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Abstract

Modern automatic speech recognition (ASR)
models, such as OpenAI’s Whisper, rely on
deep encoder-decoder architectures, and their
encoders are a critical bottleneck for efficient
deployment due to high computational inten-
sity. We introduce LITEASR, a low-rank com-
pression scheme for ASR encoders that sig-
nificantly reduces inference costs while main-
taining transcription accuracy. Our approach
leverages the strong low-rank properties ob-
served in intermediate activations: by apply-
ing principal component analysis (PCA) with a
small calibration dataset, we approximate lin-
ear transformations with a chain of low-rank
matrix multiplications, and further optimize
self-attention to work in reduced dimensional-
ity. Evaluation results show that our method
can compress Whisper large-v3’s encoder size
by over 50%, matching Whisper medium’s size
with better transcription accuracy, thereby es-
tablishing a new Pareto frontier of accuracy and
efficiency. The code of LITEASR is available
at https://github.com/efeslab/LiteASR.

1 Introduction

Automatic speech recognition (ASR) systems have
made significant strides in recent years, achieving
near-human transcription performance (Radford
et al., 2023; Puvvada et al., 2024). Modern ASR
models, such as OpenAI’s Whisper family, typi-
cally adopt an encoder-decoder architecture (Rad-
ford et al., 2023). For instance, Whisper large-
v3 comprises 32 Transformer blocks in both its
encoder and decoder, totaling approximately 1.6
billion parameters, and has set new standards in
multilingual transcription accuracy.

Despite these advances, deploying ASR systems
in real-world applications poses substantial effi-
ciency challenges. First, many applications, such
as live transcription, voice assistants, and real-
time translation, impose strict latency requirements
(Macháček et al., 2023; Bevilacqua et al., 2024;
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Figure 1: The relationship between encoder size and
accuracy, as measured by word error rate (WER), for
models in the Whisper family. The stars denote variants
compressed via our method, which achieves an optimal
trade-off between accuracy and efficiency.

Nguyen et al., 2020; Wang et al., 2022; Jeffries
et al., 2024). Latency refers to the delay between
the input of audio and the output of the transcribed
text. In real-time applications, even a few seconds
of delay can significantly degrade user experience.

Second, while the overall model size may be
moderate compared to the latest large language
models (LLMs), ASR encoders are computation-
ally intensive due to the long input sequences they
must process. For instance, the encoder Transform-
ers in the Whisper series consistently process input
sequences of length 1500. For real-time applica-
tions, this encoder must be processed frequently,
making it a significant computational bottleneck.

These challenges are acute in both on-device
and data center settings. In on-device scenarios
(e.g., laptops or smartphones), limited hardware
capabilities make it difficult to meet latency con-
straints. Even in data center environments, which
serve multiple concurrent users, the high computa-
tional intensity of ASR encoders becomes a critical
bottleneck. Although batching can improve serv-
ing throughput for memory-bound workloads, such
as ASR decoders, it provides limited benefits for
compute-bound encoders (as discussed in §2).

Moreover, recent works have shown that the

3430

https://github.com/efeslab/LiteASR


decoder component of ASR models can be ag-
gressively compressed. For example, OpenAI’s
Whisper large-v3-turbo successfully reduced the
number of decoder layers from 32 down to 4 lay-
ers via distillation. Other variants, such as Distill-
Whisper and Kotoba-Whisper, have taken this even
further, compressing the decoder to as few as 2
layers (Gandhi et al., 2023; Kotoba Technologies,
2024). However, the encoder part remains largely
unexplored, making its optimization increasingly
crucial for efficient ASR systems.

In this work, we propose LITEASR, a novel
compression scheme that targets ASR encoders by
exploiting the low-rank structure of hidden activa-
tions during inference. A key insight driving our
approach is that intermediate activations, both in
self-attention and multi-layer perceptron (MLP)
layers, consistently exhibit low-rank properties
across a wide variety of inputs. This phenomenon
stems from ASR encoders’ use of Mel spectro-
grams, the 2D time-frequency audio representa-
tions. Real-world audio (e.g., human speech) ex-
hibits strong correlations between frequency com-
ponents (Huang et al., 2012; Zergat and Amrouche,
2013; Tian et al., 2024; Kacha et al., 2020), result-
ing in low-rank characteristics of the intermediate
features.

Our method first analyzes the low-rank proper-
ties of activations using a small amount of calibra-
tion data. We then perform a principal component
analysis (PCA) (Wold et al., 1987) to extract the
dominant components and approximate linear trans-
formations with rank-k projections. This factoriza-
tion allows each weight matrix to be expressed as
the product of two lower-rank matrices, thereby
reducing the total number of floating-point opera-
tions (FLOPs) required for inference. We employ
an adaptive mechanism based on the threshold to
determine the optimal degree of low-rank approxi-
mation for each layer.

To further capitalize on the optimization, we also
modify the self-attention algorithm to operate in re-
duced dimensionality. We implement a specialized
GPU kernel based on FlashAttention (Dao et al.,
2022) to accelerate the computation of attention
scores and outputs.

Our evaluation shows that LITEASR achieves
an optimal trade-off between accuracy and effi-
ciency (see Figure 1). When applied to Whisper
large-v3, LITEASR reduces the encoder size by ap-
proximately 40%, yielding an execution speedup of
around 1.4x with negligible accuracy loss. In alter-

native configurations, we further reduce the model
size to less than half, resulting in a model compa-
rable in size to Whisper medium, while delivering
improved accuracy. We also demonstrate the appli-
cability of the method across different languages
and models (§4).

In summary, this paper makes the following con-
tributions:

1. We introduce LITEASR, a compression
method for ASR encoders using a low-rank ap-
proximation of activation values. This method
approximates linear layers with a chain of low-
rank matrix multiplications and optimizes self-
attention to operate in reduced dimensionality.

2. We present a comprehensive evaluation
demonstrating that our method achieves a
Pareto frontier of accuracy and efficiency.

The rest of this paper is organized as follows: §2
gives background on ASR efficiency, §3 presents
our low-rank approximation framework, §4 details
the experimental setup, results, and analysis, §5
reviews related work, and §6 concludes the paper.

2 Background

2.1 Automatic Speech Recognition (ASR)

ASR models convert spoken language into text by
transforming raw audio into a compact representa-
tion, such as a Mel spectrogram, and processing it
with neural networks. Modern systems often use
encoder-decoder architectures, typically employ-
ing Transformers (Radford et al., 2023; Puvvada
et al., 2024; Rekesh et al., 2023; Gulati et al.,
2020). For instance, OpenAI’s Whisper mainly
uses Transformer blocks, each of which consists
of self-attention and MLP layers with a large num-
ber of linear transformations (query/key/value/out
projections for self-attention and two larger lin-
ear transformations for MLP). A notable recent
trend in ASR models is the reduction in decoder
size without compromising performance, as exem-
plified by models such as Whisper large-v3-turbo
(Radford et al., 2023) and Distill-Whisper (Gandhi
et al., 2023), which reduced the number of decoder
layers from 32 to 4 and 2, respectively.

2.2 Compute Requirements of ASR Models

Since the encoder often processes long sequences
(e.g., fixed at 1500 for Whisper), it often emerges
as the primary runtime bottleneck. Figure 2 shows
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Figure 2: Latency breakdown of encoder and decoder
relative to end-to-end latency for Whisper large-v3 and
Whisper large-v3-turbo models under varying batch
sizes (1 and 8).

the latency breakdown between the encoder and
decoder across three hardware setups (NVIDIA
RTX 4090, NVIDIA RTX A6000, and Apple M1
Pro), two models (Whisper large-v3 and Whisper
large-v3-turbo), and two batch sizes (1 and 8).1

Although the encoder only accounts for about
15% of the overall latency for single-batch Whisper
large-v3 on GPUs, it represents a more significant
bottleneck in other scenarios. For the newer Whis-
per large-v3-turbo model, the latency contribution
of the encoder increases significantly due to the re-
duced size of the decoder. Similarly, for on-device
inference (e.g., M1 Pro), the encoder’s relative la-
tency is higher due to the limited computational
power of such devices compared to GPUs.

In data center deployment scenarios where mul-
tiple requests are batched, the encoder’s latency
impact is further exacerbated. For example, with a
batch size of 8 and using Whisper large-v3-turbo,
the encoder can consume over 90% of the total la-
tency. This disproportionate latency is primarily
due to the encoder’s high computational intensity
(Williams et al., 2009); batching is therefore inef-
fective at increasing throughput for encoders. In
contrast, the decoder generates tokens one at a time
in an autoregressive manner and is memory-bound,
bottlenecked by memory bandwidth rather than
computational power, making batching an effective
strategy to enhance throughput (Chen, 2023). Con-
sequently, although batching can substantially im-
prove serving throughput for the decoder, it offers
limited benefits for the compute-bound encoder
and the encoder becomes a notable bottleneck for
large batch sizes.

1We use vLLM (Kwon et al., 2023) (ver. 0.7.0) and MLX
(Hannun et al., 2023) (ver. 0.21.1) to transcribe a sample audio
clip from the ESB dataset (Gandhi et al., 2022).
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Figure 3: A simplified illustration of our proposal. We
use low-rank decomposition of activation values (Y) to
compress the weight (W).

These findings collectively highlight the encoder
as a critical bottleneck for efficient ASR deploy-
ment in both on-device and data center environ-
ments. This issue becomes more pronounced with
recent trends toward smaller decoders. Therefore,
there is a strong demand for methods to reduce the
computational requirements of the encoder.

3 Methodology

Our method, LITEASR, compresses the ASR en-
coder by extracting the low-rank features from ac-
tivations at different layers of the model. To do so,
we first use calibration data to analyze activations
and then convert the dense matrix multiplication
within the model to the product of low-rank matri-
ces (Figure 3 shows a simplified overview of the
method). We further modify the self-attention algo-
rithm to work efficiently in reduced dimensionality.
In this section, we explain the methodologies in
detail.

3.1 Analyzing Activations in Transformers
Consider a linear layer defined by

Y = XW + b, (1)

where the weight matrix W ∈ RDin×Dout and the
bias vector b ∈ RDout are learnable model param-
eters. Here, the input activations X ∈ RL×Din

produce the output activations Y ∈ RL×Dout dur-
ing the forward pass. In this notation, Din and Dout
denote the input and output dimensions of the layer,
respectively, and L is the sequence length.2

To study the distribution of activations, we col-
lect calibration data consisting of Ncalib inputs. For

2For Whisper encoders, this is always 1500.
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each linear layer, we record the corresponding out-
put Y . The resulting dataset can be viewed as
L ×Ncalib samples, where each sample is a Dout-
dimensional vector. For simplicity, we refer to this
collection of samples as Y .

Our goal is to approximate the observed activa-
tions by projecting them onto their principal com-
ponents. First, let YM ∈ RDout denote the mean
vector of the dataset Y . Following the standard
PCA procedure, we perform a singular value de-
composition (SVD) on the mean-centered data:

U, S, V = SVD(Y − YM). (2)

Here, V ∈ RDout×Dout is the matrix of right singular
vectors. By selecting the first k columns of V ,
denoted by Vk ∈ RDout×k, we capture the top-k
principal components of the data. The original
activations can then be approximated as:

Y − YM ≈ (Y − YM)Vk V
⊤
k . (3)

This approximation retains the most significant fea-
tures of Y while reducing its dimensionality.

3.2 Compressing Model Layers

Using the PCA approximation from Equation 3, we
can rewrite the original linear layer Y = XW + b
as a combination of low-rank matrix multiplica-
tions. Substituting Y = XW + b gives

Y − YM ≈ (XW + b− YM)Vk V
⊤
k

Y ≈ (XW + b− YM)Vk V
⊤
k + YM.

(4)

This expression can be reorganized as

Y ≈ X(WVk)V
⊤
k +

(
YM+(b−YM)Vk V

⊤
k

)
. (5)

In this factorization, the original layer is decom-
posed into:

• Two low-rank linear transformations, with
weight matrices WVk ∈ RDin×k and V ⊤

k ∈
Rk×Dout , and

• A constant bias term given by YM + (b −
YM)Vk V

⊤
k .

Since both weight matrices and bias can be pre-
computed using calibration data, this decomposi-
tion significantly reduces FLOPs when k is much
smaller than the original dimension.

3.2.1 How to Choose k

Choosing the appropriate value for k involves
a trade-off between accuracy and efficiency. A
smaller k leads to a more aggressive approxima-
tion, which increases efficiency but may incur a
larger accuracy loss.

Accuracy Constraint. To preserve accuracy, the
top-k principal components must capture a suf-
ficient portion of total variance. Let S ∈ RDout

denote the singular values from the SVD of the
mean-centered activations (assumed to be sorted in
decreasing order). We enforce

k∑

i=1

S2
i > θ

Dout∑

i=1

S2
i , (6)

where θ is a threshold that controls the trade-off
between accuracy and efficiency (i.e., the extent of
data compression).

Efficiency Constraint. The original linear layer
requires O(LDinDout) FLOPs for its matrix mul-
tiplication. In contrast, the decomposed form in
Equation 4 requires O(LDink + LkDout) FLOPs.
To ensure that our approximation results in a reduc-
tion of computation, we require

LDink + LkDout < LDinDout, (7)

which simplifies to

k(Din +Dout) < DinDout. (8)

For example, in Whisper large-v3, the dimen-
sions for self-attention layers are (Din, Dout) =
(1280, 1280), and for MLP layers they are
(1280, 5120) or (5120, 1280). This implies that
the efficiency constraint requires k < 640 for self-
attention and k < 1024 for MLP layers.

Practical Considerations. To maximize the
GPU efficiency, we further restrict k to be a multi-
ple of 16. Therefore, we choose k as the smallest
multiple of 16 that satisfies both Equation 6 and 7.
We empirically find that θ values between 0.99 and
0.999 achieve a good balance between accuracy
and efficiency. A detailed sensitivity study on the
choice of θ is provided in §4.

3.2.2 Optimizing Self-Attention
Moreover, there is a potential to optimize the self-
attention layers further. Specifically, if the rank k is
smaller than the per-head dimension, we can com-
pute the attention score and the value projection in
alternative ways to reduce the FLOPs requirement
while preserving the mathematical operations.
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Standard Self-Attention. For multi-head atten-
tion, let Dhead denote the dimension per head and
h the number of heads (i.e., the total model dimen-
sion is Dhead × h). In the i-th head, given an input
activation matrix X ∈ RL×Din , the self-attention
mechanism first computes three linear projections:

Qi = XW i
Q, Ki = XW i

K , Vi = XW i
V ,

(9)
where W i

Q, W
i
K , W i

V ∈ RDin×Dhead are the corre-
sponding weight matrices. The standard attention
output is then given by

Attention(Qi,Ki, Vi) = softmax
(

QiK
⊤
i√

Dhead

)
Vi,

(10)
with the softmax applied row-wise.
Attention Score Computation. Using our low-
rank approximation, we can factorize each projec-
tion as follows:

Qi = (XWQ1)W
i
Q2

+ biQ,

Ki = (XWK1)W
i
K2

+ biK ,

Vi = (XWV1)W
i
V2

+ biV ,

(11)

where WQ1 ∈ RDin×kQ , W i
Q2

∈ RkQ×Dhead , and
biQ ∈ RDhead are parameters relevant for i-th head
after low-rank approximation (with analogous defi-
nitions for K and V ). Here, kQ, kK , and kV are the
respective rank sizes. For brevity, let A = XWQ1

and B = XWK1 . Expanding the product QiK
⊤
i ,

we obtain:

QiK
⊤
i =

(
AW i

Q2
+ biQ

)(
BW i

K2
+ biK

)⊤

=
(
AW i

Q2
+ biQ

)(
W i⊤

K2
B⊤ + bi⊤K

)

= AW i
Q2

W i⊤
K2

B⊤

+AW i
Q2

bi⊤K + biQW
i⊤
K2

B⊤ + biQb
i⊤
K .
(12)

In this expansion, the term AW i
Q2

W i⊤
K2

B⊤ domi-
nates the computational cost, while the other three
terms are bias contributions.

The standard approach (Equation 10) computes
Qi and K⊤

i separately and then multiplies them,
which requires approximately O(L2Dhead) FLOPs.
In contrast, Equation 12 allows us to first compute
the smaller matrix product W i

Q2
W i⊤

K2
and then mul-

tiply by A and B, reducing the computational cost
to O(LkQ kK +L2 min(kQ, kK)). This is benefi-
cial when min(kQ, kK) < Dhead.3 Thus, we adopt
Equation 12 if the rank is sufficiently small.

3We take the minimum of kQ and kK because we can
choose the multiplication order to minimize computation.

Value projection. After computing the attention
score matrix

Si = softmax
(

QiK
⊤
i√

Dhead

)
∈ RL×L, (13)

the final output is obtained by multiplying Si with
Vi:

SiVi = Si

(
(XWV1)W

i
V2

+ biV

)

= Si(XWV1)W
i
V2

+ Sib
i
V .

(14)

Conventionally, one would first compute
(XWV1)W

i
V2

and then multiply by Si, which
would cost O(L2Dhead + LkV Dhead) FLOPs.
However, by computing Si(XWV1) first, the cost
becomes O(L2kV + LkV Dhead) FLOPs, making
this approach more efficient when kV < Dhead.

Moreover, since each row of Si sums to 1, the
bias term simplifies:4

Sib
i
V = biV . (15)

Thus, the value projection can be rewritten as:

SiVi =
(
Si(XWV1)

)
W i

V2
+ biV , (16)

which is more efficient if kV < Dhead.
Implementation. To efficiently execute the oper-
ations in Equations 12 and 16, we implement a
specialized kernel using Triton (Tillet et al., 2019).
This kernel extends the original FlashAttention im-
plementation (Dao et al., 2022) to handle our opti-
mized computation strategy.

4 Experiments

In this section, we describe our experimental setup
and results, focusing on both the accuracy and effi-
ciency of LITEASR.

4.1 Setup
Our primary accuracy evaluation focuses on com-
pressing Whisper large-v3 and Whisper large-v3-
turbo, both of which have encoders of the same
size. We use test data from the End-to-end Speech
Benchmark (ESB) (Gandhi et al., 2022), a com-
prehensive collection of English ASR benchmark-
ing datasets, to assess the word error rate (WER)
of both the compressed and original models. We
randomly choose 1000 audio clips from each
of the eight subsets of ESB: VoxPopuli, AMI,
Earnings-22, GigaSpeech, LibriSpeech (test.clean

4Here, biV is broadcast across each row of Si.
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Model Config.
WER (↓)

Size (↓)
VP AMI E22 GS LS-C LS-O SG TED Avg.

Large-v3

Original 8.8 25.9 19.5 11.1 2.4 5.5 3.3 4.4 10.1 635M (100.0%)
LITEASR (a) 8.7 25.7 18.9 11.1 2.5 5.0 3.4 5.1 10.1 429M (67.6%)
LITEASR (b) 8.4 28.7 15.8 12.0 2.7 6.1 3.1 4.8 10.2 377M (59.4%)
LITEASR (c) 8.7 33.4 17.2 12.3 2.8 7.4 3.5 5.4 11.3 308M (48.5%)

Turbo

Original 9.5 26.8 17.4 11.4 2.6 5.5 3.8 4.3 10.1 635M (100.0%)
LITEASR (a) 9.0 27.7 17.0 11.4 2.8 6.2 3.1 4.5 10.2 421M (66.2%)
LITEASR (b) 8.9 43.2 16.7 11.7 3.1 7.8 4.0 5.0 12.6 374M (58.8%)
LITEASR (c) 10.8 69.7 35.1 16.0 4.2 13.7 5.0 6.4 20.1 313M (49.3%)

Medium Original 8.7 31.3 25.9 25.9 3.9 8.8 5.9 8.2 14.8 306M (48.1%)

Table 1: Accuracy measured by WER percentages on ESB benchmarks and encoder sizes across different configu-
rations. Abbreviations: VP (VoxPopuli), AMI (AMI), E22 (Earnings-22), GS (GigaSpeech), LS-C (LibriSpeech
test.clean), LS-O (LibriSpeech test.other), SG (SPGISpeech), TED (TED-LIUM). For encoder size, we show relative
size against the original Whisper large-v3 inside parenthesis.

and test.other), SPGISpeech, and TED-LIUM. For
the calibration data, we randomly select 100 clips
(non-overlapping with the test data), and the cal-
ibration process is completed within 10 minutes
using a single RTX 4090 GPU. We employ greedy
sampling with a temperature set to 0.

We present three configurations of θ for different
deployment requirements: (a) Quality-Focused:
θ = 0.999 for all layers. (b) Balanced: θ = 0.99
for self-attention layers and θ = 0.999 for MLP
layers. (c) Efficiency-Focused: θ = 0.99 for self-
attention layers and θ = 0.995 for MLP layers.
Later, we conduct a sensitivity study for different
values of θ, languages, and models.

Regarding efficiency, we evaluate the encoder
latency on NVIDIA RTX 4090, NVIDIA RTX
A6000, and Apple M1 Pro. For GPUs, we modify
OpenAI’s Whisper implementation5 to use CUDA
Graph with PyTorch (Ansel et al., 2024) (ver.
2.5.1), and we use Triton (Tillet et al., 2019) (ver.
3.2.0) for a customized self-attention GPU kernel.
On the Apple device, we use MLX (Hannun et al.,
2023) (ver. 0.21.1). The presented latency data
are averaged over 10 runs. Note that the encoder
always takes fixed-length audio as input, so the
computational requirements are exactly the same
for different data.

4.2 Accuracy Evaluation

Table 1 compares the WER and encoder size.
LITEASR is evaluated on Whisper large-v3 and
Whisper large-v3-turbo models, with Whisper
medium as a reference. The quality-focused con-

5https://github.com/openai/whisper
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Figure 4: Execution speed of the encoder in Whisper
large-v3, compared as a ratio to the original model.

figuration (a) cuts model size by over 30% with
an increase of less than 0.1 percentage points in
WER for both Whisper large-v3 and Whisper large-
v3-turbo. For more efficiency-focused scenarios,
configuration (b) reduces encoder size by over 40%
with comparable WER for Whisper large-v3, and
about 2.5 points degradation for Whisper large-
v3-turbo. Configuration (c) compresses Whisper
large-v3 model to less than half, matching Whis-
per medium’s size, with better WER by about 3.5
points. Overall, LITEASR significantly reduces
the model size while largely maintaining accuracy.
We emphasize that, unlike typical knowledge distil-
lation methods which require substantial data and
compute,6 our approach achieves significant com-
pression without accuracy degradation using only
100 audio clips and under 10 minutes on a single
GPU.

6For example, Distill-Whisper (Gandhi et al., 2023) used
>20k audio hours and the distillation took days on TPU v4-8.
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Figure 5: Our Triton kernel’s performance against Py-
Torch implementation.

Q K V O FC1 FC2

L1
L2
L3
L4
L5
L6
L7
L8
L9

L10
L11
L12
L13
L14
L15
L16

0.03 0.03 0.04 0.03 0.06 0.21
0.05 0.05 0.10 0.09 0.04 0.17
0.04 0.04 0.12 0.12 0.03 0.09
0.04 0.04 0.15 0.12 0.04 0.07
0.05 0.04 0.16 0.11 0.04 0.12
0.04 0.04 0.15 0.11 0.04 0.12
0.06 0.05 0.24 0.16 0.04 0.17
0.07 0.06 0.20 0.16 0.05 0.34
0.07 0.06 0.23 0.17 0.06 0.40
0.07 0.06 0.23 0.17 0.06 0.40
0.05 0.04 0.23 0.19 0.06 0.41
0.06 0.05 0.25 0.17 0.06 0.41
0.05 0.05 0.28 0.17 0.07 0.46
0.05 0.04 0.23 0.19 0.08 0.54
0.06 0.05 0.35 0.20 0.09 0.51
0.04 0.04 0.34 0.20 0.07 0.60

Q K V O FC1 FC2

L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32

0.05 0.04 0.21 0.17 0.08 0.62
0.07 0.06 0.29 0.23 0.09 0.61
0.06 0.05 0.24 0.20 0.10 0.66
0.06 0.06 0.33 0.21 0.10 0.59
0.07 0.06 0.34 0.28 0.08 0.01
0.09 0.07 0.35 0.26 0.13 0.75
0.11 0.09 0.42 0.35 0.12 0.76
0.10 0.07 0.36 0.33 0.14 0.81
0.14 0.10 0.44 0.35 0.15 0.84
0.14 0.10 0.46 0.33 0.15 0.86
0.15 0.11 0.49 0.39 0.17 0.85
0.15 0.10 0.47 0.31 0.18 0.80
0.16 0.11 0.46 0.35 0.18 0.74
0.21 0.14 0.44 0.39 0.19 0.76
0.21 0.15 0.44 0.36 0.17 0.78
0.21 0.14 0.34 0.36 0.16 0.57

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 6: Compression ratio for each linear layer of
Whisper large-v3. Smaller values mean more aggressive
compression

4.3 Efficiency Evaluation

Figure 4 presents the efficiency evaluation results,
measuring the speedup of end-to-end latency of
the encoder execution compared to the original
model. LITEASR consistently achieves latency im-
provements across all three hardware setups, with
average speedups of 1.29x for (a), 1.38x for (b),
and 1.54x for (c). The best performance is ob-
served with the RTX 4090 using (c), reaching a
peak speedup of 1.57x.

Moreover, Figure 5 compares our Triton kernel’s
performance with PyTorch’s scaled dot product
attention (SDPA) implementation in Whisper large-
v3’s encoder self-attention layers. The RTX 4090
shows roughly 17% and 30% improvements over
baseline, while the RTX A6000 exhibits gains of
approximately 14% and 22% for matrix ranks 32
and 16, respectively (i.e., kQ, kK , kV in §3, assum-
ing all share the same value).

4.4 Analysis

4.4.1 Compression Ratio per Layer
Figure 6 illustrates the compression ratio (i.e., de-
fined as the quotient of k divided by the original
dimension size) for each linear layer within the
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Figure 7: Sensitivity of WER and encoder size on the
value of θ.

Whisper large-v3 encoder. The data are presented
for configuration (c). In general, the initial lay-
ers allow for more substantial compression, with
some exceptions, such as the FC2 stage in layer 21.
This tendency is most pronounced in FC2 layers,
where the earlier layers exhibit a compression ra-
tio of less than 0.2, whereas the subsequent layers
reach values larger than 0.8. Among the layers, the
Q/K projection and FC1 layers display a smaller
compression ratio compared to other layers.

4.4.2 Sensitivity to θ

Figure 7 analyzes the sensitivity of the average
WER and encoder size to θ by independently vary-
ing θ from 0.95 to 0.999 for self-attention and MLP
layers in Whisper large-v3. Our results show a sig-
nificant increase in WER when θ is below 0.99
for both layers. In contrast, WER improves as θ
increases, with θ = 0.999 achieving the best per-
formance. The encoder size exhibits the opposite
trend, positively correlated with θ in a steady and
roughly linear fashion. In the extreme scenario
where θ = 0.95 is applied to both layers, the en-
coder size can be reduced by around 80%, although
this comes with a significant increase in WER.

4.4.3 Sensitivity to Languages
To further investigate how LITEASR generalizes
to out-of-distribution data and its sensitivity to lan-
guages, we extend our evaluation to non-English
benchmarks. We use MLS (Pratap et al., 2020)
for French and German, and the JSUT basic5000
(Sonobe et al., 2017) for Japanese.7 Here, we use

7For Japanese, we use the character error rate (CER) in-
stead of the WER since Japanese does not have explicit word
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Config
WER (↓) CER (↓)

Size (↓)
FR DE JA

Original 7.2 13.2 10.8 635M
LITEASR (a) 7.4 8.7 10.7 429M
LITEASR (b) 6.8 7.7 11.2 377M
LITEASR (c) 9.1 10.1 12.4 308M

Table 2: Sensitivity study on other languages. Abbrevi-
ations: FR (French), DE (German), JA (Japanese).

Config WER (↓) Size (↓)

Original 9.1 609M (100.0%)
LITEASR (a) 9.1 593M (97.3%)
LITEASR (b) 9.1 579M (95.0%)
LITEASR (c) 9.1 545M (89.4%)

Table 3: Accuracy and encoder size with Canary 1B
model.

the same English calibration data as in previous
experiments to compress Whisper large-v3, and
evaluate its accuracy on non-English audio. The re-
sults presented in Table 2 demonstrate LITEASR’s
robustness: for (a), there is almost no degradation
in accuracy, and even for (c), the degradation is less
than 2 percentage points in WER/CER. In some
cases, such as with German, we even observe an
improvement in accuracy.

4.4.4 Sensitivity to Models
We also evaluate on Canary 1B (Puvvada et al.,
2024), NVIDIA’s state-of-the-art ASR model, to
determine LITEASR’s applicability to a broader
range of models. The encoder of Canary em-
ploys the FastConformer architecture (Rekesh et al.,
2023), and our optimizations are confined to linear
layers within the feed-forward and self-attention
modules, leaving the convolution modules unal-
tered. Table 3 presents the encoder size and the
average WER for ESB datasets. The data indicate
that there is minimal degradation in the WER, al-
though the reduction in size is moderate compared
to the Whisper models, achieving approximately a
10% reduction for configuration (c).

5 Related Work

5.1 Efficient ASR Inference
Several prior works have aimed to enhance the
efficiency of ASR models. FasterWhisper uses

boundaries.

optimized inference kernels (SYSTRAN, 2023),
while WhisperX further improves it for long-form
audio (Bain et al., 2023). Whisper.cpp is a C/C++
implementation for portability on both the CPU
and GPU (Gerganov, 2023). Whisper_streaming
supports live transcription for streaming purposes
(Macháček et al., 2023). NVIDIA’s NeMo is a mod-
ular toolkit for deploying speech models (Harper
et al.). However, they do not effectively reduce
ASR encoder computational demands. Some works
provide model weight quantization, but they are
limited to weights (weight-only quantization) and
do not accelerate the compute-bound encoder in-
ference. Our approach can be integrated with these
frameworks.

Various studies, including Whisper large-v3-
turbo, Distill-Whisper, and Kotoba-Whisper use
distillation techniques to shrink decoder size (Rad-
ford et al., 2023; Gandhi et al., 2023; Kotoba Tech-
nologies, 2024). Other approaches combine distilla-
tion with quantization or lightweight modular ASR
fine-tuning for underrepresented languages (Shao
et al., 2023; Ferraz et al., 2023). Our work com-
plements these efforts by further reducing the en-
coder’s computational requirements. Unlike these
methods that require substantial data and compute
resources, often tailored for specific downstream
tasks, our work incurs minimal data/compute over-
head. Our work also complements them by fur-
ther reducing the encoder’s computational require-
ments; for instance, our compression technique can
be effectively applied to models like Whisper large-
v3-turbo, which is derived from the larger Whisper
large-v3 model.

5.2 Model Compression with Low-Rank
Approximation

The low-rank approximation has been used to
compress machine learning models, such as for
parameter-efficient fine-tuning (Hu et al., 2021)
or the LLM’s KV cache compression (Liu et al.,
2024; Chang et al., 2024). Yu and Wu (2023) have
suggested that activations in Transformer models
exhibit low-rank and compressed models, mainly
targeting vision models. However, their method is
limited to linear layers, leaving self-attention layers
unoptimized, and its applicability to speech mod-
els has not been studied. Another work by Winata
et al. (2020) presented a model architecture that
adopts low-rank weights at train-time, whereas we
propose a post-training technique for compressing
pre-trained ASR models by analyzing activation
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patterns, avoiding costly retraining.

6 Conclusion

In this work, we introduced a compression method
for ASR encoders that leverages the inherent low-
rank structure of activations in linear layers. By
applying the PCA algorithm, this method approxi-
mates linear layers with a chain of low-rank matrix
multiplications and optimizes self-attention to oper-
ate in reduced dimensionality. Our comprehensive
evaluation demonstrates that our method achieves
a Pareto frontier of accuracy and efficiency, paving
the way for more efficient ASR deployments for
both on-device and data center environments.

7 Limitations

Our method focuses on compressing linear lay-
ers and the self-attention mechanism, yielding sub-
stantial improvements for Whisper models. How-
ever, other architectures, such as the Conformer,
include additional components such as convolution
layers, which may provide further compression
opportunities (see §4). Additionally, our evalua-
tion is currently limited to standard benchmarks in
English and a few other major languages; evalu-
ating performance on low-resource languages and
domain-specific applications remains an important
direction for future research. Finally, while our im-
provements do not introduce new risks per se, the
enhanced efficiency could accelerate the broader
adoption of ASR systems, which may amplify con-
cerns related to privacy, surveillance, or inherent
biases in large-scale deployments.

8 Ethics Statement

All data and models used in this paper are pub-
licly accessible and are distributed under Creative
Commons, Apache-2.0, MIT, or other open-source
licenses that permit research use.
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A Additional Sensitivity Studies

A.1 Comparison to Other Baselines

Unlike LITEASR, which compresses the model
with a minimal amount of data and compute during
post-training, most of the existing works on prun-
ing or knowledge distillation for speech models
require a substantial amount of data and compute,
often tailored for the downstream tasks (Gandhi
et al., 2023; Shao et al., 2023; Kotoba Technologies,
2024; Someki et al., 2025). Therefore, they are not
directly comparable with our method. Rather, they
are complementary to us; for example, Whisper
large-v3-turbo is trained based on a larger Whisper
large-v3 model, and we can apply our method on
top of it.

One compression approach that works similarly
to LITEASR regarding data/compute requirements
is quantization, which can synergize with our ap-
proach. Table 4 presents the performance following
int8 quantization of FasterWhisper (SYSTRAN,
2023), applied on top of the original and com-
pressed versions of Whisper large-v3. The results
demonstrate a slight reduction in accuracy for both
the original and our compressed models due to
quantization, with a marginally more pronounced
effect on the compressed version. Nevertheless,
our compressed model maintains a high accuracy
level, outperforming alternatives such as the Whis-
per medium.

It is important to note that the quantization im-
plementation in FasterWhisper targets only the
model weights, leaving activation values at high
precision. This strategy effectively reduces mem-
ory footprint but does not inherently accelerate
compute-bound encoders, where performance is
primarily dictated by arithmetic operation through-
put rather than memory bandwidth. Our method,
therefore, offers distinct advantages and can be
combined with such quantization schemes for com-
prehensive efficiency gains.

Config Avg. WER (↓) Size (↓)

Original, FP16 10.1 635M
Original, INT8 10.2 635M

LiteASR (b), FP16 10.2 377M
LiteASR (b), INT8 11.0 377M

Table 4: Accuracy with different weight quantization
configurations.

Domain Quantity Avg. WER (↓) Size (↓)

EN 10 11.4 351M
EN 100 10.2 377M
EN 200 10.2 382M

EN-Clean 100 11.0 371M
EN-Noisy 100 10.8 360M

FR 100 10.8 374M
DE 100 13.1 378M
JA 100 12.8 344M

Table 5: Accuracy with different choices on calibration
data quantity and domain (language).

A.2 Sensitivity to Calibration Data Selection

In our experiments in §4, we randomly select 100
audio clips from the English-only ESB dataset to
serve as calibration data. Here, we show a sen-
sitivity study on different aspects of calibration
data selection. For these experiments, we employ
Whisper large-v3 with the balanced setting (config-
uration (b)), varying the quantity and the selection
method of the calibration data, reported in Table 5.

Quantity. First, we vary the number of calibra-
tion audio samples by randomly selecting 10, 100,
and 200 samples from the ESB dataset, same as
the main experiments (denoted as EN in the Table
5). The results indicate that using only 10 samples
is insufficient, as they show a worse WER than
100 samples by more than 1 point. However, be-
yond 100 samples, increasing the amount is of little
benefit, with the average WER remaining almost
the same between 100 and 200 samples and the
encoder size differing by only about 1%.

Domain. Next, to evaluate the effect of data
domain, we examine the impact of audio quality
by selecting calibration data from different sub-
sets of the ESB dataset, each exhibiting distinct
levels of audio noise. Rather than sampling uni-
formly across the entire ESB dataset, we focus on
the LibriSpeech test.clean subset and the AMI sub-
set, which consistently show the lowest and highest
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σ SNR
WER

Original
WER

Ours (a)
WER

Ours (b)

0.01 14.7 3.1 3.3 3.4
0.02 8.7 4.2 4.7 5.3
0.03 5.1 6.6 6.9 8.5
0.04 2.7 9.6 10.6 13.0
0.05 0.7 13.2 14.8 18.3
0.06 -0.9 18.2 20.2 24.9
0.07 -2.2 23.2 26.1 33.3
0.08 -3.4 29.0 33.5 40.4
0.09 -4.4 35.7 40.2 48.6
0.1 -5.3 46.7 47.4 56.2

Table 6: Transcription accuracy with different degrees
of noise.

WER, respectively, representing clean and noisy
audio sources (denoted as EN-Clean and EN-Noisy
in Table 5). We also compare results using calibra-
tion data sampled from non-English sources, for
which we select 100 audio samples from the MLS
(French, German) or JSUT (Japanese) dataset.

While the calibration data from the noisy subset
yields slightly better performance than that from
the clean subset, the original mixed setting (com-
bining clean and noisy data) achieves significantly
higher accuracy. This result shows the impor-
tance of utilizing diverse calibration datasets during
model compression to preserve the original model’s
performance. In terms of language, although
French outperforms both German and Japanese,
non-English calibration data generally underper-
forms compared to the original ESB dataset. This
is likely because the original model was trained
with English as the primary language.

Randomness. The results presented in Table 1
are from a single instance. To assess the robustness
against randomness in calibration data selection,
we conduct additional experiments in which the
compression is run five times with different random
seeds. For Whisper large-v3 with configuration (b),
the mean WER across five runs is 10.15% with
a standard deviation of 0.16%, while the average
number of parameters is 378.5M with a standard
deviation of 0.7M. These low standard deviations
demonstrate that LITEASR is robust to calibration
dataset randomness, with minimal impact on both
WER and compression ratio.

Config
(θ for attention/MLP)

Avg. WER (↓) Size (↓)

0.99 / 0.999 (b) 12.6 374M
0.99 / 0.998 13.3 351M
0.99 / 0.997 15.8 336M
0.99 / 0.996 17.3 324M

0.99 / 0.995 (c) 20.1 313M

Table 7: Further analysis of Whisper large-v3-turbo.

A.3 Robustness of Compressed Models for
Noisy Data

To evaluate the robustness of LITEASR against
noisy audio data, we start from the clean data of
the LibriSpeech test.clean subset, and add noise
to evaluate the relation between WER and Signal-
to-Noise Ratio (SNR). We inject zero-mean Gaus-
sian noise into normalized audio by specifying a
noise standard deviation (σ), producing samples
that range from nearly clean to heavily corrupted,
and compute the resulting SNR in decibels by com-
paring the average power of the clean waveform
to that of the added noise. We select σ between
0.01 and 0.1. A larger SNR value means cleaner
audio. For the evaluation, we use the original and
compressed versions (configurations (a) and (b)) of
Whisper large-v3.

Table 6 presents the results. For both the origi-
nal and compressed models, transcription accuracy
degrades for larger noise level σ and smaller SNR
values. While the compressed model maintains
comparable performance under mild noise condi-
tions, it demonstrates reduced robustness to severe
noise compared to the original model. Addition-
ally, there is a trade-off between noise robustness
and inference efficiency: conservative compression
preserves greater noise tolerance, while aggressive
compression prioritizes efficiency at the cost of
robustness.

A.4 Further Analysis of Whisper
large-v3-turbo

In Table 1, we observe a large jump in WER for
Whisper large-v3-turbo between configurations (b)
and (c). Table 7 shows a sensitivity study about
finer-grained compression rates between (b) and
(c), varying the θ value for the MLP layers. The
data indicate that the Whisper large-v3-turbo model
is sensitive to the degree of compression applied
to the MLP layers. The initial step (from 0.999 to
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0.998) shows a modest degradation in performance,
and further reductions lead to a more significant
drop in accuracy. This trend also suggests that
our PCA-based compression method successfully
identifies the critical features required to preserve
model performance within the given capacity. This
demonstrates that the θ parameter acts as a power-
ful lever for balancing the trade-off between model
compactness and accuracy.
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