the learning
rate warm-up (see Fig. 6) is not the only determi-
nant of these model convergence patterns.

E Conditional Cross-entropies

Fig. 9 presents conditional cross-entropies for our
analysed models and conditioning properties.

F Tokens ranked by KL

Tab. 1 provides a list of tokens with high, low and
medium KL respectively. We sampled the tokens

Frequency : : 0.100 14m !

0.05 ' : : 0.075 3m |

H : ' 70m |

160m |

0.025 410m |

0.000 ;
~0.025

0.01 i J ! ~0.050

0.01 ; | | 0.050

0.00 H : : ~0.075
100 10! 102 10° 10 1 100 10! 102 10° 10 1
Trainin g Step Training Step

Figure 8: Linear regression’s coefficients for frequency
(left) and model size (right) when predicting conver-
gence: conv(s<y).

exclusively from the natural language text and ig-
nored the code snippet in our sample.

G Results Conditioning on Context Token

Fig. 10 shows the Es, | [conv] of the 410m models
conditioned on properties of the last token in the
context (s;—1); similarly to Fig. 3 for the predicted
token. Similarly, Fig. 11 shows the conditional
cross-entropy, conditioned on properties of the last
token in context (s;—1), akin to Fig. 9.
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Figure 9: Conditional cross-entropy (/) of models with 1o confidence intervals. Conditioning property: (top-left)

Frequency; (top-right) Surprisal at end of training; (bottom-left) Nouns’ PoS; (bottom-center) Verbs’ PoS; (bottom-
right) Other PoS.

Token (Low) KL (Low) Token (Mid) KL (Mid) Token (High) KL (High)
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oration -0.052642  _known -0.411488 agn -1.472763
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Table 1

: Representative tokens with the lowest, highest and medium KL divergence. ‘_’ represents a whitespace.
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Figure 10: Es, | [conv] of 410m models with 1o confidence intervals. Conditioning property on context token
(s¢—1): (left) Nouns’ PoS; (center) Verbs’ PoS; (right) Other PoS.
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Figure 11: Conditional cross-entropy (H) of 410m models with 1o confidence intervals. Conditioning property on
the final context token (s;—_1): (left) Nouns’ PoS; (center) Verbs’ PoS; (right) Other PoS.
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