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Abstract

Showing incorrect answers to Large Language
Models (LLMs) is a popular strategy to im-
prove their performance in reasoning-intensive
tasks. It is widely assumed that, in order to be
helpful, the incorrect answers must be accom-
panied by comprehensive rationales, explicitly
detailing where the mistakes are and how to cor-
rect them. However, in this work we present a
counterintuitive finding: we observe that LLMs
perform better in math reasoning tasks when
these rationales are eliminated from the con-
text and models are left to infer on their own
what makes an incorrect answer flawed. This
approach also substantially outperforms chain-
of-thought prompting in our evaluations. These
results are consistent across LLMs of differ-
ent sizes and varying reasoning abilities. To
gain an understanding of why LLMs learn from
mistakes more effectively without explicit cor-
rective rationales, we perform a thorough anal-
ysis, investigating changes in context length
and answer diversity between different prompt-
ing strategies, and their effect on performance.
We also examine evidence of overfitting to the
in-context rationales when these are provided,
and study the extent to which LLMs are able
to autonomously infer high-quality corrective
rationales given only incorrect answers as input.
We find evidence that, while incorrect answers
are more beneficial for LLM learning than addi-
tional diverse correct answers, explicit correc-
tive rationales over-constrain the model, thus
limiting those benefits.

1 Introduction

Adding incorrect answers to the training examples
of an LLM has become an established strategy to
improve new generations, as these models are able
to learn from their and others’ mistakes (Madaan
et al., 2024; Shinn et al., 2024; An et al., 2023;
Paul et al., 2024). Existing literature assumes that

*Work done while at Cohere.

A bag of caramel cookies has 20 cookies inside and a box 
of cookies has 4 bags in total. How many calories are 
inside the box if each cookie is 20 calories?

Incorrect:  20 cookies in a bag amount to 20 x 20 = 400 
calories. There are 4 bags in a box. So 400/4 = 100 calories 
in a box.

The incorrect part is the calculation of the total calories 
in a box. The total calories should be calculated 
multiplying the calories in a bag by the number of bags 
in a box. The wrong answer incorrectly divides the total 
calories in a bag by the number of bags.

Correct: There are 20 cookies in each bag and 4 bags in 
total in the box. So there are 20 x 4 = 80 cookies in total. 
Each cookie is 20 calories, so the total calories are 80 x 20 
= 1600.

(a)

A bag of caramel cookies has 20 cookies inside and a box 
of cookies has 4 bags in total. How many calories are 
inside the box if each cookie is 20 calories?

Incorrect: 20 cookies in a bag amount to 20 x 20 = 400 
calories. There are 4 bags in a box. So 400/4 = 100 calories 
in a box.

Correct: There are 20 cookies in each bag and 4 bags in 
total in the box. So there are 20 x 4 = 80 cookies in total. 
Each cookie is 20 calories, so the total calories are 80 x 20 
= 1600.

(b)

Figure 1: Learning examples for (a) explicit learning
and (b) implicit learning. In explicit learning prompts,
corrective feedback follows the incorrect answer (in red)
and explains how to derive from it the correct answer (in
green). For implicit learning, corrective feedback is dis-
carded and the model is expected to infer the differences
between the incorrect and the correct answer.

in order to learn from incorrect answers effectively,
these must be accompanied by explicit corrective
rationales locating each error and/or explaining
how to rectify it.

Previous work finds that when mistakes are
shown to the model alongside this corrective
feedback—whether in the training data (An et al.,
2023; Paul et al., 2024) or in context (Madaan et al.,
2024; Shinn et al., 2024)—accuracy improves com-
pared to fine-tuning or prompting with only valid
question-answer pairs.
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In this work, we investigate the ability of LLMs
to learn from mistakes implicitly—without the
aid of corrective feedback—within an In-Context
Learning (ICL) setting. We construct few-shot
prompts for questions designed to probe reasoning
abilities, alongside incorrect and correct chain-of-
thought answers. We provide the incorrect answers
without any rationales that would help contextu-
alise them, and let the model autonomously infer
the patterns that render an answer wrong or correct.
We refer to this strategy as ‘prompting for implicit
learning’. We compare its performance against two
baselines: (i) a prompt that includes the same cor-
rect and incorrect responses, but where the latter are
accompanied by corrective rationales, as in An et al.
(2023) (we refer to this strategy as ‘prompting for
explicit learning’), and (ii) a prompt only including
the valid step-by-step answers to the same ques-
tions, as in the original chain-of-thought implemen-
tation (Wei et al., 2024) (we refer to this prompting
strategy simply as ‘CoT’). We find not only that
prompting for implicit learning outperforms vanilla
CoT, but—remarkably—that it is also superior to
the far more established strategy of prompting for
explicit learning. To ensure the robustness of the re-
sults, we test all strategies extensively using seven
LLMs from four distinct model families and four
diverse tasks distributed across four established
mathematical reasoning datasets.

Additionally, we carry out a thorough analysis
to understand why implicit learning prompts out-
perform explicit ones. Firstly, we examine whether
the greater context length that results from adding
incorrect answers to the prompt contributes to the
performance improvement—an investigation that
was missing in prior literature on learning from mis-
takes. We insert additional valid question-answer
pairs in the vanilla CoT setup, which matches the
context length of implicit learning prompts and also
provides the model with more diverse examples.
We also experiment with showing two correct step-
by-step answers for each question in the prompt.
In both cases, we find that incorrect answers are
more beneficial for LLM performance than addi-
tional correct answers. Secondly, to test whether
LLMs can indeed infer the patterns that inform
correct and incorrect answers implicitly, we have
them generate rationales for new incorrect answers
under each prompting strategy. We then perform a
human evaluation study on the generated rationales.
We observe that rationales produced with both im-
plicit and explicit prompting are nearly identical in

quality according to annotators. In contrast, ratio-
nales produced using only correct CoT answers are
substantially lower quality. Lastly, we analyse to
what extent LLMs overfit to in-context corrective
feedback. We find relatively high similarity scores
between the new rationales generated with explicit
learning prompting and those provided in-context,
indicating that the models are over-constrained by
explicit learning prompts. This is further confirmed
by our visual inspection of the generated rationales.

In summary, our experiments confirm the find-
ings from previous literature that incorrect an-
swers are particularly beneficial for LLM learning—
indeed more so than additional correct answers—
yet they also evidence that conditioning the model
to in-context rationales, as is currently standard
practice, may limit those benefits by adding un-
necessary constraints. Since corrective rationales
are normally produced by state-of-the-art close-
sourced models (An et al., 2023), and are thus ex-
pensive to curate at scale, our findings in favour of
rationale-free learning have real-world utility for
researchers and developers.

Our main contributions are:

1. We investigate implicit learning from mistakes
with LLMs and compare it to explicit learning
that uses both mistakes and rationales. To the
best of our knowledge, no such investigation
has been carried out before, and existing work
relies heavily on explicit corrective feedback.

2. We demonstrate that prompting for implicit
learning outperforms explicit learning, as well
as other strong ICL baselines. This indicates
LLMs are well-suited for implicit learning.

3. Our analytical experiments show that, while
incorrect answers are beneficial for LLM
learning, explicit corrective rationales limit
those benefits by over-constraining the model.

4. Our work brings into question the rationale
behind rationales and offers a simple yet ef-
fective alternative.

2 Related Work

Incorrect answers have been leveraged in prior
work to improve LLM responses in challenging
tasks. The existing literature can be largely cate-
gorised into three approaches: (i) Self-refinement,
where an LLM critiques its own erroneous gen-
erations, (ii) External feedback, where corrective
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rationales are sourced from a distinct LLM, and
(iii) Multi-agent debate, where two or more models
take turns at providing feedback for a previously
generated response.

Self-refinement. The self-refinement pipeline is
well exemplified by Madaan et al. (2024). They
devise a framework where an LLM first answers a
question, then generates feedback for that answer,
and finally outputs a new answer based on the feed-
back. Note that the model is not fine-tuned and
each step is elicited via prompting. The refinement
process can be repeated multiple times until a stop-
ping criterion is met, to iteratively improve the final
answer. In Zhang et al. (2024), not only does the
LLM critique its own incorrect answer, but it also
summarises what principles can be learned from
it. Kim et al. (2024) and Shinn et al. (2024) adopt
a similar strategy: the model executes a task and,
based on the error signal received from the environ-
ment, outputs a self-reflection. This is then added
to the LLM context in the next episode.

External feedback. Xu et al. (2024c) observe
that self-refinement is inherently biased as LLMs
tend to assess their own generations positively.
Hence, Xu et al. (2024b) propose a two-model sys-
tem, where a base LLM answers a question and a
fine-tuned model critiques the answer. Similarly,
Olausson et al. (2024) find LLM self-critique to
be biased in the context of code generation, and
show that utilising a second, larger model as the
critic allows for more substantial improvements
in the task. Tong et al. (2024) feed a corpus of
questions and incorrect answers to PaLM2 (Anil
et al., 2023), which outputs the type and reasons
for each mistake. They show that fine-tuning Flan-
T5 models (Chung et al., 2024) on the resulting
rationales improves their performance. Similarly,
Paul et al. (2024) use corrective feedback from a
fine-tuned model as a signal to train a base LLM
for producing better responses. An et al. (2023)
extend the above approach by collecting LLM-
generated incorrect answers and prompting GPT-4
(Achiam et al., 2024) to identify and correct the
mistakes. They show that LLMs fine-tuned on this
data achieve superior reasoning capabilities.

Multi-agent debate. Since LLMs benefit from
a single critic model, it is reasonable to assume
that using multiple critics may achieve further im-
provements. Indeed, Chen et al. (2024) show that
a round table of LLMs attains high accuracy in

reasoning tasks. In their framework, each LLM
produces an answer to a question, followed by a
self-critique. Then, all models carry out a multi-
turn discussion, revising their answers at each turn
based on the responses and self-critiques of the
other LLMs. Du et al. (2024) propose a similar
framework where multiple instances of an LLM
generate candidate answers to a math reasoning
question. Each instance then critiques the output of
the other models, and uses this to update its answer.
Khan et al. (2024) have two models generate differ-
ent answers and debate their correctness, while the
final choice is made by a third LLM witnessing the
debate.

Lastly, related work that does not fall into the
above categories is Chia et al. (2023)’s contrastive
CoT. Using an entity recognition model, they ex-
tract and randomly shuffle numbers and equations
within a golden mathematical answer to obtain its
incoherent counterpart. While this setup shares
some similarities with implicit learning due to the
absence of a rationale to accompany the incoher-
ent answer, the latter is inherently different from
our incorrect reasoning traces. Most saliently, their
analysis is not concerned with what and how much
information about previous mistakes is required to
improve LLM reasoning. In contrast, our investiga-
tion stems from the observation that learning from
mistakes with LLMs conventionally assumes the
need for explicit, fine-grained corrective feedback.
We seek to answer the previously unexplored ques-
tion of whether this additional feedback is actually
beneficial or even necessary.

3 Prompt Construction

Let E =
∥∥N
n=1

en be the text sequence resulting
from concatenating N in-context examples. In the
typical few-shot CoT setting (Wei et al., 2024), an
individual example

eCoT
n =

(
q(n), a(n)

)
(1)

is defined by the question q(n) and the correspond-
ing correct step-by-step answer a(n). This can be
extended to

en
explicit =

(
q(n), w(n), r(n), a(n)

)
(2)

which additionally includes a wrong step-by-step
answer w(n) and a rationale r(n) that explicitly
identifies the errors in w(n) that need correcting
to obtain a(n). This learning setup has been widely
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explored in prior literature (Madaan et al., 2024;
Kim et al., 2024; Shinn et al., 2024). We addition-
ally consider examples of the form

en
implicit =

(
q(n), w(n), a(n)

)
(3)

where the explicit rationale r(n) is removed. Fig-
ure 1 illustrates instances of (2) and (3).

In our experiments, we set N = 8 for all exam-
ple types. We investigate how the example formu-
lations in the set E = {ECoT, Eexplicit, Eimplicit}
affect LLMs across different tasks: labelling the
correctness of an entire answer or an individual
reasoning step, editing an incorrect answer, or
solving a new question (we further elaborate on
each task in Section 4.3). We do not alter the ex-
ample format by task, but we instead construct
a task-specific prompt by appending an instruc-
tion, I , to the examples. I solely depends on the
task and not on the type of examples preceding it.
Hence, we have a set of task-specific instructions
I = {I labelans , I labelstep , Iedit, Isolve}.

We experiment with all example types for all
tasks. That is, we evaluate all prompts in the set
P = {E || I | (E, I) ∈ E×I}. Prompts are shown
in Appendix A.

3.1 Generating Correct Answers

All the examples in E include questions and their
corresponding correct answers. While questions
are provided by the training set, not all datasets
contain CoT-style golden answers. In those cases,
we generate them by prompting GPT-4 (Achiam
et al., 2024) to provide answers in a zero-shot CoT
fashion, and inspect both the reasoning trace cor-
rectness and final result.

3.2 Generating Incorrect Answers

The incorrect answers necessary to construct the
exemplars in Eexplicit and Eimplicit are not present
in most datasets. To obtain them, we prompt
LLMs that are no longer state-of-the-art to gen-
erate answers for the training set questions. We use
LLaMA 30B (Touvron et al., 2023a), Llama 2 7B
(Touvron et al., 2023b) and Llama 3 8B (Grattafiori
et al., 2024). The specific model choice depends on
the dataset and its difficulty (refer to Appendix C).
We use few-shot CoT prompting with all models.
We gather answers that are marked as wrong by
automated evaluation of the final numerical result.
Having discarded empty and partial answers, we
simply select the first N incorrect answers in the

set and pair them with the corresponding questions
and their correct counterparts, obtained as detailed
in Section 3.1.

3.3 Generating Corrective Rationales

We generate the corrective rationales in Eexplicit

following a strategy similar to that described in
An et al. (2023): we prompt GPT-4 in a few-shot
fashion, showing it questions with incorrect and
correct answers, as well as rationales. Given a new
question and a pair of answers, we ask the model
to identify the mistakes in the incorrect answer and
explain how to correct them. We use the same
few-shot examples as An et al. (2023), slightly
reformatted for our task. All rationales are carefully
verified for correctness.

4 Experiments

4.1 Models

We study LLMs of different sizes: Command
R1 (35 billion parameters), Llama 3 70B Instruct
(Grattafiori et al., 2024) (70 billion parameters),
Command R+1 (104 billion parameters), Wiz-
ardLM (Xu et al., 2024a) (141 billion parameters).
Note that for the Command models, we use both
the original and the Refresh versions, as prelimi-
nary experiments showed significant differences in
their output and results for math reasoning tasks.
We also test Titan Text G1 Express2, whose ex-
act number of parameters has not been publicly
disclosed. We note, however, that this model is sub-
stantially less capable than the others in reasoning
tasks, as evidenced by the lower scores in Table 1.
Therefore, we consider seven LLMs in total. We
employ a greedy sampling strategy with all models.
LLMs are accessed via API; further details includ-
ing the inference hyperparameters and model IDs
are given in Appendix B.

4.2 Datasets

Our main focus is understanding whether LLMs
learn implicitly in tasks that require complex rea-
soning. Contemporary work investigating LLM
reasoning has primarily focused on math reason-
ing as an early and convenient proxy for complex
reasoning ability evaluation (Ahn et al., 2024; Paul
et al., 2024; Ruis et al., 2025; Liu et al., 2025).
Consistent with this approach, we test our method
on several math reasoning benchmarks.

1https://cohere.com/command
2https://aws.amazon.com/bedrock/amazon-models
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Figure 2: We evaluate LLM performance on four auxiliary tasks: (i) labelling an answer as wrong or correct, (ii)
labelling an individual reasoning step, (iii) editing an incorrect answer to make it correct, and (iv) solving a new
question. In the labelling tasks, we instruct the model to output a rationale justifying its choice before generating
the predicted label. This is motivated by previous work showing that this approach tends to produce more robust
labels (Trivedi et al., 2024; Zheng et al., 2024).

GSM8K includes grade-school-level arithmetic
problems that require multiple reasoning steps to
solve (Cobbe et al., 2021). All problems in GSM8K
can be tackled using basic arithmetic operations
(addition, subtraction, multiplication, division).

ASDiv contains diverse problems of varying dif-
ficulty (Miao et al., 2020). In addition to arithmetic
operations, questions can be solved using algebra,
number theory, set operations and geometric for-
mulas. They can also require pattern identification
and unit conversion.

AQuA is a dataset of algebraic word problems
from postgraduate admissions tests such as GRE
and GMAT, as well as new questions of similar
difficulty collected through crowd-sourcing (Ling
et al., 2017). Note that while the original version of
the dataset is multiple-choice, here we use a more
challenging open-ended version.

PRM800K (Lightman et al., 2024) is derived
from the MATH dataset (Hendrycks et al., 2021),
which contains challenging competition-level math
problems. In PRM800K, model-generated answers
to the questions in MATH are paired with human
annotations providing a validation signal on inter-
mediary reasoning steps.

These datasets cover a wide range of math do-
mains and difficulty levels, each constituting a par-
ticular challenge. Furthermore, statistical analysis
on GSM8K, ASDiv and AQuA has determined that
these datasets are entirely out-of-domain with re-
spect to one another (Ott et al., 2023), which makes
this selection of evaluation datasets an appropriate
test bed for our analysis.

4.3 Tasks

In addition to evaluating on diverse math reasoning
datasets, we consider auxiliary tasks that can be
carried out within those datasets. We illustrate

them below and in Figure 2.

Labelling an answer. In this task, we have the
model assign a binary label to a CoT-style answer,
identifying whether it is correct or not, given the
question. Previous work has found that LLM-
assigned labels are more robust when they are ac-
companied by a model-generated rationale (Trivedi
et al., 2024; Zheng et al., 2024). Hence, we require
LLMs to first output a rationale explaining their
choice, followed by the label. Performance in the
binary labelling tasks is measured by the macro-
averaged F1-score, weighted by support to account
for label imbalance. The answers to be labelled are
generated by running Llama 2 7B and Llama 3 8B
on the test set of each dataset (refer to Appendix C
for details).

Labelling a reasoning step. We leverage the
step-wise reasoning annotations in PRM800K to
have models score the correctness of a single rea-
soning step given the question and any previous
context. Similar to the above setting, the LLM out-
puts a rationale followed by a binary label (‘correct’
or ‘incorrect’). As the other datasets do not contain
step-wise annotations, we perform this task only
on PRM800K.

Editing an incorrect answer. We show the
model a question and a corresponding incorrect
answer, then ask it to output a new, edited answer
that leads to the correct solution. Performance is
measured by computing the accuracy of the numer-
ical solution. For this task, we use the incorrect
portion of the pre-generated answers obtained by
running Llama 2 7B and Llama 3 8B on the test
sets.

Solving a math question. We show the model a
test set question and ask it to output the solution.
As in the previous task, we compute the accuracy
of the final numerical solution.
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Model Strategy
GSM8K ASDiv AQuA PRM800K

labelans edit solve labelans edit solve labelans edit solve labelans labelstep edit solve

CoT 83.80.5 81.30.3 91.80.5 90.10.3 82.70.8 90.80.3 66.61.1 37.30.4 55.80.6 31.70.6 49.60.2 20.61.3 43.90.8Llama 3 70B
Instruct Explicit 82.50.6 84.20.2 92.80.3 90.00.3 81.40.9 91.50.1 55.71.1 34.01.1 55.11.0 19.00.4 48.20.4 21.81.6 48.10.4

Implicit 84.00.7 84.80.1 93.30.4 91.40.5 84.90.7 91.10.2 56.60.2 37.61.3 56.40.4 19.20.2 50.00.6 26.51.9 48.40.6

CoT 50.50.8 17.20.8 63.10.5 53.41.1 49.31.2 77.60.7 37.10.8 7.91.3 21.91.1 21.40.7 36.30.4 4.71.2 13.31.0
Command R Explicit 57.00.8 25.11.3 56.71.0 64.11.2 48.01.3 69.61.0 34.21.6 6.71.1 17.82.0 32.70.6 39.00.2 7.50.8 13.00.7

Implicit 64.20.8 31.11.2 60.51.2 60.30.7 51.40.7 70.10.6 39.81.3 11.21.2 19.10.3 56.00.9 43.41.2 8.80.4 14.80.7

CoT 65.80.7 48.00.3 69.70.5 78.90.6 61.91.1 81.70.6 43.80.9 11.91.2 32.01.6 16.11.1 35.80.4 14.51.1 23.91.3
Command R+ Explicit 64.30.3 59.80.6 76.00.9 80.40.3 69.31.2 83.90.4 46.50.4 12.51.4 31.12.0 59.70.8 38.80.2 12.91.0 18.10.6

Implicit 71.90.4 62.00.8 79.90.8 82.60.2 70.71.3 85.30.3 47.60.9 16.81.1 35.81.1 59.51.2 39.20.2 16.60.8 21.10.6

CoT 55.50.9 52.10.6 78.90.4 54.80.3 64.80.2 84.50.6 47.51.4 8.51.0 35.31.2 68.10.7 39.30.6 11.70.7 30.60.7Command R
Refresh Explicit 48.71.1 55.90.4 75.90.8 37.90.6 69.21.1 80.90.6 42.40.4 16.50.5 39.11.8 67.30.9 55.90.6 13.10.8 30.80.5

Implicit 62.51.0 57.40.7 79.20.7 70.41.1 72.20.3 84.80.5 50.70.9 16.60.6 40.50.8 71.10.9 53.70.8 11.81.1 32.10.7

CoT 46.90.9 45.90.7 75.60.9 77.70.1 78.80.5 89.40.4 61.00.4 23.50.7 44.50.9 54.51.2 51.90.6 16.11.3 31.90.8Command R+
Refresh Explicit 40.30.8 57.61.3 82.00.7 64.80.2 76.10.9 89.90.3 53.60.5 20.61.7 43.21.7 73.30.4 51.70.9 15.91.3 26.80.4

Implicit 47.20.8 62.80.9 86.30.8 79.60.2 81.91.0 90.40.4 63.31.2 21.51.1 47.81.2 73.90.8 47.80.7 18.71.1 29.70.7

CoT 53.40.2 2.10.3 29.70.7 45.40.6 13.10.3 61.20.4 54.91.4 1.00.2 7.90.6 67.20.4 46.40.5 3.00.3 5.40.2Titan Text G1
Express Explicit 68.70.3 2.80.4 33.20.5 53.00.8 12.90.3 61.10.6 43.21.3 1.20.2 8.80.7 35.50.4 48.90.4 3.01.0 7.60.4

Implicit 69.30.5 3.00.4 34.70.9 60.20.4 12.90.1 62.80.4 49.60.8 1.40.1 11.00.2 45.70.9 49.71.0 4.00.5 5.80.5

CoT 85.90.4 72.41.1 91.30.6 93.80.2 80.60.3 90.90.4 76.60.2 41.70.2 59.10.7 68.40.6 61.40.4 36.81.2 60.30.9
WizardLM Explicit 85.40.5 78.51.3 91.50.9 93.50.3 82.40.2 91.40.1 77.30.5 43.20.4 58.01.1 62.50.4 60.20.3 36.51.5 60.80.7

Implicit 86.90.5 82.30.9 91.50.7 95.00.2 82.60.2 90.60.3 79.50.1 44.10.5 62.10.6 69.00.4 62.60.5 35.71.3 61.10.6

Table 1: Results of CoT prompting, explicit learning prompting, and implicit learning prompting for different
LLMs on four math reasoning benchmarks. We use the benchmarks for the following tasks: (i) labelling an answer
as wrong or correct (labelans), (ii) labelling a single reasoning step as wrong or correct (labelstep), (iii) editing an
incorrect answer (edit), and (iv) solving a question (solve). We report the accuracy of the final numerical result for
all tasks except the two labelling tasks, where we report the weighted F1-score of the binary label. Due to small
variations likely resulting from dynamic batching in the APIs, we report results averaged over five runs. Confidence
intervals are shown in Appendix D.

To encourage the models to output responses
conditioned on the context, as opposed to text that
merely mimics the format of the examples in it, we
append the task-specific instruction after the exam-
ples. We further aid generalisation by prepending
the text ‘Now apply what you have learned’ to the
instruction. Mao et al. (2024) show that the po-
sition of the instruction within a few-shot prompt
affects the model’s behaviour and performance. On
the other hand, the model may still be inclined to
generate responses in the format of the examples
(e.g., when tasked with editing an answer, having
observed examples that contain corrective ratio-
nales, the model may output a rationale before the
corrected answer). To account for this possibil-
ity without unnecessarily penalising any particular
prompting strategy, we provide a large generation
window of 4096 tokens.

4.4 Results

We find that CoT and prompting with explicit ra-
tionales have similar overall performance on the
answer labelling task and when solving new ques-

tions, while the latter outperforms CoT when la-
belling reasoning steps (+3.2%, averaged across
all models and all datasets) and editing an incorrect
answer (+2.1% avg.). This advantage is aligned
with previous findings that LLMs benefit from ob-
serving incorrect answers and corrective feedback
in their context. On the other hand, prompting

GSM8K ASDiv AQUA PRM800K0
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(a)
GSM8K ASDiv AQUA PRM800K

CoT
Explicit
Implicit

(b)

Figure 3: Scores per dataset of CoT, explicit and implicit
prompting for (a) the weighted F1-score of the labelling
task, and (b) the averaged accuracy across the editing
and solving tasks. Scores are averaged across all LLMs.
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for implicit learning achieves the highest overall
performance, as evidenced in Table 1. When con-
sidering all combinations of model, dataset and
task, implicit learning outperforms CoT in 85% of
cases. It also outperforms explicit learning in 88%
of cases. In nearly half of these, the advantage
of implicit over explicit learning is substantial—
well above 3%. This advantage is present even
in tasks where, intuitively, we would expect in-
context rationales to be particularly helpful, for
example when editing an incorrect answer to make
it correct. In fact, implicit learning gives the largest
accuracy boost in the editing task: +4.4% over
CoT and +2.2% over explicit learning, averaged
across all models and datasets. On the solving
task, its accuracy increases by 1.6 and 1.9 percent-
age points, respectively. Labelling answers also
benefits from implicit learning prompts, with aver-
aged F1-scores 5.6% above CoT and 6.2% above
explicit learning. Finally, looking at the individ-
ual datasets, implicit learning gains the most on
GSM8K, where it outperforms both explicit learn-
ing and CoT in over 90% of cases across all models
and tasks. This proportion is 76% on ASDiv, 81%
on AQuA and 64% on PRM800K. Note that the
questions in GSM8K and ASDiv have a lower level
of difficulty than those in AQuA and PRM800K, as
evidenced by the performance differences across
all LLMs. Generally, we observe that prompting
for implicit learning improves performance across
varying levels of difficulty, as shown in Figure 3.
In the labelling task (Figure 3a), implicit learning
gives the most substantial performance gains on
ASDiv and PRM800K. When editing an incorrect
answer and solving a new question (Figure 3b), on
the other hand, it is GSM8K and AQuA that benefit
the most from this strategy.

5 Analysis

To understand why implicit learning leads to the
improved performance observed above, we carry
out a thorough analysis. We investigate context
length and answer diversity, and draw insights from
new rationales generated under each prompting
strategy.

5.1 Effect of Context Length and Diversity

Adding incorrect answers to a prompt introduces
additional tokens into the context. As a result,
there is a mismatch between the context length
of CoT and that of implicit learning. Since an ex-
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Figure 4: Scores per dataset of CoT+ and implicit
prompting for (a) the weighted F1-score of the labelling
task, and (b) the averaged accuracy across the editing
and solving tasks. Scores are averaged across all LLMs.

tended context length can in itself be responsible
for improved performance, we investigate whether
the additional tokens may be driving the improve-
ment, rather than the presence of incorrect answers.
We thus compare implicit learning with two dis-
tinct extended-context baselines: a few-shot CoT
prompt containing additional valid question-answer
pairs (we refer to this setup as CoT+), and one
where two correct step-by-step answers are shown
for each question (we refer to this as CoT-2).

CoT+ extends the context by increasing the num-
ber of examples in our CoT prompt from eight to
fourteen. Additional examples are randomly se-
lected from an identical distribution to the original
eight examples. We compare this setup to implicit
learning prompts containing eight few-shot exam-
ples as in our standard experimental setting. The
addition of six new in-context examples to the CoT
prompt results in an approximately equal context
length between the two settings. It also constitutes
a particularly strong baseline, since the new exam-
ples may provide the model with additional, novel
scenarios to learn from. Figure 4 summarises the re-
sults of this comparison (results are shown in full in
Table 6). With the exception of the AQuA labelling
task, where the two methods perform equally, the
average performance of implicit learning is above
that of CoT+ on all datasets and tasks, often sub-
stantially (3+% improvement). This demonstrates
that, at equal context length, the addition of incor-
rect answers is more beneficial for LLMs than the
inclusion of additional diverse and valid question-
answer pairs.
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Strategy Avg. human evaluation score

CoT 0.68
Explicit 1.01
Implicit 0.98

Table 2: Human evaluation of model-generated ratio-
nales. Rationales produced with explicit and implicit
learning prompts obtain similar overall evaluations. CoT
prompting results in substantially worse-quality ratio-
nales being generated.

Strategy Avg. n-gram similarity

CoT 0.086
Explicit 0.152
Implicit 0.093

Table 3: Average n-gram similarity between exemplar
and generated rationales for each prompting strategy.

CoT-2 provides two correct CoT answers for
each in-context question. We show the differences
in performance between CoT-2 and implicit learn-
ing, computed on Command R+, in Table 7. We
note that implicit learning outperforms CoT-2 in
almost all cases, with average performance gains
of +1.5% in the labelling task (measured in F1-
score) and +4.4% in the editing and solving tasks
(measured in accuracy). These results indicate that
LLMs prompted for implicit learning gain a better
understanding of the patterns that inform correct
answers—and how these differ from incorrect an-
swers—which prompting with only correct reason-
ing traces may not sufficiently elicit.

5.2 Analysis of Generated Rationales

A follow-up research question aims to investigate
how incorporating error information affects model
outputs. We hypothesise that if the LLMs are incor-
porating error signal implicitly to improve reason-
ing, this should also be reflected in the downstream
generated rationales. We thus ask the models to
generate rationales for new incorrect answers un-
der each prompting strategy. We assess and com-
pare them through human evaluation, and exam-
ine whether and to what extent LLMs overfit to
in-context rationales when these are provided. Fi-
nally, we inspect all rationales visually and give an
overview of their representative characteristics.

Rationale quality. To ascertain whether, and to
what extent, LLMs infer implicit information be-

tween incorrect and correct answers with differ-
ent prompting strategies, we carry out a blind hu-
man evaluation study of rationales generated using
distinct prompts. We randomly select 300 ratio-
nales generated by running the answer labelling
task on GSM8K. We select 100 rationales for each
prompting strategy (CoT, explicit learning, implicit
learning), and have four annotators with domain
expertise score them as 0–Poor, 1–Fair or 2–Good.
Table 2 illustrates the average human evaluation
scores achieved under each prompting strategy. We
observe that CoT’s performance is considerably
lower than either explicit or implicit learning, with
an average score of 0.68. The performance of ex-
plicit and implicit learning is similar (1.01 and 0.98
respectively). It is noteworthy that rationales gener-
ated with implicit learning prompts achieve an av-
erage score that is within only 0.03 of that achieved
by explicit learning. This is evidence that LLMs
can infer high-quality corrective rationales implic-
itly, simply observing correct and incorrect answers
side by side, and that the effect of adding example
rationales to the context is negligible. To under-
stand how much annotators agree with each other
when assessing the different prompting strategies,
we measure the proportion of ‘poor’, ‘fair’, and
‘good’ qualitative labels assigned by each annotator
to rationales generated with CoT, explicit and im-
plicit prompting respectively. For each prompting
method, we compute the median absolute deviation
(MAD) of each label across all annotators. We find
the MAD to be within 0.05 in all cases, indicat-
ing that annotators largely agree with each other
on the overall quality of the rationales generated
with each prompting strategy, and the proportions
of qualitative labels they assign to the rationales
obtained with a given strategy are fairly similar.
In Appendix G, we show the fine-grained propor-
tions of labels assigned by the annotators to each
strategy.

Rationale similarity. A plausible reason why
learning with explicit corrective feedback under-
performs implicit learning is that LLMs may be
over-constrained by the rationales. To validate this
hypothesis, we investigate how similar the new
rationales generated by the models are to the in-
context ones. As shown in Table 3, the average
n-gram similarity score (n = 2) of rationales gen-
erated by LLMs prompted for explicit learning is
substantially higher than that obtained with ratio-
nales output with the other methods (note that the
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other methods do not include exemplar rationales in
the context). Rouge-1 and Rouge-L scores, shown
in Appendix F, follow a similar trend. It thus ap-
pears that LLMs tend to copy the patterns in the
exemplar rationales when these are provided. This
suggests that overfitting may be responsible for the
lower performance of explicit learning.

Rationale length and appearance. We inspect
the generated rationales and find that those gen-

Rationale 1: CoT

The provided answer is correct as it solves

the word problem correctly by letting

the number of fish in each aquarium be

x. The answer follows the narrative of

the problem and uses the information that

the difference in snails between the two

aquariums is twice the amount of fish in

both aquariums. The solution is coherent

and arrives at the conclusion that each

aquarium has 14 fish.

Rationale 2: Explicit

The provided answer is incorrect because it

does not actually provide a numerical value

for the number of fish in each aquarium,

which is what the question is asking for.

Instead, it repeats the expression "Let x

be the number of fish in each aquarium"

multiple times, which is not a valid answer.

The answer also does not explain how the

problem’s conditions are reflected in the

solution, which is twice the number of fish

in each aquarium is equal to the difference

in the number of snails between the two

aquariums.

Rationale 3: Implicit

The provided answer is incorrect because

the solution fails to provide the final

calculation to determine the number of

fish in each aquarium. The answer assumes

the role of x as the number of fish in

each aquarium but does not conclude the

equation.

erated via explicit learning prompting tend to be
more verbose. As a representative example, con-
sider the math reasoning problem “There are 4
snails in one aquarium and 32 snails in another
aquarium. The difference between the number of
snails in the two aquariums is twice the amount of
fish in both aquariums. If both aquariums have the
same number of fish in them, how many fish are
there in each aquarium?”. We take an incorrect,
model-generated answer to this problem which as-
signs the unknown number of fish to the variable
x but does not proceed to solve for x. We show
three representative rationales generated for this
question-answer pair using the three prompting
strategies: CoT (Rationale 1), explicit learning (Ra-
tionale 2) and implicit learning (Rationale 3). We
observe that the rationale produced using CoT fails
to identify the error. It also hallucinates that the
number of fish in each aquarium is 14, which is nei-
ther the correct solution nor a value that appears in
the answer. In contrast, prompting for both explicit
and implicit learning produces accurate rationales.
Note that the latter—generated without exemplar
rationales in the context to use as guidelines—is
more succinct yet equally exhaustive. Indeed, we
observe that rationales generated via explicit learn-
ing prompting are substantially longer on average
(373 average length, in characters), similar to those
shown in-context (423 average length), which fur-
ther confirms the overfitting hypothesis. In contrast,
rationales produced with implicit learning prompt-
ing are over a third shorter (237 average length).

6 Conclusion

We have investigated in-context implicit learning
from mistakes across a range of LLM families and
sizes, and found that it outperforms both chain-of-
thought prompting and explicit learning in chal-
lenging math reasoning tasks. Our analysis shows
that although incorrect answers benefit LLMs more
than additional correct ones, providing explicit cor-
rective feedback limits those advantages, as models
tend to overfit to it. Our findings are as noteworthy
as they are surprising, since they call into question
the benefits of widely used corrective rationales to
aid LLMs in learning from mistakes. These ratio-
nales are prevalent in current frameworks despite
being expensive to curate at scale, yet our inves-
tigation suggests that they are redundant and can
even hurt performance by adding unnecessary con-
straints.
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Limitations

We have carried out an exhaustive investigation
of implicit learning from mistakes, focused on in-
context learning. It is worth noting that implicit
learning examples—which consist of triples of the
form (question, incorrect answer, correct answer)—
can be obtained at scale by simply running more
and less capable LLMs on training set questions.
This opens up the possibility of investigating per-
formance differences between explicit and implicit
learning also in other paradigms, such as in the
fine-tuning setting. Future work can investigate
whether the results established in this paper extend
to models fine-tuned using similar strategies.

In our experiments, we use four datasets cov-
ering different math topics and difficulty levels,
extract multiple subtasks from each dataset, use
four prompting strategies (CoT, CoT+, implicit, ex-
plicit), and seven LLMs. This totals 364 distinct
experimental setups, each run five times for robust-
ness. Given the extensiveness of our experiments,
it was infeasible to explore further domains other
than math reasoning within the scope of this work.
Math benchmarks were chosen as a reliable proxy
for LLM reasoning in accordance with established
prior literature (Ahn et al., 2024; Paul et al., 2024;
Ruis et al., 2025; Liu et al., 2025). While there
exists prior work investigating related topics with
greater breadth (Lampinen et al., 2022), we leave
similar investigations in other domains to future
work.

Ethical Considerations

This study relies solely on established, publicly
available math reasoning benchmarks and focuses
on evaluating different prompting strategies. As
such, it does not involve sensitive data or fore-
seeable ethical risks. Our use of the models and
datasets described in this paper complies with all
applicable licenses.
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A Prompts

All prompts are of the form

[examples]\n\n\n\n[instruction],

where the examples are specific to the prompting
strategy (i.e., CoT, explicit learning, implicit learn-
ing), while the instruction is task-dependent (i.e.,
labelling an answer or step, editing an incorrect an-
swer, solving a new question). In the next sections,
we illustrate the examples for each prompting strat-
egy and the instructions for each task.

A.1 Examples

All few-shot examples shown below are for
GSM8K. Examples for all datasets are in-
cluded at https://github.com/lisaalaz/
implicit-learning-with-llms.

CoT Examples. Below you will find some

questions followed by the answer.

Question: A class has 32 students and they all

need to present their projects. Every period is

40 minutes long. How many periods will it take

for every student to present their project if they

have 5 minutes to do so?

Answer: There are 32 students and each student

needs 5 minutes to present their project.

So the total time needed is 32 x 5 = 160 minutes.

There are 40 minutes in each period.

So the number of periods needed is 160/40 = 4.

So, the final answer is 4.

Question: A bag contains 50 fewer baseball cards

than football cards. There are 4 times as many

football cards as hockey cards. If there are 200

hockey cards in the bag, how many cards are there

altogether?

Answer: There are 4 times as many football cards as

hockey cards, so there are 4 x 200 = 800 football

cards.

There are 50 fewer baseball cards than football

cards, so there are 800 - 50 = 750 baseball cards.

There are 200 hockey cards, 800 football cards and

750 baseball cards for a total of 200 + 800 + 750

= 1750 cards.

So, the final answer is 1750.

Question: A bag of caramel cookies has 20 cookies

inside and a box of cookies has 4 bags in total.

How many calories are inside the box if each cookie

is 20 calories?

Answer: There are 20 cookies in each bag and 4

bags in total.

So there are 20 x 4 = 80 cookies in total.

Each cookie is 20 calories, so the total calories

are 80 x 20 = 1600 calories.

So, the final answer is 1600.

Question: There are four members in one household.

Each member consumes 3 slices of bread during

breakfast and 2 slices of bread for snacks. A

loaf of bread has 12 slices. How many days will

five loaves of bread last in this family?

Answer: Each member consumes 3+2 = 5 slices of

bread per day.

There are 4 members so they consume 5 x 4 = 20

slices of bread per day.

Each loaf has 12 slices so 5 loaves have 5 x 12 =

60 slices.

60 slices of bread will last 60/20 = 3 days.

So, the final answer is 3.

Question: Bill decides to bring donuts to work for

a meeting that day. He buys a box of donuts that

has 50 in total in them. He eats 2 on the ride in

because he’s hungry. When he gets to the office,

the secretary takes another 4 out of the box when

he’s not looking. Lastly, right before the meeting

Bill sets the box down on his desk and leaves the

office to take a phone call. While Bill’s away, his

coworkers steal half the remaining donuts. Bill

comes back and brings the box into his meeting.

How many donuts are left in the box?

Answer: Bill eats 2 donuts on the ride in, leaving

50 - 2 = 48 donuts.

The secretary eats 4 donuts, leaving 48 - 4 = 44

donuts.

Bill’s coworkers eat half of the remaining donuts,

which is 44/2 = 22 donuts.

So Bill has 44 - 22 = 22 donuts left.

So, the final answer is 22.

Question: Boris has 100 pieces of Halloween candy.

His daughter eats 8 pieces of candy. He separates

the remaining pieces of candy into equal portions

into 4 different bowls. Then he takes away 3 pieces

of candy from each bowl to keep for himself. How

many pieces of candy are in one bowl?

Answer: Boris has 100 - 8 = 92 pieces of candy
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left.

He divides the 92 pieces of candy into 4 bowls.

92/4 = 23 pieces of candy in each bowl.

Then he takes away 3 pieces of candy from each

bowl. 23 - 3 = 20 pieces of candy in each bowl.

So, the final answer is 20.

Question: Yvonne and Janna were writing their

1000-word pair research paper. Yvonne was able to

write 400 words while Janna wrote 150 more words

than Yvonne. When they edited their paper, they

removed 20 words and added twice as many words as

they removed. How many more words should they add

to reach the research paper requirement?

Answer: Yvonne wrote 400 words and Janna wrote 150

more words than Yvonne, so Janna wrote 400 + 150

= 550 words.

Together they wrote 400 + 550 = 950 words.

After editing, they removed 20 words and added 2

x 20 = 40 words. So they have 950 - 20 + 40 = 970

words.

They need 1000 words, so they need 1000 - 970 = 30

more words.

So, the final answer is 30.

Question: Luke started working on a 1000-piece

jigsaw puzzle. The first day he worked on it, he

put together 10 percent of the pieces. On the

second day, he put together another 20 percent

of the remaining pieces from the first day. On

the third day, he put together 30 percent of the

remaining pieces from the previous day. How many

pieces does he have left to complete after the

third day?

Answer: 10 percent of 1000 is 100.

So he has 100 pieces done after the first day. He

has 900 pieces left.

20 percent of 900 is 180.

So he has 100 + 180 = 280 pieces done after the

second day.

He has 720 pieces left.

30 percent of 720 is 216.

So he has 280 + 216 = 496 pieces done after the

third day.

He has 720 - 216 = 504 pieces left.

So, the final answer is 504.

Explicit Learning Examples. Below you will

find some questions followed by a wrong answer,

a rationale and the correct answer.

Question: A class has 32 students and they all

need to present their projects. Every period is

40 minutes long. How many periods will it take

for every student to present their project if they

have 5 minutes to do so?

Wrong answer: 32 students x 5 minutes = 160

minutes.

5 minutes x 40 minutes = 200 minutes.

160 minutes + 200 minutes = 360 minutes.

So it will take 360 minutes or 6 hours for every

student to present their project.

So, the final answer is 360.

Rationale: The error occurs in the second line of

the wrong answer. The calculation of 5 minutes

x 40 minutes = 200 minutes is incorrect and

irrelevant to the problem. The correct approach

is to calculate the total time needed for all

presentations (32 students x 5 minutes each = 160

minutes) and then divide this by the length of each

period (40 minutes) to find the number of periods

needed. The incorrect answer also incorrectly

converts the total minutes into hours, which is

not asked for in the question.

Correct answer: There are 32 students and each

student needs 5 minutes to present their project.

So the total time needed is 32 x 5 = 160 minutes.

There are 40 minutes in each period.

So the number of periods needed is 160/40 = 4.

So, the final answer is 4.

Question: A bag contains 50 fewer baseball cards

than football cards. There are 4 times as many

football cards as hockey cards. If there are 200

hockey cards in the bag, how many cards are there

altogether?

Wrong answer: 50 fewer baseball cards than

football cards.

There are 4 times as many football cards as hockey

cards.

If there are 200 hockey cards in the bag, there

are 200 x 4 = 800 football cards and 800 - 50 =

750 baseball cards.

So there are 750 + 800 = 1550 cards altogether.

So, the final answer is 1550.

Rationale: The error occurs in the last line of

the wrong answer. The wrong answer incorrectly

calculates the total number of cards. The total

number of cards should be the sum of the hockey

cards, football cards, and baseball cards. The

33206



correct calculation is 200 (hockey cards) + 800

(football cards) + 750 (baseball cards) = 1750

cards.

Correct answer: There are 4 times as many football

cards as hockey cards, so there are 4 x 200 = 800

football cards.

There are 50 fewer baseball cards than football

cards, so there are 800 - 50 = 750 baseball cards.

There are 200 hockey cards, 800 football cards and

750 baseball cards for a total of 200 + 800 + 750

= 1750 cards.

So, the final answer is 1750.

Question: A bag of caramel cookies has 20 cookies

inside and a box of cookies has 4 bags in total.

How many calories are inside the box if each cookie

is 20 calories?

Wrong answer: 20 cookies in a bag amount to 20 x

20 = 400 calories.

There are 4 bags in a box.

So 400/4 = 100 calories in a box.

So, the final answer is 100.

Rationale: The error occurs in line 3 of the wrong

answer. The incorrect part of this line is the

calculation of the total calories in a box. The

total calories should be calculated by multiplying

the total number of cookies in the box (which is

80, not 20) by the calories per cookie. The wrong

answer incorrectly divided the total calories in

a bag by the number of bags in a box.

Correct answer: There are 20 cookies in each bag

and 4 bags in total.

So there are 20 x 4 = 80 cookies in total.

Each cookie is 20 calories, so the total calories

are 80 x 20 = 1600 calories.

So, the final answer is 1600.

Question: There are four members in one household.

Each member consumes 3 slices of bread during

breakfast and 2 slices of bread for snacks. A

loaf of bread has 12 slices. How many days will

five loaves of bread last in this family?

Wrong answer: 12/4 = 3 slices of bread per person

per day.

5 loaves of bread = 5 x 12 = 60 slices of bread.

60/4 = 15 days.

So, the final answer is 15.

Rationale: The error occurs in the first line of

the wrong answer. The incorrect part of this line

is the calculation of the slices of bread consumed

per person per day. The problem states that each

member consumes 3 slices of bread for breakfast

and 2 slices for snacks, so each member consumes

a total of 5 slices per day, not 3. Therefore,

the total slices of bread consumed per day by the

family should be 5 slices per person * 4 people =

20 slices, not 12. The correct calculation should

then be 60 slices / 20 slices per day = 3 days.

Correct answer: Each member consumes 3+2 = 5 slices

of bread per day.

There are 4 members so they consume 5 x 4 = 20

slices of bread per day.

Each loaf has 12 slices so 5 loaves have 5 x 12 =

60 slices.

60 slices of bread will last 60/20 = 3 days.

So, the final answer is 3.

Question: Bill decides to bring donuts to work for

a meeting that day. He buys a box of donuts that

has 50 in total in them. He eats 2 on the ride in

because he’s hungry. When he gets to the office,

the secretary takes another 4 out of the box when

he’s not looking. Lastly, right before the meeting

Bill sets the box down on his desk and leaves the

office to take a phone call. While Bill’s away, his

coworkers steal half the remaining donuts. Bill

comes back and brings the box into his meeting.

How many donuts are left in the box?

Wrong answer: Bill eats 2 donuts on the way to

work.

The secretary takes 4 donuts.

Bill’s coworkers steal 25 donuts.

Bill brings the box into the meeting with 23

donuts.

So, the final answer is 23.

Rationale: The error occurs in line 2 of the wrong

answer. The incorrect part of this line is the

calculation of the number of donuts stolen by

Bill’s coworkers. The problem states that his

coworkers steal half of the remaining donuts, not

half of the original number of donuts. Therefore,

the number of donuts stolen by his coworkers should

be half of the remaining 44 donuts, not half of

the original 50 donuts.

Correct answer: Bill eats 2 donuts on the ride in,

leaving 50 - 2 = 48 donuts.

The secretary eats 4 donuts, leaving 48 - 4 = 44

donuts.

Bill’s coworkers eat half of the remaining donuts,
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which is 44/2 = 22 donuts.

So Bill has 44 - 22 = 22 donuts left.

So, the final answer is 22.

Question: Boris has 100 pieces of Halloween candy.

His daughter eats 8 pieces of candy. He separates

the remaining pieces of candy into equal portions

into 4 different bowls. Then he takes away 3 pieces

of candy from each bowl to keep for himself. How

many pieces of candy are in one bowl?

Wrong answer: Boris has 100 pieces of candy.

His daughter eats 8 pieces of candy.

He separates the remaining pieces of candy into

equal portions into 4 different bowls.

Then he takes away 3 pieces of candy from each

bowl to keep for himself. So he has 100-8 = 92

pieces of candy in 4 bowls.

He takes away 3 pieces of candy from each bowl. So

he has 92-3 = 89 pieces of candy in 4 bowls.

So, the final answer is 89.

Rationale: The error occurs at line 5 of the wrong

answer. The incorrect part of this line is the

calculation of the number of candies left after

Boris takes away 3 pieces from each bowl. The

subtraction should be done after dividing the total

number of candies by 4 (the number of bowls), not

before. Also, the subtraction should be 3*4=12,

not just 3, because Boris takes away 3 pieces from

each of the 4 bowls.

Correct answer: Boris has 100 - 8 = 92 pieces of

candy left.

He divides the 92 pieces of candy into 4 bowls.

92/4 = 23 pieces of candy in each bowl.

Then he takes away 3 pieces of candy from each

bowl. 23 - 3 = 20 pieces of candy in each bowl.

So, the final answer is 20.

Question: Yvonne and Janna were writing their

1000-word pair research paper. Yvonne was able to

write 400 words while Janna wrote 150 more words

than Yvonne. When they edited their paper, they

removed 20 words and added twice as many words as

they removed. How many more words should they add

to reach the research paper requirement?

Wrong answer: Yvonne wrote 400 words and Janna

wrote 150 more words than Yvonne. So Janna wrote

550 words.

They removed 20 words and added twice as many words

as they removed. So they added 40 words.

They need to add 40 words to reach the research

paper requirement.

So, the final answer is 40.

Rationale: The error occurs in line 3 of the

wrong answer. The incorrect part of this line

is the calculation of the total words they have

after editing. They should subtract the words they

removed and add the words they added to the total

words they initially wrote. The wrong answer also

incorrectly calculated the number of words they

need to add to reach the research paper requirement.

They should subtract the total words they have

after editing from the research paper requirement.

Correct answer: Yvonne wrote 400 words and Janna

wrote 150 more words than Yvonne, so Janna wrote

400 + 150 = 550 words.

Together they wrote 400 + 550 = 950 words.

After editing, they removed 20 words and added 2

x 20 = 40 words. So they have 950 - 20 + 40 = 970

words.

They need 1000 words, so they need 1000 - 970 = 30

more words.

So, the final answer is 30.

Question: Luke started working on a 1000-piece

jigsaw puzzle. The first day he worked on it, he

put together 10 percent of the pieces. On the

second day, he put together another 20 percent

of the remaining pieces from the first day. On

the third day, he put together 30 percent of the

remaining pieces from the previous day. How many

pieces does he have left to complete after the

third day?

Wrong answer: 1000 pieces = 1000/100 = 10 pieces

Luke put together 10 pieces on the first day.

He put together 20 pieces on the second day.

He put together 30 pieces on the third day.

So he has 10+20+30 = 60 pieces left to complete

after the third day.

So, the final answer is 60.

Rationale: The error occurs in the first line of

the wrong answer. The wrong answer incorrectly

calculates 10 percent of 1000 as 10 pieces, when

it should be 100 pieces. The same mistake is

made for the calculations on the second and third

day. The correct way to solve this problem is to

calculate the percentage of the remaining pieces

each day, not a percentage of the original 1000

pieces.

Correct answer: 10 percent of 1000 is 100.

33208



So he has 100 pieces done after the first day. He

has 900 pieces left.

20 percent of 900 is 180.

So he has 100 + 180 = 280 pieces done after the

second day.

He has 720 pieces left.

30 percent of 720 is 216.

So he has 280 + 216 = 496 pieces done after the

third day.

He has 720 - 216 = 504 pieces left.

So, the final answer is 504.

Implicit Learning Examples. Below you will

find some questions followed by a wrong answer

and the correct answer.

Question: A class has 32 students and they all

need to present their projects. Every period is

40 minutes long. How many periods will it take

for every student to present their project if they

have 5 minutes to do so?

Wrong answer: 32 students x 5 minutes = 160

minutes.

5 minutes x 40 minutes = 200 minutes.

160 minutes + 200 minutes = 360 minutes.

So it will take 360 minutes or 6 hours for every

student to present their project.

So, the final answer is 360.

Correct answer: There are 32 students and each

student needs 5 minutes to present their project.

So the total time needed is 32 x 5 = 160 minutes.

There are 40 minutes in each period.

So the number of periods needed is 160/40 = 4.

So, the final answer is 4.

Question: A bag contains 50 fewer baseball cards

than football cards. There are 4 times as many

football cards as hockey cards. If there are 200

hockey cards in the bag, how many cards are there

altogether?

Wrong answer: 50 fewer baseball cards than

football cards.

There are 4 times as many football cards as hockey

cards.

If there are 200 hockey cards in the bag, there

are 200 x 4 = 800 football cards and 800 - 50 =

750 baseball cards.

So there are 750 + 800 = 1550 cards altogether.

So, the final answer is 1550.

Correct answer: There are 4 times as many football

cards as hockey cards, so there are 4 x 200 = 800

football cards.

There are 50 fewer baseball cards than football

cards, so there are 800 - 50 = 750 baseball cards.

There are 200 hockey cards, 800 football cards and

750 baseball cards for a total of 200 + 800 + 750

= 1750 cards.

So, the final answer is 1750.

Question: A bag of caramel cookies has 20 cookies

inside and a box of cookies has 4 bags in total.

How many calories are inside the box if each cookie

is 20 calories?

Wrong answer: 20 cookies in a bag amount to 20 x

20 = 400 calories.

There are 4 bags in a box.

So 400/4 = 100 calories in a box.

So, the final answer is 100.

Correct answer: There are 20 cookies in each bag

and 4 bags in total.

So there are 20 x 4 = 80 cookies in total.

Each cookie is 20 calories, so the total calories

are 80 x 20 = 1600 calories.

So, the final answer is 1600.

Question: There are four members in one household.

Each member consumes 3 slices of bread during

breakfast and 2 slices of bread for snacks. A

loaf of bread has 12 slices. How many days will

five loaves of bread last in this family?

Wrong answer: 12/4 = 3 slices of bread per person

per day.

5 loaves of bread = 5 x 12 = 60 slices of bread.

60/4 = 15 days.

So, the final answer is 15.

Correct answer: Each member consumes 3+2 = 5 slices

of bread per day.

There are 4 members so they consume 5 x 4 = 20

slices of bread per day.

Each loaf has 12 slices so 5 loaves have 5 x 12 =

60 slices.

60 slices of bread will last 60/20 = 3 days.

So, the final answer is 3.

Question: Bill decides to bring donuts to work for

a meeting that day. He buys a box of donuts that

has 50 in total in them. He eats 2 on the ride in

because he’s hungry. When he gets to the office,

the secretary takes another 4 out of the box when

he’s not looking. Lastly, right before the meeting
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Bill sets the box down on his desk and leaves the

office to take a phone call. While Bill’s away, his

coworkers steal half the remaining donuts. Bill

comes back and brings the box into his meeting.

How many donuts are left in the box?

Wrong answer: Bill eats 2 donuts on the way to

work.

The secretary takes 4 donuts.

Bill’s coworkers steal 25 donuts.

Bill brings the box into the meeting with 23

donuts.

So, the final answer is 23.

Correct answer: Bill eats 2 donuts on the ride in,

leaving 50 - 2 = 48 donuts.

The secretary eats 4 donuts, leaving 48 - 4 = 44

donuts.

Bill’s coworkers eat half of the remaining donuts,

which is 44/2 = 22 donuts.

So Bill has 44 - 22 = 22 donuts left.

So, the final answer is 22.

Question: Boris has 100 pieces of Halloween candy.

His daughter eats 8 pieces of candy. He separates

the remaining pieces of candy into equal portions

into 4 different bowls. Then he takes away 3 pieces

of candy from each bowl to keep for himself. How

many pieces of candy are in one bowl?

Wrong answer: Boris has 100 pieces of candy.

His daughter eats 8 pieces of candy.

He separates the remaining pieces of candy into

equal portions into 4 different bowls.

Then he takes away 3 pieces of candy from each

bowl to keep for himself. So he has 100-8 = 92

pieces of candy in 4 bowls.

He takes away 3 pieces of candy from each bowl. So

he has 92-3 = 89 pieces of candy in 4 bowls.

So, the final answer is 89.

Correct answer: Boris has 100 - 8 = 92 pieces of

candy left.

He divides the 92 pieces of candy into 4 bowls.

92/4 = 23 pieces of candy in each bowl.

Then he takes away 3 pieces of candy from each

bowl. 23 - 3 = 20 pieces of candy in each bowl.

So, the final answer is 20.

Question: Yvonne and Janna were writing their

1000-word pair research paper. Yvonne was able to

write 400 words while Janna wrote 150 more words

than Yvonne. When they edited their paper, they

removed 20 words and added twice as many words as

they removed. How many more words should they add

to reach the research paper requirement?

Wrong answer: Yvonne wrote 400 words and Janna

wrote 150 more words than Yvonne. So Janna wrote

550 words.

They removed 20 words and added twice as many words

as they removed. So they added 40 words.

They need to add 40 words to reach the research

paper requirement.

So, the final answer is 40.

Correct answer: Yvonne wrote 400 words and Janna

wrote 150 more words than Yvonne, so Janna wrote

400 + 150 = 550 words.

Together they wrote 400 + 550 = 950 words.

After editing, they removed 20 words and added 2

x 20 = 40 words. So they have 950 - 20 + 40 = 970

words.

They need 1000 words, so they need 1000 - 970 = 30

more words.

So, the final answer is 30.

Question: Luke started working on a 1000-piece

jigsaw puzzle. The first day he worked on it, he

put together 10 percent of the pieces. On the

second day, he put together another 20 percent

of the remaining pieces from the first day. On

the third day, he put together 30 percent of the

remaining pieces from the previous day. How many

pieces does he have left to complete after the

third day?

Wrong answer: 1000 pieces = 1000/100 = 10 pieces

Luke put together 10 pieces on the first day.

He put together 20 pieces on the second day.

He put together 30 pieces on the third day.

So he has 10+20+30 = 60 pieces left to complete

after the third day.

So, the final answer is 60.

Correct answer: 10 percent of 1000 is 100.

So he has 100 pieces done after the first day. He

has 900 pieces left.

20 percent of 900 is 180.

So he has 100 + 180 = 280 pieces done after the

second day.

He has 720 pieces left.

30 percent of 720 is 216.

So he has 280 + 216 = 496 pieces done after the

third day.

He has 720 - 216 = 504 pieces left.

So, the final answer is 504.
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I1: Answer labelling instruction

Now apply what you have learned and

determine if the answer below is wrong or

correct. Begin your evaluation by providing

a short explanation. Be as objective as

possible. After providing your explanation,

you must rate the answer as either wrong

or correct by strictly following this

format: "[[rating]]", for example: "Rating:

[[wrong]]" or "Rating: [[correct]]". You

can only use the words wrong or correct as

the final rating.

I2: Step labelling instruction

Now apply what you have learned when

reading the question and the step-by-step

answer below. The answer may not yet be

complete. Your task is to determine if

the current step will lead to a wrong

or correct final answer, based on the

question and the previous steps. Begin

your evaluation by providing a short

explanation. Be as objective as possible.

After providing your explanation, you must

rate the current reasoning step as either

wrong or correct by strictly following this

format: "[[rating]]", for example: "Rating:

[[wrong]]" or "Rating: [[correct]]". You

can only use the words wrong or correct as

the final rating.

I3: Editing instruction

Now apply what you have learned and given

the question below and a wrong answer, write

the correct answer.

I4: Solving instruction

Now apply what you have learned and answer

the question below.

Dataset
Model for train
samples (incorrect
answers)

Model for test
samples (incorrect
+ correct answers)

GSM8K LLaMA 30B Llama 2 7B

ASDiv Llama 2 7B Llama 2 7B

AQuA Llama 3 8B Llama 3 8B

Table 4: LLMs used for answer generation.

A.2 Instructions
The instructions for the answer labelling, step la-
belling, editing and solving tasks are shown in I1,
I2, I3 and I4, respectively.

B Models

We list below each of the seven LLMs tested, with
the corresponding API provider and model identi-
fier. With all LLMs we use hyperparameters t = 0,
p = 1, and k = 1.

• Llama 3.1 70B, Amazon Bedrock,
meta.llama3-70b-instruct-v1:0

• Titan Text G1 Express, Amazon Bedrock,
amazon.titan-text-express-v1

• Command R, Cohere, command-r-03-2024

• Command R Refresh, Cohere,
command-r-08-2024

• Command R+, Cohere,
command-r-plus-04-2024

• Command R+ Refresh, Cohere,
command-r-plus-08-2024

• WizardLM, TogetherAI,
microsoft/WizardLM-2-8x22B

C Data Preparation

C.1 Answer Generation
In Table 4 we show the LLMs used to generate an-
swers to the questions in each dataset, for both the
training few-shot examples and the test samples.
For the training set, we only generate incorrect an-
swers with the listed models, while all correct an-
swers are generated with GPT-4 or extracted from
the original dataset where possible. For test sam-
ples, we use these models to generate both correct
and incorrect answers. We do not run this gener-
ation step for PRM800K, as this dataset already
contains annotated correct and incorrect answers.
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Model Strategy
GSM8K ASDiv

labelans edit solve labelans edit solve

CoT (83.76, 83.84) (81.30, 81.30) (91.76, 91.84) (90.08, 90.12) (82.63, 82.77) (90.78, 90.82)
Llama 3 70B
Instruct Explicit (82.45, 82.55) (84.18, 84.22) (92.78, 92.83) (89.98, 90.02) (81.33, 81.47) (91.49, 91.51)

Implicit (83.94, 84.06) (84.79, 84.81) (93.27, 93.33) (91.36, 91.44) (84.84, 84.96) (91.08, 91.12)

CoT (50.43, 50.57) (17.13, 17.27) (63.06, 63.14) (53.31, 53.49) (49.2, 49.4) (77.54, 77.66)
Command R Explicit (56.93, 57.07) (24.99, 25.21) (56.62, 56.78) (64.0, 64.2) (47.89, 48.11) (69.52, 69.68)

Implicit (64.13, 64.27) (31.00, 31.20) (60.4, 60.6) (60.24, 60.36) (51.34, 51.46) (70.05, 70.15)

CoT (65.74, 65.86) (47.98, 48.02) (69.66, 69.74) (78.85, 78.95) (61.81, 61.99) (81.65, 81.75)

Command R+ Explicit (64.28, 64.32) (59.75, 59.85) (75.93, 76.07) (80.38, 80.42) (69.20, 69.40) (83.87, 83.93)

Implicit (71.87, 71.93) (61.93, 62.07) (79.83, 79.97) (82.58, 82.62) (70.59, 70.81) (85.28, 85.32)

CoT (55.43, 55.57) (52.05, 52.15) (78.87, 78.93) (54.78, 54.82) (64.78, 64.82) (84.45, 84.55)
Command R
Refresh Explicit (48.61, 48.79) (55.87, 55.93) (75.83, 75.97) (37.85, 37.95) (69.11, 69.29) (80.85, 80.95)

Implicit (62.42, 62.58) (57.34, 57.46) (79.14, 79.26) (70.31, 70.49) (72.18, 72.22) (84.76, 84.84)

CoT (46.83, 46.97) (45.84, 45.96) (75.53, 75.67) (77.69, 77.71) (78.76, 78.84) (89.37, 89.43)
Command R+
Refresh Explicit (40.23, 40.37) (57.49, 57.71) (81.94, 82.06) (64.78, 64.82) (76.03, 76.17) (89.88, 89.92)

Implicit (47.13, 47.27) (62.73, 62.87) (86.23, 86.37) (79.58, 79.62) (81.82, 81.98) (90.37, 90.43)

CoT (53.38, 53.42) (2.08, 2.12) (29.64, 29.76) (45.35, 45.45) (13.08, 13.12) (61.17, 61.23)
Titan Text G1
Express Explicit (68.68, 68.72) (2.77, 2.83) (33.16, 33.24) (52.93, 53.07) (12.88, 12.92) (61.05, 61.15)

Implicit (69.26, 69.34) (2.97, 3.03) (34.63, 34.77) (60.17, 60.23) (12.89, 12.91) (62.77, 62.83)

CoT (85.87, 85.93) (72.31, 72.49) (91.25, 91.35) (93.78, 93.82) (80.58, 80.62) (90.87, 90.93)

WizardLM Explicit (85.36, 85.44) (78.39, 78.61) (91.43, 91.57) (93.48, 93.52) (82.38, 82.42) (91.39, 91.41)
Implicit (86.86, 86.94) (82.23, 82.37) (91.44, 91.56) (94.98, 95.02) (82.58, 82.62) (90.58, 90.62)

Model Strategy
AQuA PRM800K

labelans edit solve labelans labelstep edit solve

CoT (66.51, 66.69) (37.27, 37.33) (55.75, 55.85) (31.65, 31.75) (49.58, 49.62) (20.49, 20.71) (43.83, 43.97)
Llama 3 70B
Instruct Explicit (55.61, 55.79) (33.91, 34.09) (55.02, 55.18) (18.97, 19.03) (48.17, 48.23) (21.67, 21.93) (48.07, 48.13)

Implicit (56.58, 56.62) (37.49, 37.71) (56.37, 56.43) (19.18, 19.22) (49.95, 50.05) (26.34, 26.66) (48.35, 48.45)

CoT (37.03, 37.17) (7.79, 8.01) (21.81, 21.99) (21.34, 21.46) (36.27, 36.33) (4.60, 4.80) (13.22, 13.38)

Command R Explicit (34.07, 34.33) (6.61, 6.79) (17.64, 17.96) (32.65, 32.75) (38.98, 39.02) (7.43, 7.57) (12.94, 13.06)

Implicit (39.69, 39.91) (11.10, 11.30) (19.08, 19.12) (55.93, 56.07) (43.30, 43.50) (8.77, 8.83) (14.74, 14.86)

CoT (43.73, 43.87) (11.8, 12.0) (31.87, 32.13) (16.01, 16.19) (35.77, 35.83) (14.41, 14.59) (23.79, 24.01)
Command R+ Explicit (46.47, 46.53) (12.38, 12.62) (30.94, 31.26) (59.63, 59.77) (38.78, 38.82) (12.82, 12.98) (18.05, 18.15)

Implicit (47.53, 47.67) (16.71, 16.89) (35.71, 35.89) (59.40, 59.60) (39.18, 39.22) (16.53, 16.67) (21.05, 21.15)

CoT (47.38, 47.62) (8.42, 8.58) (35.20, 35.40) (68.04, 68.16) (39.25, 39.35) (11.64, 11.76) (30.54, 30.66)
Command R
Refresh Explicit (42.37, 42.43) (16.46, 16.54) (38.95, 39.25) (67.23, 67.37) (55.85, 55.95) (13.03, 13.17) (30.76, 30.84)

Implicit (50.63, 50.77) (16.55, 16.65) (40.43, 40.57) (71.03, 71.17) (53.63, 53.77) (11.71, 11.89) (32.04, 32.16)

CoT (60.97, 61.03) (23.44, 23.56) (44.43, 44.57) (54.40, 54.60) (51.85, 51.95) (15.99, 16.21) (31.83, 31.97)
Command R+
Refresh Explicit (53.56, 53.64) (53.56, 53.64) (43.06, 43.34) (73.27, 73.33) (51.63, 51.77) (15.79, 16.01) (26.77, 26.83)

Implicit (63.20, 63.40) (21.41, 21.59) (47.70, 47.90) (74.69, 74.77) (51.63, 51.77) (17.41, 17.57) (29.35, 29.45)

CoT (28.14, 28.26) (0.76, 0.86) (6.83, 6.97) (26.53, 26.67) (4.88, 5.02) (1.94, 2.06) (4.06, 4.14)
Titan Text G1
Express Explicit (28.89, 29.01) (1.43, 1.57) (7.76, 7.84) (27.85, 27.95) (4.83, 5.01) (1.96, 2.04) (4.53, 4.67)

Implicit (29.78,29.82) (1.94,2.06) (8.52,8.66) (29.03,29.17) (5.57,5.63) (2.01,2.07) (4.62,4.78)

CoT (29.97, 30.03) (28.88, 29.12) (40.87, 41.13) (18.46, 18.54) (41.26, 41.34) (19.83, 20.17) (30.54, 30.66)

WizardLM Explicit (27.76, 28.04) (34.44, 34.56) (46.18,46.22) (23.04,23.16) (45.11,45.29) (25.97,26.03) (33.07,33.13)
Implicit (31.74,31.86) (36.76,36.84) (43.06, 43.14) (21.66, 21.74) (42.07, 42.13) (22.71, 22.89) (30.63, 30.77)

Table 5: Estimated 95% confidence intervals calculated using t-distribution for all main results.

C.2 Test Set Construction

For GSM8K and ASDiv we use all test samples,
with or without the correct/incorrect answers gen-
erated as per Section C.1, depending on the task.

For AQuA, we make minor changes to the test set
before generating the answers. PRM800K already
contains CoT-style answers, though these are anno-
tated for correctness at the intermediary reasoning
step level, and not as a whole. Thus, we adapt this
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Model Strategy
GSM8K ASDiv AQuA PRM800K

labelans edit solve labelans edit solve labelans edit solve labelans labelstep edit solve

CoT+ 86.40.4 82.80.4 92.70.1 90.60.5 82.21.1 90.90.3 65.71.5 33.21.5 56.10.9 30.21.1 51.81.0 19.01.9 43.20.4Llama 3 70B
Instruct Implicit 84.00.7 84.80.1 93.30.4 91.40.5 84.90.7 91.10.2 56.60.2 37.61.3 56.40.4 19.20.2 50.00.6 26.51.9 48.40.6

CoT+ 50.91.1 20.81.2 64.31.2 54.70.2 50.81.2 77.31.1 35.61.6 7.21.4 21.80.2 26.20.3 38.11.7 8.20.7 12.10.7Command R
Implicit 64.20.8 31.11.2 60.51.2 60.30.7 51.40.7 70.10.6 39.81.3 11.21.2 19.10.3 56.00.9 43.41.2 8.80.4 14.80.7

CoT+ 69.70.3 52.10.7 77.20.3 80.10.3 63.20.6 86.30.9 46.90.8 12.82.0 32.82.1 17.30.5 34.20.1 12.21.3 22.90.5Command R+
Implicit 71.90.4 62.00.8 79.90.8 82.60.2 70.71.3 85.30.3 47.60.9 16.81.1 35.81.1 59.51.2 39.20.2 16.60.8 21.10.6

CoT+ 64.20.5 49.80.3 80.51.2 50.40.4 70.61.2 83.60.4 41.90.9 14.51.1 36.31.3 65.00.7 36.70.4 11.20.9 27.91.0Command R
Refresh Implicit 62.51.0 57.40.7 79.20.7 70.41.1 72.20.3 84.80.5 50.70.9 16.60.6 40.50.8 71.10.9 53.70.8 11.81.1 32.10.7

CoT+ 45.00.4 45.10.2 85.20.6 66.51.5 78.50.2 88.90.1 62.01.9 18.50.4 45.41.3 61.51.2 47.11.1 16.71.3 27.50.2Command R+
Refresh Implicit 47.20.8 62.80.9 86.30.8 79.60.2 81.91.0 90.40.4 63.31.2 21.51.1 47.81.2 73.90.8 47.80.7 18.71.1 29.70.7

CoT+ 52.51.0 1.20.2 30.41.4 46.61.2 12.50.2 61.10.3 57.01.7 1.20.1 11.20.3 66.31.2 47.20.5 2.80.3 5.40.5Titan Text G1
Express Implicit 69.30.5 3.00.4 34.70.9 60.20.4 12.90.1 62.80.4 49.60.8 1.40.1 11.00.2 45.70.9 49.71.0 4.00.5 5.80.5

CoT+ 83.10.7 69.31.2 92.00.5 94.20.2 80.30.2 90.40.7 78.90.2 42.90.4 57.10.3 63.20.6 62.30.1 33.31.3 59.70.2WizardLM
Implicit 86.90.5 82.30.9 91.50.7 95.00.2 82.60.2 90.60.3 79.50.1 44.10.5 62.10.6 69.00.4 62.60.5 35.71.3 61.10.6

Table 6: Results of CoT prompting with extended context (CoT+) to match the sequence length of implicit prompting.
Note that CoT+ includes further, diverse exemplars that implicit prompting does not contain. We report the accuracy
of the final numerical result for all tasks except labelans and labelstep, where we report the weighted F1-score of the
binary label. Results are averaged over five runs to account for small variations in model-generated outputs, likely
due to dynamic batching in the APIs.

dataset to our tasks. We illustrate these adaptations
below.

AQuA contains, in its original version, multiple-
choice questions associated with five answer op-
tions, only one of which is correct. In our ex-
periments, we discard the options and prompt the
model to generate open-ended answers. For ease
of verifying the correctness of the answers at test
time, we drop from the test set all samples where
the golden answer is non-numerical.

PRM800K comprises questions and the respec-
tive answers, split into intermediary reasoning
steps. Each step is labelled by human annotators
as correct (label 1), incorrect (label −1), or neutral
(label 0). Some samples are associated with a series
of steps that lead to the correct solution, while oth-
ers contain errors that impact the final solution. For
the step labelling task, we use the reasoning steps
that are annotated as either correct or incorrect. We
append each of them to the previous context where
available, i.e., the (correct or neutral) steps that
precede it in the answer. For the answer labelling
and editing tasks, we join the individual steps and
label the resulting answer as correct if all steps are
labelled as either correct or neutral, and incorrect
if at least one of the steps contains errors.

D Statistical Significance of Results

To confirm the statistical significance of our results,
we compute the 95% t-based confidence intervals
of the accuracies obtained with all seven LLMs on
all datasets (GSM8K, ASDiv, AQuA, PRM800K)
and tasks (labelans, labelstep, edit, solve) with each
prompting strategy (CoT, implicit learning, explicit
learning). The confidence intervals are shown in
Table 5.

E Extended Context Length Experiments

E.1 CoT+

Table 6 illustrates the fine-grained results of CoT+,
and compares them to implicit learning prompting.
Firstly, we note that in the large majority of cases
(∼80%) adding further few-shot examples to the
CoT prompt results in better or similar (<1% differ-
ence) performance than the same setup with fewer
examples (shown in Table 1). In a minority of cases,
however, we observe that performance declines.
This is consistent with previous findings that more
examples do not strictly guarantee performance im-
provements (Zhao, 2023), especially in complex
tasks (Opedal et al., 2025). Indeed, instances where
performance declines are predominantly concen-
trated in the PRM800K dataset, which contains par-
ticularly challenging problems. Notably, prompt-
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Dataset Task
Strategy

CoT-2 Implicit

labelans 76.30.2 75.00.1
GSM8K edit 51.60.6 63.00.9

solve 76.91.0 81.10.5

labelans 79.50.0 84.30.1
ASDiv edit 66.60.7 72.00.4

solve 85.00.3 85.50.6

labelans 69.90.0 70.70.1
labelstep 34.40.0 35.50.1PRM800K
edit 15.01.0 17.11.0
solve 25.50.7 28.21.0

Table 7: Results of CoT with two correct answers (CoT-
2) and implicit learning. We report the accuracy of the
final numerical result for all tasks except labelans and
labelstep, where we report the weighted F1-score of the
binary label. Results are averaged over five runs.

Strategy ROUGE-1 ROUGE-L

CoT 0.18 0.13
Implicit 0.26 0.19
Explcit 0.19 0.14

Table 8: ROUGE-1 and ROUGE-L recall scores be-
tween generated and in-context rationales.

ing for implicit learning outperforms CoT+ in over
80% of cases. This demonstrates that the advantage
of implicit learning is indeed due to the presence
of incorrect answers rather than increased context
length or other effects.

E.2 CoT-2
Table 7 displays the results of running CoT-2, com-
pared to prompting for implicit learning. We ob-
serve that implicit prompting is superior to CoT-2,
with the largest overall advantage in the editing
and solving tasks. Surprisingly, observing incor-
rect answers alongside correct ones does not help
the LLM label new answers for correctness in the
case of GSM8K. Overall, however, the advantage
of implicit prompting over CoT-2 is consistent, fur-
ther evidencing that LLMs benefit from incorrect
answers in their context more than from additional
correct answers.

It should be noted that this experiment—which
was run early on in our work—tests one model
(Command R+) on three datasets (AQuA was not
yet part of our test suite). LLM instructions also

have slightly different wording to those used in our
main setup (hence the minor discrepancies in the
final values). In particular, the labelling tasks here
are set up so that the LLM outputs the label directly,
as opposed to a rationale justifying its choice first,
followed by the label. As detailed in Section 4.3,
this was later updated to guarantee robustness.

F ROUGE Analysis of Rationales

In addition to the n-gram similarity analysis of
Table 3, we assess overfitting of the generated ra-
tionales to the in-context ones via ROUGE-1 and
ROUGE-L, under each prompting strategy. The
former measures the overlap of individual words,
while the latter measures the Longest Common
Subsequence (LCS). Recall scores for both met-
rics are shown in Table 8. Consistent with the
n-gram similarity analysis, we observe that explicit
prompting leads to higher ROUGE scores, and thus
generated rationales that are more similar to the
exemplar ones, compared with CoT and implicit
prompting.

G Human Evaluation

G.1 Guidelines

We report the guidelines given to annotators for the
human evaluation task. Annotators were recruited
among machine learning experts.

CoT Explicit Implicit
0

10

20

30

40

50 Poor
Fair
Good

Figure 5: Fine-grained results of the human evaluation,
showing the number of individual labels assigned to
rationales for each prompting strategy. Explicit and
implicit learning perform fairly similarly, with explicit
learning obtaining a slightly higher number of labels at
both extremes (‘poor’ and ‘good’) and implicit learning
earning more mid-range labels (‘fair’). In contrast, ratio-
nales output with the aid of CoT prompting are mainly
scored as ‘poor’.
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Evaluating model feedback on math reasoning
questions.

The attached sheet contains 100 mathematical
questions and the corresponding answers given
by language models. Each answer is highlighted
in either green (meaning it reached the correct nu-
merical solution) or red (meaning the numerical
solution reached is wrong).
For each answer, three LLMs have generated a
piece of feedback explaining why the answer is
wrong or correct, your task is to score each feed-
back as “poor”, “fair”, or “good”.
In your evaluation, you should only consider the
correctness of the feedback. Did the model identify
the strengths and/or weaknesses of the answer cor-
rectly? In your assessment, do not take feedback
length into consideration. If two pieces of feedback
both identify the same key points, they should be
awarded the same score, even if one is much more
succinct than the other. If a piece of feedback is
completely missing however (meaning the model
did not generate one), you should assign the label

“poor”. Also please ignore formatting and the pres-
ence of any special tokens or characters in your
evaluation, only focus on the meaning. In each row,
the three models are displayed in different order
to avoid annotation bias. So, for example, “Model
1” in the first row may not be the same model as

“Model 1” in the second row, and so on.

G.2 Fine-grained Results
In Figure 5, we show a breakdown of the labels
assigned by human evaluators to model-generated
rationales produced with each prompting strategy.
While most rationales generated via CoT are as-
signed the minimum score, explicit and implicit
learning prompting exhibit similar trends, with ex-
plicit learning obtaining slightly more labels at both
ends of the spectrum (‘poor’ and ‘good’) and im-
plicit learning receiving more mid-range labels.
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