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Abstract

The recent rise of reasoning-tuned Large Lan-
guage Models (LLMs)—which generate chains
of thought (CoTs) before giving the final an-
swer—has attracted significant attention and of-
fers new opportunities for gaining insights into
human label variation, which refers to plausible
differences in how multiple annotators label the
same data instance. Prior work has shown that
LLM-generated explanations can help align
model predictions with human label distribu-
tions, but typically adopt a reverse paradigm:
producing explanations based on given answers.
In contrast, CoTs provide a forward reasoning
path that may implicitly embed rationales for
each answer option, before generating the an-
swers. We thus propose a novel LLM-based
pipeline enriched with linguistically-grounded
discourse segmenters to extract supporting and
opposing statements for each answer option
from CoTs with improved accuracy. We also
propose a rank-based HLV evaluation frame-
work that prioritizes the ranking of answers
over exact scores, which instead favor direct
comparison of label distributions. Our method
outperforms a direct generation method as well
as baselines on three datasets, and shows bet-
ter alignment of ranking methods with humans,
highlighting the effectiveness of our approach.

1 Introduction

Recent advances in large language models (LLMs,
Touvron et al. 2023; Dubey et al. 2024; OpenAI
2023) have shown the power of chain-of-thought
(CoT, Wei et al. 2022; Wang et al. 2023) reasoning
in improving complex decision-making tasks (Wei
et al., 2023; Sun et al., 2023; Yu et al., 2024; Team
et al., 2025; Chen et al., 2025b). One prominent
direction involves reasoning-tuned LLMs, which
generate CoT reasoning steps explicitly before
producing a final answer, often guided by rein-
forcement learning to promote interpretable and
structured thinking processes (DeepSeek-AI et al.,
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Figure 1: This motivational schematic illustrates three
alternative paths—human annotation (Chen et al.,
2024), direct generation (Chen et al., 2025a), and
CoT2EL—that converge on the same EL-style output.
We i) repurpose the reasoning content in CoTs as for-
ward and label-free method to extract explanations for
HLV, instead of direct generation (top); and ii) propose
a rank-based HLV evaluation framework (bottom).

2025; Team, 2025; Hurst et al., 2024). While prior
work has primarily focused on analyzing the con-
tent and structure of CoTs to improve accuracy
or interpretability (Qin et al., 2024; Min et al.,
2024; Ameisen et al., 2025), little attention has
been given to the potential of CoTs in capturing
more nuanced aspects of human annotation be-
havior. In particular, human label variation (HLV,
Plank 2022) arises when different annotators pro-
vide divergent yet valid labels for the same input, a
phenomenon especially common in inference and
multiple-choice tasks involving ambiguous, sub-
jective, or commonsense-rich questions (Pavlick
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and Kwiatkowski, 2019; Aroyo and Welty, 2015).
Modeling HLV is thus crucial for creating robust
NLP systems that reflect the diversity of human
perspectives (Uma et al., 2021; Plank, 2022).

Prior research has shown that explanation-label
pairs—either produced by humans or models—can
help LLMs better capture the distribution of hu-
man labels (Weber-Genzel et al., 2024; Chen
et al., 2025a, 2024). However, existing approaches
treat model explanation generation as a post-hoc
task, generating explanations after a label is cho-
sen (Chen et al., 2025a). In contrast, reasoning-
tuned LLMs offer a forward reasoning paradigm:
CoTs precede answer selection and may already
contain latent rationales for why certain labels
are chosen—rationales that, if properly extracted,
could serve as label-specific explanations.

In this work, we investigate whether CoTs can
be repurposed as a source to extract explanation-
label pairs to derive insights on HLV, as visu-
alized in Figure 1. Specifically, we propose a
novel pipeline, CoT2EL, that includes discourse
segmenters to extract such pairs from CoTs. Such
an approach allows us to view CoTs not merely as
reasoning artifacts, but as explanation-rich repre-
sentations that reflect a broader label space.

We further propose a new HLV evaluation frame-
work centered around ranking rather than label
distributions. Current HLV evaluations assume
closed-label sets and primarily focus on approx-
imating exact probability distributions. However,
exact value differences may only matter if they
yield differences in label preferences (rankings), cf.
Figure 2(a). They can also be highly sensitive to
annotator variability and availability, and a closed-
set, i.e. Figure 2(b), limits their ability to capture
broader possibilities. Therefore, we evaluate how
well model-predicted rankings over options align
with human rankings, providing a more nuanced
and robust view of model performance in settings
where annotation disagreements exist.

We conduct extensive experiments on three
benchmarks exhibiting label variation: VariErr NLI
(Weber-Genzel et al., 2024), CommonsenseQA
(Talmor et al., 2019), and Social IQa (Sap et al.,
2019). Our results across multiple LLM judges
demonstrate that explanation-label pairs extracted
from CoTs using our CoT2EL pipeline consistently
outperform both the direct explanation generation
method and explanation-free baselines in capturing
annotation disagreements. Our analysis and abla-
tion studies further reveal several key insights: i)
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Figure 2: (a) Same instance, different NLI datasets:
probability values differ, rank the same. The y-axis is
human label selection probability. (b) is a conceptual
illustration to introduce human answer behavior across
MCQA datasets compared to the enforced closed-world
assumption in normalized label probabilities.

supporting statements within CoTs are more pre-
dictive of human choices than the opposing ones; ii)
ranking strategies aligned with human annotation
practices lead to better approximation of human la-
bel variation; and iii) well-structured input prompts
significantly enhance the informativeness of CoTs.

2 Background and Motivation

2.1 Modeling Human Label Variation
Most current approaches to investigating HLV view
the label distribution from annotators as a proba-
bility distribution (e.g., Kurniawan et al., 2025;
Uma et al., 2021; Pavlick and Kwiatkowski, 2019;
Nie et al., 2020; Lee et al., 2023; Leonardelli et al.,
2023; Rizzi et al., 2024; Pavlovic and Poesio, 2024)
or assign scores (e.g., Palta et al., 2024; Wadhwa
et al., 2023) to capture annotation disagreement.
Evaluation typically focuses on how well models
approximate these distributions or scores. However,
we argue that such paradigms have key limitations:

Rank or Value: Two Complementary Views
Human annotations inherently reflect subjective
judgments, and when different groups of annota-
tors are involved, the resulting label distributions
can vary significantly. To illustrate this variation,
we examine four NLI datasets annotated by distinct
human populations: MNLI (Williams et al., 2018),
Chaos NLI (Nie et al., 2020), VariErr NLI (Weber-
Genzel et al., 2024), and Live NLI (Jiang et al.,
2023b). Among 15 shared instances across these
datasets, only 2.2% of pairwise comparisons yield
identical probability values, underscoring the sen-
sitivity of distributional scores to annotator compo-
sition. Despite these numeric differences, 43.3%
of the comparisons retain consistent label rankings
(Figure 2(a)). This suggests that while probability-
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Input: Please read the following social scenario and the accompanying question, choose the most appropriate answer from the options provided and start your answer
with a single letter. Scenario: Ash redeemed themselves after retaking the test they failed. Question: How will Ash feel as a result?
A. relieved B. accomplished C. proud Answer:

CoTs: Okay, let’s see. The scenario is that Ash redeemed themselves by retaking a test they failed. The question is asking how Ash will feel as a result. The options
are A. relieved , B. accomplished , and C. proud .
First, I need to understand what each of these emotions means in this context. Redeeming oneself after failing a test suggests that Ash probably worked hard to retake
it and succeeded this time. So, the feelings here would be related to overcoming a challenge.
"Relieved"(A) would mean that Ash is feeling a release from the stress or worry about having failed before. Passing the test might take away that anxiety.
"Accomplished"(B) implies a sense of achievement, having completed something successfully, especially after effort. Since Ash had to retake the test, putting in the
work to pass it now would make them feel like they’ve accomplished something.
"Proud"(C) is more about self-esteem or satisfaction in one’s own achievements. It’s a bit similar to accomplished but more focused on the personal pride aspect.
Now, considering the scenario: Ash didn’t just pass a test; they redeemed themselves. That suggests that failing initially might have caused some shame or
disappointment, so passing now would alleviate that. But redemption often involves not just relief but also a sense of achievement. So both A and B are possible.
But "proud" might be more about the internal sense of pride, whereas "accomplished" is about the feeling of having achieved something through effort. Which one
fits better here? If Ash worked hard to retake and pass, then feeling accomplished makes sense. Relieved is possible, but maybe the primary feeling is
accomplishment. Proud could also be there, but maybe B is more directly related to the effort and success.
I think the best answer is B. Accomplished.

Table 1: CoT Example. The examples, drawn from Social IQa, are processed using DeepSeek R1 (DeepSeek-AI
et al., 2025), with CoT segments related to options A, B, and C highlighted in blue, green, and orange, respectively.
For questions where all options appear plausible, the CoT reflects a step-by-step analysis involving comparison and
evidence evaluation. These segments offer rich material for deriving explanations relevant to our study of the HLV
phenomenon, enabling a deeper understanding of the task and the roots of HLV beyond just the final answers.

based evaluations are highly unstable under anno-
tator shifts, rank-based assessments exhibit greater
consistency. Given that many real-world applica-
tions rely more on the correct ordering of label
plausibility than exact probability estimates, we
argue for the inclusion of ranking as a complemen-
tary and more robust HLV evaluation metric.

Does the Closed-World Assumption Reflect Hu-
man Judgments? Human annotators do not al-
ways treat label options as strictly exhaustive or
mutually exclusive. In some contexts, they express
uncertainty or endorse multiple plausible answers,
often via indecisive choices as observed in datasets
like Live NLI and VariErr NLI (green lines in Fig-
ure 2(b)). Converting such annotations into nor-
malized probability distributions imposes a closed-
world assumption—requiring mutually exclusive,
collectively exhaustive labels summing to one (blue
lines)—which limits the label space and overlooks
ambiguous or open-ended responses common in
tasks like CommonsenseQA (Talmor et al., 2019)
or Social IQa (Sap et al., 2019) (orange lines). This
constraint can distort model evaluation by mask-
ing ambiguity. We therefore propose a rank-based
evaluation framework (§5), which better accommo-
dates indecisive and out-of-scope options.

2.2 Modeling HLV with Explanations

Recent studies have shown that explanations can ef-
fectively support the interpretation and analysis of
HLV (Jiang et al., 2023c; Chen et al., 2024; Weber-
Genzel et al., 2024; Jiang et al., 2023b). However,
collecting human explanations is significantly more

resource-intensive than traditional label-only anno-
tation. To reduce annotation costs, recent studies
have leveraged LLMs to generate explanations for
each label. Evidence shows that with a few hu-
man labels, LLM-generated explanations can rival
human-written ones in forming valid explanation-
label pairs and supporting HLV modeling (Chen
et al., 2025a). However, this approach has three
key limitations: i) it relies on a few human labels to
select final explanations, with performance degrad-
ing when such supervision is absent; ii) it reverses
the annotation process by conditioning explanation
generation on labels, risking hallucinated reasoning
for implausible options; and iii) it treats labels inde-
pendently, lacking comparative reasoning and thus
reducing explanation depth and completeness. To
address these limitations, we study how the poten-
tial of CoTs (Table 1) from LLMs can be leveraged
to explain HLV, given their rich argumentations
and consideration of multiple alternative options.

3 Datasets

To study HLV via explanation-based methods, we
select datasets with multiple annotation choices.
An overview of the selected datasets are shown
in Table 2. Specifically, VariErr NLI (Weber-
Genzel et al., 2024) is a Natural Language Infer-
ence (NLI) dataset which includes annotations and
human-provided explanations from four annotators.
Notably, there are 500 NLI instances that also over-
lap with the Chaos NLI and MNLI datasets, provid-
ing label distributions from 100 and five annotators
for each instance, respectively. This makes VariErr
NLI an especially valuable dataset for conducting
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HLV Datasets (num.) Instance Content Annotations

VariErr NLI
(500)
from MNLI dev set

hypothesis
premise
3 NLI labels (ENC)

4 from VariErr NLI
100 from Chaos NLI
5 from MNLI

Social IQa
(125)
from SIQA dev set

social scenario
question
3 options (ABC)

5 annotators score
one question-option
pair individually.

CommensenseQA
(125)
from CQA dev set

question
5 options (ABCDE)

5 annotators score
one question-option
pair individually.

Table 2: An Overview of the Datasets.

rational, explanation-based analysis of annotation
disagreement in inference tasks.

In addition, we include two multiple-choice
question answering (MCQA) datasets: Social IQa
(SIQA, Sap et al. 2019) and CommonsenseQA
(CQA, Talmor et al. 2019). Both require gen-
eral world knowledge and reasoning to answer cor-
rectly. Importantly, Palta et al. (2024) re-annotated
these datasets, collecting Likert-scale ratings (from
1 to 5) from five annotators for each answer op-
tion (Zhang et al., 2017), as well as human feed-
back for hard-to-judge items. The mean rating is
then used as the option’s plausibility score. This
approach offers a new angle for studying HLV.

4 Extracting Explanation-Label Pairs
from Chain-of-Thought Reasoning

CoT reasoning provides rich rationales (Table 1)
to support decision-making in tasks like MCQA.
However, extracting fine-grained, option-specific
explanations from CoTs is non-trivial due to the
lack of explicit alignment between reasoning frag-
ments and individual answer options. Below we
describe our proposed method for extracting and re-
fining structured explanation-label (EL) pairs from
CoTs using LLMs as parsers and two linguistic-
motivated discourse unit segmenters.

4.1 CoT2EL Pipeline
Our method is designed to produce a set of EL pairs
that represent supporting or opposing arguments
for each answer option in a given MCQA task. The
full pipeline is depicted in Figure 3.1

CoT Generation and Initial Extraction. Given
a question Q and a set of candidate labels L =
[l1, l2, ..., ln], we first prompt a reasoning-tuned
LLM to generate a CoT reasoning:

CoT = ReasoningModel(Q,L), (1)

1Code is available at https://github.com/mainlp/CoT2EL.

We then apply both a reasoning-tuned model and
its corresponding base model in sequence, which
is used as a structured output parser. Specifically,
the CoT content is converted into a structured JSON
list of EL pairs in the following format:

{(ei, lx, si) | ei ∈ CoT, lx ∈ L, si ∈ {support, oppose}}
(2)

where e is the full generated explanation extracted
from CoT, and si indicates whether the explanation
ei supports or opposes the label li. While LLM-
based parsers are able to parse and decompose the
CoT content, the directly extracted EL pairs often
exhibit issues regarding—which we categorize into
the following aspects (exemplified in Figure 4): i)
Informativeness: explanations either lack key con-
tent or contain unnecessary information. ii) Faith-
fulness: statements may paraphrase or hallucinate
beyond the original CoT content. iii) Formatting:
structural inconsistencies or unexpected formatting
issues arise in the generated JSON outputs. These
issues complicate the direct use of such pairs for
downstream reasoning evaluation and necessitate
further refinement steps.

Discourse-guided Refinement. To mitigate the
aforementioned issues, we apply two discourse seg-
menters (DSegi) that offer complementary views
of text structure to segment the CoT content into a
set of coherent discourse units: a discourse unit seg-
menter following the Rhetorical Structure Theory
(RST, Mann and Thompson 1988), which segment
sentences into clause-based units; a discourse con-
nective detector following the Penn Discourse Tree-
bank (PDTB, Webber et al. 2019), which identifies
clauses initiated with connectives (e.g. however,
because) that signal relationships between ideas.
See Figure 4 for filtered instances (in the ELfilter
box). By combining both, we obtain a richer set of
candidate segments. This enhances the precision of
filtering noisy or mismatched EL pairs generated
by the reasoning LLMs, making the extracted ex-
planation structure more accurate and interpretable.

The integration of discourse segmentation into
our pipeline is driven by the necessity to extract
logically coherent and interpretable reasoning units
from CoT content. In human annotation prac-
tices, such units often form the basis for iden-
tifying justifications that support or oppose spe-
cific answer choices. By emulating this annota-
tion logic through automated discourse models, we
impose structural and semantic regularity on the
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Figure 3: Overall structure of the proposed explanation-label (EL) pair extraction pipeline. Details in Appendix B.

                    EL
...
Why would Ash get yelled at? If Ash was the one who made the
mess, maybe. But in the scenario, it's Lee who left the mess.
...
The immediate emotional response might be sadness.
... 
The question is about the consequence for Ash after this
incident, not future actions.
...
Unless Ash was responsible for cleaning up, but the problem
doesn\u2019t say that.
     ...

                  ELfilter

...
But in the scenario, it's Lee who left the mess.
...
If Ash had to clean up someone else's mess, the immediate
emotional response might be sadness.
...
The question is about the consequence for Ash after this
incident.
... 
Unless Ash was responsible for cleaning up, but the problem
doesn't say that.
     ...

                  ELhuman

...
But in the scenario, it's Lee who left the mess.
...
If Ash had to clean up someone else's mess, the immediate
emotional response might be sadness.
...
The question is about the consequence for Ash after this
incident.
... 
Unless Ash was responsible for cleaning up, but the problem
doesn't say that.
     ...

Informativeness Error

Faithfulness Error

Formatting Error

✅

✅

✅

✅

Discourse Filter

Scenario: Lee left a mess upon Ash and had to clean the mess for a few hours. Question: What will happen to Ash? A. get yelled at B. sad now C. clean up the next mess

Figure 4: Three error types in ELs during LLM parsing (left) and the human validation procedure (right).

extracted explanations. This approach facilitates re-
liable interpretation and alignment of explanation-
label pairs, thereby enhancing the transparency and
evaluability of CoT reasoning. Both discourse seg-
menters are trained using the DISRPT Shared Task
winning system DisCoDisCo (Gessler et al., 2021)
with the DISRPT 2023 Shared Task data (Braud
et al., 2023) (see Appendix A for training and per-
formance details). The outputs are then processed
and merged into a unified set of valid semantic
discourse units:

U = DSeg1(CoT) ∪ DSeg2(CoT), (3)

This normalized set U forms a constrained,
high-quality space of candidate explanation units,
grounded directly in the original CoT. We align
each extracted explanation ei from Eq 2 with its
closest discourse unit in U by maximal similarity:2

ELfilter =

{
(e∗i , lx, si)

∣∣∣∣ e
∗
i = argmax

u∈U
Sim(u, ei)

}
. (4)

The final result ELfilter is a set of EL pairs in
which each explanation is both semantically faith-
ful and textually aligned with a coherent discourse
unit from the original CoT content. This structured
output enhances both interpretability and utility for
evaluating reasoning processes in MCQA settings.

2Implemented by Python difflib.SequenceMatcher.

4.2 Validation through Human Annotation
To assess the reliability and effectiveness of our
pipeline, CoT2EL, we conducted a human annota-
tion study across the three datasets. We randomly
sampled 10 CoT instances from each dataset. For
each instance, a trained annotator3 manually iden-
tified and labeled all explanation spans within the
CoT content that either supports or opposes a given
answer label, using the target format illustrated in
Figure 3. This produced a human-curated gold
standard of EL pairs for comparison.

DeepSeek R1 660B (DeepSeek-AI et al., 2025)
was used to generate CoT responses. The corre-
sponding base model, DeepSeek V3 (DeepSeek-AI
et al., 2024), was then incorporated to standardize
the CoT into structured EL via JSON parsing. Fol-
lowing the pipeline in Figure 3, we applied the two
discourse segmenters to produce the final ELfilter.
As shown in Figure 4, these auto-generated pairs
were then quantitatively compared to the human-
annotated counterparts across four evaluation di-
mensions: lexical, syntactic, semantic similarities,
and Levenshtein ratio (Giulianelli et al., 2023).
Besides evaluating the full EL sets, we also con-
sidered the supporting-only settings (EL-sup and
ELfilter-sup), which aligns with the direct LLM gen-
eration method that favors positive justifications.

3The annotator is paid according to national standards.
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Datasets VariErr NLI SIQA CQA

EL 0,6820 0,7897 0,8200
ELfilter 0,8106 0,8761 0,8684
EL-sup 0,6992 0,8167 0,8431
ELfilter-sup 0,8296 0,8825 0,8749

Table 3: Averaged scores among 4 metrics (Lexical,
Syntactic, Semantic Similarities and Levenshtein Ratio)
for human validation. Higher score, more similar.

The comparison in Table 3 shows that our fi-
nal set ELfilter more closely aligns with human an-
notations than unfiltered EL.4 This suggests that
our discourse-guided extraction pipeline achieves
a high degree of faithfulness and interpretability,
approximating human performance in identifying
rationale-label mappings from CoT content.

5 Rank-based HLV Evaluation

Recent studies employ the LLM-as-judge
paradigm (Zheng et al., 2023), wherein explana-
tions accompany questions and candidate labels as
inputs to an LLM5 (Chen et al., 2025a, 2024). The
resulting output distribution is evaluated against
the empirical human label distribution, using
alignment as a proxy for explanation quality.

We propose a rank-based evaluation framework
as a more robust complement to raw probabil-
ity comparisons. Building on the LLM-as-judge
paradigm, our approach shifts the evaluation focus
to label ranking. Human annotations from HLV
datasets are transformed into rankings, and the
LLM is prompted to generate corresponding rank-
ings based on the input of questions and options.
Model-generated rankings are then compared to
human-derived rankings as explanation-free base-
lines. To assess the impact of explanations, we
additionally provide EL pairs and evaluate whether
they enhance alignment with human rankings.

5.1 Ranking Generation Methods

We experiment three distinct approaches to eliciting
label rankings from LLMs:6

i) Direct Ranking (Rank-rank): an LLM is explic-
itly instructed to rank the candidate labels based on
the provided question, yielding a direct ranking.
ii) First-Token-Logits Ranking (Rank-logits):
following prior work (Santurkar et al., 2023; Dur-

4Detailed metrics and scores are in Appendix C.
5We elaborate the prompt for injection of EL pairs into

LLM judges in Table 11 in Appendix D.
6Details in Appendix D.

mus et al., 2023; Liang et al., 2023), the model is
given a set of label options (A, B, C. . . ) and asked
to choose one. We then take the logits of the first
output token for each label and use them to rank the
labels from most to least likely. This method pro-
duces a probability-like distribution by normalizing
the logits over labels and is particularly designed
to align with the distribution-based VariErr NLI.
iii) Scoring-Based Ranking (Rank-score): in-
spired by Palta et al. (2024), we prompt an LLM
to assign each label a score from 1 to 5 based on
its plausibility. The final ranking is derived from
their scores. This method is especially motivated
by score-based SIQA and CQA.

5.2 Evaluation Metrics

To compare LLM rankings with humans, we
compute two standard rank correlation metrics:
Kendall’s τ (Kendall, 1938) and Spearman’s ρ rank
correlation coefficient (Spearman, 1961). Specif-
ically, we assess three ranking generation meth-
ods proposed in §5.1: Rank-rank, Rank-logits,
and Rank-score. We further compute appropriate
similarity metrics to compare distributions from
Rank-logits and scalar scores from Rank-score
with human annotations. For probability distribu-
tions (from VariErr NLI), we use Kullback-Leibler
(KL) Divergence (Kullback and Leibler, 1951),
Jensen-Shannon Distance (JSD, Endres and Schin-
delin 2003), and Total Variation Distance (TVD,
Devroye and Lugosi 2001). For scalar scores (from
SIQA and CQA), we employ Root Mean Squared
Error (RMSE, Hyndman and Koehler 2006), Mean
Absolute Error (MAE, Willmott and Matsuura
2005), and Coefficient of Determination (R2, Steel
and Torrie 1960). See details in Appendix E.

5.3 LLMs

To generate CoTs, we used two reasoning-tuned
LLMs: DeepSeek R1 660B (R1, DeepSeek-AI
et al. 2025) and QwQ 32B (QwQ, Team 2025). For
comparison with the direct explanation generation
method, we additionally included their correspond-
ing base LLMs: DeepSeek V3 (V3, DeepSeek-
AI et al. 2024) and Qwen 2.5 Max (Qwen Max,
Yang et al. 2024b). For LLM-as-judge, we adopt
Qwen2.5-7B-Instruct (qwen, Team 2024; Yang
et al. 2024a), Llama-3.1-8B-Instruct (llama, Dubey
et al. 2024), and Mistral-7B-Instruct-v0.2 (mis-
tral, Jiang et al. 2023a).
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Figure 5: Radar charts present main results across datasets and settings. Each chart spans nine axes, each
representing a distinct evaluation metric, with arrows denoting the preferred performance direction. Columns
correspond to evaluation settings wherein CoTs are generated by either R1 or QwQ and assessed by LLM judges
including qwen, llama, and mistral. The red contour indicates the explanation-free baseline. We evaluate various EL
construction methods, including direct generation from reasoning-tuned or base LLMs (Reasoning/Base-GenEX),
unprocessed CoT outputs, structured EL (Eq.2), filtered outputs ELfilter (Eq.4), and support-only content ELfilter-sup.

6 Results and Analyses

Figure 5 presents the main HLV evaluation re-
sults. Across nearly all metrics and settings, ELfilter
and ELfilter-sup consistently achieve superior per-
formance, outperforming both the explanation-
free baseline and the direct generation method7

(GenEX), underscoring the effectiveness of the pro-
posed CoT2EL pipeline in facilitating deeper HLV
understanding and explaining. Notably, although
both only contain supporting rationals, ELfilter-sup
yields a marked advantage over GenEX, indicating
that the forward paradigm and attention to inter-
label dynamics enable reasoning-tuned models
to generate CoTs with richer and more HLV-
relevant content, as motivated in §2.2. Lastly, the
consistent performance of our rank-based evalua-
tion across both distributional and score-based set-
tings affirms the robustness and generalizability of
the proposed evaluation framework, as postulated
in §2.1. The full results are in Appendix F.

Support or Oppose? It is also worth noting
that ELfilter-sup consistently outperforms ELfilter,

7Following Chen et al. (2025a), the direct generation
method includes Base-GenEX and Reasoning-GenEX using a
base LLM and a reasoning-tuned LLM, respectively. Detailed
implementation is in Appendix B.

prompting further investigation into the effective-
ness of supporting versus opposing explanations.
We conducted an ablation study by isolating only
the supporting and opposing components from both
EL and ELfilter, as shown in Figure 6.

It is clear that ELfilter-sup achieves the best re-
sults in most settings across all datasets, while
opposing-only explanations lead to performance
degradation. A closer examination of individual EL
pairs reveals two likely reasons for this outcome: i)
when rejecting a label, many CoTs tend to provide
vague or ambiguous statements, whereas support-
ing statements for a label are often more affirmative
and explicit; ii) LLMs used as judges may be more
influenced by the clearly articulated supporting rea-
soning. This ablation study not only reveals that
support-oriented explanations are more effective
for HLV modeling than oppose-oriented ones but
also underscores the importance of training future
LLMs to articulate rejections with greater clarity
and confidence, rather than ambiguity.

How to rank? Our rank-based HLV evaluation
framework applies three methods to obtain rank-
ings from LLM judges, as detailed in §5.1. We
therefore investigate which ranking method yields
the best performance, and present results in Fig-

33117



EL
EL

filt
er

EL
su

p

EL
filt

er
su

p

EL
op

p

EL
filt

er
op

p

0.6

0.8

1.0

1.2

Va
lu

e
VariErr NLI - KL 

EL
EL

filt
er

EL
su

p

EL
filt

er
su

p

EL
op

p

EL
filt

er
op

p

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
VariErr NLI - Rank-rank  

EL
EL

filt
er

EL
su

p

EL
filt

er
su

p

EL
op

p

EL
filt

er
op

p
0.7

0.8

0.9

1.0

1.1

1.2

SIQA - RMSE 

EL
EL

filt
er

EL
su

p

EL
filt

er
su

p

EL
op

p

EL
filt

er
op

p

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
SIQA Rank-rank  

EL
EL

filt
er

EL
su

p

EL
filt

er
su

p

EL
op

p

EL
filt

er
op

p
0.8

0.9

1.0

1.1

1.2

CQA - RMSE 

EL
EL

filt
er

EL
su

p

EL
filt

er
su

p

EL
op

p

EL
filt

er
op

p

0.45

0.50

0.55

0.60

0.65

0.70

0.75
CQA Rank-rank  

R1 CoT & qwen judge QwQ CoT & qwen judge R1 CoT & llama judge QwQ CoT & llama judge R1 CoT & mistral judge QwQ CoT & mistral judge

Figure 6: Results of the ablation study. The plots show the comparison of the effectiveness of supporting versus
opposing explanations for HLV evaluation. Red crosses mark the best-performing data point for each setting.
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Figure 7: Comparison of three ranking generation meth-
ods across datasets and LLM judges. Each box repre-
sents the aggregated statistics of a given ranking method.

ure 7. The comparison reveals several key pat-
terns. For the distribution-based VariErr NLI,
Rank-logits and Rank-rank achieve comparable
average performance, whereas Rank-score per-
forms consistently worse across all LLM judges.
Conversely, in the score-based SIQA and CQA,
Rank-score tends to outperform Rank-logits,
aligning better with the annotation procedure.
Rank-rank, the method in which the LLM judges
directly rank the options, exhibits stable and com-
petitive performance across all datasets and judges.

These findings confirm our motivations in §5.1,
suggesting that the choice of the ranking method
should ideally align with the annotation format
used to construct the target HLV dataset—i.e., dis-
tributional versus score-based. Moreover, the ro-
bustness of Rank-rank highlights its general appli-
cability across different HLV evaluations.

Structure Matters? We conducted an additional
evaluation for the intermediate outputs in the
CoT2EL pipeline, as shown in Table 4. CoTparser
refers to the raw, unstructured explanations ex-
tracted from CoT by reasoning LLMs, before they
are decomposed into a strict JSON format to EL by
base LLMs. We found that when the explanations
are strictly structured, the LLM judge performs bet-
ter than when using the original, unstructured ones.
This shows that LLM judges utilize explanations
more effectively when they are well-organized and
explicitly indicate which parts support or oppose
each answer choice.

We further analyze human explanations (Hu-
manEX) across datasets as described in §3, with
a focus on how structural properties influence per-
formance. In VariErr NLI, most instances provide
3 to 6 clear and high-quality human explanations
that directly support specific answers, allowing for
precise explanation-label pairs construction. In con-
trast, datasets like SIQA and CQA contain fewer
and more vague human feedback, which are often
only loosely marked as relevant. Table 4 shows
HumanEX performs significantly better on VariErr
NLI than on SIQA or CQA—while explanation
quality plays a key role, this also indirectly high-
lights the effectiveness of structured explanations.

7 Discussion and Future Works

Generalizability to Other Open-ended Tasks.
Since HLV evaluation is already subtle and chal-
lenging, we chose to first establish a rigorous and
interpretable evaluation framework in closed-form
settings. We chose NLI and multiple-choice QA
tasks primarily because they have closed output
spaces, which makes EL pair extraction and evalu-
ation more tractable and reliable. MCQA formats
are also widely used in current LLM evaluation
benchmarks (Hendrycks et al., 2021; Clark et al.,
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Datasets VariErr NLI SIQA CQA

Settings/Metrics
Distribution Rank-rank Score Rank-rank Score Rank-rank

KL ↓ JSD ↓ TVD ↓ τ ↑ ρ ↑ RMSE ↓ MAE ↓ R2 ↑ τ ↑ ρ ↑ RMSE ↓ MAE ↓ R2 ↑ τ ↑ ρ ↑

baseline 1,0006 0,2644 0,2776 0,4971 0,5119 0,8630 0,7461 0,1300 0,5451 0,6069 0,9101 0,7417 0,4255 0,5395 0,6283
HumanEX 0,9408 0,2455 0,2448 0,7411 0,7872 0,8912 0,7730 0,0912 0,4047 0,4377 0,9209 0,7536 0,4205 0,4507 0,5225

R1 - CoTparser 0,9610 0,2576 0,2637 0,5597 0,5966 0,8222 0,7113 0,2429 0,5450 0,6169 0,8849 0,7298 0,4428 0,5716 0,6419
R1 - EL 0,9583 0,2566 0,2625 0,5693 0,6089 0,8164 0,7184 0,2479 0,5611 0,6179 0,8845 0,7298 0,4554 0,5957 0,6492
R1 - ELfilter-sup 0,9534 0,2552 0,2604 0,6050 0,6408 0,7698 0,6660 0,3176 0,6500 0,6951 0,8646 0,6956 0,4937 0,6114 0,6790

QwQ - CoTparser 0,9504 0,2534 0,2589 0,5698 0,6201 0,8607 0,7248 0,2536 0,6002 0,6346 0,9006 0,7326 0,4329 0,6253 0,6734
QwQ - EL 0,9488 0,2535 0,2583 0,5962 0,6357 0,8597 0,7220 0,2670 0,6089 0,6443 0,8882 0,7317 0,4357 0,6270 0,6966
QwQ - ELfilter-sup 0,9471 0,2528 0,2552 0,6104 0,6475 0,7709 0,6672 0,3212 0,6394 0,6830 0,8787 0,7197 0,4541 0,6378 0,7109

Table 4: Results for the structure ablation study (QwQ as judge).

2018; Wang et al., 2019; Srivastava et al., 2023),
making our approach broadly applicable in practi-
cal settings. In contrast, open-ended tasks—such
as summarization or free-form sentiment classifi-
cation—while very interesting, pose greater chal-
lenges for automated evaluation, especially under
HLV settings, where subjectivity and ambiguity
are pronounced. These tasks typically require ex-
tensive human validation, and current metrics for
open-ended outputs remain underdeveloped for nu-
anced human disagreement modeling.

We believe that once rank-based evaluation and
EL-based modeling are better understood and val-
idated in these contexts, they can be adapted or
extended to open-ended tasks.

Qualitative Comparison Between Human and
Machine-generated Explanations. Qualitative
comparison between LLM- and human-generated
explanations is indeed valuable, but also challeng-
ing in the HLV setting. Many traditional expla-
nation metrics—such as lexical overlap, syntac-
tic similarity, or semantic similarity (Giulianelli
et al., 2023)—fail to capture the subtle, multidi-
mensional reasoning signals that impact label vari-
ation. As noted in Chen et al. (2025a), even minor
lexical choices in explanations can shift annota-
tors’ perceived plausibility of labels, and human vs.
model explanations often diverge subtly in word-
ing, though these differences may have minimal
effect on downstream judgments by LLM judges.

Due to the limitations of existing automatic ex-
planation evaluation metrics, we rely on LLM-as-
judge setups to assess the quality of the explana-
tions more comprehensively.

8 Conclusion

We have demonstrated that CoTs offer a rich and
underexplored source of explanation for model-
ing human label variation, shifting from the tra-
ditional reverse explanation paradigm to the for-

ward, rationale-grounded paradigm. Our proposed
pipeline is able to extract high-quality explanation-
label pairs by leveraging LLMs and refining them
through linguistically-grounded discourse segmen-
tation models. Our results show that combining
LLMs with discourse segmenters improves the
alignment of model explanations with the inher-
ently diverse perspectives of human annotators.
Furthermore, our proposed rank-based evaluation
framework reflects a more faithful match to human
annotation behavior, moving beyond distributional
comparisons.

We believe our findings lay the groundwork for
more robust, explanation-driven, and linguistically-
enhanced approaches to understanding and evalu-
ating human label variation. While this work only
leveraged discourse segmentation, explicitly incor-
porating discourse relations—such as contrast or
causal—may help and provide deeper insights into
how reasoning structures map onto human disagree-
ment, ambiguity, and aid interpretation.

Limitations

One limitation of our approach lies in the use of
discourse segmenters that were trained on exist-
ing discourse datasets, which may differ in style
and content from the CoT reasoning text we ana-
lyze. As a result, the segmenter outputs may not
optimally reflect the discourse structure inherent to
CoTs, which often contain informal, fragmented,
or model-specific reasoning styles. Moreover, we
did not conduct a comprehensive evaluation of seg-
menter performance on CoT data but instead re-
lied directly on the segmenter outputs. While the
performance of the discourse segmenters is rela-
tively good for English (as shown in Appendix
A), future work might benefit from developing
or fine-tuning these discourse models specifically
on the annotated CoT data, which could poten-
tially improve the precision and interpretability of
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discourse-informed explanation extraction by in-
corporating discourse relations—especially those
aligned with human rhetorical patterns.
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A Training Details and Performance of
DisCoDisCo

We train DisCoDisCo (Gessler et al., 2021), the
winning system of the DISRPT 2021 Shared Task
(Zeldes et al., 2021) using the latest DISRPT 2023
Shared Task data (Braud et al., 2023). Specifically,
for the discourse unit segmentation model, we use
the English GUM corpus (Zeldes, 2017) which
contains multiple genres, which has been proved to
achieve better model generalizability when trained
on genre-diverse data for discourse parsing (Liu
and Zeldes, 2023). For the connective detection
model, we use the PDTB v3 data in DISRPT, the
largest English connective dataset to date. Table
5 shows the performance of both models on their
respective test partition averaged over five runs.

Model Precision Recall F1

EDU segmentation 84.06 80.66 82.32
connective detection 94.20 95.26 94.73

Table 5: Performance of the Two Discourse Segmenters.

B Detailed Implementation of the
Proposed CoT2EL Pipeline

This section describes the implementation details of
our proposed CoT2EL pipeline. As we consider the
CoT process to be a forward reasoning procedure
aligned with human annotation, we construct a task-
specific prompt for each of the three tasks—VariErr
NLI, SIQA, and CQA—that adheres to the for-
ward human annotation process. These prompts
are shown in Table 6. We additionally provide
the corresponding prompt used for the direct ex-
planation generation method (GenEX) following
Chen et al. (2025a). Base LLMs and reasoning-
tuned LLMs both use the GenEX prompt respec-
tively to obtain the corresponding Base-GenEX and
Reasoning-GenEX settings.

By combining the prompt in Table 6 with the in-
put instance (i.e., question and candidate options),
we query the reasoning-tuned LLM to generate a
CoT reasoning trace, as expressed in Equation 1.

Subsequently, we further prompt the reasoning-
tuned LLM to parse the generated CoT into sup-
porting and opposing statements.9 The upper por-
tion of Table 7 presents the specific parsing prompt.
This step utilizes the reasoning-tuned LLM itself to
parse its prior output and generate the parsed CoT,
denoted as CoTparser.

Due to the diversity and randomness inher-
ent in LLM outputs, the format of CoTparser is
highly variable and difficult to post-process. There-
fore, we leverage the JSON output capabilities
of the base LLM associated with the reasoning-
tuned LLM. Specifically, we include a system
prompt instructing the base LLM to produce a well-
structured JSON output adhering to a predefined
format (prompt at the bottom of Table 7. This al-
lows for easier downstream processing into the EL
pairs as shown in Equation 2.10

C Detailed Metrics and Results for
Human Validation

C.1 Metrics Calculation
To evaluate the similarity between textual expla-
nations, we follow prior work (Giulianelli et al.,
2023) and adopt three metrics that capture different
linguistic aspects: Lexical, Syntactic, and Seman-
tic similarities. In addition, we extend this frame-
work by incorporating the Levenshtein Ratio as
a fourth metric. All metrics are implemented as
distance functions normalized to the range [0, 1],
where higher values indicate greater dissimilarity.
Their definitions and computation methods are de-
tailed below.

Lexical Similarity. Lexical similarity is defined
based on the overlap of n-grams between two
strings. For n ∈ {1, 2, 3}, we compute the sets
of n-grams for each string and measure the propor-
tion of shared n-grams:

Slexical =
|Gn(A) ∩Gn(B)|
|Gn(A) ∪Gn(B)| , (5)

where Gn(X) denotes the set of n-grams extracted
from string X . This metric rewards surface-level
lexical overlap.

9Preliminary experiments suggest that when only asked
to extract supporting statements, the reasoning-tuned LLM
tends to mix in some opposing content. By explicitly prompt-
ing the model to output supporting and opposing statements
separately, we significantly reduce this ambiguity.

10Even after obtaining the JSON outputs, we further perform
post-processing to ensure that the options correctly align with
their respective labels.
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Syntactic Similarity. Syntactic similarity fol-
lows the same formulation as lexical similarity but
operates on sequences of part-of-speech (POS) tags
rather than surface tokens. POS tagging is per-
formed using the spaCy pipeline:11

Ssyntactic =
|Tn(A) ∩ Tn(B)|
|Tn(A) ∪ Tn(B)| , (6)

where Tn(X) denotes the set of POS tag n-grams
of sentence X .

Semantic Similarity. Semantic similarity is com-
puted using cosine similarity between sentence em-
beddings. We use the model following Reimers
and Gurevych (2019) to obtain dense vector repre-
sentations vA and vB:12

Ssemantic =
vA · vB

∥vA∥∥vB∥
, (7)

Cosine similarity returns values in [−1, 1],
but since embeddings from this model are non-
negative, it typically yields values in [0, 1].

Levenshtein Ratio. We also include a character-
level similarity measure: the Levenshtein Ratio.
Let lev(A,B) denote the Levenshtein distance, i.e.,
the minimum number of character-level edits (inser-
tions, deletions, substitutions) needed to transform
string A into B. The Levenshtein Ratio is defined
as:

Slev = 1− lev(A,B)

max(|A|, |B|) , (8)

where |A| and |B| are the lengths of the strings.
This score approaches 1 when the strings are nearly
identical and decreases as they diverge.

All similarity scores are bounded in [0, 1] and are
designed such that higher scores indicate stronger
similarity. This unified setup supports a nuanced,
multi-level analysis of explanation similarity and
invites future extensions involving additional lin-
guistic or pragmatic metrics.

C.2 Detailed Scores for Human Validation
We here introduce the detailed procedure for com-
puting the human validation scores. Assume that
within the Explanation-Label (EL) pairs, there are
k distinct labels. For each label, there exist two
types of explanation sets: support and oppose.
The same structure holds for the human-annotated
explanation-label pairs, denoted as ELhuman.

11From spaCy, en_core_web_md (Honnibal et al., 2020).
12sentence-transformers/all-distilroberta-v1.

For each label l ∈ {1, . . . , k}, and for each
stance s ∈ {support, oppose}, we compare the cor-
responding explanation sets from EL and ELhuman.
Let these be denoted as:

EXSet(l,s)EL and EXSet(l,s)ELhuman
, (9)

The similarity score for each such pair is com-
puted as follows:

• If one of the sets is empty while the other is
non-empty, assign a score of 0.

• If both sets are empty, assign a score of 1.

• If both sets are non-empty:

i) For each explanation e ∈ EXSet(l,s)EL , com-
pute its similarity with all explanations h ∈
EXSet(l,s)ELhuman

using the four metrics described
in § C.1.

ii) For each explanation e, define its score as
the maximum of its average similarity across
metrics:

sim(e) = max
h∈EXSet(l,s)ELhuman

avg_sim(e, h), (10)

where avg_sim(e, h) denotes the mean of the
four similarity metrics.

iii) The final similarity score for the pair
(l, s) is the average of sim(e) over all e ∈
EXSet(l,s)EL :

Score(l,s) =
1

|EXSet(l,s)EL |
∑

e∈EXSet(l,s)EL

sim(e),

(11)

After calculating the scores for all 2k explana-
tion set pairs (i.e., each label’s support and oppose
explanations), we compute the average to obtain
the similarity score between EL and ELhuman for a
single instance:

S_instance =
1

2k

k∑

l=1

(
Score(l,support) + Score(l,oppose)

)
.

(12)

Finally, we average the instance-level scores
over all instances in the dataset to obtain the overall
similarity score. Importantly, although avg_sim is
used only for selecting the best match per expla-
nation, the scores for each of the four individual
metrics are also recorded and averaged across all
explanations and instances. The final results for
each of the four metrics are reported in Table 8.
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D Details of Ranking Generation
Methods

Here we elaborate on the implementation details
of the three LLM-judge-based ranking generation
methods introduced in Section 5.1. Note that for all
methods, the final ranking is obtained by averaging
the rankings from three independent runs.

Direct Ranking. In this method, we prompt the
LLM to directly generate a ranking. The prompts
used for different tasks are listed in Table 9. After
receiving a space-separated list of options, we pro-
cess the output as follows: if indices for all options
are present, we rank them according to the order
in which they appear. If only a subset of indices
is provided, the missing options are assigned the
lowest possible rank (i.e., tied for last place).

First-Token-Logits Ranking. The prompt used
in this method is identical to the one used for for-
ward chain-of-thought generation (see Table 6).
However, in this case, we focus on the first token
of the LLM’s answer. Following the method pro-
posed in Chen et al. (2025a, 2024), we extract the
scores corresponding to each option index from the
first-token logits. We then normalize these scores
to obtain a probability distribution over the labels.
This distribution can be used for distribution-based
similarity evaluation or converted into rankings.

Scoring-Based Ranking. In this approach, we
ask the LLM judges to assign a likelihood score
from 1 to 5 for each option, with higher scores indi-
cating higher plausibility. The prompt used for this
setting is shown in Table 10. These scores can be
used for score-based similarity evaluation or trans-
formed into rankings for ranking-based evaluation.

To evaluate the performance of the explanations,
we augment all the above prompts with explana-
tion content and instruct the LLM judges to take
these rationales into account when making their
decisions. We take the EL injection prompt for
VariErr NLI as an example in Table 11. Both SIQA
and CQA adopt similar prompts.

All the prompts described above can be read-
ily generalized to a wide range of tasks, such as
summarization, sentiment analysis, cultural eval-
uation and even visual question answering (Uma
et al., 2021; Zhao et al., 2025; Lan et al., 2025a,b).
In addition, insights from linguistics may further
refine and improve these prompts. For example,
as discussed in Jiang et al. (2023b); Hong et al.

(2025), adopting a more fine-grained taxonomy in
the NLI task could decompose the currently broad
categories of entailment, neutral, and contradiction,
thereby yielding a more precise label distribution.

E Details of the Metrics in HLV
Evaluation

This section provides a detailed explanation of the
calculation formulas for all the metrics introduced
in §5.2.

E.1 Rank Correlation Metrics
Let (xi, yi) for i = 1, . . . , n be paired ranks from
two sources (e.g., human vs. model).

Kendall’s τ (Kendall, 1938) Measures the dif-
ference between the number of concordant and
discordant pairs:

τ =
C −D

1
2n(n− 1)

, (13)

where C is the number of concordant pairs and D
is the number of discordant pairs.

Spearman’s ρ (Spearman, 1961) Measures the
Pearson correlation between rank variables:

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
, (14)

where di = xi − yi is the difference between the
ranks.

E.2 Distribution-Based Metrics
For probability distributions (from VariErr NLI),
we use:

• Kullback-Leibler Divergence (KL) (Kull-
back and Leibler, 1951)

• Jensen-Shannon Distance (JSD) (Endres
and Schindelin, 2003)

• Total Variation Distance (TVD) (Devroye
and Lugosi, 2001)

Given discrete distributions P and Q:

DKL(P∥Q) =
∑

x∈X
P (x) log

P (x)

Q(x)
, (15)

DJSD(P∥Q) =

√
1

2
(DKL(P∥M) +DKL(Q∥M)), (16)
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where M = 1
2(P +Q).

DTVD(P,Q) =
1

2

∑

x∈X
|P (x)−Q(x)|, (17)

E.3 Scalar-Based Metrics
For scalar scores (e.g., from SIQA and CQA), we
use:

• Root Mean Squared Error (RMSE) (Hynd-
man and Koehler, 2006)

• Mean Absolute Error (MAE) (Willmott and
Matsuura, 2005)

• Coefficient of Determination (R2) (Steel and
Torrie, 1960)

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2, (18)

MAE =
1

n

n∑

i=1

|yi − ŷi|, (19)

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

. (20)

where yi is the human annotation, ŷi is the model
prediction, and ȳ is the mean of human annota-
tions.

F HLV Evaluation Full Results

In this section, we report the full HLV evaluation
results across all settings and datasets. All the re-
sult figures and tables presented in §6 are derived
from the detailed scores provided here. Specifi-
cally, the results for VariErr NLI are presented in
Table 12, SIQA in Table 13, and CQA in Table 14.
All rankings, scores, and distributions from LLM
judges are averaged over three independent runs.
For VariErr NLI, the gold human distributions and
rankings are computed as the average across anno-
tations from MNLI, VariErr NLI, and Chaos NLI,
as described in §3. For SIQA and CQA, the gold
human label scores are obtained by averaging the
scores provided by five annotators for each corre-
sponding label.

G Use of AI Assistants

The authors acknowledge the use of ChatGPT
solely for correcting grammatical errors, enhancing
the coherence of the final manuscript.
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Datasets Prompts

VariErr NLI
CoT

Please determine whether the following statement is true (entailment), undetermined
(neutral), or false (contradiction) given the context below and select ONE of the listed
options and start your answer with a single letter.
Context: {premise}
Statement: {hypothesis}
A. Entailment
B. Neutral
C. Contradiction
Answer:

VariErr NLI
GenEX

You are an expert in Natural Language Inference (NLI). Please list all possible
explanations why the following statement is {target-label} given the context below
without introductory phrases.
Context: {premise}
Statement: {hypothesis}
Answer:

SIQA
CoT

Please read the following social scenario and the accompanying question, choose the most
appropriate answer from the options provided and start your answer with a single letter.
Scenario: {scenario}
Question: {question}
A. {answerA}
B. {answerB}
C. {answerC}
Answer:

SIQA
GenEX

You are an expert in social intelligence question answering. Please list all possible
explanations why the most appropriate answer is {target-label} given the following social
scenario and the accompanying question below without introductory phrases.
Scenario: {scenario}
Question: {question}
Answer:

CQA
CoT

Please read the following question, choose the most appropriate answer from the options
provided and start your answer with a single letter.
Question: {question}
A. {answerA}
B. {answerB}
C. {answerC}
D. {answerD}
E. {answerE}
Answer:

CQA
GenEX

You are an expert in commonsense question answering. Please list all possible
explanations why the most appropriate answer is {target-label} given the question below
without introductory phrases.
Question: {question}
Answer:

Table 6: The forward task-specific prompts for CoT or direct explanation generation.
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Explanations Prompts

CoTparser The content of your reasoning process is below:
{CoT}
Please extract and list all the original sentences from the aforementioned reasoning
process that support and oppose each option separately.

EL system prompt:
Convert the given markdown into a structured JSON where each option has two keys:
support and oppose. Each key should map to a list of statements from the markdown that
either support or oppose that option.

EXAMPLE JSON OUTPUT:
{
"Option A": {
"support": ["SentenceA.1","SentenceA.2"],
"oppose": ["SentenceA.3"]
},
"Option B": {
"support": ["SentenceB.1"],
"oppose": []
},
...
}

Table 7: Prompts for LLM parser and JSON structuring.

LLMs - Datasets Lexical Syntactic Semantic Levenshtein Ratio AVG

n = 1↑ n = 2 ↑ n = 3↑ n = 1↑ n = 2↑ n = 3↑ Cos.↑ Euc.↑ ratio ↑ equal-avg ↑ weight-avg ↑
DeepSeek R1 - VariErr NLI - CoT
all
EL 0,6877 0,6249 0,5982 0,8209 0,7045 0,6468 0,7202 0,6877 0,6470 0,6820 0,6780
ELfilter 0,8309 0,7883 0,7756 0,9119 0,8295 0,7831 0,8265 0,7551 0,7943 0,8106 0,8062

only-support
EL-sup 0,7152 0,6607 0,6432 0,8233 0,7141 0,6598 0,7192 0,6779 0,6793 0,6992 0,6958
ELfilter-sup 0,8514 0,8108 0,7995 0,9199 0,8477 0,8060 0,8410 0,7668 0,8232 0,8296 0,8264

DeepSeek R1 - SIQA - CoT
all
EL 0,8095 0,7632 0,7471 0,8920 0,8071 0,7720 0,8228 0,7575 0,7364 0,7897 0,7809
ELfilter 0,8947 0,8823 0,8782 0,9197 0,8863 0,8749 0,8866 0,7913 0,8712 0,8761 0,8722

only-support
EL-sup 0,8360 0,7947 0,7856 0,9046 0,8257 0,7921 0,8424 0,7611 0,8081 0,8167 0,8140
ELfilter-sup 0,9000 0,8895 0,8861 0,9220 0,8923 0,8821 0,8938 0,7955 0,8810 0,8825 0,8791

DeepSeek R1 - CQA - CoT
all
EL 0,8400 0,7988 0,7843 0,9067 0,8399 0,8071 0,8408 0,7856 0,7771 0,8200 0,8123
ELfilter 0,8887 0,8749 0,8713 0,9190 0,8907 0,8721 0,8676 0,7722 0,8591 0,8684 0,8628

only-support
EL-sup 0,8536 0,8295 0,8250 0,8860 0,8515 0,8342 0,8585 0,8137 0,8356 0,8431 0,8412
ELfilter-sup 0,8962 0,8828 0,8797 0,9210 0,8967 0,8796 0,8724 0,7765 0,8692 0,8749 0,8697

Table 8: Results for the validation based on human annotated subsets.

33129



Datasets Prompts

VariErr NLI Please assess whether the following statement is true (entailment), undetermined (neutral),
or false (contradiction) given the context below, rank all the following options from most
appropriate to least appropriate. Only output the letters representing the options,
separated by spaces.
Context: {premise}
Statement: {hypothesis}
A. Entailment
B. Neutral
C. Contradiction
Answer:

SIQA Please read the following social scenario and the accompanying question, rank all the
following options from best to worst based on relevance and appropriateness. Only output
the letters representing the options, separated by spaces.
Scenario: {scenario}
Question: {question}
A. {answerA}
B. {answerB}
C. {answerC}
Answer:

CQA Please read the following question, rank all the following options from best to worst based
on relevance and appropriateness. Only output the letters representing the options,
separated by spaces.
Question: {question}
A. {answerA}
B. {answerB}
C. {answerC}
D. {answerD}
E. {answerE}
Answer:

Table 9: The prompts for the direct ranking method across three datasets.
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Datasets Prompts

VariErr NLI Please rate the following answer based on its plausibility in representing the relationship
between the context and the statement on the 5-Point Scale rating as below. Only output a
single integer corresponding to your evaluation.
Context: {premise}
Statement: {hypothesis}
Answer: {target-label}
Plausibility Ratings:
1 = Impossible
2 = Technically Possible
3 = Plausible
4 = Likely
5 = Very Likely
Rating:

SIQA Please read the following social scenario and the accompanying question, rate the
plausibility of the answer on the 5-Point Scale rating as below. Only output a single
integer corresponding to your evaluation.
Scenario: {scenario}
Question: {question}
Answer: {target-label}
Plausibility Ratings:
1 = Impossible
2 = Technically Possible
3 = Plausible
4 = Likely
5 = Very Likely
Rating:

CQA Please read the following question, rate the plausibility of the answer on the 5-Point Scale
rating as below. Only output a single integer corresponding to your evaluation.
Question: {question}
Answer: {target-label}
Plausibility Ratings:
1 = Impossible
2 = Technically Possible
3 = Plausible
4 = Likely
5 = Very Likely
Rating:

Table 10: The prompts for the score-based ranking method across three datasets.
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Datasets Prompts

Direct Ranking
with ELs

Please assess whether the following statement is true (entailment), undetermined (neutral),
or false (contradiction) given the context below. Consider relevant perspectives, possible
explanations, or reasoning patterns in the following explanations. Rank all the following
options from most appropriate to least appropriate. Only output the letters representing
the options, separated by spaces.
Context: {premise}
Statement: {hypothesis}
A. Entailment
B. Neutral
C. Contradiction
Explanations: {explanation-label-pairs}
Answer:

First-Token-
Logits Ranking
with ELs

Please determine whether the following statement is true (entailment), undetermined
(neutral), or false (contradiction) given the context below. Consider relevant perspectives,
possible explanations, or reasoning patterns in the following explanations. Select ONE of
the listed options and start your answer with a single letter.
Context: {premise}
Statement: {hypothesis}
A. Entailment
B. Neutral
C. Contradiction
Explanations: {explanation-label-pairs}
Answer:

Score-Based
Ranking with
ELs

Please rate the following answer based on its plausibility in representing the relationship
between the context and the statement on the 5-Point Scale rating as below. Consider
relevant perspectives, possible explanations, or reasoning patterns in the following
explanations. Only output a single integer corresponding to your evaluation.
Context: {premise}
Statement: {hypothesis}
Answer: {target-label}
Plausibility Ratings:
1 = Impossible
2 = Technically Possible
3 = Plausible
4 = Likely
5 = Very Likely
Explanations: {explanation-label-pairs}
Rating:

Table 11: The example prompts of the EL injection for VariErr NLI.
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Settings/Metrics
Distribution Rank-rank Rank-logits Rank-score

KL ↓ JSD ↓ TVD ↓ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑

qwen as judge
baseline 1,0006 0,2644 0,2776 0,4971 0,5119 0,4619 0,5085 0,3190 0,3452
HumanEX 0,9408 0,2455 0,2448 0,7411 0,7872 0,6574 0,7151 0,3864 0,4151
V3 GenEX 0,9835 0,2626 0,2737 0,5071 0,5334 0,4648 0,5269 0,2817 0,2980
R1
GenEX 0,9733 0,2615 0,2716 0,5142 0,5557 0,4688 0,5321 0,2902 0,3078
CoT 0,9565 0,2590 0,2655 0,5129 0,5421 0,4731 0,5399 0,3933 0,4058
CoTparser 0,9610 0,2576 0,2637 0,5597 0,5966 0,4786 0,5404 0,4014 0,4187
EL 0,9583 0,2566 0,2625 0,5693 0,6089 0,4928 0,5539 0,4064 0,4365
ELfilter 0,9515 0,2558 0,2611 0,5708 0,6352 0,5289 0,5802 0,4388 0,4480
EL-sup 0,9566 0,2564 0,2621 0,5905 0,6260 0,5037 0,5619 0,4122 0,4377
ELfilter-sup 0,9534 0,2552 0,2604 0,6050 0,6408 0,5604 0,6099 0,4213 0,4519
EL-opp 0,9756 0,2590 0,2675 0,4768 0,5071 0,4734 0,5117 0,3658 0,3903
ELfilter-opp 0,9716 0,2585 0,2663 0,4898 0,5231 0,4785 0,5171 0,3779 0,4032
Qwen-Max GenEX 0,9833 0,2617 0,2723 0,5019 0,5459 0,4743 0,5084 0,2807 0,3006
QwQ
GenEX 0,9620 0,2576 0,2668 0,5701 0,6008 0,4921 0,5253 0,2608 0,2759
CoT 0,9515 0,2543 0,2606 0,5738 0,6152 0,5095 0,5383 0,4004 0,4232
CoTparser 0,9504 0,2534 0,2589 0,5698 0,6201 0,5183 0,5491 0,4022 0,4309
EL 0,9488 0,2535 0,2583 0,5962 0,6357 0,5260 0,5534 0,4200 0,4506
ELfilter 0,9409 0,2515 0,2567 0,6063 0,6369 0,5580 0,6161 0,4675 0,5027
EL-sup 0,9445 0,2533 0,2582 0,6023 0,6386 0,5286 0,5871 0,4475 0,4771
ELfilter-sup 0,9471 0,2528 0,2552 0,6104 0,6475 0,5637 0,6129 0,5287 0,5685
EL-opp 0,9647 0,2572 0,2652 0,4937 0,5269 0,4570 0,5123 0,3741 0,3937
ELfilter-opp 0,9547 0,2564 0,2639 0,4904 0,5281 0,5034 0,5541 0,4197 0,4095

llama as judge
baseline 1,2415 0,2962 0,3207 0,4067 0,4409 0,4324 0,4739 0,0788 0,0809
HumanEX 1,2032 0,2883 0,3081 0,4392 0,4640 0,5987 0,6672 0,1591 0,1689
V3 GenEX 1,2561 0,2982 0,3231 0,1716 0,1672 0,2079 0,2205 0,0613 0,0670
R1
GenEX 1,2580 0,2982 0,3231 0,1499 0,1529 0,1842 0,1987 0,0739 0,0737
CoT 1,1953 0,2951 0,3187 0,4140 0,4201 0,4574 0,5308 0,1595 0,1674
CoTparser 1,1925 0,2904 0,3088 0,4178 0,4264 0,4789 0,5337 0,1603 0,1730
EL 1,1883 0,2877 0,3074 0,4180 0,4339 0,4881 0,5412 0,1614 0,1761
ELfilter 1,1770 0,2874 0,3049 0,4523 0,4864 0,4980 0,5526 0,2619 0,2855
EL-sup 1,1722 0,2859 0,3048 0,4292 0,4443 0,4931 0,5464 0,1848 0,2051
ELfilter-sup 1,0831 0,2744 0,2878 0,4645 0,4967 0,5085 0,5568 0,2677 0,2868
EL-opp 1,2374 0,2953 0,3185 0,4000 0,3848 0,4248 0,4737 0,1295 0,1402
ELfilter-opp 1,2339 0,2947 0,3178 0,4095 0,3974 0,4374 0,4872 0,1414 0,1573
Qwen-Max GenEX 1,2552 0,2970 0,3216 0,2650 0,2779 0,3193 0,3601 0,1238 0,1358
QwQ
GenEX 1,2665 0,2991 0,3242 0,1746 0,1765 0,1798 0,1884 0,0506 0,0546
CoT 1,1979 0,2916 0,3140 0,4228 0,4593 0,5040 0,5652 0,1953 0,1374
CoTparser 1,1991 0,2886 0,3095 0,4587 0,4883 0,5054 0,5696 0,2064 0,2242
EL 1,1812 0,2859 0,3047 0,4696 0,4892 0,5136 0,5714 0,2207 0,2413
ELfilter 1,1004 0,2755 0,2827 0,5125 0,5036 0,5209 0,5802 0,2902 0,3119
EL-sup 1,1671 0,2836 0,3013 0,5041 0,5352 0,5194 0,5772 0,2344 0,2515
ELfilter-sup 1,0764 0,2708 0,2827 0,5239 0,5573 0,5212 0,5820 0,3128 0,3446
EL-opp 1,2392 0,2954 0,3190 0,3585 0,3824 0,4417 0,4924 0,1127 0,1175
ELfilter-opp 1,2291 0,2938 0,3165 0,3861 0,4092 0,5035 0,5111 0,1241 0,1247

mistral as judge
baseline 0,6892 0,2611 0,2949 0,4799 0,5096 0,4053 0,4385 0,3209 0,3444
HumanEX 0,6228 0,2336 0,2430 0,4994 0,5298 0,4376 0,4747 0,4311 0,4553
V3 GenEX 0,7603 0,2603 0,2841 0,3880 0,4101 0,3572 0,3999 0,1926 0,1999
R1
GenEX 0,8239 0,2609 0,2816 0,4211 0,4464 0,3547 0,3900 0,1398 0,1511
CoT 0,6503 0,2512 0,2756 0,4712 0,4979 0,4213 0,4677 0,3765 0,4073
CoTparser 0,6471 0,2508 0,2712 0,4853 0,5145 0,4330 0,4705 0,3847 0,4166
EL 0,6405 0,2490 0,2710 0,4860 0,5155 0,4342 0,4742 0,3931 0,4189
ELfilter 0,6334 0,2479 0,2687 0,4959 0,5240 0,4466 0,4825 0,4009 0,4259
EL-sup 0,6384 0,2497 0,2697 0,4880 0,5173 0,4416 0,4779 0,4006 0,4281
ELfilter-sup 0,6331 0,2476 0,2684 0,4942 0,5258 0,4439 0,4895 0,4035 0,4285
EL-opp 0,6671 0,2619 0,2844 0,4542 0,4775 0,4056 0,4402 0,3510 0,3802
ELfilter-opp 0,6495 0,2546 0,2860 0,4651 0,4812 0,4189 0,4512 0,3596 0,4031
Qwen-Max GenEX 0,8876 0,2853 0,3208 0,3435 0,3641 0,2436 0,2652 0,2593 0,2783
QwQ
GenEX 0,8475 0,2645 0,2889 0,3887 0,4112 0,3390 0,3757 0,3563 0,3917
CoT 0,6275 0,2580 0,2779 0,4873 0,5019 0,4336 0,4732 0,3993 0,4206
CoTparser 0,6213 0,2497 0,2649 0,4920 0,5212 0,4433 0,4795 0,4048 0,4230
EL 0,6167 0,2473 0,2639 0,4970 0,5269 0,4436 0,4805 0,4186 0,4293
ELfilter 0,5906 0,2445 0,2616 0,5170 0,5481 0,4588 0,5067 0,4287 0,4602
EL-sup 0,6007 0,2444 0,2626 0,5059 0,5363 0,4529 0,4902 0,4276 0,4557
ELfilter-sup 0,6003 0,2437 0,2611 0,5429 0,5756 0,4663 0,4957 0,4516 0,4812
EL-opp 0,6612 0,2691 0,2890 0,4562 0,4832 0,4202 0,4477 0,3822 0,4091
ELfilter-opp 0,6298 0,2681 0,2868 0,4752 0,5037 0,4309 0,4637 0,3833 0,4100

Table 12: All HLV evaluation results on VariErr NLI dataset.
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Settings/Metrics
Score Rank-rank Rank-logits Rank-score

RMSE ↓ MAE ↓ R2 ↑ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑

qwen as judge
baseline 0,8630 0,7461 0,1300 0,5451 0,6069 0,5500 0,6083 0,6568 0,6924
HumanEX 0,8912 0,7730 0,0912 0,4047 0,4377 0,5258 0,5801 0,6537 0,6904
V3 GenEX 1,0422 0,9076 -0,2196 0,4708 0,5207 0,5187 0,5647 0,5383 0,5736
R1
GenEX 0,9728 0,8473 -0,0633 0,4577 0,5148 0,5085 0,5650 0,5668 0,5974
CoT 0,8759 0,7582 0,1165 0,5453 0,6150 0,5482 0,6171 0,6661 0,7000
CoTparser 0,8222 0,7113 0,2429 0,5450 0,6169 0,5509 0,6212 0,6922 0,7330
EL 0,8164 0,7184 0,2479 0,5611 0,6179 0,5671 0,6292 0,6411 0,6756
ELfilter 0,7778 0,6775 0,3272 0,6366 0,6260 0,6020 0,6465 0,6933 0,7261
EL-sup 0,7882 0,6763 0,2829 0,6420 0,6636 0,5832 0,6454 0,6650 0,6971
ELfilter-sup 0,7698 0,6660 0,3176 0,6500 0,6951 0,6154 0,6615 0,6996 0,7334
EL-opp 0,8083 0,6919 0,2691 0,5841 0,6286 0,5589 0,6040 0,6551 0,7062
ELfilter-opp 0,8064 0,6903 0,2705 0,5899 0,6291 0,5810 0,6336 0,6783 0,7210
Qwen-Max GenEX 0,9450 0,8171 -0,0223 0,5296 0,5900 0,5103 0,5669 0,4695 0,5032
QwQ
GenEX 0,9599 0,8233 -0,0639 0,4511 0,4997 0,5176 0,5706 0,4794 0,5166
CoT 0,8662 0,7515 0,1535 0,5777 0,6004 0,5509 0,6091 0,6500 0,6916
CoTparser 0,8607 0,7248 0,2536 0,6002 0,6346 0,5632 0,6142 0,6533 0,6965
EL 0,8597 0,7220 0,2670 0,6089 0,6443 0,5669 0,6164 0,6663 0,7153
ELfilter 0,8023 0,6948 0,2884 0,6350 0,6569 0,5822 0,6365 0,6998 0,7235
EL-sup 0,7919 0,6875 0,2817 0,6104 0,6564 0,5876 0,6263 0,6873 0,7397
ELfilter-sup 0,7709 0,6672 0,3212 0,6394 0,6830 0,5937 0,6513 0,6982 0,7417
EL-opp 0,8472 0,7396 0,1844 0,5384 0,5883 0,5085 0,5610 0,6450 0,6872
ELfilter-opp 0,8247 0,7321 0,1999 0,5521 0,5998 0,5404 0,5991 0,6498 0,6984

llama as judge
baseline 1,0501 0,8665 0,1211 0,4219 0,4731 0,4937 0,5467 0,4449 0,4815
HumanEX 0,9009 0,7915 0,1045 0,1548 0,1734 0,2050 0,2204 0,4223 0,4508
V3 GenEX 1,0338 0,9230 0,1000 0,2915 0,3213 0,3047 0,3355 0,2705 0,2963
R1
GenEX 1,0584 0,9383 0,1100 0,2563 0,2907 0,2855 0,3138 0,2199 0,2401
CoT 0,9099 0,9259 0,1245 0,4427 0,4860 0,5160 0,5449 0,4657 0,4623
CoTparser 0,8988 0,8076 0,1285 0,4454 0,4988 0,5187 0,5577 0,4810 0,4973
EL 0,8860 0,7998 0,1463 0,4539 0,5101 0,5189 0,5680 0,4865 0,5150
ELfilter 0,8602 0,7948 0,1749 0,4888 0,5567 0,5371 0,5736 0,5136 0,5486
EL-sup 0,8909 0,7787 0,1572 0,4861 0,5424 0,5204 0,5750 0,4995 0,5303
ELfilter-sup 0,8760 0,7678 0,2116 0,5106 0,5626 0,5634 0,6002 0,5296 0,5715
EL-opp 0,9071 0,8188 0,0781 0,3558 0,4177 0,4153 0,4317 0,4007 0,4264
ELfilter-opp 0,9025 0,8028 0,0804 0,3572 0,4416 0,4270 0,4459 0,4168 0,4471
Qwen-Max GenEX 1,0201 0,8949 0,0901 0,2970 0,3198 0,3968 0,4268 0,2802 0,3037
QwQ
GenEX 1,0606 0,9367 0,0943 0,2855 0,3322 0,3281 0,3612 0,1836 0,2061
CoT 0,8941 0,8005 0,1519 0,4468 0,4908 0,5282 0,5621 0,4399 0,4637
CoTparser 0,8904 0,7975 0,1580 0,4614 0,5121 0,5378 0,5739 0,4422 0,4686
EL 0,8902 0,7851 0,1612 0,4620 0,5216 0,5469 0,6043 0,4793 0,5093
ELfilter 0,8835 0,7822 0,1666 0,5439 0,6069 0,5646 0,6072 0,4908 0,5282
EL-sup 0,8819 0,7831 0,1627 0,4880 0,5440 0,5554 0,6051 0,4846 0,5186
ELfilter-sup 0,8442 0,7468 0,2385 0,5317 0,5937 0,5751 0,6252 0,5413 0,5644
EL-opp 0,9200 0,8167 0,1125 0,3887 0,4335 0,3941 0,4389 0,4057 0,4090
ELfilter-opp 0,9150 0,8101 0,1271 0,3925 0,4362 0,4297 0,4819 0,4301 0,4407

mistral as judge
baseline 1,3337 1,1461 -1,0778 0,0644 0,1059 0,4978 0,5251 0,4661 0,4937
HumanEX 1,2414 1,0864 -0,7425 0,3922 0,4106 0,4801 0,5276 0,5903 0,6271
V3 GenEX 1,3749 1,2283 -1,1310 0,3494 0,3699 0,3812 0,4392 0,4851 0,5132
R1
GenEX 1,2964 1,1349 -0,8865 0,3187 0,3401 0,4762 0,5287 0,4352 0,4661
CoT 1,0905 0,9563 -0,2716 0,5558 0,5803 0,4828 0,5317 0,6365 0,6949
CoTparser 1,0790 0,9371 -0,2219 0,5617 0,5982 0,4855 0,5497 0,6723 0,7038
EL 1,0661 0,9189 -0,2129 0,5690 0,6041 0,4986 0,5508 0,6674 0,7098
ELfilter 1,0470 0,9024 -0,1758 0,6205 0,6534 0,5160 0,5688 0,6777 0,7322
EL-sup 1,0543 0,9099 -0,1948 0,5702 0,6047 0,5037 0,5537 0,6762 0,7163
ELfilter-sup 1,0172 0,8789 -0,1326 0,6682 0,7053 0,5106 0,5768 0,6939 0,7254
EL-opp 1,1682 1,1371 -0,6817 0,4306 0,4477 0,4547 0,5086 0,6259 0,6831
ELfilter-opp 1,1097 1,0357 -0,4609 0,5219 0,5508 0,4667 0,5357 0,6403 0,6958
Qwen-Max GenEX 1,2137 1,0645 -0,6225 0,3974 0,4171 0,5246 0,5731 0,5322 0,5677
QwQ
GenEX 1,3583 1,1931 -1,0457 0,3805 0,4012 0,4051 0,4492 0,4056 0,4331
CoT 1,1141 1,0037 -0,3866 0,5220 0,5418 0,5375 0,5970 0,6413 0,6689
CoTparser 1,1063 0,9781 -0,3289 0,5230 0,5488 0,5468 0,6043 0,6499 0,6765
EL 1,0551 0,9755 -0,2129 0,5379 0,5686 0,5473 0,6080 0,6600 0,6862
ELfilter 1,0349 0,9120 -0,1833 0,5676 0,6011 0,5793 0,6465 0,6822 0,7177
EL-sup 1,0485 0,9147 -0,1979 0,5493 0,5794 0,5671 0,6171 0,6712 0,6961
ELfilter-sup 1,0188 0,9024 -0,1527 0,6254 0,6596 0,5927 0,6384 0,6925 0,7307
EL-opp 1,1618 1,1472 -0,6225 0,4941 0,5082 0,4989 0,5115 0,5974 0,6297
ELfilter-opp 1,1383 1,0741 -0,5864 0,5141 0,5191 0,5043 0,5328 0,6230 0,6424

Table 13: All HLV evaluation results on SIQA dataset.
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Settings/Metrics
Score Rank-rank Rank-logits Rank-score

RMSE ↓ MAE ↓ R2 ↑ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑

qwen as judge
baseline 0,9101 0,7417 0,4255 0,5395 0,6283 0,4509 0,5692 0,5953 0,6332
HumanEX 0,9209 0,7536 0,4205 0,4507 0,5225 0,4900 0,5754 0,5824 0,6484
V3 GenEX 0,9761 0,8453 0,3275 0,5461 0,6347 0,4296 0,5496 0,5262 0,5481
R1
GenEX 0,9757 0,8004 0,3492 0,5576 0,6383 0,4571 0,5692 0,5708 0,5946
CoT 0,8856 0,7317 0,3992 0,5050 0,6004 0,4618 0,5752 0,6077 0,6461
CoTparser 0,8849 0,7298 0,4428 0,5716 0,6419 0,4680 0,5780 0,6112 0,6738
EL 0,8845 0,7298 0,4554 0,5957 0,6492 0,4786 0,5830 0,6275 0,6852
ELfilter 0,8649 0,7127 0,4887 0,6104 0,6770 0,4998 0,6110 0,6319 0,7001
EL-sup 0,8704 0,7153 0,4844 0,6094 0,6736 0,4883 0,5928 0,6301 0,6997
ELfilter-sup 0,8646 0,6956 0,4937 0,6114 0,6790 0,5152 0,6180 0,6605 0,7313
EL-opp 0,9722 0,8108 0,3265 0,5330 0,6126 0,4556 0,5453 0,5853 0,6728
ELfilter-opp 0,9584 0,8024 0,3276 0,5499 0,6163 0,4653 0,5554 0,5953 0,6832
Qwen-Max GenEX 0,9830 0,8387 0,3838 0,5599 0,6293 0,4512 0,5399 0,4984 0,6374
QwQ
GenEX 0,9607 0,8147 0,3998 0,5416 0,6349 0,4599 0,5553 0,5533 0,6493
CoT 0,9048 0,7498 0,4057 0,5884 0,6582 0,4696 0,5456 0,5869 0,6676
CoTparser 0,9006 0,7326 0,4329 0,6253 0,6734 0,4839 0,5722 0,6087 0,6710
EL 0,8882 0,7317 0,4357 0,6270 0,6966 0,4921 0,5849 0,6243 0,6844
ELfilter 0,8786 0,7203 0,4416 0,6344 0,7056 0,4997 0,5948 0,6372 0,7001
EL-sup 0,8880 0,7211 0,4377 0,6273 0,7019 0,4993 0,5977 0,6323 0,6938
ELfilter-sup 0,8787 0,7197 0,4541 0,6378 0,7109 0,5126 0,5999 0,6432 0,7068
EL-opp 0,9407 0,8821 0,3319 0,5480 0,6315 0,4553 0,5472 0,5967 0,6546
ELfilter-opp 0,9305 0,8000 0,3879 0,5623 0,6493 0,4625 0,5568 0,6036 0,6799

llama as judge
baseline 1,1724 1,1788 0,1980 0,4809 0,5707 0,3690 0,4313 0,4123 0,4562
HumanEX 1,0798 0,9270 0,2416 0,4663 0,5452 0,2889 0,3551 0,3823 0,4358
V3 GenEX 1,2123 1,0354 0,0417 0,3650 0,4337 0,2852 0,3365 0,3236 0,3807
R1
GenEX 1,2731 1,1097 -0,0546 0,4332 0,5210 0,3168 0,3789 0,2921 0,3525
CoT 1,1958 1,1164 0,1308 0,4655 0,5552 0,3603 0,4233 0,3723 0,4173
CoTparser 1,1775 1,0275 0,1408 0,4685 0,5500 0,3612 0,4393 0,4076 0,4602
EL 1,1605 1,0091 0,1609 0,4844 0,5670 0,3717 0,4418 0,4161 0,4603
ELfilter 1,1359 1,0727 0,1853 0,5117 0,5930 0,3732 0,4499 0,4223 0,4762
EL-sup 1,1429 1,0051 0,1685 0,4924 0,5865 0,3742 0,4467 0,4182 0,4844
ELfilter-sup 1,1302 1,0045 0,1780 0,5176 0,6030 0,3782 0,4534 0,4265 0,4867
EL-opp 1,2152 1,0848 0,0839 0,4367 0,5072 0,3467 0,4146 0,3434 0,3950
ELfilter-opp 1,2144 1,0801 0,0722 0,4494 0,5288 0,3544 0,4229 0,3578 0,4089
Qwen-Max GenEX 1,1995 1,0387 0,0515 0,4537 0,5391 0,3393 0,4103 0,3202 0,3675
QwQ
GenEX 1,2349 1,0812 0,0088 0,4610 0,5275 0,2888 0,3469 0,2764 0,3261
CoT 1,3606 1,0361 0,1260 0,4691 0,5564 0,3609 0,4438 0,3763 0,4483
CoTparser 1,1565 1,0135 0,1285 0,4781 0,5636 0,3665 0,4451 0,3993 0,4727
EL 1,1533 1,0127 0,1259 0,4844 0,5704 0,3669 0,4479 0,4158 0,4800
ELfilter 1,1499 1,0059 0,1533 0,5032 0,5858 0,3727 0,4525 0,4509 0,5097
EL-sup 1,1477 1,0127 0,1532 0,5005 0,5765 0,3685 0,4495 0,4480 0,5086
ELfilter-sup 1,1317 0,9921 0,1658 0,5238 0,5988 0,3733 0,4649 0,4631 0,5311
EL-opp 1,1678 1,0695 0,1104 0,4132 0,5068 0,3476 0,4124 0,3148 0,3698
ELfilter-opp 1,1500 1,0454 0,1254 0,4399 0,5403 0,3553 0,4285 0,3216 0,4306

mistral as judge
baseline 1,5770 1,2886 -0,7480 0,3011 0,3429 0,3768 0,4466 0,4024 0,4416
HumanEX 1,2543 1,0163 -0,0984 0,2892 0,3117 0,3634 0,4328 0,5096 0,5692
V3 GenEX 1,6096 1,3165 -0,7930 0,3751 0,4271 0,3058 0,3739 0,4050 0,4483
R1
GenEX 1,7442 1,4374 -1,0796 0,3607 0,4160 0,3585 0,4274 0,3245 0,3635
CoT 1,2010 0,9702 -0,0156 0,4621 0,5134 0,3761 0,4454 0,5890 0,6643
CoTparser 1,2000 0,9606 -0,0081 0,4658 0,5227 0,3806 0,4539 0,5988 0,6704
EL 1,1539 0,9510 0,0549 0,4752 0,5262 0,3816 0,4564 0,6055 0,6770
ELfilter 1,1461 0,9354 0,0727 0,5148 0,5678 0,3860 0,4572 0,6139 0,6836
EL-sup 1,1491 0,9437 0,0629 0,4782 0,5303 0,3827 0,4566 0,6118 0,6786
ELfilter-sup 1,1398 0,9229 0,0737 0,5298 0,5882 0,3981 0,4685 0,6133 0,6811
EL-opp 1,2232 0,9773 -0,0522 0,4486 0,4925 0,3468 0,4015 0,5449 0,5761
ELfilter-opp 1,2057 0,9667 -0,0296 0,4586 0,5043 0,3523 0,4333 0,5730 0,6031
Qwen-Max GenEX 1,4453 1,1642 -0,4438 0,4025 0,4581 0,3527 0,4122 0,4599 0,5177
QwQ
GenEX 1,6740 1,3514 -0,8915 0,3523 0,3962 0,3549 0,4270 0,3812 0,4185
CoT 1,1811 0,9594 0,0101 0,4875 0,5471 0,3604 0,4356 0,5876 0,6484
CoTparser 1,1674 0,9456 0,0147 0,4920 0,5448 0,3661 0,4410 0,5914 0,6575
EL 1,1624 0,9443 0,0723 0,4945 0,5625 0,3707 0,4469 0,6070 0,6700
ELfilter 1,1306 0,9235 0,0869 0,5370 0,5915 0,3755 0,4561 0,6146 0,6826
EL-sup 1,1414 0,9232 0,0751 0,5163 0,5727 0,3711 0,4472 0,6171 0,6830
ELfilter-sup 1,1211 0,9056 0,1132 0,5361 0,5956 0,3917 0,4638 0,6287 0,6958
EL-opp 1,2116 0,9859 -0,0387 0,4322 0,4827 0,3398 0,4127 0,5688 0,6302
ELfilter-opp 1,1950 0,9661 -0,0139 0,4419 0,5152 0,3654 0,4282 0,5911 0,6489

Table 14: All HLV evaluation results on CQA dataset.

33135


