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Abstract

Nonverbal vocalizations are an essential com-
ponent of human communication, conveying
rich information without linguistic content.
However, their computational analysis is hin-
dered by a lack of lexical anchors in the data,
compounded by biased and imbalanced data
distributions. While disentangled representa-
tion learning has shown promise in isolating
specific speech features, its application to non-
verbal vocalizations remains unexplored. In
this paper, we introduce N-CORE, a novel
backbone-agnostic framework designed to dis-
entangle intertwined features like emotion and
speaker information from nonverbal vocaliza-
tions by leveraging N views of audio sam-
ples to learn invariance to specific transforma-
tions. N-CORE achieves competitive perfor-
mance compared to state-of-the-art methods
for emotion and speaker classification on the
VIVAE, ReCANVo, and ReCANVo-Balanced
datasets. We further propose an emotion per-
turbation function that disrupts affective in-
formation while preserving speaker informa-
tion in audio signals for emotion-invariant
speaker classification. Our work informs re-
search directions on paralinguistic speech pro-
cessing, including clinical diagnoses of atypi-
cal speech and longitudinal analysis of commu-
nicative development. Our code is available at
https://github.com/SiddhantBikram/N-CORE.

1 Introduction

Nonverbal vocalizations (NVVs) are a fundamen-
tal component of human communication, encom-
passing a diverse range of non-speech sounds like
laughter, sighs, cries, and other sounds that convey
rich affective information without linguistic content
(Cowen et al., 2019). Interpreting these paralinguis-
tic sounds is vital for comprehensive modeling of
human communication and developing emotionally
intelligent AI systems (Tzirakis et al., 2023). How-
ever, their computational analysis presents unique

Figure 1: Comparison of mel-spectrograms from verbal
(top) and nonverbal vocalizations (bottom). The syllabic
structure of word-based speech results in specific tem-
poral variations that are less common in NVVs.

challenges distinct from conventional speech pro-
cessing.

A primary bottleneck in NVV analysis is the
scarcity of annotated data. Unlike speech cor-
pora with millions of hours of recorded content,
NVV datasets are typically restricted to only a
few hundred hours (Baird et al., 2022; Koudounas
et al., 2025), limiting the performance of con-
temporary data-intensive machine learning (ML)
and deep learning (DL) methods. This limita-
tion is exacerbated by substantial biases arising
from the intertwined nature of emotion and speaker
labels in these datasets, leading to models that
learn spurious correlations. Consequently, emo-
tion classification models trained on such corpora
are confounded by speaker characteristics like pitch
range, vocal timbre, and articulation patterns, and
conversely, speaker classification models are con-
founded by affective characteristics like dynamic
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intensity, prosodic contours, and fundamental fre-
quency (F0) variations (Pei et al., 2024). This hin-
ders generalization across demographic groups and
emotion categories, especially in low-resource set-
tings.

Several methods have attempted to address these
challenges through various representation learning
approaches. Foundation models such as HuBERT
(Hsu et al., 2021b) and Wav2Vec2 (Baevski et al.,
2020) have demonstrated remarkable success in
learning generalized speech representations that
can be fine-tuned for downstream tasks. These
models are predominantly trained on verbal cor-
pora, where canonical phoneme structures and lin-
guistic content serve as strong structural priors.
In contrast, NVVs lack the phoneme-based pri-
ors these models exploit, causing them to struggle
when encoding paralinguistic speech (Lane et al.,
2015; Tzirakis et al., 2023). Figure 1 compares mel-
spectrograms of verbal speech and NVVs, high-
lighting how verbal speech has more complex spec-
tral variability and clear transitions in temporal seg-
mentation as compared to NVVs, which may assist
representation learning (Nagamine et al., 2015).

Disentangled representation learning (DRL), the
process of separating different informational fac-
tors in data, has been extensively explored in the
speech domain for tasks including emotion recogni-
tion (Yuan et al., 2024; Xi et al., 2022), depression
detection (Ravi et al., 2022), and voice conversion
(Zuo et al., 2024; Wang et al., 2021a). However,
extending DRL methods to NVVs is nontrivial:
NVVs lack lexical anchors, and their prosodic char-
acteristics simultaneously contain both speaker and
emotion features. Conventional DRL methods on
speech data often depend on perturbation strategies
that preserve lexical content while altering specific
features (Tu et al., 2024; Hsu et al., 2019); however,
in the absence of transformation-invariant lexical
content, a single perturbation may either disrupt
useful information or result in uninformative arti-
facts persisting in the signal.

In this paper, we investigate DRL for NVVs. Our
contributions are summarized as follows:

• We propose N-CORE: N-View COnsistency
REgularization (pronounced ‘Encore’), a
novel framework for supervised DRL of
NVVs by using N perturbed views of an au-
dio signal.

• We propose a novel transformation function
to perturb affective components in speech sig-

nals while retaining speaker characteristics.
We further examine the validity of an existing
speaker perturbation method on NVVs.

• We comprehensively benchmark audio foun-
dation models, domain-specific models,
DRL methods, and state-of-the-art frame-
works on emotion and speaker classification
tasks across the VIVAE, ReCANVo, and
ReCANVo-Balanced datasets. To the best of
our knowledge, we are the first to study DRL
in NVVs.

2 Related Work

2.1 Machine Learning for Nonverbal
Vocalizations and Paralinguistic Speech

Early ML research on NVVs relied predominantly
on hand-engineered feature sets. For instance,
Schuller et al. (2013) established the ComParE
acoustic feature set that captured spectral, prosodic,
and voice quality parameters for the paralinguistic
analysis of social signals, conflict, and emotion,
with application to autism diagnosis. This was
further refined by the GeMAPS and eGEMAPS
frameworks (Eyben et al., 2015), providing a stan-
dardized feature extraction framework for affective
computing applications. These approaches have
been successfully employed for classifying NVVs
(Lefter and Jonker, 2017; Narain et al., 2020), typi-
cally using traditional ML classifiers like Support
Vector Machines (Cortes and Vapnik, 1995) and
Random Forests (Breiman, 2001).

The advent of DL has significantly advanced
NVV processing by enabling representation learn-
ing directly from raw waveforms and bypassing
manual feature engineering. Early approaches used
convolutional neural networks (CNNs) like ResNet
(He et al., 2016) to process paralinguistic speech
for tasks like understanding nonverbal emotion
(Hsu et al., 2021a), classifying speakers (Xu et al.,
2024), and judging singing voice quality (Xu et al.,
2022). More recently, self-supervised learning has
revolutionized ML for speech, with models like
Wav2Vec2 (Baevski et al., 2020) and HuBERT
(Hsu et al., 2021b) achieving state-of-the-art perfor-
mance on various speech processing benchmarks.
Although pretrained primarily on linguistic content,
they exhibit strong transferability to paralinguis-
tic tasks (Tzirakis et al., 2023; Shah and Johnson,
2025; Phukan et al., 2025); however, their perfor-
mance is often limited by domain shifts between
pretraining and evaluation data. Addressing this
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gap, Koudounas et al. (2025) developed Voc2Vec,
which pre-trains the Wav2Vec2 architecture over
multiple NVV datasets with a self-supervised learn-
ing objective.

In clinical applications, ML approaches have
been instrumental in analyzing atypical vocaliza-
tions. For instance, Bone et al. (2017) developed
a classification framework to identify distinctive
acoustic signatures in the vocalizations of children
with autism spectrum disorder (ASD). Similarly,
Narain et al. (2022) demonstrated that ML meth-
ods could effectively classify affective and com-
municative functions in NVVs from individuals
with ASD. Further, these techniques have been
applied to speech therapy (Mulfari et al., 2021),
automatic speech recognition (Mulfari et al., 2023),
and speech conversion (Doshi et al., 2021) for indi-
viduals with atypical speech.

2.2 Disentangled Representation Learning in
Speech

DRL aims to separate distinct informational fac-
tors in data, enabling models to extract and ma-
nipulate independent semantic dimensions (Wang
et al., 2024b). In speech processing, DRL typi-
cally focuses on separating speaker characteristics,
linguistic content, and emotion from each other
(Williams, 2022). This separation is valuable for
tasks like voice conversion (Luong and Tran, 2021),
speech recognition (Trinh and Braun, 2022), and
emotion recognition (Yuan et al., 2024), where iso-
lating specific features leads to improved perfor-
mance. These methods harness lexical content and
phoneme sequences in speech (Hsu et al., 2019) as
stable anchors against the transformation of various
attributes like emotion or speaker identity, which
are conveyed through prosodic modulations (Chu
et al., 2006). The application of these techniques to
NVVs, which lack explicit lexical anchors and have
entangled speaker and emotion information in their
prosodic features, remains an unexplored domain,
motivating us to investigate DRL in NVVs.

A prominent DRL approach involves a gradient
reversal layer (GRL) (Ganin and Lempitsky, 2015),
enabling end-to-end training of classifiers invariant
to characteristics like domain (Lu et al., 2022) and
speaker identity (Oneaţă et al., 2021). Autoencoder-
based methods are also widely used to learn dis-
entangled latent spaces by imposing specific con-
straints on the latent distribution (Yingzhen and
Mandt, 2018; Nam et al., 2024). Subsequent frame-
works like NANSY (Choi et al., 2021) and Con-

tentVec (Qian et al., 2022) learn speaker-invariant
speech representations by encouraging models to
learn similar representations for audio pairs with
perturbed speaker information; however, a single
perturbed view per sample may not expose the
model to the spectrum of acoustic and affective
variability present in datasets, limiting the robust-
ness of the learned invariances. Further, these meth-
ods are limited to speaker-invariant representation
learning, as they rely solely on speaker perturba-
tion. To address these gaps, we propose N-CORE,
which uses N views of perturbed samples from an
audio signal for increased sample diversity. We fur-
ther propose an emotion perturbation function that
selectively alters affective components while pre-
serving speaker information for emotion-invariant
representation learning.

3 Methodology

In this section, we describe N-CORE, our proposed
supervised DRL framework to encode NVVs by
isolating either emotion- or speaker-specific infor-
mation. Our backbone-agnostic framework can
utilize any representation learner as the backbone
encoder. It applies audio perturbations to suppress
either emotion or speaker information while pre-
serving the complementary features. We generate
N perturbed views per audio sample to encourage
invariance across a broader distribution of irrele-
vant variations, regulated by a pairwise distance
loss for consistency regularization. We use two
classification heads–a primary head to predict the
target label, and a secondary adversarial head with
a GRL mechanism–to simultaneously promote task-
relevant features while discarding task-irrelevant
information in the learned representations. We train
the model via a composite objective that balances
the regularization loss, cross-entropy loss, and gra-
dient reversal loss. Figure 2 presents our audio
perturbation functions alongside the overall archi-
tecture of the N-CORE framework.

3.1 Problem Formulation

Let X represent an acoustic signal encompassing
an NVV with a target positive label y+ and a neg-
ative label y−. We aim to learn a representation
model R = f(X) that maps X to a learned embed-
ding x ∈ RD, encapsulating the core components
of y+ from the sample while discarding informa-
tion that describes y−. Specifically, if the learning
objective is to predict the emotion label ye, x must
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Figure 2: Our proposed framework, N-CORE, predicts label y+ and disentangles features that inform the label y−.
Perturbation functions pe or ps are used to create N views of the original sample X for consistency regularization.
Cross-entropy loss is used to predict y+ with classification head h+, and a GRL is used to adversarially disentangle
y− using classification head h−.

retain information pertinent to the underlying emo-
tion expressed in X while remaining uninforma-
tive with respect to speaker label ys. Conversely,
when predicting ys, x should encapsulate speaker-
specific traits from X while discarding affective
content descriptive of ye. Achieving such disentan-
glement is challenging given the inherent entangle-
ment of emotion- and speaker-specific information
in the audio signal.

3.2 Representation Learner

N-CORE employs a pre-trained audio foundation
model (AFM) as its core feature encoder. Our
framework is backbone-agnostic, allowing it to
use various foundation models like HuBERT (Hsu
et al., 2021b) and Wav2Vec2 (Baevski et al., 2020)
interchangeably. This model learns a neural embed-
ding x from the raw audio signal X by encoding
essential phonetic, prosodic, and stylistic informa-
tion (Kharitonov et al., 2021), as x = AFM(X).

3.3 Feature-Invariant Audio Perturbation

Emotion Perturbation. We aim to disrupt affec-
tive information in the audio signal while preserv-
ing speaker characteristics. The emotion perturba-
tion function pe comprises three transformations:
1) We compute the Short-Time Fourier Transform
(STFT) of X , resulting in a spectrogram S(X) with
nspec non-overlapping frequency bands. We ran-

domly permute η1 of these bands, retaining the
rhythm and energy essential for speaker identifica-
tion (Quatieri et al., 1994), while distorting content
information (Davis and Johnsrude, 2003). 2) We
normalize intensity by adjusting the waveform’s
RMS to a fixed target η2 in order to suppress dy-
namic intensity correlated with emotion features
(Koolagudi and Rao, 2012). 3) We flatten the pitch
of the speaker to its mean in their pitch contour
f0, effectively flattening prosodic variance and the
affective content it contains (Mozziconacci, 2002).
Speaker Perturbation. We adopt the audio trans-
formation pipeline designed by Choi et al. (2021)
for the NANSY framework to perturb speaker in-
formation while preserving the underlying content
information. Similar to ContentVec (Qian et al.,
2022), the speaker perturbation function ps com-
prises three transformations: 1) scaling formant
frequencies by a factor of ρ1; 2) scaling F0 in every
frame by ρ2, and 3) applying a random equalizer
to account for channel variations.

3.4 N Perturbed Views

Prior work on feature-invariant representation
learning (Qian et al., 2022; Tu et al., 2024; Wang
et al., 2024a) typically relies on a single perturbed
version of each input and then enforces invariance
between them. This one-shot strategy constrains
the diversity of transformations exposed to the
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model, making its learned invariances less robust
to unseen distortions.

In contrast, our approach samples N distinct
perturbations drawn independently from the orig-
inal audio signal X . By exposing the model to a
spectrum of variations, we increase the range of
uninformative factors the encoder is encouraged to
ignore, reduce reliance on any single perturbation
pattern, and promote the consistent encoding of all
views of X into a tight cluster in the representation
space. Multiple perturbations are especially crucial
in NVVs, which lack lexical anchors that could be
preserved after perturbation (Ko et al., 2015). We
regularize the pairwise distances among all views
by measuring the average squared distance across
all unique pairs as a loss function:

LREG =

∑N
i=0

∑N
j=i+1 ||xi − xj ||22
N(N+1)

2

(1)

where the denominator is the number of unique
pairs among the set of N + 1 embeddings
{x0, x1...xN}, including the unperturbed view x0.
This loss encourages the model to create the same
representation for all views of X , disentangling
irrelevant information from task-relevant features.

3.5 Classification
We project x to two separate classification heads
h+ and h− that use cross-entropy to predict labels
y+ and y−, respectively. This step operates solely
on the unperturbed view x0. Both heads share the
same underlying structure: a two-layer multilayer
perceptron with ReLU and dropout in between. To
enforce invariance to y−, we precede h− with a
GRL that scales embeddings by −α, encouraging
the model to disentangle and suppress features cor-
responding to y− in its learned representations. We
obtain losses LCE and LGRL as follows:

LCE = −
K+∑

k+=1

y+
k+

log
[
h+(x0)

]
k+

(2)

LGRL = −
K−∑

k−=1

y−
k− log

[
h−

(
GRLα(x0)

)]
k−

(3)

3.6 Training Objective
Our model is trained by optimizing a composite
objective function comprising the three losses ob-
tained from equations 1, 2, and 3, calculated for
each dataset sample:

Ltotal = λREG ·LREG+λCE ·LCE−λGRL ·LGRL (4)

where λreg, λCE, and λGRL represent scaling fac-
tors that regulate the contribution of each loss to-
wards Ltotal. The optimizer minimizes Ltotal by
maximizing the negative term LGRL, designed to
learn representations that are invariant to the sec-
ondary label y−.

4 Experimental Settings

4.1 Datasets
We evaluate our methods on three NVV datasets:
Variably Intense Vocalizations of Affect and Emo-
tion (VIVAE) (Holz et al., 2022), Real-World Com-
municative and Affective Nonverbal Vocalizations
(ReCANVo) (Johnson et al., 2023), and ReCANVo-
Balanced. Each dataset sample has both an emotion
label and a speaker identity label, but has only one
class per label type. For each dataset, we evaluate
performance on emotion and speaker recognition
tasks. We use a train/test split of 80/20 for all
datasets. Detailed dataset statistics are presented in
Appendix A.2.
VIVAE. The VIVAE corpus comprises 1,085
non-speech emotion vocalizations produced by 11
non-professional female actors, 20-39 years old,
instructed to express six affective states: achieve-
ment/triumph, sexual pleasure, surprise, anger, fear,
and physical pain across multiple intensity levels.
ReCANVo. The ReCANVo dataset contains
7,077 NVVs collected from eight non- and
minimally-speaking individuals, ranging in age
from 6-23 years old and diagnosed with vari-
ous neurodevelopmental disorders, including ASD,
cerebral palsy, and genetic neurodevelopmental
disorders. Classes with sample counts reaching
n≥100 were extracted from this dataset, yielding
a derived dataset of 6,551 utterances distributed
among seven functions: delighted, dysregulated,
frustrated, laughter, request, self-talk, and social.
This derived dataset is highly imbalanced with an
imbalance factor of 18.66.
ReCANVo-Balanced. We use a multi-stage sam-
pling procedure to create a balanced subset from
ReCANVo by extracting 100 samples for each emo-
tion class. Within each emotion category, partici-
pant diversity was maximized by systematically dis-
tributing the sample selection, with the constraint
that no single participant would contribute a major-
ity of samples for any given emotion class.
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4.2 Baselines

We conduct a comprehensive benchmark of audio
ML methods on NVVs, organized into two main
families based on their foundational architecture.
For the Wav2Vec2-based methods, we evaluate
Wav2Vec2-Base (Baevski et al., 2020), Voc2Vec
(Koudounas et al., 2025), Wav2Vec2-GRL (Ganin
and Lempitsky, 2015), and SACE (Dutta and Gana-
pathy, 2024). For the HuBERT-based methods,
we evaluate HuBERT-Base (Hsu et al., 2021b),
HuBERT-ER and HuBERT-SID (Yang et al., 2021),
and ContentVec (Qian et al., 2022). To demon-
strate the flexibility of our proposed backbone-
agnostic framework, we use N-CORE with both
Wav2Vec2 and HuBERT as backbones, denoted
as N-COREWav2Vec2 and N-COREHuBERT, respec-
tively. Detailed implementation details are given in
Appendix A.1.

5 Experimental Results

Tables 1 and 2 present the results for emotion and
speaker recognition, respectively. We conduct each
experiment on three seeds and report the Mean
and Standard Deviation (±) for Accuracy, F1-score
(Macro), and Unweighted Average Recall (Macro).

5.1 Emotion Classification with Speaker
Disentanglement

Foundation Models. In line with previous re-
search on emotion and speaker classification (Wang
et al., 2021b), HuBERT consistently achieves
the highest performance across all metrics in all
datasets compared to the Wav2Vec2 family of mod-
els. The Voc2Vec model was trained exclusively on
NVVs, allowing it to outperform Wav2Vec2 with
the same architecture, demonstrating the advan-
tage of domain-specific pre-training. Further, its
self-supervised training objective may enable it to
avoid overfitting and classification unfairness (Liu
et al., 2021), as demonstrated by the difference in
F1-Score and UAR compared to Wav2Vec2. How-
ever, despite being specifically designed for NVVs,
Voc2Vec underperforms HuBERT on ReCANVo
and ReCANVo-Balanced while matching its perfor-
mance on VIVAE, suggesting that domain-specific
pre-training may not solely surpass the representa-
tion learning power of a more suitable model.
Domain-Specific Models. Notably, neither
HuBERT-ER nor HuBERT-SID outperforms
the baseline HuBERT model, which may be
attributed to the domain shift between the spoken

word datasets used during finetuning and the
NVV datasets used for this evaluation. Further,
fine-tuning on a smaller corpus limits the gener-
alizability of these models to out-of-distribution
data.
GRL-based Models. Both Wav2Vec2-GRL and
HuBERT-GRL show improvements in performance
across VIVAE and ReCANVo compared to their
respective baselines. These results support our
hypothesis that using adversarial training to ex-
plicitly disentangle speaker information leads to
more robust representations that are less sensitive
to speaker-specific characteristics and biases. How-
ever, they underperform their respective baselines
on ReCANVo-Balanced.
DRL Frameworks. N-COREWav2Vec2 and
N-COREHuBERT outperform all other methods in
their respective model families on VIVAE and
ReCANVo-Balanced, but fall short for ReCANVo.
This may be due to ReCANVo’s intertwined
speaker and emotion distributions, where models
could be relying on speaker characteristics to
predict emotions due to a biased sample distribu-
tion (see Table 6); thus, N-CORE’s superior DRL
capabilities may have penalized its performance.
ReCANVo-Balanced mitigates this imbalance, and
N-CORE outperforms all respective methods here.

5.2 Speaker Classification with Affect
Disentanglement

Foundation Models. For the ReCANVo dataset,
Voc2Vec performs worse than HuBERT and
Wav2Vec2, despite ReCANVo being a part of its
pre-training corpus; however, it surpasses both on
ReCANVo-Balanced. Voc2Vec also uses the VI-
VAE dataset for pre-training, on which it performs
the best, followed by HuBERT and Wav2Vec2, re-
spectively.
Domain-Specific Models. HuBERT-ER shows
competitive performance for speaker identification
compared to the baseline and even the specialized
HuBERT-SID model on ReCANVo, but exhibits a
substantial drop on VIVAE, highlighting the impor-
tance of task-specific pre-training. However, the
model performs poorly on ReCANVo-Balanced,
suggesting that it could be exploiting affective in-
formation to predict speakers in ReCANVo.
GRL-based Methods. On ReCANVo and VI-
VAE, both Wav2Vec2-GRL and HuBERT-GRL
demonstrate substantial performance gains af-
ter disentanglement. On ReCANVo-Balanced,
Wav2Vec2-GRL exhibits improvement in perfor-
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Model
VIVAE ReCANVo ReCANVo-Balanced

Acc F1 UAR Acc F1 UAR Acc F1 UAR

Wav2Vec2-based Methods

Wav2Vec2 54.22±2.1 53.75±1.2 53.82±2.0 63.95±0.7 51.76±0.8 51.70±1.0 28.33±1.4 23.40±1.5 28.33±1.4

Voc2Vec 59.14±3.6 58.69±3.0 58.77±3.7 61.35±0.8 50.48±1.7 48.75±1.5 30.29±1.6 27.29±2.5 30.29±1.6

Wav2Vec2-GRL 54.99±1.5 54.41±1.7 54.43±1.8 63.34±0.3 52.86±0.6 53.06±1.0 27.86±1.5 21.18±2.4 27.86±1.5

SACE 51.77±3.1 50.73±3.2 51.42±3.1 63.64±0.4 52.11±0.5 51.64±1.4 25.95±2.2 17.23±3.2 25.95±2.2

N-COREWav2Vec2 59.29±1.2 59.26±1.5 58.85±1.3 63.54±0.4 50.84±2.7 51.12±2.6 31.43±2.1 28.26±1.7 31.43±2.1

HuBERT-based Methods

HuBERT 58.83±1.2 58.14±1.2 58.10±1.1 66.21±0.6 55.86±2.1 55.06±1.5 35.24±1.2 31.05±2.7 35.24±1.2

HuBERT-ER 57.45±3.7 54.84±5.7 56.26±4.1 65.34±0.4 53.19±0.7 53.10±0.6 31.90±1.7 26.72±1.4 31.90±1.7

HuBERT-SID 58.53±2.2 57.25±2.3 57.73±2.2 63.77±0.5 55.24±1.0 54.03±0.4 29.05±2.7 26.69±2.4 29.05±2.7

HuBERT-GRL 62.98±3.0 62.34±2.8 62.12±2.8 66.46±0.3 56.62±1.1 56.05±0.1 34.67±2.0 33.05±3.0 34.67±2.0

ContentVec 58.68±1.3 57.82±1.2 55.03±2.7 65.93±0.6 56.28±2.9 55.03±2.7 34.29±0.5 32.70±0.5 34.29±0.5

N-COREHuBERT 65.13±3.1 64.37±3.0 64.39±3.1 66.59±0.2 54.02±1.1 53.56±1.2 35.24±2.3 34.01±2.4 35.24±2.3

Table 1: Comparison of model performance on the emotion classification task for VIVAE, ReCANVo, and
ReCANVo-Balanced. The results are in the form of Mean ± Standard Deviation. For each model family, the best
results are highlighted in bold and the second-best results are underlined.

mance after disentanglement, whereas HuBERT-
GRL experiences a performance decline relative to
its baseline.
DRL Frameworks. Across all datasets,
N-COREWav2Vec2 and N-COREHuBERT outperform
all other methods in their respective model
families. Notably, ContentVec outperforms
all other methods on ReCANVo despite being
trained to be invariant to speakers, indicating that
speaker perturbation may not transform all speaker
features.

5.3 Data Analysis

ReCANVo’s data imbalance reflects real-life data
distributions, where multi-label data often exhibit
inherent biases (Schultheis et al., 2022). In this
context, affective vocalizations reflect the idiosyn-
cratic behaviors of individual autistic speakers, and
since the vocalizations are not acted, some samples
may naturally lie between two emotional categories.
These facets limit model performance for emotion
classification despite the dataset’s relatively large
number of samples, with performance deteriorating
significantly on ReCANVo-Balanced.

Universally, speaker identification proves more
challenging on the VIVAE dataset across all mod-
els, with significantly lower performance compared
to ReCANVo. This dataset contains acted vocal-
izations from adults, where emotional expressive-

ness tends to converge on shared cultural templates
for what each affective vocalization is expected to
sound like. This reduces inter-speaker variability
by masking natural speaker-specific cues, making
it more difficult for models to distinguish between
speakers, especially compared to spontaneous, real-
world vocalization datasets like ReCANVo. Disen-
tanglement was particularly effective for speaker
classification on VIVAE, suggesting that DRL ex-
cels in datasets with homogeneous speaker demo-
graphics.

All the models demonstrated remarkably high
performance on speaker identification for Re-
CANVo, which may be due to the diverse age range
of the dataset and the idiosyncratic forms of NVVs
across individuals with autism (Pegado et al., 2020),
making speaker classification a relatively easier ML
task. The competitive performance of all models on
the small-scale ReCANVo-Balanced dataset shows
that even a relatively small corpus of NVVs can
help create effective speaker recognition systems
for heterogeneous populations.

5.4 Cross-Verification of Perturbation

We conducted a cross-verification experiment to
validate the efficacy of our affect and speaker per-
turbation functions by applying each to both clas-
sification tasks in VIVAE using N-COREHuBERT,
and our results are presented in Table 3. Applying
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Model
VIVAE ReCANVo ReCANVo-Balanced

Acc F1 UAR Acc F1 UAR Acc F1 UAR

Wav2Vec2-based Methods

Wav2Vec2 44.85±1.0 39.88±2.0 42.89±2.0 92.91±0.8 91.22±0.8 91.53±0.3 63.57±7.1 59.31±10.8 60.91±9.4

Voc2Vec 65.75±2.6 64.16±2.8 64.36±2.7 91.30±0.1 89.88±0.4 89.74±0.9 75.95±2.9 75.86±2.6 76.25±2.0

Wav2Vec-GRL 57.30±1.5 54.83±0.8 55.12±1.0 93.95±0.1 92.52±0.1 92.55±0.5 68.33±0.8 67.60±2.0 67.63±2.0

SACE 43.78±0.9 36.79±2.7 40.98±0.6 93.06±0.6 91.54±0.6 91.83±0.4 62.38±1.7 55.06±1.7 59.32±2.0

N-COREWav2Vec2 75.42±3.6 74.12±3.1 73.72±3.3 95.25±0.4 94.07±0.5 94.02±0.5 85.24±2.0 84.98±3.0 85.03±3.0

HuBERT-based Methods

HuBERT 60.83±1.6 57.50±2.1 58.80±1.7 94.38±0.2 93.13±0.5 93.54±0.7 80.71±3.0 80.20±3.1 80.33±3.0

HuBERT-ER 47.16±5.8 39.83±8.1 44.70±5.5 94.51±0.4 93.47±0.6 93.65±0.6 65.71±3.2 62.24±4.6 63.65±3.3

HuBERT-SID 64.52±2.8 63.30±3.3 63.30±3.3 94.43±3.3 93.23±0.5 93.56±0.5 76.90±2.4 76.77±2.9 77.31±3.0

HuBERT-GRL 71.43±1.9 69.00±1.1 69.81±1.5 95.12±0.2 93.95±0.3 94.21±0.2 76.90±4.7 77.06±3.5 77.20±2.9

ContentVec 67.43±2.5 65.10±2.7 65.55±2.6 95.17±0.2 94.13±0.2 94.48±0.1 77.14±1.5 76.63±1.9 76.74±1.8

N-COREHuBERT 77.57±3.4 76.32±3.2 76.20±3.4 95.27±0.3 94.22±0.4 94.52±0.2 83.10±2.4 82.62±2.7 82.91±2.3

Table 2: Comparison of model performance on the speaker classification task for VIVAE, ReCANVo, and ReCANVo-
Balanced. The results are in the form of Mean ± Standard Deviation. For each model family, the best results are
highlighted in bold and the second-best results are underlined.

speaker perturbation ps to speaker classification or
emotion perturbation pe to emotion classification
significantly degrades performance, indicating the
successful disruption of cues that the respective
perturbation function targets. Conversely, applying
the inverse pairing leads to improved performance,
indicating that the model learns to become invari-
ant to the perturbed features, and that the respective
transformations do not disrupt features informative
to the classification task. This experiment vali-
dates our proposed transformation pipeline pe, and
proves the applicability of pe and ps to NVVs.

Task Perturbation Performance

Acc. F1 UAR

Speaker pe 75.12 74.25 74.54
ps 70.97 66.16 68.21

Emotion pe 61.29 61.18 60.64
ps 64.06 63.01 63.52

Table 3: Cross-Verification of signal perturbation effi-
cacy using N-COREHuBERT on VIVAE. The best results
are highlighted in bold.

5.5 Optimal number of perturbations
To identify the optimal number of perturbations
(N ) for N-COREHuBERT, we evaluated the model’s
classification accuracy on VIVAE while varying
N from 1 to 7, with results presented in Figure
3. We find that N = 5 leads to the best result for

this dataset; however, this may vary with dataset
size and the distribution of multi-labeled samples.
We hypothesize that the drop in performance when
N > 5 is an early sign of overfitting to the pertur-
bation process. With too many augmented views,
the model may begin to learn idiosyncrasies of the
specific transformations rather than the core, in-
variant features, leading to a drop in performance.
This may also be the reason we observe consistent
performance gains as N increases from 2 to 5.

Figure 3: Accuracy vs. number of perturbed views with
N-COREHuBERT for emotion classification on VIVAE.
The y-axis is limited from 61.0 to 64.5 for clarity.

5.6 Ablation Study
We conduct a systematic ablation study on N-
COREHuBERT to evaluate the individual contribu-
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tion of its components, and the results are presented
in Table 4. We observe a consistent progression in
performance across all metrics as we sequentially
add GRL, regularization loss, and especially the N
perturbed views.

Component Performance
HB GRL RL NV Acc. F1 UAR

✓ 58.06 56.51 56.81
✓ ✓ 59.91 59.16 59.20
✓ ✓ ✓ 61.75 61.03 60.98

✓ ✓ ✓ ✓ 64.06 63.01 63.52

Table 4: Ablation studies conducted on N-COREHuBERT
for emotion recognition in VIVAE. The abbreviations
HB, GRL, RL, and NV refer to HuBERT, Gradient
Reversal Layers, Regularization Loss, and N-Views,
respectively. The final row corresponds to the entire
framework. The best results are highlighted in bold.

5.7 Disentanglement Training
N-COREHuBERT’s DRL optimization for emotion
classification on VIVAE is illustrated through the
loss and accuracy curves presented in Figure 4 and
Figure 5, respectively. Figure 4 shows the emotion
classification loss decreasing and stabilizing over
epochs, while the adversarial speaker classification
loss increases, as intended with the use of a GRL.
Concurrently, Figure 5 shows that the emotion clas-
sification accuracy consistently improves until sta-
bilization, whereas the speaker classification accu-
racy rapidly drops to random chance. These trends
infer N-CORE’s success in learning representations
that are discriminative for emotion while simultane-
ously becoming invariant to speaker characteristics
over the training period.

Figure 4: Loss vs. Number of Epochs for emotion
classification on VIVAE by N-COREHuBERT.

Figure 5: Accuracy vs. Number of Epochs for emotion
classification on VIVAE by N-COREHuBERT.

6 Conclusion

In this paper, we investigate DRL specifically for
NVVs. We proposed N-CORE, a novel backbone-
agnostic disentanglement method using N -views
of perturbed audio signals to disentangle relevant
features from uninformative ones. Our experiments
demonstrate that multi-view perturbation enhances
performance compared to traditional single-view
approaches, with N-CORE achieving competitive
performance on both emotion and speaker classifi-
cation tasks for VIVAE and ReCANVo-Balanced
datasets. We further propose a signal transforma-
tion pipeline that perturbs emotions in speech sig-
nals while preserving speaker information. Further,
we validate our emotion perturbation technique and
a previously proposed speaker transformation, find-
ing that both are generalizable to NVVs.

Our work further establishes that DRL is indeed
achievable for NVVs and applies to both typical
and atypical paralinguistic speech. This opens sev-
eral promising directions for future research and
applications, including privacy-preserving encod-
ing of NVVs, disentangled voice conversion for
NVVs, and the clinical analysis of vocalizations
from non- and minimally-speaking individuals. N-
CORE further empowers longitudinal studies of
communicative development through NVVs that
remain invariant to changes in speaker character-
istics over time. The backbone-agnostic design
of N-CORE allows it to scale with advances in
DL, potentially benefiting from larger foundation
models as they become available. Our work is
an important step toward more inclusive and accu-
rate computational models of human paralinguistic
communication.
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Ethical Considerations

Potential Risks. We acknowledge the privacy
implications of technologies that can separate
speaker characteristics from communicative con-
tent. While our work demonstrates benefits for
privacy-preserving representations by removing
identifying speaker information from emotion-
specific embeddings, this same capability could
potentially be misused for unauthorized voice
anonymization or modification. We emphasize that
any deployment of these technologies should ad-
here to strict privacy protocols and informed con-
sent requirements, particularly when working with
data from vulnerable populations such as non- and
minimally-speaking individuals.
Biases. Our experimental results highlight how
dataset imbalances can significantly affect model
performance. Demographic limitations of training
data may introduce biases that could impact the
equitable performance of these systems across dif-
ferent populations. We urge caution in applying
these models to populations not well-represented
in the training data.
Reproducibility Statement. We include
implementation details and hyperparam-
eter settings for all models in Appendix
A.1. The code for N-CORE is available at
https://github.com/SiddhantBikram/N-CORE.

Limitations

Our study primarily focuses on disentangling emo-
tion and speaker features. NVVs, however, convey
a rich spectrum of paralinguistic information, in-
cluding varying levels of intensity, different com-
municative intents beyond broad affective cate-
gories, and other subtle cues, which N-CORE does
not explicitly disentangle. The generalizability of
our findings is also constrained by the two datasets
and one derived dataset we use; while diverse, they
do not encompass the full variability of NVVs
across different cultures, age ranges, real-world
acoustic environments, or clinical populations. The
general challenge of limited annotated NVV data
also impacts the scale at which models can be
trained and validated.

N-CORE’s performance was comparatively
lower for emotion recognition on the highly im-
balanced ReCANVo dataset. This suggests that in
scenarios with extreme data imbalances or where
speaker and affective cues are deeply convoluted,
our model’s strong disentanglement capabilities

might not directly translate to optimal performance
for classification.
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A Appendix

A.1 Implementation Details

We conducted all our experiments on Python 3.9.21
and PyTorch 2.6.0 with NVIDIA V100 and H200
GPUs. We set the physical batch size to 16, using
gradient accumulation steps when necessary. We
trained each model for 100 epochs with an early
stopping patience of 20 while monitoring valida-
tion accuracy to report the best model for each
run. By default, we used the training hyperpa-
rameters described by the authors of each tested
method. When unspecified, we used a learning
rate of 10−5 with the AdamW optimizer, which
was used for N-CORE. We use N = 5, α = 1,
λCE = 1, λREG = 0.005, λGRL = 0.01, η1 = 20,
η2 = 0.05, ρ1 ∈ [0.7, 1.4], and ρ2 ∈ [0.5, 2.0]
for all experiments on N-CORE. We used a linear
scheduler with 0.1 × the number of training steps

as warmup steps. We conduct each experiment on
three seeds and report the Mean and Standard De-
viation. We set the three experimental seeds to 42,
100, and 510.

We implemented HuBERT1, Wav2Vec22, and
Voc2Vec23, HuBERT-ER4, HuBERT-SID5, and
ContentVec6 through the HuggingFace library. We
implemented GRL7 using its PyTorch implementa-
tion on GitHub. We implemented SACE8 using the
code released by the authors.

A.2 Dataset Distribution
Detailed dataset statistics for VIVAE, ReCANVo,
and ReCANVo-Balanced are presented in Tables 5,
6, and 7.

A.3 TSNE Plots
We use TSNE plots to compare HuBERT and N-
COREHuBERT on the testing sets of VIVAE in Fig-
ures 6 and 7, and ReCANVo in Figures 8 and 9.
Representations from N-COREHuBERT were gener-
ated solely using the HuBERT backbone.

1https://huggingface.co/facebook/hubert-base-ls960
2https://huggingface.co/facebook/wav2vec2-base-960h
3https://huggingface.co/alkiskoudounas/voc2vec
4https://huggingface.co/superb/hubert-base-superb-er
5https://huggingface.co/superb/hubert-base-superb-sid
6https://huggingface.co/lengyue233/content-vec-best
7https://github.com/tadeephuy/GradientReversal
8https://github.com/iiscleap/ZEST/
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Label S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 Total

achievement 16 11 12 18 20 12 17 16 18 14 7 161
anger 12 18 15 18 18 20 14 19 17 16 7 174
fear 16 17 14 18 19 19 17 18 17 13 8 176
pain 17 20 21 17 19 20 18 14 19 12 8 185
pleasure 19 19 20 17 15 19 20 20 18 18 17 202
surprise 13 16 19 20 20 21 17 21 19 14 7 187

Total 93 101 101 108 111 111 103 108 108 87 54 1085

Table 5: Data distribution of the VIVAE dataset.

Label P01 P02 P03 P05 P06 P08 P11 P16 Total

delighted 357 43 25 235 227 39 207 139 1272
dysregulated 212 0 302 116 5 13 22 34 704
frustrated 150 56 47 283 30 781 27 162 1536
request 130 13 61 6 124 44 22 19 419
self-talk 564 34 55 286 56 503 33 354 1885
social 182 247 0 0 1 93 52 59 634
laughter 0 38 8 13 0 42 0 0 101

Total 1595 431 498 939 443 1515 363 767 6551

Table 6: Data distribution of the ReCANVo dataset.

Label P01 P02 P03 P05 P06 P08 P11 P16 Total

delighted 13 13 13 13 12 12 12 12 100

dysregulated 17 0 17 16 5 13 16 16 100

frustrated 12 12 13 13 12 13 13 12 100

request 14 13 13 6 14 13 13 14 100

self-talk 13 12 13 12 12 13 13 12 100

social 20 20 0 0 1 20 20 19 100

laughter 0 38 8 13 0 41 0 0 100

Total 89 108 77 73 56 125 87 85 700

Table 7: Data distribution of the ReCANVo-Balanced dataset.
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(a) N-COREHuBERT: Emotion labels highlighted. (b) HuBERT: Emotion labels highlighted.

(c) N-COREHuBERT: Speaker labels highlighted. (d) HuBERT: Speaker labels highlighted.

Figure 6: TSNE plots for emotion classification on VIVAE.
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(a) N-COREHuBERT: Speaker labels highlighted. (b) HuBERT: Speaker labels highlighted.

(c) N-COREHuBERT: Emotion labels highlighted. (d) HuBERT: Emotion labels highlighted.

Figure 7: TSNE plots for speaker classification on VIVAE.
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(a) N-COREHuBERT: Emotion labels highlighted. (b) HuBERT: Emotion labels highlighted.

(c) N-COREHuBERT: Speaker labels highlighted. (d) HuBERT: Speaker labels highlighted.

Figure 8: TSNE plots for emotion classification on ReCANVo.
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(a) N-COREHuBERT: Speaker labels highlighted. (b) HuBERT: Speaker labels highlighted.

(c) N-COREHuBERT: Emotion labels highlighted. (d) HuBERT: Emotion labels highlighted.

Figure 9: TSNE plots for speaker classification on ReCANVo.
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