
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 3443–3459
November 4-9, 2025 ©2025 Association for Computational Linguistics

AROMA: Autonomous Rank-one Matrix Adaptation

Hao Nan Sheng1,2, Zhi-Yong Wang1, Hing Cheung So1, Mingrui Yang3,4,

1City University of Hong Kong 2Huawei Noah’s Ark Lab
3The University of Hong Kong 4AI Chip Center for Embedded Smart System

hnsheng2-c@my.cityu.edu.hk

Abstract

As large language models continue to grow
in size, parameter-efficient fine-tuning (PEFT)
has become increasingly crucial. While low-
rank adaptation (LoRA) offers a solution
through low-rank updates, its static rank al-
location may yield suboptimal results. Adap-
tive low-rank adaptation (AdaLoRA) improves
this with dynamic allocation but remains sen-
sitive to initial and target rank configurations.
We introduce AROMA, a framework that auto-
matically constructs layer-specific updates by
iteratively building up rank-one components
with very few trainable parameters that grad-
ually diminish to zero. Unlike existing meth-
ods that employ rank reduction mechanisms,
AROMA introduces a dual-loop architecture
for rank growth. The inner loop extracts in-
formation from each rank-one subspace, while
the outer loop determines the number of rank-
one subspaces, i.e., the optimal rank. We re-
set optimizer states to maintain subspace in-
dependence. AROMA significantly reduces
parameters compared to LoRA and AdaLoRA
while achieving superior performance on nat-
ural language understanding and generation,
commonsense reasoning, offering new insights
into adaptive PEFT. The code is available at
https://github.com/ShuDun23/AROMA.

1 Introduction

The emergence of large language models (LLMs)
(Devlin et al., 2019; OpenAI, 2023; Meta, 2024a;
Liu et al., 2024a) has revolutionized the field of
natural language processing (NLP), yet their full
potential is often limited by the substantial compu-
tational demands of fine-tuning. Traditional full-
parameter tuning, while effective, becomes pro-
hibitively expensive as model sizes escalate into
hundreds of billions of parameters (Lester et al.,
2021; Meng et al., 2024). For instance, LLaMA3
series boasts models with up to 400B parameters
(Meta, 2024b), and DeepSeek-V3 encompasses

671B total parameters due to its mixture-of-experts
architecture (Liu et al., 2024a). This challenge has
driven the development of parameter-efficient fine-
tuning (PEFT) methods, such as prompt-tuning
(Lester et al., 2021), prefix-tuning (Li and Liang,
2021), and adapter tuning (Pfeiffer et al., 2021;
Houlsby et al., 2019). Besides these, low-rank
adaptation (LoRA) (Hu et al., 2022) stands out as
a particularly promising approach for its simplicity
and strong theoretical foundation.

LoRA learns incremental low-rank update ∆W
to pretrained model W0, without altering the model
architecture or introducing additional inference la-
tency (Hu et al., 2022). While attaining impressive
parameter efficiency (typically less than 1% of full
fine-runing), conventional LoRA implementations
impose uniform rank allocation across all layers.
This might be suboptimal, as different components
of the network exhibit varying sensitivities to pa-
rameter perturbations (Zhang et al., 2023a). More-
over, determining the optimal ranks remains an
empirical process that often necessitates extensive
trial-and-error experimentation.

As a modified version, adaptive low-rank adap-
tation (AdaLoRA) (Zhang et al., 2023a) adopts
dynamic rank allocation through singular value
decomposition (SVD)-based importance scoring.
While it improves the flexibility upon static con-
figurations like LoRA, it still faces several limi-
tations: 1) the need to prespecify both the initial
and target rank budgets; 2) substantial computa-
tional overhead caused by relaxed SVD; and 3)
rank redundancy stemming from a low effective
rank proportion. Consequently, the fundamental
tension between adaptive rank adjustment and com-
putational efficiency remains an open question.

In this work, we present Autonomous Rank-
One Matrix Adaptation (AROMA), a novel rank-
growing low-rank adaptation method that recon-
siders the dynamics of rank allocation. Experi-
mental results demonstrate that AROMA signif-

3443

mailto:hnsheng2-c@my.cityu.edu.hk
https://github.com/ShuDun23/AROMA

0 0.6k 1.2k 1.8k 2.4k 3k
Training steps

0.0M

0.4M

0.8M

1.2M

1.6M

2.0M

#
Tr

ai
na

bl
e

pa
ra

m
et

er
s

LoRA
AdaLoRA
AROMA

(a) #Parameter

0 0.6k 1.2k 1.8k 2.4k 3k
Training steps

0

150

300

450

600

750

900

To
ta

l r
an

k

LoRA
AdaLoRA
AROMA

(b) Total rank

0 0.6k 1.2k 1.8k 2.4k 3k
Training steps

0

3

6

9

12

R
an

k
of

 la
ye

r.0
.

at
te

nt
io

n.
ou

tp
ut

.d
en

se

LoRA
AdaLoRA
AROMA

(c) Specific rank

0 0.6k 1.2k 1.8k 2.4k 3k
Training steps

0

3

6

9

12

R
an

k
of

 la
ye

r.9
.

at
te

nt
io

n.
se

lf.
va

lu
e

LoRA
AdaLoRA
AROMA

(d) Specific rank

0 0.6k 1.2k 1.8k 2.4k 3k
Training steps

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

LoRA
AdaLoRA
AROMA

(e) Accuracy

Figure 1: Results for LoRAr=8, AdaLoRAr=8, and AROMA (ours) include the number of trainable parameters, total
rank, rank of a specific layer and evaluation accuracy versus training step for RoBERTa-base on MRPC task. For
AROMA, training of "layer.0.attention.output.dense" and "layer.9.attention.self.value" automatically terminates at
2000 and 1600 steps, respectively, while the overall training automatically stops at 2400 steps.

icantly outperforms both LoRA and AdaLoRA
when applied to the RoBERTa-base (Liu et al.,
2019) on the GLUE benchmark (Wang et al., 2018)
and the LLaMA3-8B (Meta, 2024a) on the com-
monsense170K dataset (Hu et al., 2023). Notably,
AROMA achieves this enhanced performance only
using <10% of the parameters required by LoRAr=8
and AdaLoRAr=8 without prespecified rank. Main
contributions are summarized as follows:

• Adaptive Rank Growth We propose a
structure that progressively establishes layer-
specific ranks with minimal and decreasing
trainable parameters. Unlike AdaLoRA’s
pruning-based strategy, AROMA initiates
with zero rank and incrementally incorporates
rank-one components until convergence crite-
ria are met. This bottom-up structure ensures
high parameter efficiency without loss of in-
formative subspaces.

• Automatic Rank Convergence AROMA fea-
tures a dual-loop architecture for automatic
rank control. Each module operates with an
inner loop that extracts information from indi-
vidual rank-one subspace, and an outer loop
determines the number of these subspaces, i.e.,
the optimal rank. We design a convergence cri-
terion for both loops, enabling each module to
autonomously determine the appropriate rank
without the need to predefine it.

• Independent Subspace We introduce a train-
ing strategy termed Check & Merge & Reinit
& Reset, which includes convergence check-
ing, merging converged rank-one updates, pe-
riodic optimizer resets alongside learning rate
warmup. After each inner loop, the optimizer
states are reset while preserving the knowl-
edge accumulated in the weights. This facili-
tates subspace switching, leading to high ef-

fective rank proportion and a continuous flow
of new domain knowledge.

2 Background and Motivation

LoRA (Hu et al., 2022) fine-tunes the pretrained
model W0 ∈ Rm×n by incorporating a low-rank
decomposition, namely:

W = W0 +
α

r
∆W , ∆W = BA (1)

where B ∈ Rm×r, A ∈ Rr×n with r ≪
min{m,n}, and scaling factor α secures consis-
tent output magnitude across different rank values.
However, this approach requires careful selection
of r and imposes uniform rank across all layers,
potentially not optimal.

AdaLoRA (Zhang et al., 2023a) addresses these
static allocation limitations by parameterizing the
incremental matrix as PΛQ, mimicking SVD
while enforcing orthogonality:

∆W = PΛQ,

s.t. P TP = QQT = Ir
(2)

where P ∈ Rm×r and Q ∈ Rr×n represent left
and right singular vectors while Λ ∈ Rr×r stores
singular values. AdaLoRA begins with a high
initial total rank budget and gradually reduces it
at certain intervals. Specifically, singular values
across all layers are sorted in descending order
based on the importance score, with only the top
b(t) retained, ultimately converging to a target rank
budget. Since these singular values belong to differ-
ent module weights, this mechanism enables adap-
tive rank allocation across modules. Nevertheless,
AdaLoRA exhibits several limitations:

• Like LoRA, AdaLoRA’s performance remains
sensitive to the initial and target total rank
configurations. Optimal rank selection is task-
dependent and architecture-specific, compli-
cating deployment in empirical scenarios.

3444

AROMA
..
.

W0

W0

W0

W0

L
ea

rn
in

g
 R

at
e

Module 1

Module 2

Module 3

Module 4

Training Steps

C
h

ec
k
 M

er
g
e

R
ei

n
it

 R
es

et

C
h

ec
k
 M

er
g
e

R
ei

n
it

 R
es

et

C
h

ec
k
 M

er
g
e

R
ei

n
it

 R
es

et
...

...

...

Frozen

Trainable

Converged

+

+

+

+

Figure 2: Workflow of AROMA. For each module, AROMA trains rank-one matrices sequentially with a dual-loop
architecture. In the inner loop, a rank-one LoRA, ba, is updated, whose convergence is assessed by the inner
stopping criterion. Prior to heading to next outer loop step, we check outer convergence by outer stopping criterion.
If not converged, the computed rank-one components are merged and frozen, and new b and a are initialized for
training with reset learning rate and optimizer states. For simplicity, we illustrate the length of inner loop to Tin,
though in practice, it is determined by both Tin and the inner convergence criterion.

• Computing the relaxed SVD in AdaLoRA in-
troduces substantial complexity that scales lin-
early with layer dimensions, creating compu-
tational bottlenecks for very large models.

• The higher initial ranks demand substan-
tial memory allocation during early train-
ing phases, imposing practical limitations in
resource-constrained environments.

Against these backdrops, we devise an auto-
matic and adaptive rank-growing scheme inspired
by rank-one matching pursuit (Wang et al., 2014,
2015). This approach leverages the principle that
any rank-r matrix L can be decomposed into a sum
of r rank-one matrices:

L =

r∑

p=1

bpap (3)

where bp ∈ Rm×1 and ap ∈ R1×n. Building on
this idea, we develop our novel framework.

3 Methodology

This section outlines two crucial aspects of
AROMA: 1) the adaptive rank-growing mechanism,
featuring both inner and outer stopping criteria; and
2) the training strategy known as Check & Merge
& Reinit & Reset. Figure 2 depicts the AROMA
framework, and Algorithm 1 in Appendix A pro-
vides the detailed steps.

3.1 Adaptive Rank Growth
Unlike AdaLoRA that truncates singular values
with low important scores, we propose a rank-
growing scheme which introduces a dual-loop train-
ing structure: the inner loop computes individual
rank-one matrix, while the outer loop determines
the quantity of these matrices. For the pth outer
loop step, ∆W is parameterized as:

∆W = b1a1 + b2a2 + · · ·+ bp−1ap−1 + bpap

=
[
Bp−1 bp

] [Ap−1

ap

]

(4)

where B ∈ Rm×p and A ∈ Rp×n.
AROMA learns a series of rank-one Lo-

RAs. At the beginning of the pth outer it-
eration, a new rank-one LoRA bpap is acti-
vated for training, while previously calculated
b1a1, b2a2, · · · , bp−1ap−1 are frozen and merged
as a single matrix Bp−1Ap−1.

Next, b(0)p and a
(0)
p enter the inner loop. Here we

denote the update in the tth inner loop step as b(t)p

and a
(t)
p . They update until t reaches the maximum

inner steps Tin or the inner stopping criterion is
met:

∥∥∥b(t)p a
(t)
p

∥∥∥
F
−
∥∥∥b(t−∆Tin)

p a
(t−∆Tin)
p

∥∥∥
F∥∥∥b(t−∆Tin)

p a
(t−∆Tin)
p

∥∥∥
F

< εin

(5)

3445

where εin denotes the inner convergence tolerance,
and ∆Tin is the inner checking interval. We eval-
uate (5) every ∆Tin steps, and if it is satisfied, the
inner loop terminates, and the training of bpap, viz.,
current rank-one LoRA, is completed.

When to stop? Once the inner loop ends, we
check for outer loop convergence before proceed-
ing to the next outer loop step. Here we use a rela-
tive weight change criterion between the (p− 1)th
and the pth outer steps defined as:

∥(W 0 + αBpAp)− (W 0 + αBp−1Ap−1)∥F
∥W 0 + αBp−1Ap−1∥F

=
∥αbpap∥F

∥W 0 + αBp−1Ap−1∥F
< εout

(6)
where εout denotes the outer convergence tolerance.
If (6) is satisfied, the outer loop will terminate, viz.,
training of ∆W is completed.

Since we only leverage rank-one updates, each
update can be regarded as a basis spanning a rank-
one matrix subspace, which encompasses different
domain knowledge. In AROMA, the inner loop
exploits each subspace, yielding a rank-one basis
b
(t)
p a

(t)
p , while the outer loop continuously pursues

new subspaces and determines the appropriate num-
ber of subspaces. This rank-growing strategy al-
lows for continuously extraction new information
while keeping only one rank-one matrix trainable
at a time, securing high parameter efficiency.

Furthermore, we implement AROMA across all
modules, and train them in parallel (see Figure 2).
For the inner loop, each module has its own inner
convergence label and advances to the next outer
step when all modules have either converged or
reach Tin. In particular, the module that converges
will continue training while waiting for the others
to catch up prior to proceeding together to the next
outer step. Apart from facilitating rank allocation,
this approach helps prevent premature termination,
ensuring a more comprehensive subspace explo-
ration.

On the other hand, each module also possesses
an outer convergence label, and once a module
is determined as converged according to (6), it is
immediately frozen and the latest rank-one com-
ponent will not be merged into it, while training
continues for the remaining modules. The overall
training process finishes when all modules con-
verge or reach the maximum total training steps
T . This design allows each module to determine
the optimal rank independently and autonomously,

enabling adaptive rank growth with a gradually
reduced trainable parameters. We list the time
complexity of LoRA, AdaLoRA and AROMA
in Table 1, where r̃ denotes the current rank
for AdaLoRA. Typically, we have OAdaLoRA >
OLoRA ≥ OAROMA. Detailed analyses and exper-
imental verification are presented in Appendix B
and Section 5.2, respectively.

Scheme LoRA AdaLoRA AROMA
Complexity O((m+ n)r) O((m+ n)r̃) O((m+ n)p)

Table 1: Per-step complexity comparison

3.2 Check & Merge & Reinit & Reset

We further design a training strategy known as
Check & Merge & Reinit & Reset. As its name
implies, there are four components.
Check involves the inner and outer convergence
criteria described in (5) and (6). The inner checks
occur every ∆Tin steps, while the outer checks take
place when the inner loop finishes.
Merge & Reinit where Reinit stands for reinitial-
ize. As mentioned before, if (6) is met, we ter-
minate the outer loop. Otherwise, the previously
computed bpap is merged into Bp−1Ap−1, and the
training progresses to the next outer step. At this
point, a new rank-one LoRA bp+1ap+1 is intro-
duced, with Kaiming initialization (He et al., 2015)
for a(0)

p+1 and zero for b(0)p+1.
Reset represents optimizer state reset. With
momentum parameters β1 = 0.9 and β2 =
0.999, Adam optimizer (Kingma and Ba, 2014;
Loshchilov and Hutter, 2019) tends to follow es-
tablished optimization paths, as update steps are
strongly influenced by previous gradients. This
means that after Merge & Reinit, the previous up-
dates still influence current learning, causing the
new LoRA update to continue exploring the learned
subspaces. To circumvent this, we randomly prune
99.9% of the optimizer states following each Merge
& Reinit. Such an idea of subspace switching is
adopted in LLM pretraining (Lialin et al., 2024;
Zhao et al., 2024) and subspace learning (Larsen
et al., 2022; Gur-Ari et al., 2018).

Additionally, a warmup phase is implemented
at the start of training for each LoRA update to
mitigate early overfitting. While the initial warmup
phase is set to hundreds of steps, subsequent quick
warmup phases are limited to tens of steps. The
learning rate scheduler is illustrated in Figure 2.

3446

4 Experiments

In this section, We fine-tune three LLMs of differ-
ent sizes and architectures on three downstream
tasks to evaluate the efficacy of AROMA. First, for
natural language understanding (NLU) tasks, we
fine-tune RoBERTa-base (encoder-only) (Liu et al.,
2019) on the General Language Understanding
Evaluation (GLUE) (Wang et al., 2018) benchmark.
Second, for commonsense reasoning tasks, we fine-
tune LLaMA3-8B (decoder-only) (Meta, 2024a) on
the Commonsense170K (Hu et al., 2023) dataset.
Last, for natural language generation (NLG), we
fine-tune BART-large (encoder-decoder) (Lewis
et al., 2020) on the XSum (Narayan et al., 2018)
task. NLU and NLG experiments are conducted on
one and four NVIDIA Tesla V100s-PCIE (32GB)
GPUs respectively, while the commonsense rea-
soning tasks are performed on two NVIDIA A100-
SXM4 (80GB) GPUs. All the results reported in
this section are averaged over multiple experiments
with different random seeds.

4.1 Baselines

Full fine-tuning and eight PEFT methods serves as
baselines, which are categorized into three groups:
Adapter-based Methods. 1) AdapterH (Houlsby
et al., 2019), which inserts lightweight adapter
modules sequentially after transformer layers; and
2) AdapterP (Pfeiffer et al., 2021), which places
adapters after feedforward network (FNN) and Lay-
erNorm modules.
LoRA-based Methods. 1) LoRA; 2) AdaLoRA; 3)
ReLoRA (Lialin et al., 2024), which trains K rank-
r matrices sequentially and merges them. While
ReLoRA is designed for pretraining, it can be re-
garded as a reduced version of our method, where
Tin and T are fixed for all modules, and (5) and
(6) are omitted. Therefore, we incorporate it to
highlight the effectiveness of AROMA’s adaptabil-
ity and flexibility; 4) DoRA (Liu et al., 2024b),
which decomposes the weight into magnitude and
directional components ; 5) SalientLoRA (Ke et al.,
2024): Like AdaLoRA, it adopts a rank-decreasing
architecture but uses more refined salient scores
instead of importance scores to measure weight
matrix importance.
Other Methods. 1) Full fine-tuning, which updates
all of the model’s parameters; and 2) BitFit (Zaken
et al., 2023), which fine-tunes only the bias terms
of a pretrained model.

4.2 Natural Language Understanding

We first evaluate AROMA on NLU tasks. The
model and datasets, training details are reported,
followed by the results and analyses.
Model and Datasets. RoBERTa-base (125M) (Liu
et al., 2019) enhances BERT (Devlin et al., 2019)
by utilizing larger batches, more data, and longer
sequences, resulting in a stronger language under-
standing capability. Eight NLU tasks in GLUE
(detailed in Appendix G.1) are utilized to fine-tune
RoBERTa-base, covering sentiment analysis, tex-
tual entailment, and semantic similarity.
Training Details. To secure a fair comparison,
we basically follow the implementation strategy in
(Zhang et al., 2023a). For each task in GLUE, we
conduct a grid search for optimal hyperparameters,
including the learning rate lr ∈ [1E-4, 2E-4, 5E-4,
7E-4], inner tolerance εin=0.1, and outer tolerance
εout ∈ [1E-3, 5E-3, 6E-3]. We apply AROMA to
all weight matrices, i.e., Wq, Wk, Wv,Wo, Wf1 ,
and Wf2 .

LoRA and AdaLoRA are conducted using the
standard HuggingFace PEFT library, and the hy-
perparameters are set as suggested in their original
papers. We consider the rank of LoRA and the
target rank of AdaLoRA across {1, 8, 16}. The
corresponding AdaLoRA’s initial rank is set to
{4, 12, 24}. For ReLoRA, rank r = 1 is assigned
to each LoRA to match the parameter budget. De-
tailed hyperparameter settings for each baseline are
found in Appendix H.1.
Results and Analyses. Table 2 presents the per-
formance of AROMA alongside its counterparts,
where "#Param" refers to the number of initial train-
able parameters. It is shown that both AdaLoRA
and LoRA are sensitive to the rank parameter,
whereas AROMA operates independently of it.
AROMA achieves the highest average performance.
In term of specific tasks, it surpasses other base-
lines on CoLA, MRPC, RTE, and SST-2, while
yields comparable results on the remaining tasks.
This is achieved with only 0.014% (approximately
0.17M out of 125.0M) of the trainable parameters
required for full fine-tuning. SalientLoRA shares
similar drawbacks with AdaLoRA—requiring large
initial trainable parameters and performance lim-
ited by the preset target rank. In comparison to
ReLoRA, a reduced version of AROMA without
rank adaptability, our method demonstrates supe-
riority on all tasks, showcasing the latter effective-
ness. Particularly, AROMA shows a significant

3447

CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
Scheme #Param

MC Acc Acc Acc Acc Acc Acc PC
Avg

Full Fine-tuning 125.0M 60.26 87.68 88.33 92.58 90.75 78.63 94.63 90.31 85.40
BitFit♯ 0.10M 61.16 85.50 89.07 90.99 88.08 79.57 94.38 90.55 84.91

AdapterH† 0.31M 61.76 86.31 88.64 92.52 90.16 78.56 93.54 90.88 85.30
AdapterP† 0.30M 62.92 86.23 88.74 92.59 89.94 79.07 93.24 90.44 85.40
LoRA r=1 0.17M 56.22 85.87 87.25 91.34 90.64 75.28 93.46 88.73 83.59
LoRA r=8 1.34M 61.69 86.82 88.34 92.31 91.33 78.34 93.69 90.88 85.43
LoRA r=16 3.27M 64.44 84.88 88.97 92.02 91.35 77.62 92.47 91.18 85.37

AdaLoRA r=1 0.67M 57.86 87.21 88.24 92.46 89.91 76.17 93.69 89.99 84.44
AdaLoRA r=8 2.01M 58.08 87.50 87.45 92.37 90.58 74.65 94.04 90.03 84.34
AdaLoRA r=16 4.02M 59.35 87.67 88.73 92.64 90.79 77.26 93.23 90.26 84.99
ReLoRA1 × 8 0.17M 59.91 85.61 86.11 89.13 87.20 82.54 93.44 89.20 84.14

DoRA 0.42M 66.19 86.74 88.48 91.95 90.28 85.78 94.50 91.01 87.11
SalientLoRA 1.33M 60.42 87.51 87.63 92.21 90.64 76.62 94.28 90.17 84.93

AROMA 0.17M 70.51 86.96 94.17 91.30 89.49 90.48 94.68 90.34 88.49

Table 2: Comparative performance of different fine-tuning schemes for RoBERTa-base on GLUE benchmark.
We report Matthew’s correlation coefficient (MC) for CoLA, Pearson correlation coefficient (PC) for STS-B, and
accuracy for all the remaining tasks. Higher is better for all metrics and the best results on each task are shown in
bold. Results with "♯" are retrieved from (Wang et al., 2025), and results with "†" are from (Mao et al., 2024). Note
that "#Param" reflects the initial phase, and AROMA’s #Param gradually descends to zero (see Figure 1a).

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Wq

Wk

Wv

Wo

Wf1

Wf2

0

2

4

6

8

10

12

Ra
nk

0

2

4

6

8

10

12

Ef
fe

ct
iv

e
Ra

nk

(a) Rank distribution of AdaLoRA

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Wq

Wk

Wv

Wo

Wf1

Wf2

1

2

3

4

5

6

7

8

9

Ra
nk

1

2

3

4

5

6

7

8

9

Ef
fe

ct
iv

e
Ra

nk

(b) Rank distribution of AROMA

Figure 3: Resultant rank and effective rank distributions for RoBERTa-base fine-tuned on MRPC task by
AdaLoRAr=8 and AROMA, respectively. The x-axis represents the hidden layer index, while the y-axis refers to the
weight matrix fine-tuned in each layer. The total rank is described by the red outer circle, whereas the effective rank
is indicated by the blue inner circle. Experiment on RTE task is provided in Appendix D.

advantage in CoLA, MRPC, and RTE tasks. We
will further explore MRPC and RTE to analyze
the reasons behind AROMA’s outstanding perfor-
mance.

We plot the rank distributions for AdaLoRA and
AROMA in Figs. 3 and 5, where the rank is a
combination of effective rank (Roy and Vetterli,
2007) and non-effective rank. The former measures
the effective dimensionality of a matrix, while the
latter corresponds to dimensions with negligible
contribution. Detailed description of effective rank
are provided in Appendix C. It is observed that
different weight matrices exhibit distinct rank char-
acteristics, and AdaLoRA has a larger average rank
than AROMA. Furthermore, the rank distribution

for AROMA is concentrated in the shallower lay-
ers, Wv and Wo for both MRPC and RTE tasks.
In terms of effective rank, it is found that LoRA
exhibits a low effective rank, just a quarter of the
adapter rank (Shuttleworth et al., 2024; Biderman
et al., 2024; He et al., 2025). For AdaLoRA, we see
that only about half of its rank is effective (50.4%
for MRPC, 49.2% for RTE), whereas AROMA ex-
hibits an exceptionally high effective rank ratio
(96.3% for MRPC and 91.7% for RTE).

Moreover, Figure 1 depicts the number
of trainable parameters, total rank, ranks
of specific layers and accuracy versus train-
ing step for RoBERTa-base on MRPC task.
We select "layer.0.attention.output.dense" and

3448

Scheme #Param ARC-E OBQA SIQA ARC-C WinoG PIQA BoolQ HellaS Avg
ChatGPT♢ - 89.7 74.8 68.5 79.9 66.1 85.4 73.1 78.5 77.0
LoRA r=1 1.77M 89.04 82.80 77.33 76.71 81.93 86.40 70.40 93.06 82.21
LoRA r=8 14.16M 88.55 82.80 78.15 77.13 85.71 86.13 68.44 93.55 82.56
LoRA r=16 28.31M 88.01 83.10 79.53 75.34 83.82 85.74 72.35 93.45 82.67

AdaLoRA r=1 7.08M 87.58 71.00 71.14 71.16 70.09 83.95 62.17 67.33 73.05
AdaLoRA r=8 21.23M 88.30 76.60 71.24 71.33 72.45 83.51 65.57 82.94 76.49
AdaLoRA r=16 42.47M 88.47 75.20 71.14 72.70 71.90 84.17 62.69 84.13 76.30
AROMA r=1 1.77M 89.31 83.70 79.12 78.50 81.85 87.43 71.16 93.79 83.11
AROMA r=8 14.16M 89.48 84.79 79.62 78.76 83.98 87.22 73.74 94.36 83.85

Table 3: Comparative performance of different fine-tuning schemes for LLaMA3-8B on Commonsense170K dataset.
We report accuracy for all tasks. Results with "♢" are retrieved from (Liu et al., 2024b). Note that "#Param" reflects
the number of initial trainable parameters, and AROMA’s average #Param is even less.

"layer.9.attention.self.value" as illustration. It is
evident that LoRAr=8, AdaLoRAr=8 and AROMA
exhibit consistent, decreasing and growing rank
behaviors, respectively. We notice that LoRA
maintains nearly 1.3M trainable parameters, with
a stable total rank and specific rank throughout,
as it fixes the same rank for all weight matri-
ces. AdaLoRA, on the other hand, progressively
decreases the total rank and shows a fluctuating
but generally declining specific rank, starting with
2.0M trainable parameters and averaging 1.62M.
In contrast, AROMA necessitates only 0.17M train-
able parameters initially, with an average of 0.08M.
Remarkably, AROMA attains the highest accuracy
among the three methods.

4.3 Commonsense Reasoning

In this section, we assess AROMA in handling a
larger model and a more complex task.
Model and Datasets. Following (Wang et al.,
2025), we fine-tune LLaMA3-8B (Meta, 2024a)
on the Commonsense170K dataset, which is a mix-
ture of eight commonsense reasoning benchmarks
(details provided in Appendix G.2). LLaMA3-8B
model, developed by Meta, is designed for vari-
ous NLP tasks, offering improved performance and
efficiency over its predecessors.
Training Details. Apart from AROMA under the
previous setting (denoted as AROMAr=1), we ad-
ditionally increase the rank of each LoRA update
to 8 (denoted as AROMAr=8) to accommodate this
complex task. We apply AROMA to three weight
matrices in the self-attention layer: Wq, Wk, Wv,
and two in the FFN: Wup, and Wdown. After fine-
tuning, the resultant model is evaluated on each
of the eight benchmarks in terms of accuracy. De-
tailed hyperparameter settings are found in Ap-

pendix H.2.
Results. Table 3 shows the comparative per-
formance between AROMA and its counterparts,
where ChatGPT (Wei et al., 2022) is also in-
cluded for reference. Notably, AROMAr=1 and
AROMAr=8 rank in the top two in terms of aver-
age accuracy. Specifically, AROMAr=1 achieves
this with approximately 0.02% of the original
model’s parameters, 6% of LoRAr=8’s and 3% of
AdaLoRAr=8’s. AROMAr=8 outpaces other base-
lines on four benchmarks and achieves second-best
results on the remaining ones. Moreover, we will
show in Section 5.2 that AROMAr=8 demonstrates
better time efficiency than AROMAr=1.

These results indicate the flexibility of
AROMA—the inner-space rank can be adapted to
task complexity while maintaining autonomous
convergence. Detailed discussions and guidelines
are presented in Appendix F.

4.4 Natural Language Generation

Scheme #Param Rouge1 Rouge2 RougeL

LoRA 0.54M 42.81 19.68 34.73
AdaLoRA 0.60M 43.29 19.95 35.04

DoRA 0.64M 43.39 20.45 35.39
AROMA r=1 0.54M 43.23 20.06 35.11

Table 4: Comparative performance of different fine-
tuning schemes for BART-large on XSum dataset.

Model and Datasets. Now we fine-tune BART-
large (Lewis et al., 2020) on the XSum dataset
(Narayan et al., 2018), which is an abstractive
news summarization dataset that requires generat-
ing single-sentence summaries from BBC articles
(details provided in Appendix G.3). BART-large
is a transformer encoder-decoder model. Detailed
setups are found in Appendix H.3.

3449

Results. AROMA achieves better performance
than LoRA and AdaLoRA, and on-par performance
with DoRA while using less parameters (0.54M vs
0.64M). This further validating AROMA’s parame-
ter efficiency and NLG capability.

5 Further Discussions

5.1 Ablation Study

We carry out ablation study on a crucial component
of AROMA: Reset, i.e., randomly pruning 99.9%
of the optimizer states after training a rank-one up-
date, to validate its effectiveness on performance.
We fine-tune RoBERTa-base on MRPC task using
AROMA with and without Reset, respectively, with
all other conditions remain unchanged. We aver-
age the results over 5 experiments with different
seeds, and report the average rank and effective
rank across all layers as well as accuracy.

MRPC RTE
Scheme

Avg r Eff r Acc Avg r Eff r Acc
AROMAw/o Reset 1.43 1.39 83.33 1.42 1.30 70.48
AROMAw/ Reset 2.78 2.68 94.17 3.42 3.14 90.48

Table 5: Comparison of AROMA with and without opti-
mizer Reset for RoBERTa-base on MRPC task. "Avg r"
and "Eff r" denote average rank and average effective
rank, respectively.

As seen in Table 5, AROMA with the Re-
set mechanism demonstrates a larger rank than
AROMAw/o Reset and achieves substantially higher
accuracy. This suggests that Reset is beneficial.
We interpret this as the optimizer reset allowing the
new rank-one matrix to be computed from scratch,
rather than relying on the previously computed
rank-one matrix. This approach gives the new
rank-one matrix a greater chance to explore new
subspaces and learn more information. Supplemen-
tary experiment on cosine similarity in Appendix
E further underscores the importance of the Reset
mechanism.

5.2 Time Efficiency

Per-epoch Time. We compare the time efficiency
of AROMA with LoRA and AdaLoRA. We first
unify the three methods by configuring their batch
size of 64 and maximum sequence length of 256,
and compute the average training time per epoch
across six tasks in the GLUE benchmark on a sin-
gle NVIDIA Tesla V100s-PCIE (32GB) GPU. The
results are reported in Table 6 and we see that

AROMA demonstrates significant per-epoch effi-
ciency advantages in five tasks, while being com-
parable to LoRA in the remaining task, RTE. Par-
ticularly, its average time per epoch is 76.1% of
LoRA’s and 28.5% of AdaLoRA’s. This superior-
ity can be attributed to the rank-one training and
unnecessity of SVD computation.

Task LoRA AdaLoRA AROMA
CoLA 44.37 107.74 12.43
MRPC 17.84 45.57 13.21
QNLI 557.98 1547.82 542.72
RTE 15.13 31.46 20.14

SST-2 339.58 873.30 153.47
STS-B 30.04 73.13 22.42

Avg 167.50 446.50 127.40

Table 6: Per-epoch time (in second) comparison for
RoBERTa-base on GLUE.

Overall Time. Although it showcases strong per-
epoch time efficiency, AROMA’s adaptive con-
vergence process typically involves more training
epochs (see Table 15). However, the total train-
ing time (per-epoch time × #Epoch) varies across
different scenarios.

For simple tasks (e.g., RoBERTa on MRPC, see
Table 7), although more epochs are needed, each
epoch is faster, making the total training time faster
than LoRA and AdaLoRA.

Scheme #Param #Epoch Total Time Accuracy
LoRA r=8 1.34M 30 8.2min 88.34

AdaLoRA r=8 2.01M 30 15.5min 87.45
AROMA r=1 0.17M 52 7.8min 94.17

Table 7: Total time comparison for RoBERTa-base on
MRPC.

Scheme #Param #Epoch Total Time Accuracy
LoRA r=16 28.31M 10 17.2h 82.67

AdaLoRA r=16 42.47M 10 24.3h 76.30
AROMA r=1 1.77M 20 35.1h 83.11
AROMA r=8 14.16M 15 24.9h 83.85

Table 8: Total time comparison for LLaMA3 on Com-
monsense170K.

For complex tasks (e.g., LLaMA3 on Common-
sense170K, see Table 8), AROMAr=1 requires
more training epoch and consequently more time
due to the fine-grained nature of rank-1 explo-
ration. To optimize time efficiency for such tasks,
we employ AROMAr=8 as mentioned in Section
4.3, which achieves faster convergence and higher

3450

accuracy by enabling each loop to capture richer
representations.

6 Related Work

PEFT emerges as a crucial approach for adapting
LLMs to downstream tasks while minimizing com-
putational and storage requirements. We categorize
existing PEFT methods into three key paradigms
(Han et al., 2024) as follows:
Additive PEFT Methods incorporate auxiliary
trainable modules within transformer architec-
tures. Serial adapter (Houlsby et al., 2019) intro-
duces dual adapter modules positioned after self-
attention and FFN layers, while (Pfeiffer et al.,
2021) optimizes computational efficiency by insert-
ing adapters exclusively after "Add & Norm" layers.
Prompt-based techniques constitute another signifi-
cant branch of additive PEFT. Approaches such as
prefix-tuning (Li and Liang, 2021; Li et al., 2023;
Zhang et al., 2023b), p-tuning (Liu et al., 2024c),
and prompt-tuning (Lester et al., 2021) augment
inputs or intermediate representations with train-
able vectors, demonstrating particular efficacy for
generative tasks and few-shot learning scenarios.
Selective PEFT Methods strategically identify
and modify only the most critical subset of model
parameters. BitFit (Zaken et al., 2023) achieves
remarkable efficiency by exclusively fine-tuning
bias terms while maintaining all other param-
eters frozen. Diff pruning (Guo et al., 2021)
learns sparse parameter differences from pretrained
weights, focusing on task-specific components.
FishMask (Sung et al., 2021) leverages Fisher infor-
mation to identify and update the most influential
parameters for specific tasks.
Reparameterized PEFT Methods transform the
parameter space to facilitate efficient updates with-
out direct modification of original weights. (IA)3

(Liu et al., 2022) and SSF (Lian et al., 2022) in-
troduce learnable vectors that modulate activations
in self-attention and FFN with low parameter over-
head. LoRA (Hu et al., 2022) decomposes weight
updates into low-rank matrix products, significantly
reducing trainable parameters while preserving per-
formance. AdaLoRA (Zhang et al., 2023a) en-
hances flexibility through SVD-like decomposition
for dynamic rank allocation. DoRA (Liu et al.,
2024b) decomposes the weight into magnitude and
directional components. NOLA (Koohpayegani
et al., 2024) and VeRA (Kopiczko et al., 2024) rep-
resent weight matrices as linear combinations of

fixed random bases, optimizing only the mixture
coefficients. LoRA and its variants achieve state-
of-the-art parameter efficiency, making them the
most widely used PEFT approaches.

7 Conclusion

In this work, we propose Autonomous Rank-
One Matrix Adaptation (AROMA) for parameter-
efficient fine-tuning. Unlike the existing adaptive
rank adjustment method, AdaLoRA, which trun-
cates singular values with low importance scores
and requires both initial and target rank budgets,
AROMA employs a rank-growing approach that au-
tonomously constructs layer-specific updates with
very few trainable parameters that gradually dimin-
ish to zero. We design a dual-loop architecture,
featuring an inner loop that exploits each rank-one
subspace to learn a LoRA update with the corre-
sponding stopping criterion, while the outer loop
determines the number of subspaces, namely, the
optimal rank, guided by another stopping criterion.
The learned rank-one components are merged and
frozen, allowing only one rank-one LoRA to be
trained at a time, thereby ensuring high parame-
ter efficiency. Additionally, optimizer states are
periodically reset to maintain subspace indepen-
dence. Experimental results for NLU, NLG and
commonsense reasoning tasks highlight AROMA’s
superiority in terms of accuracy and parameter effi-
ciency.

Limitations

Despite achieving promising results on NLU, NLG
and commonsense reasoning benchmarks, our ap-
proach has several challenges to be tackled. It has
yet to be tested in multimodal applications, a cru-
cial area as multimodal models continue to gain
prominence. Furthermore, we have not validated
its scalability for extremely LLMs exceeding 100
billion parameters, where the dynamics of rank allo-
cation may differ significantly. Future work should
address these issues and explore the method’s ap-
plicability across a broader range of tasks.

Acknowledgements

This work was supported by the Research Grant
of Shenzhen Research Institute, City University
of Hong Kong, Shenzhen, China under Project R-
IND25501.

3451

References
Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Gi-

ampiccolo. 2009. The fifth PASCAL recognizing tex-
tual entailment challenge. Proceedings of the Second
Text Analysis Conference, TAC 2009, Gaithersburg,
Maryland, USA, November 16-17, 2009, 7(8):1.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz,
Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan
Frankle, Cody Blakeney, and John Patrick Cunning-
ham. 2024. LoRA learns less and forgets less. Trans-
actions on Machine Learning Research. Featured
Certification.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. PIQA: Reasoning about physical com-
monsense in natural language. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7432–7439.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? Try ARC, the AI2 reasoning challenge.
arXiv preprint arXiv:1803.05457.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177–190. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (long and short papers), pages
4171–4186.

Bill Dolan and Chris Brockett. 2005. Automatically
constructing a corpus of sentential paraphrases. In
Proceedings of the Third International Workshop on
Paraphrasing (IWP2005).

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third PASCAL recog-
nizing textual entailment challenge. In Proceedings
of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pages 1–9.

Demi Guo, Alexander M Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4884–4896.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. 2018.
Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second PASCAL recognising textual en-
tailment challenge. In Proceedings of the Second
PASCAL Challenges Workshop on Recognising Tex-
tual Entailment, volume 7, pages 785–794.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
Transactions on Machine Learning Research.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE International Conference
on Computer Vision, pages 1026–1034.

Zhiwei He, Zhaopeng Tu, Xing Wang, Xingyu Chen,
Zhijie Wang, Jiahao Xu, Tian Liang, Wenxiang Jiao,
Zhuosheng Zhang, and Rui Wang. 2025. RaSA:
Rank-sharing low-rank adaptation. In The Thirteenth
International Conference on Learning Representa-
tions.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference on
Machine Learning.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria,
and Roy Lee. 2023. LLM-Adapters: An adapter
family for parameter-efficient fine-tuning of large
language models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

Wenjun Ke, Jiahao Wang, Peng Wang, Jiajun Liu, Dong
Nie, Guozheng Li, and Yining Li. 2024. Unveiling
LoRA intrinsic ranks via salience analysis. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

3452

https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://openreview.net/forum?id=aloEru2qCG
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://link.springer.com/chapter/10.1007/11736790_9
https://link.springer.com/chapter/10.1007/11736790_9
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://aclanthology.org/W07-1401/
https://aclanthology.org/W07-1401/
https://aclanthology.org/2021.acl-long.378/
https://aclanthology.org/2021.acl-long.378/
https://arxiv.org/abs/1812.04754
https://link.springer.com/chapter/10.1007/11736790_9
https://link.springer.com/chapter/10.1007/11736790_9
https://openreview.net/forum?id=lIsCS8b6zj
https://openreview.net/forum?id=lIsCS8b6zj
https://ieeexplore.ieee.org/document/7410480
https://ieeexplore.ieee.org/document/7410480
https://openreview.net/forum?id=GdXI5zCoAt
https://openreview.net/forum?id=GdXI5zCoAt
https://arxiv.org/abs/1902.00751
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.emnlp-main.319/
https://aclanthology.org/2023.emnlp-main.319/
https://aclanthology.org/2023.emnlp-main.319/
https://openreview.net/forum?id=vU512K8vrR&referrer=%5Bthe%20profile%20of%20Dong%20Nie%5D(%2Fprofile%3Fid%3D~Dong_Nie1)
https://openreview.net/forum?id=vU512K8vrR&referrer=%5Bthe%20profile%20of%20Dong%20Nie%5D(%2Fprofile%3Fid%3D~Dong_Nie1)
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Soroush Abbasi Koohpayegani, Navaneet K L, Parsa
Nooralinejad, Soheil Kolouri, and Hamed Pirsiavash.
2024. NOLA: Compressing LoRA using linear com-
bination of random basis. In The Twelfth Interna-
tional Conference on Learning Representations.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. 2024. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference
on Learning Representations.

Brett W Larsen, Stanislav Fort, Nic Becker, and Surya
Ganguli. 2022. How many degrees of freedom do
we need to train deep networks: a loss landscape per-
spective. In International Conference on Learning
Representations.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.

Jonathan Li, Will Aitken, Rohan Bhambhoria, and Xi-
aodan Zhu. 2023. Prefix Propagation: Parameter-
efficient tuning for long sequences. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 1408–1419, Toronto, Canada.

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597.

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2024. ReloRA: High-
rank training through low-rank updates. In The
Twelfth International Conference on Learning Repre-
sentations.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao
Wang. 2022. Scaling & Shifting Your Features:
A new baseline for efficient model tuning. In Ad-
vances in Neural Information Processing Systems,
volume 35, pages 109–123.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
DeepSeek-V3 technical report. arXiv preprint
arXiv:2412.19437.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. In
Advances in Neural Information Processing Systems,
volume 35, pages 1950–1965.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024b. DoRA: Weight-
decomposed low-rank adaptation. In Forty-first In-
ternational Conference on Machine Learning.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2024c. GPT
understands, too. AI Open, 5:208–215.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Yulong Mao, Kaiyu Huang, Changhao Guan, Ganglin
Bao, Fengran Mo, and Jinan Xu. 2024. DoRA: En-
hancing parameter-efficient fine-tuning with dynamic
rank distribution. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11662–
11675, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.
PiSSA: Principal singular values and singular vectors
adaptation of large language models. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Meta. 2024a. LLaMA 3: Open and efficient founda-
tion language models. https://ai.meta.com/
llama/. Accessed: 2024-04-01.

AI Meta. 2024b. Introducing Meta LLaMA 3: The
most capable openly available LLM to date. Meta AI,
2(5):6.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium.

OpenAI. 2023. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

3453

https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=ChMLTGRjFcU
https://openreview.net/forum?id=ChMLTGRjFcU
https://openreview.net/forum?id=ChMLTGRjFcU
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://aclanthology.org/2020.acl-main.703/
https://aclanthology.org/2020.acl-main.703/
https://aclanthology.org/2020.acl-main.703/
https://aclanthology.org/2023.acl-short.120/
https://aclanthology.org/2023.acl-short.120/
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://openreview.net/forum?id=DLJznSp6X3
https://openreview.net/forum?id=DLJznSp6X3
https://arxiv.org/abs/2210.08823
https://arxiv.org/abs/2210.08823
https://arxiv.org/abs/2412.19437
https://openreview.net/forum?id=rBCvMG-JsPd
https://openreview.net/forum?id=rBCvMG-JsPd
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://www.sciencedirect.com/science/article/pii/S2666651023000141
https://www.sciencedirect.com/science/article/pii/S2666651023000141
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2024.acl-long.626
https://doi.org/10.18653/v1/2024.acl-long.626
https://doi.org/10.18653/v1/2024.acl-long.626
https://openreview.net/forum?id=6ZBHIEtdP4
https://openreview.net/forum?id=6ZBHIEtdP4
https://ai.meta.com/llama/
https://ai.meta.com/llama/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://aclanthology.org/D18-1206/
https://aclanthology.org/D18-1206/
https://aclanthology.org/D18-1206/
https://arxiv.org/abs/2303.08774

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503, Online. Association for Computational Lin-
guistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas.

Olivier Roy and Martin Vetterli. 2007. The effective
rank: A measure of effective dimensionality. In 2007
15th European Signal Processing Conference, pages
606–610. IEEE.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. WinoGrande: An adver-
sarial Winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Social IQa: Common-
sense reasoning about social interactions. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4463–4473, Hong
Kong, China. Association for Computational Linguis-
tics.

Reece Shuttleworth, Jacob Andreas, Antonio Torralba,
and Pratyusha Sharma. 2024. LoRA vs full fine-
tuning: An illusion of equivalence. arXiv preprint
arXiv:2410.21228.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642.

Yi-Lin Sung, Varun Nair, and Colin Raffel. 2021. Train-
ing neural networks with fixed sparse masks. In
Advances in Neural Information Processing Systems.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 353–355, Brussels, Belgium.

Fan Wang, Juyong Jiang, Chansung Park, Sunghun
Kim, and Jing Tang. 2025. KaSA: Knowledge-aware
singular-value adaptation of large language models.
In The Thirteenth International Conference on Learn-
ing Representations.

Zheng Wang, Ming-Jun Lai, Zhaosong Lu, Wei Fan,
Hasan Davulcu, and Jieping Ye. 2014. Rank-one ma-
trix pursuit for matrix completion. In Proceedings of
the 31st International Conference on Machine Learn-
ing, pages 91–99, Bejing, China. PMLR.

Zheng Wang, Ming-Jun Lai, Zhaosong Lu, Wei Fan,
Hasan Davulcu, and Jieping Ye. 2015. Orthogonal
rank-one matrix pursuit for low rank matrix com-
pletion. SIAM Journal on Scientific Computing,
37(1):A488–A514.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-Thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg.
2023. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
5254–5276, Singapore.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023a. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh In-
ternational Conference on Learning Representations.

Zhen-Ru Zhang, Chuanqi Tan, Haiyang Xu, Chengyu
Wang, Jun Huang, and Songfang Huang. 2023b. To-
wards adaptive prefix tuning for parameter-efficient
language model fine-tuning. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
1239–1248, Toronto, Canada.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. GaLore: Memory-efficient LLM training
by gradient low-rank projection. arXiv preprint
arXiv:2403.03507.

3454

https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://aclanthology.org/D16-1264/
https://aclanthology.org/D16-1264/
https://ieeexplore.ieee.org/abstract/document/7098875
https://ieeexplore.ieee.org/abstract/document/7098875
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://arxiv.org/abs/2410.21228
https://arxiv.org/abs/2410.21228
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://openreview.net/forum?id=Uwh-v1HSw-x
https://openreview.net/forum?id=Uwh-v1HSw-x
https://aclanthology.org/W18-5446/
https://aclanthology.org/W18-5446/
https://openreview.net/forum?id=OQqNieeivq
https://openreview.net/forum?id=OQqNieeivq
https://proceedings.mlr.press/v32/wanga14.html
https://proceedings.mlr.press/v32/wanga14.html
https://doi.org/10.1137/130934271
https://doi.org/10.1137/130934271
https://doi.org/10.1137/130934271
https://aclanthology.org/Q19-1040/
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://aclanthology.org/N18-1101/
https://aclanthology.org/N18-1101/
https://aclanthology.org/2023.emnlp-main.319/
https://aclanthology.org/2023.emnlp-main.319/
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://aclanthology.org/2023.acl-short.107/
https://aclanthology.org/2023.acl-short.107/
https://aclanthology.org/2023.acl-short.107/
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.03507

A Algorithm of AROMA

We present the details of AROMA in Algorithm 1.

B Time Complexity Analysis

We first analyze the per-step complexity to cal-
culate ∆W of dimensions m × n. In the for-
ward pass, considering B ∈ Rm×r, A ∈ Rr×n,
and x ∈ Rn. LoRA costs O((m + n)r) time.
AdaLoRA calculates PΛQx, hence its complex-
ity is O((m + n + r̃)r̃) = O((m + n)r̃), where
r̃ is the current rank. AROMA computes BpApx
with p being the current outer step, which requires
O ((m+ n) p) time. Since LoRA has a consistent
rank, AdaLoRA decreases rank, while AROMA in-
creases rank, typically we have r̃ ≥ r ≥ p, which
leads to OAdaLoRA

per-step > OLoRA
per-step ≥ OAROMA

per-step .
Based on this, we discuss the overall complex-

ity. Given T as the total training steps, LoRA
consumes O ((m+ n)rT) time. For AdaLoRA,
we roughly denote its average rank as ri+rf

2
with ri and rf being the initial average rank
and the target average rank, respectively, then its
overall complexity is O

(
(m+ n)

ri+rf
2 T

)
. For

AROMA, supposing that each inner loop has Tin

steps for simplicity, and there are P outer steps,
i.e., T = P · Tin, the overall complexity is
O
(
(m+ n)Tin

∑P
p=1 p

)
= O

(
(m+ n)1+P

2 T
)
.

Typically, we have OAdaLoRA
overall > OLoRA

overall ≥
OAROMA

overall . The above claims are listed in Table
9 and are experimentally validated in Section 5.2.

Scheme LoRA AdaLoRA AROMA
Per-step

Complexity O((m+ n)r) O((m+ n)r̃) O((m+ n)p)

Overall
Complexity O((m + n)rT) O(

ri + rf

2
(m + n)T) O

(
(m + n)T 1+P

2

)

Table 9: Complexity comparison

C Definition of Effective Rank

In data representation, effective rank (Roy and Vet-
terli, 2007) reflects the number of truly meaningful
independent feature dimensions in a matrix, whose
definition is given as follows. Consider a m × n
matrix W with singular values:

σ1 ≥ σ2 ≥ · · · ≥ σK ≥ 0 (7)

where K = min {m,n}. Given pk = σk∑K
k=1 |σk|

,
the effective rank is defined as:

erank = exp {H(p1, p2, · · · , pK)} (8)

where H(p1, p2, · · · , pK) is the Shannon entropy:

H(p1, p2, · · · , pK) = −
K∑

k=1

pk log pk (9)

Effective rank is smaller than full rank as it ignores
dimensions with minimal contributions.

In neural network weight matrices, effective rank
indicates the number of effective feature transfor-
mations learned by that layer. Low effective rank
proportion suggests redundancy or underutilized
parameters (Shuttleworth et al., 2024).

D Rank Distribution for RTE Task

Figure 5 shows the rank distributions for AdaLoRA
and AROMA on RTE task, and we observe a simi-
lar phenomenon to that of Figure 3.

E Cosine Similarity Analysis

1 2 3 4 5 6 7

Rank-one matrices by AROMA w/ Reset

1
2

3
4R

an
k-

on
e

m
at

ri
ce

s
by

 A
R

O
M

A
w

/o
 R
es
et 1.000 0.028 0.017 0.005 0.010 0.001 0.002

0.015 0.886 0.007 0.023 0.007 0.007 0.001

0.000 0.028 0.008 0.007 0.001 0.007 0.009

0.002 0.009 0.001 0.000 0.020 0.018 0.004
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Cosine similarity between AROMAw/o Reset

and AROMAw/ Reset for layer.10.attention.output.sense
layer results for RoBERTa-base on MRPC task.

Figure 4 shows the cosine similarity between
AROMAw/o Reset and AROMAw/ Reset, which we
only focus on values on the diagonal. It reveals that
their solutions are identical initially, but increas-
ingly diverge with each subsequent Reset. This
finding further underscores the important role of
the Reset mechanism.

F Inner-space Rank of AROMA

For simple tasks and smaller models, rank-1 may
be optimal due to higher resolution. We conduct
experiments for RoBERTa-base on MRPC with
different inner-space ranks (averaged over 3 runs)
in Table 10.

However, for complex tasks and larger models
like LLaMA3 on Commonsense170k, a slightly
larger subspace might be better. We find
that AROMAr=8 not only converges faster than
AROMAr=1 (see Table 8) but also achieves higher

3455

Inner-space Rank #Param #Outer Loop Accuracy
AROMA r=1 0.17M 10.3 94.17
AROMA r=2 0.33M 7.3 93.05
AROMA r=3 0.5M 8 91.35
AROMA r=4 0.67M 8.7 89.46
AROMA r=8 1.34M 8.7 81.94

Table 10: Inner-space rank comparison for RoBERTa-
base on MRPC.

Inner-space Rank #Param #Outer Loop Accuracy
AROMA r=1 1.77M 20 83.11
AROMA r=8 14.16M 15 83.85
AROMA r=16 28.31M 18 82.90

Table 11: Inner-space rank comparison for LLaMA3 on
Commonsense170K.

accuracy. When we further try AROMAr=16, the
performance degrades, possibly due to excessively
low resolution.

These results encourage us to set the AROMA
inner-space rank to 8 for complex tasks and larger
models, potentially enhancing both accuracy and
time efficiency.

G Dataset Details

G.1 GLUE

GLUE (Wang et al., 2018) is a collection of nine
NLU benchmarks designed to evaluate the perfor-
mance of LLMs across multiple dimensions of
linguistic competence. This work involves eight
commonly used GLUE tasks: CoLA (Warstadt
et al., 2019), MNLI (Williams et al., 2018), MRPC
(Dolan and Brockett, 2005), QNLI (Rajpurkar et al.,
2016), QQP (Wang et al., 2018), RTE (Dagan et al.,
2005; Haim et al., 2006; Giampiccolo et al., 2007;
Bentivogli et al., 2009), SST-2 (Socher et al., 2013),
STS-B (Wang et al., 2018). Their details are listed
in Table 12.

G.2 Commonsense170K

Commonsense170K (Hu et al., 2023) is a com-
prehensive benchmark collection comprising ap-
proximately 170,000 training examples and 400
validation examples across eight diverse common-
sense reasoning datasets: ARC-Easy and ARC-
Challenge (Clark et al., 2018), OBQA (Mihaylov
et al., 2018), SIQA (Sap et al., 2019), WinoGrande
(Sakaguchi et al., 2021), PIQA (Bisk et al., 2020),
BoolQ (Clark et al., 2019); and HellaSwag (Zellers
et al., 2019). This consolidated benchmark evalu-

Dataset #Train #Valid #Test #Label Metric
Single-Sentence Classification

CoLA 8.5k 1k 1k 2 MC
SST-2 67k 872 1.8k 2 Acc

Pairwise Text Classification
MNLI 393k 20k 20k 3 Acc
RTE 2.5k 277 3k 2 Acc
QQP 364k 40k 391k 2 Acc
MRPC 3.7k 408 1.7k 2 Acc
QNLI 105k 5.5k 5.5k 2 Acc

Text Similarity
STS-B 5.7k 1.5k 1.4k 1 PC

Table 12: Details of GLUE benchmark. "MC", "PC",
and "Acc" represent Matthews correlation coefficient,
Pearson correlation coefficient, and accuracy, respec-
tively. "#Train", "#Valid", and "#Test" refer to the num-
ber of training, validation, and testing examples, respec-
tively. "#Label" denotes the number of labels.

ates LLMs’ capabilities across multiple dimensions
of commonsense knowledge, including conceptual
reasoning, physical understanding, social intelli-
gence, causal reasoning, coreference resolution,
and scientific knowledge.

G.3 XSum

XSum (Narayan et al., 2018) is a large-scale, highly
abstractive single-sentence summarization dataset
built from BBC news. It contains 226k article-
summary pairs with splits of roughly 204k/11k/11k
for train/validation/test. Each article is paired with
a concise, human-written one-sentence summary
that captures the core information, encouraging
models to generate short summaries, making it a
challenging NLG task.

H Hyperparameter Settings

H.1 NLU Task

Hyperparameter setup can be found in Table 15,
where we follow the suggested setting for LoRA
and AdaLoRA, and meticulously tune for AROMA,
including the learning rate lr ∈ [1E-4, 2E-4, 5E-
4, 7E-4], inner tolerance εin ∈ [0.05, 0.1], and
outer tolerance εout ∈ [1E-3, 5E-3, 6E-3]. Initial
warmup is 100 and subsequent warmup is 50 for
all tasks, except CoLA which uses 500 and 100 re-
spectively. We use publicly available implementa-
tion (https://github.com/Guitaricet/
relora) to run ReLoRA.

3456

https://github.com/Guitaricet/relora
https://github.com/Guitaricet/relora

H.2 Commonsense Reasoning Task
Hyperparameter setup for commonsense reasoning
task can be found in Table 13.

H.3 NLG task
We apply AROMA to four weight matrices in the
self-attention layer: Wq, Wk, Wv, Wo, and two in
the FFN: Wfc1, and Wfc2. Hyperparameter setup
for NLG task is found in Table 14.

Scheme Hyperparameter Value

AROMAr=1

r 1
α 2

Max Seq. Len. 256
Batch Size 32

Epoch 20
Learning Rate 1E-4

T 100,000
Tin 1000
∆Tin 10
εin 0.1
εout 1E-3

Eval Batch Size 8

AROMAr=8

r 8
α 16

Max Seq. Len. 256
Batch Size 32

Epoch 15
Learning Rate 1E-4

T 80,000
Tin 2000
∆Tin 10
εin 0.1
εout 1E-2

Eval Batch Size 8

Table 13: Hyperparameter setup for LLaMA3-8B on
Commonsense170k

Hyperparameter Value
r 1
α 4

Max Source Length 768
Max Target Length 142

Batch Size 64
Epoch 30

Learning Rate 2E-4
T 100,000
Tin 5000
εout 4E-3

Table 14: Hyperparameter setup for BART-large on
XSum

3457

Algorithm 1: AROMA
Input: Inner and outer tolerances εin and εout, maximum inner training steps Tin, inner checking

interval ∆Tin, maximum total training steps T .
1 for each module in parallel
2 Initialize: b(0)1 ← 0; a(0)

1 ← Kaiming_init.
3 Freeze W0.
4 for p = 1, 2, · · · do // OUTER LOOP
5 for t = 1, 2, · · · , Tin do // INNER LOOP

6 Update b
(t)
p , a(t)

p .
7 if MOD(t,∆Tin) = 0 then

8 inner_converged = True, if

∥∥∥b(t)p a
(t)
p

∥∥∥
F
−
∥∥∥b(t−∆Tin)

p a
(t−∆Tin)
p

∥∥∥
F∥∥∥b(t−∆Tin)

p a
(t−∆Tin)
p

∥∥∥
F

< εin. // CHECK

9 Break the inner loop, if all modules are inner_converged.

10 outer_converged = True, if ∥αbpap∥F
∥W 0+αBp−1Ap−1∥F

< εout. // CHECK

11 Break the outer loop, if outer_converged.

12 ∆W = ∆W + b
(t)
p a

(t)
p . // MERGE

13 b
(0)
p+1 ← 0; a(0)

p+1 ← Kaiming_init. // REINIT

14 Reset optimizer states & learning rate warmup. // RESET

15 Finish, if all modules are outer_converged or reach T .
Output: ∆W .

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Wq

Wk

Wv

Wo

Wf1

Wf2

0

2

4

6

8

10

12

Ra
nk

0

2

4

6

8

10

12

Ef
fe

ct
iv

e
Ra

nk

(a) Rank distribution of AdaLoRA

0 1 2 3 4 5 6 7 8 9 10 11
Layer

Wq

Wk

Wv

Wo

Wf1

Wf2

2

4

6

8

10

Ra
nk

2

4

6

8

10

Ef
fe

ct
iv

e
Ra

nk

(b) Rank distribution of AROMA

Figure 5: Resultant rank and effective rank distributions for RoBERTa-base fine-tuned on RTE task by AdaLoRAr=8
and AROMA, respectively. The x-axis represents the hidden layer index, while the y-axis refers to the weight
matrix fine-tuned in each layer. The total rank is described by the red outer circle, whereas the effective rank is
indicated by the blue inner circle.

3458

Scheme Hyperparameter CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

LoRA

Max Seq. Len. 128
Batch Size 64

Epoch 30 30 30 25 25 50 60 40
Learning Rate 4E-4 5E-4 4E-4 4E-4 4E-4 5E-4 5E-4 4E-4

r 8
α 16

AdaLoRA

Max Seq. Len. 128
Batch Size 32

Epoch 25 7 30 5 5 52 24 26
Learning Rate 5E-4 5E-4 1E-3 1.2E-3 5E-4 1.2E-3 8E-4 2.2E-3

ri 12
rf 8
γ 0.5 0.1 0.1 0.1 0.1 0.3 0.1 0.1
T 6500 85000 3000 15000 55000 4000 50000 4500
ti 800 8000 600 2000 8000 600 6000 800
∆T 10 100 1 100 100 1 100 10
tf 3500 50000 1800 8000 25000 1800 22000 2000
α 32

Max Seq. Len. 256
Batch Size 32 32 64 32 64 64 64 32

Epoch 130 10 52 10 10 62 40 50
Learning Rate 2E-4 7E-4 1E-4 2E-4 4E-4 1E-4 5E-4 5E-4

T 35000 85000 3000 30000 55000 2400 40000 10000
Tin 5000 5000 200 2000 55000 200 2500 1000
∆Tin 10
εin 0.1
εout 2E-2 5E-3 5E-3 5E-3 1E-3 6E-3 5E-3 5E-3

AROMA

α 4

Table 15: Hyperparameter setup for RoBERTa-base on GLUE

3459

