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Abstract

Semantic Overlap Summarization (SOS) is a
multi-document summarization task focused
on extracting the common information shared
across alternative narratives which is a capabil-
ity that is critical for trustworthy generation in
domains such as news, law, and healthcare. We
benchmark popular Large Language Models
(LLMs) on SOS and introduce PrivacyPolicy-
Pairs (3P), a new dataset of 135 high-quality
samples from privacy policy documents, which
complements existing resources and broadens
domain coverage. Using the TELeR prompt-
ing taxonomy, we evaluate nearly one million
LLM-generated summaries across two SOS
datasets and conduct human evaluation on a
curated subset. Our analysis reveals strong
prompt sensitivity, identifies which automatic
metrics align most closely with human judg-
ments, and provides new baselines for future
SOS research 1.

1 Introduction

In the field of Natural Language Processing (NLP),
Large Language Models (LLMs) have proven them-
selves to be the most capable text generation
models in a variety of tasks and fields (Bubeck
et al., 2023; Dai et al., 2022; Du et al., 2022;
Smith et al., 2022; Schäfer et al., 2024; School,
2023; Thirunavukarasu et al., 2023). One task
where LLMs are understudied is Semantic Over-
lap Summarization (SOS) (Bansal et al., 2022b;
Karmaker Santu et al., 2018), where the goal is to
summarize the common/overlapping information
between two alternative narratives conveying simi-
lar information. Applications for this task include
isolating facts from opinions in news articles, ag-
gregating consistent claims across legal or medical
documents, and extracting common issues from
user reviews. Such capabilities are especially well

1The code and datasets used to conduct this study are avail-
able at https://github.com/jmsalvador2395/llm_eval

suited for LLMs, which can process long-context
inputs and generate fact-based responses grounded
in multiple sources. In this setting, SOS serves as
a proxy for trust-aware summarization, where over-
lapping content can be used to strengthen citation
quality and reduce hallucination in generation. This
is particularly important for applications where fac-
tual reliability and trust are paramount such as med-
ical, legal, or journalistic contexts. since identify-
ing and summarizing overlapping content across
independent sources can serve as a proxy for infor-
mation corroboration. SOS thus enables LLMs to
produce outputs that are not only concise but also
grounded in their multiple inputs, enhancing trans-
parency and trustworthiness in generation. In this
paper, we conduct a comprehensive benchmarking
study on how LLMs perform on the SOS task using
16 popular models.

As LLMs’ performance can widely vary
with prompt variations (Rodriguez et al., 2023;
Reynolds and McDonell, 2021), we use a standard
prompting taxonomy, TELeR (Santu and Feng,
2023), to devise a comprehensive set of prompts
with different degrees of detail before invoking
LLMs to perform the SOS task. Our evaluation
includes two different alternative narrative-pairs
datasets. The first dataset is the AllSides dataset
released by Bansal et al. (2022b), and the second
dataset is our original contribution, which was built
with extensive human annotation effort, which we
name as the PrivacyPolicyPairs (3P) dataset.

We report ROUGE, BERTscore, and SEM-F1

on the Allsides and 3P datasets for each combina-
tion of LLMs and prompt style, totaling 905,216
distinct samples. We further collected human anno-
tations on a subset of 540 samples to truly gauge
the capabilities of LLMs in capturing overlapping
information from multiple narratives. Finally, we
analyze LLMs’ performances and the reliability
of automatic evaluation via correlation analysis
against human annotations.
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2 The Benchmark Datasets

2.1 The AllSides Data

The AllSides dataset is the first to be introduced
for the SOS task. To build this dataset, Bansal et al.
(2022b) crawled news articles from AllSides.com
to create 2,788 sample training set and 137 sample
test set. Each sample contains 2 source documents
of left and right-leaning sources and is accompa-
nied by a reference summary. The test set includes
an additional 3 human-annotated summaries for
more robust evaluation.

2.2 The PrivacyPolicyPairs (3P) Data

For a more diverse evaluation, we introduce the
PrivacyPolicyPairs (3P) dataset, focusing on the
SOS task for a different domain and containing 135
human-annotated samples. Each sample comprises
2 source documents (two different privacy policy
narratives), the category of passage, 3 reference
summaries, company names, and word counts (ex-
ample figure in the appendix). Our (3P) dataset is
built on the OPP-115 Corpus introduced by Wilson
et al. (2016), which comprises 115 privacy policies
(267K words) spanning 15 sectors (Arts, Shopping,
News, etc.). The policy data of the OPP-115 corpus
are also tagged with the following categories:

• First Party Collection/Use
• Third Party Sharing/Col-

lection
• User Choice/Control
• User Access, Edit, & Dele-

tion
• Data Retention

• Data Security
• Policy Change
• Do Not Track
• International & Specific

Audiences
• Other

These categories are associated with text spans
in each document that denote where the labels
were relevant. Our motivation behind introducing
a new dataset for SOS evaluation is to 1) extend
the amount of available testing data from just 137
samples from the AllSides evaluation set to 272
total evaluation samples with a combined total of
953 human annotations and 2) provide data from a
domain different from the AllSides data.

Constructing the 3P Dataset: To build the 3P
dataset, we set out to create pairs of passages from
the original OPP-115 corpus. To ensure a degree of
overlap, we first grouped each document into the
15 sectors that were originally assigned by Wilson
et al. (2016) (Arts, Shopping, Business, News, etc.).
Then, within each sector, we paired different pas-
sages according to their category labels (First Party

Collection, Data Retention, etc.). This process re-
sulted in 6110 passage pairs across all sectors.

System Level Pearson’s ρ
Metric A1 A2 A3 Acomb

R-LSUM 0.53 0.71 0.084 0.29
R-L 0.59 0.77 0.17 0.35
R-1 0.59 0.73 0.21 0.33
R-2 0.69 0.76 0.25 0.48
BLEU 0.27 0.55 -0.10 0.01
METEOR 0.77 0.79 0.34 0.54
CHRF 0.67 0.77 0.28 0.42
TER -0.27 -0.23 0.12 -0.085
S-F1 0.74 0.97 0.51 0.51
BERTSc 0.66 0.87 0.30 0.41
BLEURT 0.68 0.97 0.28 0.47
MoverScore 0.46 0.76 0.009 0.24
SMS 0.68 0.97 0.49 0.46

System Level Kendall’s τ
Metric A1 A2 A3 Acomb

R-LSUM 0.33 0.47 0.067 -0.067
R-L 0.47 0.60 0.20 0.067
R-1 0.47 0.60 0.20 0.067
R-2 0.47 0.60 0.20 0.067
BLEU 0.20 0.60 -0.067 -0.20
METEOR 0.60 0.73 0.33 0.20
CHRF 0.60 0.73 0.33 0.20
TER -0.20 -0.33 0.067 0.20
S-F1 0.73 0.87 0.47 0.33
BERTSc 0.60 0.73 0.33 0.20
BLEURT 0.60 0.73 0.33 0.20
MoverScore 0.47 0.60 0.20 0.067
SMS 0.73 0.87 0.47 0.33

Table 1: System-level Pearson ρ correlation and
Kendall’s τ between annotators and metrics with the
highest scores in bold. The “comb” subscript shows the
combined score where the annotators sat with each other
to settle on a final score for each annotation sample.

Out of the 15 sectors, we focused on eCommerce,
Technology, and Food and Drink. We then recruited
three volunteer annotators from the department and
instructed them to write a summary of common
information present in each document pair. The
exact instructions can be found in Appendix A.6.
After the initial round of annotation, the annotators
came together, discussed the differences in each
of their summaries, and revised their original sum-
maries accordingly. After revising and removing
samples with no overlap, we yielded 3 annotations
per passage pair for a total of 405 annotations for
135 high-quality samples.

3 Methodology

3.1 Evaluated Large Language Models
We choose to test our datasets using 7 families of
instruction-tuned LLMs, totaling 16 models which
are listed in Table 2. OpenAI and Google provide
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their own unique APIs but for open source LLMs,
we used the transformers library (Wolf et al., 2020)
to access model weights and run inference on a
server with 4 Nvidia A4500 20GB GPUs. For
additional speedup, we utilized the vLLM library
(Kwon et al., 2023).

LLM Family Model
Google Gemini gemini-1.5-pro-001 (May 2024)
(Team et al., 2024)
OpenAI gpt-3.5-turbo-0125 (May 2024)
(OpenAI, 2023)

mosaicml/mpt-7b-chat (7B)
MosaicML MPT mosaicml/mpt-30b-chat (30B)
(Team, 2023) mosaicml/mpt-7b-instruct (7B)

mosaicml/mpt-30b-instruct (30B)
lmsys/vicuna-7b-v1.5 (7B)

LMSYS Vicuna lmsys/vicuna-13b-v1.5 (13B)
(Zheng et al., 2023) lmsys/vicuna-7b-v1.5-16k (7B)

lmsys/vicuna-13b-v1.5-16k (13B)
MistralAI mistralai/Mistral-7B-Instruct-v0.1 (7B)
(Jiang et al., 2023) mistralai/Mistral-7B-Instruct-v0.2 (7B)
MetaAI Llama2 meta-llama/Llama-2-7b-chat-hf (7B)
(Touvron et al., 2023) meta-llama/Llama-2-13b-chat-hf (13B)
Microsoft Phi-3 microsoft/Phi-3-mini-4k-instruct (3.8B)
(Abdin et al., 2024) microsoft/Phi-3-mini-128k-instruct 3.8B)

Table 2: The list of models evaluated in this paper with
parameter counts. We use 7 families of models, 2 of
which are closed source, and 5 open source.

3.2 Prompt Design

We prompted LLMs in a zero-shot setting as these
methods have gained popularity with the growing
capabilities of LLMs (Sarkar et al., 2023, 2022).
Specifically, we utilize the guidelines laid out by
the TELeR taxonomy due to its use and reference in
previous studies (Hadi et al., 2023; Li et al., 2024;
Hackl et al., 2023; Eigner and Händler, 2024a,b;
Rodrigues et al., 2024). For this study, we used
TELeR levels 0 through 4 (5 out of the 7). To
ensure comprehensive prompt engineering, we cre-
ated templates for TELeR levels 0 through 4 and
In-Context Learning styled prompts (Brown et al.,
2020) (details in appendix A.6). For each template,
we then created variations of prompts that follow
their respective formats. For example, the group
of TELeR L1 prompts is comprised of 8 prompts:
5 general, 3 AllSides-specific, and 3 3P-specific.
Then, to construct our final set of prompts, we
took all possible combinations of system roles and
prompts, creating 56,576 prompts for each of our
16 models and, thus, creating 905,216 distinct
evaluation samples in total.

3.3 Evaluation

Automatic Evaluation: We conduct automatic
evaluation using 11 different metrics. For lexical

overlap metrics we use ROUGE (Lin, 2004),
BLEU (Papineni et al., 2002), METEOR (Lavie
and Agarwal, 2007), chrF (Popović, 2015),
Translation Edit Rate (Snover et al., 2006), and
CIDEr (Vedantam et al., 2015). For embedding-
based metrics we use BERTscore (Zhang
et al., 2020), SEM-F1 (Bansal et al., 2022a),
BLEURT (Sellam et al., 2020), Mover-
Score (Zhao et al., 2019), and Sentence
Mover’s Similarity (Clark et al., 2019). See
Appendix A.4 for details of each metric.
Human Evaluation: We recruited 3 human volun-
teer for annotation purposes. To avoid the burden
of having annotators analyze 9 million samples,
we reduce the number of evaluation samples by 1)
evaluating a subset of data that corresponds to 15
narrative pairs (7 from AllSides and 8 from 3P) out
of the 272 test set samples from AllSides and 3P,
2) evaluating only the largest/newest models from
each family and 3) evaluating only the summaries
that correspond to the best-performing prompts
within each TELeR level. This strategy reduced
the number of summary evaluations from 9M to
540 samples per annotator. The annotators scored
model summaries on a scale of 0-5 based on how
well they captured the overlapping information be-
tween the two documents given. After individually
scoring the summaries, the annotators sat together
to resolve disagreements and assign a final score
to each sample, giving us 2,160 scores across all
samples.

4 Results

Human Evaluation: The average annotation
scores provided by humans are shown in Table 4.
Out of all model families, gpt-3.5-turbo summaries
were most preferred with an average score of 3.53
followed by mpt-30b-chat with 3.39 average. From
the different prompt styles we tested, responses
generated from TELeR L2 were most preferred
with a 3.42 average.

Automatic Evaluation: We report automatic eval-
uation results for all metrics, all models, and all
datasets in Table 3. This table shows the high-
est scores achieved by each model across the set
of all prompts with different TELeR levels. For
the AllSides dataset, the best-scoring models vary
with the evaluation metric used, with some metrics
yielding phi-3-mini-128k-instruct as the best,
while others favor gemini-pro. For the 3P dataset,
gpt-3.5-turbo consistently scored the best with
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AllSides Dataset

Model R-L Sum R-L R-1 R-2 BLEU METEOR chrF TER ↓ Sem-F1 BERT
score BLEURT Mover

score SMS

gemini-pro 0.418 (l1) 0.418 (l1) 0.499 (l1) 0.331 (l1) 0.003 (l0) 0.538 (l1) 54.634 (l1) 138.21 (l1) 0.643 (l1) 0.503 (l1) -0.144 (l1) 0.617 (l1) 0.617 (l1)
gpt-3.5-turbo 0.421 (l1) 0.421 (l1) 0.494 (l1) 0.300 (l1) 0.003 (icl) 0.528 (l1) 53.151 (l1) 148.21 (l1) 0.641 (l4) 0.490 (l1) -0.174 (l1) 0.616 (l1) 0.612 (l1)
vicuna-13b-v1.5 0.330 (l3) 0.317 (l3) 0.426 (l2) 0.231 (l2) 0.004 (l1) 0.487 (l2) 49.272 (l2) 142.27 (l2) 0.528 (l2) 0.393 (l2) -0.412 (l3) 0.586 (l3) 0.590 (l1)
vicuna-13b-v1.5-16k 0.326 (l2) 0.296 (l4) 0.410 (l2) 0.236 (l1) 0.003 (l1) 0.462 (l3) 47.970 (l1) 130.22 (l1) 0.535 (l3) 0.362 (l2) -0.440 (l3) 0.581 (l4) 0.590 (l1)
vicuna-7b-v1.5 0.355 (l2) 0.333 (l2) 0.446 (l2) 0.255 (l2) 0.004 (l1) 0.497 (l2) 50.817 (l2) 321.37 (l3) 0.549 (l4) 0.405 (l2) -0.439 (l3) 0.590 (l2) 0.595 (l2)
vicuna-7b-v1.5-16k 0.323 (l2) 0.309 (l2) 0.419 (l2) 0.231 (l2) 0.004 (l1) 0.484 (l2) 48.843 (l2) 308.47 (l3) 0.550 (l3) 0.387 (l2) -0.407 (l3) 0.582 (l2) 0.586 (l2)
Llama-2-13b-chat-hf 0.372 (l1) 0.357 (l1) 0.442 (l1) 0.257 (l1) 0.002 (l1) 0.495 (l4) 49.459 (l1) 236.98 (l1) 0.563 (l2) 0.369 (l1) -0.468 (l2) 0.592 (l1) 0.584 (l1)
Llama-2-7b-chat-hf 0.336 (l3) 0.332 (l1) 0.434 (l3) 0.239 (l3) 0.002 (l1) 0.498 (l3) 49.593 (l3) 251.37 (l4) 0.603 (l2) 0.402 (l3) -0.309 (l1) 0.589 (l1) 0.588 (l3)
Phi-3-mini-128k-instruct 0.442 (l3) 0.433 (l3) 0.507 (l3) 0.342 (l3) 0.003 (l2) 0.541 (l1) 54.296 (l1) 156.74 (l2) 0.646 (l1) 0.480 (l1) -0.179 (l1) 0.616 (l1) 0.623 (l1)
Phi-3-mini-4k-instruct 0.375 (l1) 0.375 (l1) 0.453 (l1) 0.255 (l1) 0.002 (l1) 0.493 (l1) 49.756 (l1) 198.04 (l1) 0.607 (l3) 0.445 (l1) -0.188 (l1) 0.600 (l1) 0.588 (l1)
Mistral-7B-Instruct-v0.1 0.428 (l1) 0.428 (l1) 0.498 (l1) 0.318 (l1) 0.002 (l1) 0.539 (l1) 53.128 (l1) 190.72 (l1) 0.636 (l3) 0.494 (l1) -0.194 (l1) 0.614 (l1) 0.613 (l1)
Mistral-7B-Instruct-v0.2 0.374 (l1) 0.374 (l1) 0.464 (l1) 0.268 (l4) 0.002 (l0) 0.511 (l4) 51.546 (l4) 253.57 (l1) 0.637 (l1) 0.462 (l1) -0.229 (l1) 0.601 (l1) 0.596 (l1)
mpt-30b-chat 0.340 (l1) 0.338 (l1) 0.419 (l1) 0.252 (l1) 0.001 (l2) 0.476 (l2) 47.994 (l2) 520.50 (l2) 0.596 (l1) 0.374 (l2) -0.319 (l2) 0.588 (l1) 0.591 (l1)
mpt-30b-instruct 0.345 (l1) 0.345 (l1) 0.427 (l1) 0.237 (l2) 0.010 (l3) 0.445 (l2) 46.618 (l2) 112.52 (l2) 0.602 (l2) 0.435 (l1) -0.309 (l1) 0.593 (l1) 0.588 (l2)
mpt-7b-chat 0.267 (l4) 0.263 (l3) 0.356 (l3) 0.206 (l4) 0.003 (icl) 0.434 (l4) 43.745 (l4) 327.89 (l2) 0.578 (l4) 0.304 (l3) -0.378 (l3) 0.593 (l2) 0.585 (l4)
mpt-7b-instruct 0.278 (l1) 0.277 (l1) 0.370 (l1) 0.195 (l1) 0.006 (l4) 0.422 (l1) 44.214 (l1) 134.32 (l4) 0.585 (l2) 0.316 (l3) -0.378 (l3) 0.571 (l1) 0.586 (l2)

PrivacyPolicyPairs (3P) Dataset
gemini-pro 0.244 (l4) 0.243 (l4) 0.314 (l4) 0.118 (l1) 0.003 (icl) 0.347 (l4) 41.843 (l4) 150.77 (l1) 0.528 (l4) 0.308 (l1) -0.198 (l2) 0.561 (l4) 0.545 (l4)
gpt-3.5-turbo 0.262 (l1) 0.262 (l1) 0.324 (l1) 0.117 (l1) 0.003 (l1) 0.355 (l1) 41.186 (l2) 171.67 (l1) 0.535 (l4) 0.329 (l1) -0.156 (l1) 0.567 (l1) 0.546 (l1)
vicuna-13b-v1.5 0.196 (l2) 0.180 (l2) 0.250 (l2) 0.088 (l2) 0.002 (l2) 0.339 (l2) 37.375 (l2) 322.60 (l2) 0.445 (l3) 0.205 (l2) -0.463 (l4) 0.552 (l3) 0.533 (l2)
vicuna-13b-v1.5-16k 0.184 (l2) 0.171 (l2) 0.239 (l2) 0.077 (l2) 0.003 (l1) 0.318 (l2) 36.181 (l2) 164.16 (l1) 0.471 (l0) 0.189 (l2) -0.423 (l4) 0.546 (l2) 0.529 (l2)
vicuna-7b-v1.5 0.175 (l2) 0.165 (l2) 0.227 (l2) 0.071 (l2) 0.005 (l1) 0.308 (l2) 35.699 (l2) 460.12 (l1) 0.441 (l4) 0.177 (l2) -0.501 (l1) 0.543 (l1) 0.527 (l1)
vicuna-7b-v1.5-16k 0.188 (l1) 0.186 (l1) 0.247 (l1) 0.069 (l2) 0.003 (l1) 0.303 (l3) 36.652 (l1) 375.69 (l1) 0.497 (l3) 0.204 (l1) -0.404 (l4) 0.553 (l3) 0.533 (l3)
Llama-2-13b-chat-hf 0.207 (l1) 0.196 (l1) 0.266 (l1) 0.083 (l1) 0.001 (l1) 0.305 (l1) 38.272 (l1) 340.60 (l1) 0.466 (l3) 0.184 (l1) -0.500 (l4) 0.545 (l1) 0.531 (l1)
Llama-2-7b-chat-hf 0.199 (l1) 0.197 (l1) 0.258 (l1) 0.079 (l1) 0.001 (l1) 0.300 (l4) 37.899 (l1) 361.54 (l1) 0.495 (l1) 0.214 (l1) -0.383 (l1) 0.547 (l1) 0.529 (l1)
Phi-3-mini-128k-instruct 0.218 (l3) 0.217 (l3) 0.282 (l3) 0.083 (l1) 0.003 (l4) 0.308 (l1) 37.816 (l1) 187.90 (l4) 0.497 (l1) 0.276 (l1) -0.205 (l1) 0.554 (l1) 0.533 (l1)
Phi-3-mini-4k-instruct 0.215 (l1) 0.215 (l1) 0.278 (l1) 0.083 (l1) 0.002 (l1) 0.321 (l1) 38.572 (l1) 259.86 (l1) 0.503 (l1) 0.251 (l1) -0.345 (l1) 0.551 (l1) 0.529 (l1)
Mistral-7B-Instruct-v0.1 0.214 (l1) 0.213 (l1) 0.275 (l1) 0.083 (l1) 0.002 (l1) 0.330 (l1) 37.823 (l4) 238.45 (l1) 0.517 (l1) 0.249 (l1) -0.362 (l2) 0.549 (l1) 0.535 (l1)
Mistral-7B-Instruct-v0.2 0.234 (l1) 0.233 (l1) 0.298 (l1) 0.106 (l1) 0.002 (l1) 0.340 (l4) 39.959 (l1) 247.36 (l1) 0.523 (l1) 0.279 (l1) -0.291 (l1) 0.558 (l1) 0.540 (l1)
mpt-30b-chat 0.192 (l1) 0.190 (l1) 0.247 (l1) 0.075 (l1) 0.002 (l1) 0.312 (l2) 35.142 (l2) 385.01 (l2) 0.507 (l2) 0.200 (l2) -0.347 (l2) 0.655 (icl) 0.534 (l2)
mpt-30b-instruct 0.213 (l1) 0.210 (l1) 0.267 (l1) 0.084 (l1) 0.014 (l1) 0.297 (l2) 35.520 (l1) 131.85 (l1) 0.487 (l2) 0.268 (l1) -0.361 (l1) 0.667 (icl) 0.538 (l1)
mpt-7b-chat 0.177 (l2) 0.175 (l2) 0.233 (l2) 0.066 (l1) 0.003 (l0) 0.270 (l1) 33.066 (l2) 352.14 (l2) 0.479 (l2) 0.159 (l2) -0.464 (l3) 0.651 (icl) 0.530 (l1)
mpt-7b-instruct 0.166 (l1) 0.162 (l1) 0.215 (l1) 0.075 (l1) 0.006 (l4) 0.270 (l2) 33.105 (l1) 152.96 (l4) 0.469 (l1) 0.127 (l1) -0.561 (l1) 0.654 (icl) 0.529 (l1)

Table 3: The best average scores for each metric over each dataset. Higher is better for all but TER which is
indicated by ↓. Bold blue indicates the best score for a given metric, while the second best is indicated by bold
black. Each score is accompanied by the TELeR level that was used to produce the score.

Model Score
(0-5) Template Score

(0-5)
gemini-pro 3.37 ICL 3.08

gpt-3.5-turbo 3.53 L1 3.38
mpt-30b-chat 3.39 L2 3.42

Mistral-7B-Instruct-v0.2 3.38 L3 3.32
Phi-3-mini-128k-instruct 3.37 L4 3.32

vicuna-13b-v1.5-16k 3.32

Table 4: Average negotiated preference score for each
model and prompt template. "ICL" represents the In-
Context Learning style prompts, while "Lx" refers to
the level of the TELeR prompt.

gemini-pro coming in second across most met-
rics.
Human Vs. Automatic Evaluation: In Table 1,
we report the System-level Kendall’s τ and Pear-
son’s ρ correlation coefficients between all our met-
rics and our human annotations (Chaganty et al.,
2018; Novikova et al., 2017; Peyrard et al., 2017;
Bhandari et al., 2020). We show the correlation
scores for each individual annotator, but focus on
the Acomb field, which represents the final score
that was agreed upon by all annotators. Interest-
ingly, while Sem-F1 was originally proposed as a
specialized metric for the SOS task (Bansal et al.,
2022a) and while this is indeed shown to be the
case according to the Kendall’s τ correlation, we
can also see that it is matched by SMS and is also

seen being beaten by METEOR in Pearson’s ρ.

Key Findings: Our comprehensive benchmarking
study provides us with the following interesting
insights regarding the relationships between mod-
els, evaluation metrics, TELeR Levels, and human
preferences for the SOS task.

• Models vs. TELeR Levels: When comparing
models against TELeR prompts in Table 3, we
found that while TELeR L1 generally perform
the best, some models show preferences towards
other styles. For example, all the vicuna models
show favor over L2 (64 top scores), with much
fewer L1 prompts showing top scores (23).

• Datasets vs. TELeR Levels: Based on Table 3,
L1 prompts consistently score the highest, count-
ing 106 and 122 for AllSides and 3P, respectively.
L2 comes in second place with 49 and 47, sug-
gesting that brevity is preferred in general while
designing prompts for the SOS task.

• Human Preference Vs. TELeR Levels: Table
4 shows that human annotators showed bias to-
wards TELeR L2 prompts. However, the vari-
ance seems to be relatively small across L1 - L4.

5 Conclusion

In this study, we investigated the capability of
LLMs for performing the Semantic Overlap Sum-
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marization (SOS) task. We evaluated LLMs on an
existing dataset and additionally introduced a new
dataset called the PrivacyPolicyPairs (3P) dataset.
To account for the effects of prompt sensitivity, we
adopted the TELeR prompting taxonomy to create
a diverse set of prompts and found that: 1) Dif-
ferent TELeR levels impact each model and data
set differently, suggesting that the degree of details
provided in prompts must be studied and reported
before making a final conclusion on LLMs’ per-
formance; 2) METEOR, SMS, and Sem-F1 are
the metrics that correlate the best with human judg-
ments at the system level; and 3) Human annotators
tend to prefer summaries generated from TELeR
L2, i.e., prompts with moderate details.

6 Limitations

Dataset Size: At only 135 samples, it is not feasi-
ble to train a model on just the 3P data alone. Of
course the AllSides dataset exists to accompany the
3P dataset but they represent a different category
of documents from the 3P dataset which is another
barrier to training. However while the size of the
new dataset is small, there is a large amount of time
and resource that is required to build a dataset of
this nature. Firstly, this dataset requires that for
each sample, we find two documents that share an
overlapping narrative. Second, each sample is an-
notated manually by 3 people which for this dataset
results in 405 annotations. That is without consid-
ering the other annotations where no overlap was
found. Third, there have been several instances
where disagreements need to be resolved which
requires further discussion among annotators. De-
spite these limitations it is worth noting that this
work effectively doubles the amount of samples to
evaluate on the SOS task when considering both
AllSides data and 3P data combined, taking our
initial 137 sample news article test set to a com-
bined 272 sample evaluation set over both news
articles and privacy policy documents. In the fu-
ture, a larger scale effort will be needed to increase
the space of data for the SOS task.

Human Annotation: Annotation work is expen-
sive in both time and money. We recruited all
our annotators from within our department and
saved on money but time cost is unavoidable. To
make the process easier for our volunteers we re-
duced the amount of annotation samples by select-
ing 15 samples out of all 272 test set samples be-
tween AllSides and 3P. We also only evaluated the

largest/newest models from each model family and
finally, we only evaluated summaries that corre-
spond to the best-performing prompts within each
TELeR level. It is also important to note that the
annotation process was purely for scoring user pref-
erence and there is no "right" or "wrong" answers
to validate.

Despite the limited number of samples, we
believe our human evaluation offers sufficient
depth and rigor to support meaningful conclusions.
Specifically:

1. Each summary was independently scored by
three annotators, followed by joint adjudication
to ensure consistency and resolve disagreements.
This consensus-based approach improves anno-
tation quality and mitigates individual biases.

2. The evaluated samples were carefully selected
to balance coverage across domains including
7 pairs from AllSides and 8 from 3P. This do-
main diversity enhances the generalizability of
our findings across different types of narrative
content.

3. We focused annotation efforts on the strongest-
performing prompts and the most competitive
models, concentrating the analysis on realistic
and high-quality system outputs. This targeted
evaluation ensures that performance compar-
isons are meaningful and relevant to state-of-
the-art LLM usage.

Model Finetuning: For this work we did not per-
form any fine-tuning on the evaluated models. All
scores were obtained using the pre-trained weights
for each model. This means that it is possible for
additional performance to be gained using methods
like LoRA (Hu et al., 2021). However the main
goal of this study was to benchmark LLMs to set
new baselines for the SOS task. In that regard we
believe this to be an appropriate setup.
Automatic Evaluation: In this work we show that
automatic evaluation cannot yet be trusted for the
SOS task. However, reporting automatic evaluation
metrics is standard practice so it is important that
we take precaution when using these values to draw
conclusions.
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Egor Filonov, Tomasz Kępa, Yomna Eldawy, Jiaw-
ern Lim, Rahul Rishi, Shirin Badiezadegan, Taylor
Bos, Jerry Chang, Sanil Jain, Sri Gayatri Sundara
Padmanabhan, Subha Puttagunta, Kalpesh Krishna,
Leslie Baker, Norbert Kalb, Vamsi Bedapudi, Adam
Kurzrok, Shuntong Lei, Anthony Yu, Oren Litvin,
Xiang Zhou, Zhichun Wu, Sam Sobell, Andrea Si-
ciliano, Alan Papir, Robby Neale, Jonas Bragagnolo,
Tej Toor, Tina Chen, Valentin Anklin, Feiran Wang,
Richie Feng, Milad Gholami, Kevin Ling, Lijuan
Liu, Jules Walter, Hamid Moghaddam, Arun Kishore,
Jakub Adamek, Tyler Mercado, Jonathan Mallinson,
Siddhinita Wandekar, Stephen Cagle, Eran Ofek,
Guillermo Garrido, Clemens Lombriser, Maksim
Mukha, Botu Sun, Hafeezul Rahman Mohammad,
Josip Matak, Yadi Qian, Vikas Peswani, Pawel Janus,
Quan Yuan, Leif Schelin, Oana David, Ankur Garg,
Yifan He, Oleksii Duzhyi, Anton Älgmyr, Timo-
thée Lottaz, Qi Li, Vikas Yadav, Luyao Xu, Alex
Chinien, Rakesh Shivanna, Aleksandr Chuklin, Josie
Li, Carrie Spadine, Travis Wolfe, Kareem Mohamed,
Subhabrata Das, Zihang Dai, Kyle He, Daniel von
Dincklage, Shyam Upadhyay, Akanksha Maurya,
Luyan Chi, Sebastian Krause, Khalid Salama, Pam G.
Rabinovitch, Pavan Kumar Reddy M, Aarush Sel-
van, Mikhail Dektiarev, Golnaz Ghiasi, Erdem Gu-
ven, Himanshu Gupta, Boyi Liu, Deepak Sharma,
Idan Heimlich Shtacher, Shachi Paul, Oscar Aker-
lund, François-Xavier Aubet, Terry Huang, Chen
Zhu, Eric Zhu, Elico Teixeira, Matthew Fritze,
Francesco Bertolini, Liana-Eleonora Marinescu, Mar-
tin Bölle, Dominik Paulus, Khyatti Gupta, Tejasi
Latkar, Max Chang, Jason Sanders, Roopa Wil-
son, Xuewei Wu, Yi-Xuan Tan, Lam Nguyen Thiet,
Tulsee Doshi, Sid Lall, Swaroop Mishra, Wanming
Chen, Thang Luong, Seth Benjamin, Jasmine Lee,
Ewa Andrejczuk, Dominik Rabiej, Vipul Ranjan,
Krzysztof Styrc, Pengcheng Yin, Jon Simon, Mal-
colm Rose Harriott, Mudit Bansal, Alexei Robsky,
Geoff Bacon, David Greene, Daniil Mirylenka, Chen
Zhou, Obaid Sarvana, Abhimanyu Goyal, Samuel
Andermatt, Patrick Siegler, Ben Horn, Assaf Is-
rael, Francesco Pongetti, Chih-Wei “Louis” Chen,
Marco Selvatici, Pedro Silva, Kathie Wang, Jack-
son Tolins, Kelvin Guu, Roey Yogev, Xiaochen Cai,
Alessandro Agostini, Maulik Shah, Hung Nguyen,

33361



Noah Ó Donnaile, Sébastien Pereira, Linda Friso,
Adam Stambler, Adam Kurzrok, Chenkai Kuang,
Yan Romanikhin, Mark Geller, Z. J. Yan, Kane Jang,
Cheng-Chun Lee, Wojciech Fica, Eric Malmi, Qi-
jun Tan, Dan Banica, Daniel Balle, Ryan Pham,
Yanping Huang, Diana Avram, Hongzhi Shi, Jasjot
Singh, Chris Hidey, Niharika Ahuja, Pranab Sax-
ena, Dan Dooley, Srividya Pranavi Potharaju, Eileen
O’Neill, Anand Gokulchandran, Ryan Foley, Kai
Zhao, Mike Dusenberry, Yuan Liu, Pulkit Mehta,
Ragha Kotikalapudi, Chalence Safranek-Shrader, An-
drew Goodman, Joshua Kessinger, Eran Globen, Pra-
teek Kolhar, Chris Gorgolewski, Ali Ibrahim, Yang
Song, Ali Eichenbaum, Thomas Brovelli, Sahitya
Potluri, Preethi Lahoti, Cip Baetu, Ali Ghorbani,
Charles Chen, Andy Crawford, Shalini Pal, Mukund
Sridhar, Petru Gurita, Asier Mujika, Igor Petrovski,
Pierre-Louis Cedoz, Chenmei Li, Shiyuan Chen,
Niccolò Dal Santo, Siddharth Goyal, Jitesh Pun-
jabi, Karthik Kappaganthu, Chester Kwak, Pallavi
LV, Sarmishta Velury, Himadri Choudhury, Jamie
Hall, Premal Shah, Ricardo Figueira, Matt Thomas,
Minjie Lu, Ting Zhou, Chintu Kumar, Thomas Ju-
rdi, Sharat Chikkerur, Yenai Ma, Adams Yu, Soo
Kwak, Victor Ähdel, Sujeevan Rajayogam, Travis
Choma, Fei Liu, Aditya Barua, Colin Ji, Ji Ho
Park, Vincent Hellendoorn, Alex Bailey, Taylan Bi-
lal, Huanjie Zhou, Mehrdad Khatir, Charles Sut-
ton, Wojciech Rzadkowski, Fiona Macintosh, Kon-
stantin Shagin, Paul Medina, Chen Liang, Jinjing
Zhou, Pararth Shah, Yingying Bi, Attila Dankovics,
Shipra Banga, Sabine Lehmann, Marissa Bredesen,
Zifan Lin, John Eric Hoffmann, Jonathan Lai, Ray-
nald Chung, Kai Yang, Nihal Balani, Arthur Bražin-
skas, Andrei Sozanschi, Matthew Hayes, Héctor Fer-
nández Alcalde, Peter Makarov, Will Chen, Anto-
nio Stella, Liselotte Snijders, Michael Mandl, Ante
Kärrman, Paweł Nowak, Xinyi Wu, Alex Dyck, Kr-
ishnan Vaidyanathan, Raghavender R, Jessica Mal-
let, Mitch Rudominer, Eric Johnston, Sushil Mit-
tal, Akhil Udathu, Janara Christensen, Vishal Verma,
Zach Irving, Andreas Santucci, Gamaleldin Elsayed,
Elnaz Davoodi, Marin Georgiev, Ian Tenney, Nan
Hua, Geoffrey Cideron, Edouard Leurent, Mah-
moud Alnahlawi, Ionut Georgescu, Nan Wei, Ivy
Zheng, Dylan Scandinaro, Heinrich Jiang, Jasper
Snoek, Mukund Sundararajan, Xuezhi Wang, Zack
Ontiveros, Itay Karo, Jeremy Cole, Vinu Rajashekhar,
Lara Tumeh, Eyal Ben-David, Rishub Jain, Jonathan
Uesato, Romina Datta, Oskar Bunyan, Shimu Wu,
John Zhang, Piotr Stanczyk, Ye Zhang, David Steiner,
Subhajit Naskar, Michael Azzam, Matthew Johnson,
Adam Paszke, Chung-Cheng Chiu, Jaume Sanchez
Elias, Afroz Mohiuddin, Faizan Muhammad, Jin
Miao, Andrew Lee, Nino Vieillard, Jane Park, Ji-
ageng Zhang, Jeff Stanway, Drew Garmon, Abhijit
Karmarkar, Zhe Dong, Jong Lee, Aviral Kumar, Lu-
owei Zhou, Jonathan Evens, William Isaac, Geoffrey
Irving, Edward Loper, Michael Fink, Isha Arkatkar,
Nanxin Chen, Izhak Shafran, Ivan Petrychenko,
Zhe Chen, Johnson Jia, Anselm Levskaya, Zhenkai
Zhu, Peter Grabowski, Yu Mao, Alberto Magni,
Kaisheng Yao, Javier Snaider, Norman Casagrande,

Evan Palmer, Paul Suganthan, Alfonso Castaño,
Irene Giannoumis, Wooyeol Kim, Mikołaj Rybiński,
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Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, An-
tônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272.

Shomir Wilson, Florian Schaub, Aswarth Abhilash
Dara, Frederick Liu, Sushain Cherivirala, Pedro
Giovanni Leon, Mads Schaarup Andersen, Sebas-
tian Zimmeck, Kanthashree Mysore Sathyendra,
N. Cameron Russell, Thomas B. Norton, Eduard
Hovy, Joel Reidenberg, and Norman Sadeh. 2016.
The creation and analysis of a website privacy policy
corpus. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), page 1330–1340, Berlin,
Germany. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. ArXiv:1910.03771 [cs].

Yuxiang Wu and Baotian Hu. 2018. Learning to extract
coherent summary via deep reinforcement learning.
arXiv preprint arXiv:1804.07036.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J Liu. 2019. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. arXiv
preprint arXiv:1912.08777.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with bert.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang,
Kathleen McKeown, and Tatsunori B. Hashimoto.
2024. Benchmarking large language models for news
summarization. Transactions of the Association for
Computational Linguistics, 12:39–57.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. Moverscore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), page 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
ArXiv:2306.05685 [cs].

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extrac-
tive summarization as text matching. arXiv preprint
arXiv:2004.08795.

Ming Zhong, Pengfei Liu, Danqing Wang, Xipeng Qiu,
and Xuanjing Huang. 2019. Searching for effective
neural extractive summarization: What works and
what’s next. arXiv preprint arXiv:1907.03491.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

A Appendix

A.1 Additional Figures
Figure 1 shows Pearson’s correlation scores be-
tween all metrics on both datasets. The Pearson
scores were computed using the SciPy library (Vir-
tanen et al., 2020)

A.2 More on the 3P Dataset
In table 5, we show statistics of the 3P dataset.
Figure 6 shows an example of what a sample in the
3P dataset looks like.

3P Dataset Statistics
# Samples 135
Avg. # Words per Document 331.00
Avg. # Words per Document Pair 662.01
Avg. # Sentences per Document 14.96
Avg. # Sentences per Document Pair 28.99
Avg. # Words per Reference 22.46
Avg. # Sentences per Reference 1.75

Table 5: Dataset statistics for the 3P dataset consisting
of 135 document pairs with 3 references each.

A.3 Related Work
Text Summarization: SOS is essentially a sum-
marization task. Over the past two decades, many
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Table 6: A single sample from the 3P dataset. For each sample, you are given the category name, company names,
the corresponding policy subsections, the count of words in each policy, and the 3 reference summaries. The
highlighted text shows the overlapping information.

Figure 1: Raw correlation scores between all evaluation
metrics.

document summarization approaches have been in-

vestigated (Zhong et al., 2019). The two most pop-
ular among them are extractive approaches (Cao
et al., 2018; Narayan et al., 2018; Wu and Hu, 2018;
Zhong et al., 2020) and abstractive approaches
(Bae et al., 2019; Liu et al., 2017; Nallapati et al.,
2016). Some researchers have tried combining
extractive and abstractive approaches (Chen and
Bansal, 2018; Hsu et al., 2018; Zhang et al., 2019).

Semantic Overlap Summarization: Semantic
Overlap Summarization (SOS) is a task aimed at
extracting and condensing shared information be-
tween two input documents, DA and DB . The
output, denoted as DO, is generated in natural lan-
guage and only includes information present in
both input documents. The task is framed as a
constrained multi-seq-to-seq (text generation) task,
where brevity is emphasized to minimize the rep-
etition of overlapping content. The output can be
extractive summaries, abstractive summaries, or a
combination of both (Karmaker Santu et al., 2018).
This is similar to the sentence intersection task,
where your input is comprised of sentences instead
of documents and your output contains only the
common information (Levy et al., 2016; Thadani
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and McKeown, 2011).
To facilitate research in this area, Bansal et al.

(2022b) introduced the AllSides dataset for training
and evaluation, which we also used for evaluation
in this work.

LLMs and Summarization: As the transformer
architecture gained popularity, further research
showed favorable behavior at scale, allowing the
creation of larger and more performant models (Ka-
plan et al., 2020; Sharma and Kaplan, 2022; Tay
et al., 2023, 2021; Dehghani et al., 2023). With the
rising prevalence of these large language models,
summarization naturally became one of the many
areas of NLP that have progressed as a result. LLM
performance has been evaluated in tasks such as
news summarization (Zhang et al., 2024), multi-
document summarization (Huang et al., 2024), and
dialogue summarization (??) but there has also
been research into using them as annotators or eval-
uators (Shen et al., 2023; Liu et al., 2024).

Prompt Engineering for LLMs: “Prompt Engi-
neering” is a technique for maximizing the utility
of LLMs in various tasks (Zhou et al., 2022). It
involves crafting and revising the query or con-
text to elicit the desired response or behavior from
LLMs (Brown et al., 2022). Prompt engineering
is an iterative process requiring multiple trial and
error runs (Shao et al., 2023). In fact, differences in
prompts along several key factors can significantly
impact the accuracy and performance of LLMs in
complex tasks. To address this issue, Santu and
Feng (2023) recently proposed the TELeR taxon-
omy, which can serve as a unified standard for
benchmarking LLMs’ performances by exploring
a wide variety of prompts in a structured manner.

The TELeR Taxonomy: As shown in Figure 2, the
TELeR taxonomy introduced by Santu and Feng
(2023) categorizes complex task prompts based on
four criteria.

1. Turn: This refers to the number of turns or shots
used while prompting an LLM to accomplish
a complex task. In general, prompts can be
classified as either single or multi-turn.

2. Expression: This refers to the style of expres-
sion for interacting with the LLM, such as ques-
tioning or instructing.

3. Level of Details: This dimension of prompt
style deals with the granularity or depth of ques-
tion or instruction. Prompts with higher levels
of detail provide more granular instructions.

4. Role: LLMs can provide users with the option
of specifying the role of the system. The re-
sponse of LLM can vary due to changes in role
definitions in spite of the fact that the prompt
content remains unchanged.

The taxonomy outlines 7 distinct levels starting
from level 0 to level 6. With each increase in level
comes an increase in complexity of the prompt.
In level 0, only data/context is provided with no
further instruction. Level 1 extends level 0 by pro-
viding single-sentence instruction. Then level 2
extends level 1, and so on, until level 6, where
all characteristics of previous levels are provided
along with the additional instruction for the LLM to
explain its output. For more details on the TELeR
taxonomy and its applications, see Santu and Feng
(2023). For convenience, we include the outline
diagram from the paper in Appendix A.6.

A.4 Evaluation Metrics

SEM-F1 (Bansal et al., 2022a): Semantic F1 com-
putes the sentence-wise similarity (e.g., cosine sim-
ilarity between two sentence embeddings) to infer
the semantic overlap between a system-generated
sentence and a reference sentence from both pre-
cision and recall perspectives and then, combine
them into the F1 score.

BERTscore (Zhang et al., 2020): An automatic
evaluation metric for text generation. Analogously
to common metrics, BERTScore computes a simi-
larity score for each token in the candidate sentence
with each token in the reference sentence.

ROUGE (Lin, 2004): Recall-Oriented Understudy
for Gisting Evaluation counts the number of over-
lapping units such as n-gram, word sequences, and
word pairs between the computer-generated sum-
mary to be evaluated and the ideal summaries cre-
ated by humans. This metric is mainly used for
evaluating text generation.

BLEURT (Sellam et al., 2020): A learned evalua-
tion metric based on BERT that can model human
judgments with a few thousand possibly biased
training examples. This metric is primarily evaluat-
ing machine translation systems.

BLEU (Papineni et al., 2002): Bilingual Evalua-
tion Understudy score is a precision-based metric
that evaluates the quality of generated text by mea-
suring n-gram overlap between the generated and
reference texts. It is primarily used for machine-
translation tasks.
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METEOR (Lavie and Agarwal, 2007): An au-
tomatic metric for machine translation evaluation
that is based on a generalized concept of unigram
matching between the machine-produced transla-
tion and human-produced reference translations.

chrF (Popović, 2015): character n-gram F-score
for automatic evaluation of machine translation
output.

MoverScore (Zhao et al., 2019): Built upon a com-
bination of contextualized representations of sys-
tem and reference texts and a distance between
these representations measuring the semantic dis-
tance between system outputs and references.

Sentence Mover’s Similarity (Clark et al., 2019):
Measures the semantic similarity between two texts
by computing the minimum cost of transforming
one set of sentence embeddings into another using
the Earth Mover’s Distance (EMD).

CIDEr (Vedantam et al., 2015): Measures the sim-
ilarity between generated and reference texts by
computing TF-IDF-weighted n-gram overlap, em-
phasizing important and distinctive words. It was
originally designed for image captioning

TER (Snover et al., 2006): Measures the number
of edits (insertions, deletions, substitutions, and
shifts) needed to transform a generated text into a
reference text, normalized by the total number of
words in the reference. Lower TER scores indicate
better translations, as fewer edits are required.

A.5 System Level and Summary Level
Correlation

To understand the performance of automatic evalua-
tion metrics in comparison to human evlautions we
examine the correlations between the distribution
of scores.

Rather than a raw correlation computation be-
tween human scores and automatic scores, the
system-level and summary-level methods are the
commonly used for computing correlation (Cha-
ganty et al., 2018; Novikova et al., 2017; Peyrard
et al., 2017; Bhandari et al., 2020).

We use the definition from Liu et al. (2023) to de-
scribe these methods. Given m system outputs on
each of the n data samples and two different evalua-
tion methods (human evaluations vs automatic eval-
uations) resulting in two n-row, m-column score
matrices X and Y , the summary-level correlation
is an average of samplewise correlations:

rsum(X,Y ) =

∑
i C(Xi, Yi)

n
,

where Xi, Yi are the evaluation results on the i-th
data sample and C is a function calculating a cor-
relation coefficient (e.g. , the Pearson correlation
coefficient). In contrast, the system-level correla-
tion is calculated on the aggregated system scores:

rsys(X,Y ) = C(X̄, Ȳ ),

where X̄ and Ȳ contain m entries which are
the system scores from the two evaluation meth-
ods averaged across n data samples, e.g. , X̄0 =∑

iXi,0/n

A.6 Prompt Design

We prompted LLMs in a zero-shot setting with
TELeR since zero-shot approaches to NLP tasks
have gained popularity with the growing capabil-
ities of LLMs. For example, works from Sarkar
et al. (2023, 2022) explore their zero-shot use cases
in topic inference and text classification. The tax-
onomy is best outlined by Figure 2.

For this study, we used TELeR levels 0 through
4 (5 out of the 7). We chose not to prompt us-
ing levels 5 and 6 because their use of retrieval
augmented prompting does not necessarily apply
to the SOS task. This is due to all relevant con-
text being present, i.e., the two source narratives
are already provided as part of the prompt. Fur-
thermore, requirement number 5 for level 6 also
specifies asking the LLM to explain its own output,
which would negatively affect the generated sum-
maries during evaluation. We also experiment with
in-context learning prompts (Brown et al., 2020).

In Section 3.2, we discussed having different
prompt variations for TELeR levels 0 through 4
and In-Context Learning prompts. The number of
variations for each group is shown in Table 7.

Template Group For PPP For AllSides For Both Total
Systm Role 2 2 6 10
TELeR L0 0 0 1 1
TELeR L1 3 3 5 11
TELeR L2 3 3 3 9
TELeR L3 3 3 2 8
TELeR L4 3 3 2 8
In-Context Learning 0 0 1 1

Table 7: The number of prompts created for each tem-
plate group. The "For PPP/AllSides columns indicate
how many prompts were created for that dataset only.
The "For Both" column is for the prompts that could be
applied to both datasets. For exact prompt details, refer
to Appendix A.6 for exact prompt contents.
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For each group, our templates follow these gen-
eral patterns:
• TELeR Level 0: {Document 1} {Document 2}
• TELeR Level 1:

Document 1: {Document 1}
Document 2: {Document 2}
Summarize the overlapping information be-
tween these two documents

• TELeR Level 2:
{TELeR Level 1 Prompt Text}
This information must keep in mind the 5W1H
facets of the documents. Do not include any
uncommon information.

• TELeR Level 3:
{TELeR Level 1 Prompt Text}

– This information must keep in mind the
5W1H facets of the documents.

– Do not include uncommon information.
• TELeR Level 4:

{Level 3 Prompt Text}.
Your response will be evaluated against a set of
reference summaries. Your score will depend
on how semantically similar your response is
to the reference.

• In-context Learning:
Document 1: {Example Document 1}
Document 2: {Example Document 2}
Summary: {Example Summary}

Document 1: {Document1}
Document 2: {Document2}
Summary:

The exact prompts are laid out in the following
passage.

System Role Variations Our system role templates
are made up of 2 AllSides-specific items, 2 3P
specific-items and 6 for general purpose. These are
written as follows

• AllSides
– you will be given two news articles to read. then you

will be given an instruction. follow these instructions
as closely as possible

– you will read two news articles and answer any ques-
tions about them

• 3P
– you are to read two privacy policies and briefly pro-

vide information according to the user’s needs
– you are to read two privacy policies and provide con-

cise answers to the user
• Both

– you are to read several documents and briefly provide
information according to the user’s needs

– you are to read several documents and provide concise
answers to the user

– you will read two documents and give brief answers
to user questions

– you are a machine who is given 3 inputs: document
1, document 2, and the instructions. your output will
adhere to these 3 inputs.

– you will be given 2 documents and a set of instruc-
tions. follow the instructions as closely as possible.

– you will be given 2 documents and a set of instruc-
tions. your response to these instructions will rely on
the material covered in the 2 documents.

In-Context Learning Template: We use the fol-
lowing for our in-context learning template:

• Document 1: {{Example Document 1}}
Document 2: {{Example Document 2}}
Summary: {{Example Reference}}

Document 1: {{Document 1}}
Document 2: {{Document 2}}
Summary:

TELeR Level 0 Template: With no possibility
for variation, our TELeR L0 template is written as
follows:

• {Document 1} {Document 2}

TELeR Level 1 Template: For our TELeR L1
templates we have 3 AllSides-only items, 3 3P-
only items, and 5 general-purpose items.

• AllSides
– Document 1: {{Document 1}}

Document 2: {{Document 2}}

In one sentence, please tell me the overlapping infor-
mation between article 1 and article 2

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

summarize the overlapping information between the
articles

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

output the overlapping information of the events cov-
ered in these articles

• 3P
– Policy 1: {{Document 1}}

Policy 2: {{Document 2}}

In one sentence, please tell me the overlapping infor-
mation between policy 1 and policy 2

– Policy 1: {{Document 1}}
Policy 2: {{Document 2}}

summarize the information that the two policies share
– Policy 1: {{Document 1}}

Policy 2: {{Document 2}}

what is the shared information between the two poli-
cies

• Both
– Document 1: {{Document 1}}

Document 2: {{Document 2}}

In one sentence, please tell me the overlapping infor-
mation between Document 1 and Document 2
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Figure 2: TELeR Taxonomy proposed by Santu and Feng (2023): (<Turn, Expression, Level of Details, Role>)

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

summarize the overlapping information between the
documents.

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

output the overlapping information between the doc-
uments.

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

output the common information between the docu-
ments.

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

output only the overlapping information

TELeR Level 2 Variations: For our TELeR L2
templates we have 3 AllSides-only items, 3 3P-only
items, and 3 general-purpose items.

• AllSides
– Document 1: {{Document 1}}

Document 2: {{Document 2}}

these articles share similarities. output the informa-
tion that is shared between them. keep your output
short. to be as accurate as possible, cover the "who,
what, when, where, and why of the shared informa-
tion.

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

who or what are the common subjects of the two
documents? what events are common between the

documents? do the documents mention any locations
that are the same between the two? give your response
in a single sentence.

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

summarize the overlap
• 3P

– Policy 1: {{Document 1}}
Policy 2: {{Document 2}}

These policies are categorized under "Category". De-
scribe the common aspects of these two policies in
terms of this category. make sure to include the shared
entities, actions and scope of the documents. Do not
make any mention of information that is not shared
between them. Keep your response short

– Policy 1: {{Document 1}}
Policy 2: {{Document 2}}

These policies are categorized under "Category". De-
scribe the common aspects of these two policies in
terms of this category. make sure to include the shared
entities, actions and scope of the documents. Do not
make any mention of information that is not shared
between them. give your response in a single sen-
tence.

– Policy 1: {{Document 1}}
Policy 2: {{Document 2}}

These privacy policy excerpts are tagged with the
category: "Category". summarize the overlapping
information between the documents. to be as accurate
as possible, cover the who, what, when, where, and
why of the common information.

• Both
– Document 1: {{Document 1}}

Document 2: {{Document 2}}
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summarize the overlapping information between the
two documents. explain the who, what, when, where,
and why to give full context.

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

summarize the overlapping information between the
two documents. explain the who, what, when, where,
and why to give full context. the output should be
two sentences at most.

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

output the shared information between the documents.
do not include any information outside of the shared
information. keep your response short.

TELeR Level 3 Variations: For our TELeR L3
templates we have 3 AllSides-only items, 3 3P-only
items, and 2 general-purpose items.

• AllSides
– Document 1: {{Document 1}}

Document 2: {{Document 2}}

please answer the following:
- who or what are the common subjects of the two
documents
- what events are common between the documents
- do the documents mention any locations that are the
same between the two
- keep your response brief. 2 sentences max.

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

Consider the following questions and respond in a
single sentence:
- who or what are the common subjects of the two
documents
- what events are common between the documents
- do the documents mention any locations that are the
same between the two

• 3P
– Policy 1: {{Document 1}}

Policy 2: {{Document 2}}

These policies are categorized under "Category".
With this in mind, please answer the following:
- Describe the common aspects of these two policies
in terms of this category.
- make sure to include the shared entities, actions and
scope of the documents.
- Do not make any mention of information that is not
shared between them.
- Do not respond in a list format and instead respond
normally.
- Keep your response to 3 sentences at most

– Policy 1: {{Document 1}}
Policy 2: {{Document 2}}

These policies are labelled under the "Category" cat-
egory. With this in mind, use a single sentence that
answers the following:
- Describe the common aspects of these two policies
in terms of this category.
- make sure to include the shared entities, actions and

scope of the documents.
- Do not make any mention of information that is not
shared between them.
- Do not respond in a list format and instead respond
normally.

– Policy 1: {{Document 1}}
Policy 2: {{Document 2}}

These policies are labelled under the "Category" cat-
egory. With this in mind, use a single sentence that
answers the following:
- summarize the information that is shared between
the policies
- cover the who, what, when, where, and why of the
common information
- respond in as few sentences as possible

• Both
– Document 1: {{Document 1}}

Document 2: {{Document 2}}

please answer the following:
- who or what are the common subjects of the two
documents
- what events are common between the documents
- do the documents mention any locations that are the
same between the two
- keep your response brief. 2 sentences max.

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

Consider the following questions and respond in a
single sentence:
- who or what are the common subjects of the two
documents
- what events are common between the documents
- do the documents mention any locations that are the
same between the two

TELeR Level 4 Variations For our TELeR L4
templates we have 3 AllSides-only items, 3 3P-
only items, and 2 general-purpose items.

• AllSides
– Document 1: {{Document 1}}

Document 2: {{Document 2}}

your goal is to describe all the common information
between the given documents. to accomplish this you
will need to answer the following:
- who or what are the common subjects of the two
documents
- what events are common between the documents
- do the documents mention any locations that are the
same between the two
- keep your response brief. 2 sentences max.

For Example:
Doc1: i have a dog. it’s pretty fast.
Doc2: i have a dog. he is a slow runner
Reference Summary: i have a dog.

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

your goal is to describe all the common information
between the given documents. to accomplish this you
will need to answer the following:
- who or what are the common subjects of the two
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documents
- what events are common between the documents
- do the documents mention any locations that are the
same between the two

your response will be evaluated according to how
similar it is to a "reference summary".
Example:
Question: what is common between the sentence "the
dog is slow" and "the dog is fast"
Reference Summary: Both sentences talk about the
speed of a dog

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

your goal is to describe all the common information
between the given documents in one sentence. your
single-sentence response will need to capture the
following:
- the common events
- common people
- common locations
- the overlapping narrative of the documents

your response will be evaluated according to how
similar it is to a "reference summary".
Example:
Doc1: the dog is slow
Doc2: the dog is fast
Reference Summary: Both sentences talk about the
speed of a dog

• 3P
– Policy 1: {{Document 1}}

Policy 2: {{Document 2}}

your goal is to describe all the common information
between the given privacy policies. to accomplish
this you will need to answer according to the
following:
- Describe the common aspects of these two policies
in terms of this category.
- make sure to include the shared entities, actions and
scope of the documents.
- Do not make any mention of information that is not
shared between them.
- Do not respond in a list format and instead respond
normally.
- Keep your response to 3 sentences at most

your response will be evaluated according to how
similar it is to a "reference summary".
For example, an output of "cat" could be compared to
"light" to get a score of 0 but that same output could
be compared to "cat" to receive a score of 100. These
reference summaries are usually quite short so it is
important to keep your response to 3 sentences or less.

your response will be evaluated according to how
similar it is to a "reference summary". Example:
Doc1: the dog is slow
Doc2: the dog is fast
Reference Summary: Both sentences talk about the
speed of a dog

– Policy 1: {{Document 1}}
Policy 2: {{Document 2}}

your goal is to describe all the common information
between the given documents in one sentence. your

single-sentence response will need to include the
following:
- common aspects related to the given category
- common entities
- common applications

your response will be evaluated according to how
similar it is to a "reference summary".

Example Documents:
Doc1: the dog is slow
Doc2: the dog is fast

Example Response:
Both sentences talk about the speed of a dog

– Policy 1: {{Document 1}}
Policy 2: {{Document 2}}

your goal is to describe all the common information
between the given documents in one sentence. your
single-sentence response will need to include the
following:
- common aspects related to the given category
- common entities
- common applications

your response will be evaluated according to how
similar it is to a "reference summary".

Example Documents:
Doc1: the dog is slow
Doc2: the dog is fast

Example Response:
Both sentences talk about the speed of a dog

• Both
– Document 1: {{Document 1}}

Document 2: {{Document 2}}

Write a summary of the given documents that follows
these instructions:
- who or what are the common subjects of the two
documents
- what events are common between the documents
- do the documents mention any locations that are the
same between the two
- keep your response brief. 2 sentences max.

your response will be evaluated according to how
similar it is to a "reference summary".
For Example:
Doc1: i have a dog. it’s pretty fast.
Doc2: i have a dog. he is a slow runner
Reference Summary: i have a dog.

– Document 1: {{Document 1}}
Document 2: {{Document 2}}

Summarize the overlapping information between
these documents. your summary should follow these
instructions:
- exclude any information that is similar but differing
or contradictory
- write the summary as if you were summarizing a
single document.
- your summary should be short. keep it within 2
sentences.
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your response will be evaluated according to how
similar it is to a "reference summary".
For Example:
Doc1: i have a dog. it’s pretty fast.
Doc2: i have a dog. he is a slow runner
Reference Summary: i have a dog.

A.7 Annotation Details

3P Dataset Annotations When constructing the
3P dataset, annotators were instructed as follows:

1) You are given a list of document pairs.
For each document pair, read and un-
derstand the overlapping information be-
tween doc1 and doc2.

2) Write a summary that only includes
the overlapping information you have
identified.

What is overlapping information? Any
information, statement, or fact that is
shared between two or more documents
example: ’John doe is on a trip to Las Ve-
gas’ and ’John Doe went to see the fight
in Vegas’ shares the information ’John
Doe is in Las Vegas’

What DOES NOT qualify as overlap-
ping information: shared mentioning of
names example: ’John Doe is a pilot ’
and ’John Doe has never been to Canada’
does not have any overlapping informa-
tion

Model Summary Annotations As covered in Sec-
tion 3.3, we chose our human evaluation samples
by 1) evaluating a subset of data that correspond
to 15 samples (7 from AllSides and 8 from 3P) out
of the 272 test set samples between AllSides and
3P), 2) evaluating only the largest/newest models
from each model family, and 3) evaluating only
the summaries that correspond to the best perform-
ing prompts within each TELeR level. To clarify
point 3, each TELeR level has a set of templates, as
shown in Table 7. TELeR L1, for example, has 8
prompt and 8 system role templates that can be used
to prompt the models on the AllSides dataset. All
possible combinations for TELeR L1 prompt and
system role templates give us 64 unique prompts
to be applied to the entire dataset. After collecting
responses and evaluating the average performance
for each of the 64 unique prompts, the samples
associated with the prompt that yielded the best

performance over the AllSides dataset were chosen
for human annotation.

When evaluating the summaries generated by
the LLMs, annotators were instructed as follows:

1) You are given a list of document pairs.
For each document pair, read and un-
derstand the overlapping information be-
tween doc1 and doc2.

3) Read each of the corresponding ’re-
sponse’ entries and assign a score be-
tween 0 and 5 (decimal values indluded)
based on how well you think it covers the
overlapping information * decimal val-
ues such as 1.23 are acceptable scores.

What is overlapping information? Any
information, statement, or fact that is
shared between two or more documents
example: ’John doe is on a trip to Las Ve-
gas’ and ’John Doe went to see the fight
in Vegas’ shares the information ’John
Doe is in Las Vegas’

What DOES NOT qualify as overlap-
ping information: shared mentioning of
names example: ’John Doe is a pilot ’
and ’John Doe has never been to Canada’
does not have any overlapping informa-
tion

A.8 Additional Results

Human Preference on Model and Template:
While Table 8 shows that the automatic evalua-
tions tend to have a preference towards TELeR
L1 prompts, Table 4 shows that human annota-
tors actually tend to prefer TELeR L2 prompts
instead. However, this preference is only
0.04 points ahead of the next best. The ta-
ble also indicates the annotators’ preference to-
wards gpt-3.5-turbo for the commercial LLMs.
Then, for the open-source LLMs, mpt-30b-chat
was the most preferred, with an average an-
notator score of 3.39. However, it is impor-
tant to note that Phi-3-mini-128k-instruct
and Mistral-7B-Instruct-v0.2 match and beat
gemini-pro, respectively, according to humans.
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Dataset Tmplt. R-L Sum R-L R-1 R-2 BLEU METEOR chrF TER ↓ S-F1 BERTsc BLEURT MoverScore SMS

AllSides

L0 0.212 0.192 0.279 0.135 0.0009 0.337 36.115 1353.976 0.476 0.173 -0.637 0.548 0.546
L1 0.276 0.258 0.356 0.188 0.0010 0.407 42.538 833.364 0.524 0.281 -0.474 0.568 0.561
L2 0.257 0.243 0.339 0.170 0.0010 0.386 40.701 827.023 0.516 0.240 -0.558 0.562 0.549
L3 0.273 0.263 0.358 0.175 0.0012 0.406 42.696 590.499 0.499 0.297 -0.505 0.569 0.565
L4 0.259 0.250 0.335 0.162 0.0015 0.372 39.775 514.080 0.457 0.244 -0.646 0.561 0.548
ICL 0.214 0.202 0.286 0.129 0.0010 0.342 36.837 942.628 0.423 0.179 -0.768 0.543 0.542

Privacy
Policy

Pairs (3P)

L0 0.109 0.096 0.134 0.042 0.0008 0.218 22.929 2243.971 0.412 -0.004 -0.682 0.520 0.510
L1 0.157 0.147 0.199 0.062 0.0011 0.265 30.684 1057.247 0.440 0.116 -0.545 0.534 0.518
L2 0.145 0.136 0.188 0.053 0.0008 0.254 29.823 1130.120 0.441 0.085 -0.605 0.531 0.515
L3 0.151 0.145 0.199 0.048 0.0011 0.248 31.943 700.396 0.413 0.112 -0.599 0.532 0.513
L4 0.152 0.148 0.199 0.049 0.0015 0.237 30.729 590.374 0.393 0.104 -0.661 0.529 0.505
ICL 0.120 0.112 0.155 0.042 0.0010 0.219 25.154 1198.308 0.389 0.059 -0.715 0.561 0.477

Table 8: Average scores per metric broken down by level and dataset. Higher is better for all metrics except TER
which is denoted by the ↓. TELeR Levels are denoted by "Lx" and In-Context Learning is denoted by "ICL". The
best of each metric and dataset are in bold.
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