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Abstract

This work introduces Castle, the first frame-
work for schema-only cascade update genera-
tion using large language models (LLMs). De-
spite recent advances in LLMs for Text2SQL
code generation, existing approaches focus pri-
marily on SELECT queries, neglecting the chal-
lenges of SQL update operations and their rip-
ple effects. Traditional CASCADE UPDATE con-
straints are static and unsuitable for modern,
denormalized databases, which demand dy-
namic, context-aware updates. Castle enables
natural language instructions to trigger multi-
column, causally consistent SQL UPDATE state-
ments, without revealing table content to the
model. By framing UPDATE SQL generation
as a divide-and-conquer task with LLMs’ rea-
soning capacity, Castle can determine not only
which columns must be directly updated, but
also how those updates propagate through the
schema, causing cascading updates — all via
nested queries and substructures that ensure
data confidentiality. We evaluate it on real-
world causal update scenarios, demonstrating
its ability to produce accurate SQL updates,
and thereby highlighting the reasoning ability
of LLMs in automated DBMS.

1 Introduction

Relational Database Management Systems
(RDBMS) are the foundation of modern infor-
mation systems, providing reliable storage and
efficient retrieval for critical business data. Natural
language interfaces to databases, such as Text2SQL
approaches, have enabled users to pose complex
questions and retrieve answers via generated SQL
queries (Zhong et al., 2017; Xu et al., 2017; Yu
et al., 2018; Guo et al., 2019; Wang et al., 2019;
Scholak et al., 2021). However, these efforts have
primarily focused on generating retrieval-focused
(SELECT) queries.

“Equal contributions.

To create a complete natural language interface,
it is essential to also generate SQL UPDATE com-
mands. While accuracy challenges persist (Yao
et al., 2025; Pourreza and Rafiei, 2023), recent
work by Li et al. (2024) has pushed towards a more
comprehensive Text2SQL framework, incorporat-
ing a broader set of SQL commands, including
SQL UPDATEs. Nevertheless, a significant chal-
lenge arises with cascade updates, where a change
in one record requires automatic propagation of
modifications to related records, causing a “rip-
ple effect” in the database, particularly in high-
performance denormalized databases (Kimball and
Ross, 2013; Balmin and Papakonstantinou, 2005)
(see Table 1). The advent of massively distributed
systems and real-time analytics has increasingly led
designers to adopt denormalized schemas (Kim-
ball and Ross, 2013), where relational dimensions
are flattened to reduce expensive join operations
and meet performance targets. For instance, con-
sider a denormalized database of soccer players: in
a denormalized database, the table of players also
have records about the clubs, such as the club’s
name and coach. After a player joins a new club
(update club name), their coach name needs to be
updated, but this information resides in the table
of clubs. Thus, we need to update corresponding
table entities in a cascading fashion.

This work addresses the task of improving
Text2SQL UPDATEs, with a focus on cascade up-
dates. We create two cascade update benchmarks
using public datasets to test the ability of Text2SQL
methods to issue correct update commands under
cascades over more than 1 million records. We then
introduce Castle, a new framework designed to en-
able large language models (LLMs) to generate
SQL update commands that execute intended mod-
ifications and automatically handle causal-driven
cascade updates securely and efficiently. A key
challenge is uncovering real-world causal relation-
ships between updated fields and other fields. Our
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Scenario | Denormalized Schema Normalized Schema
SELECT Query v No joins required X Requires multi-table joins
Update w/ Cascade X Hard to trace and inconsistent updates risks v Easy with relational foreign keys

Table 1: Comparison between denormalized and normalized schemas in practice, symbols indicate relative advan-

tages (v') and disadvantages (X ).

approach also prioritizes preserving data confiden-
tiality by utilizing nested query construction in-
stead of table data augmented generation. Our ex-
perimental results demonstrate the effectiveness
of our framework, achieving up to 85% correct
updates in our benchmark tasks, consistently out-
performing the best baselines, which reach at most
80% correctness, and are often much lower (down
to 52%) in complex scenarios.
Our main contributions are as follows:

* Castle is the first framework tailored specifically
for SQL cascade update operations. It treats SQL
cascade updates as causal reasoning tasks. With
nested structured subqueries, Castle generates
update commands without exposing raw table
data, mitigating privacy risks inherent in current
table-augmented approaches.

* We propose two datasets for cascading updates
that are 100% based on causal relationships from
the real world with more than 1 million records.

* Castle is the first work that systematically stud-
ies and evaluates the LLM-assisted SQL Trigger
management and generation.

2 Castle

Research Question. Modern database designs
often exhibit performance-driven redundancies,
which complicate update operations. Specifically,
we are interested in the question: Can Large Lan-
guage Models generate accurate cascade up-
date queries correctly given only the database
schema? This research question gives rise to two
fundamental challenges:

Identifying Update Targets (C1). When generat-
ing UPDATE queries, it is essential to determine the
specific columns that require modification. From
the perspective of LLMs, this involves not only
identifying the target column(s) specified in the
natural language instruction but also recognizing
potential related updates to other columns, which
can vary on a case-by-case basis.

Determining Update Values (C2). After identi-
fying the columns to update, the cascade update
operation must determine the new values to assign
to the corresponding columns. Since these values
are not explicitly provided in the natural language
instructions, they may need to be inferred from
other data entities, posing a significant challenge
for LLMs.

Motivating example using our Soccer Transfer
task. In order to illustrate the challenges, we first
introduce our Soccer Transfer dataset schema in
Appendix A. Consider the instruction: ‘“Lionel
Messi has transferred from Barcelona (code: fc-
barcelona) to Paris Saint-Germain (code: fc-paris-
saint-germain), update his information.” In re-
sponse to this instruction, an LLM should not only
update the columns directly mentioned (e.g., up-
dating the club_name from “Barcelona” to “Paris
Saint-Germain”), but also infer and update causally
related columns. For instance, it should update the
coach_name from “Ronald Koeman” to “Mauricio
Pochettino”, reflecting the change in team affilia-
tion. This example highlights the need for LLMs
to capture complex causal relationships within the
data schema to generate accurate and comprehen-
sive updates.

Proposed Method. To enable LLMs to perform
causally-driven cascading updates from natural lan-
guage instructions, without sending table content
data to models that compromise data confiden-
tiality, in this section, we introduce Castle (see
Figure 1), a multi-stage workflow addressing the
aforementioned challenge via divide-and-conquer
chain-of-thoughts (DC-CoT) with zero-shot sam-
ples. Castle orchestrates the generation and exe-
cution of SQL UPDATE queries from natural lan-
guage instructions, maintaining data consistency
via causal reasoning and robust query construction.
The entire process is detailed in Algorithm 1 and
described in what follows.
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Algorithm 1 WORKFLOW OF C.A.S.T.L.E.

Require: Natural language update instruction z,
table schema S
1: C. Column Identification:
2:  Based on S, extract directly mentioned tar-
get column(s) Cly;rect and table from z
3: A. Attribute Dependency Analysis:
Use schema S and reasoning over Clirect tO
infer causally dependent columns Clyscade
5: S. Subquery Planning:
6: for each ¢ € Ciygcade do
Generate subquery ¢, to retrieve correct
value for ¢ based on S
8: end for
9: T. Trigger Maintenance:
10: for each derived aggregate column ¢ €
Ccascade U Cdirect do

11:  Check trigger for maintaining derived c

12:  if trigger is missing then

13: Generate SQL trigger t. (via schema-
based causal reasoning)

14: Deploy trigger . into the database to
maintain real-time consistency

15:  end if

16: end for

17: L. Logical Query Composition:

18:  Combine Cgjpeer Values from x and valid sub-
query ¢q. into final SQL UPDATE query ¢

19: E. Execution:

20:  Execute UPDATE query g on target data table.

2.1 Skeleton: Identifying Columns for Update

As the first critical step to update the data in tables,
Castle needs to accurately identify the columns
to be updated from a natural language instruction.
The expected result of this step is the skeleton
of SQL UPDATE queries. Castle distinguishes be-
tween two types of columns from the database table
schema:

Columns to be directly updated (Cgjrect). Us-
ing the given table schema and natural language
instructions from general users, Castle identifies ex-
plicitly mentioned columns that need to be updated
with data provided by the users. For example, like
shown in Figure 1, given the instruction “Lionel
Messi has transferred club from Barcelona (code:
fc-barcelona) to Paris Saint-Germain (code: fc-
paris-saint-germain)” the directly related columns
club_name and club_code are explicitly identified
by Castle. This procedure corresponds to Line 1 in

Algorithm 1.

Causally-dependent columns to be cascade up-
dated (Ceascade)- Castle applies the causal rea-
soning capabilities of LLMs via structured instruc-
tion to identify implicitly affected columns in each
transaction (e.g., UPDATE) in the database. For in-
stance, updating a player’s club may also require
updating dependent columns such as this player’s
coach or competition, as depicted in Figure 1.
This procedure corresponds to Line 3 in Algo-
rithm 1.

After the identification of the columns to be di-
rectly updated and/or cascade updated, a skeleton
of the SQL UPDATE query is ready as shown in
Code 1. Now the remaining question is “what to
update”.

UPDATE player_record

SET
"club_name"” = 'Paris Saint-Germain',
-- directly update
"club_code"” = 'psg', -- directly
update
"stadium_name"” = ?, -- causally-
dependent column
"competition_country”" = ?, --
causally-dependent column
"foreigners_percentage"” = ?, --
aggregate and derived column
"squad_size" = ? -- aggregate and
derived column
WHERE

"player_code” = 'lionel-messi';

Code 1: An example of generated SQL UPDATE skeleton
for table player_record. Question marks here serve as
placeholders for later subqueries or trigger maintenance.

2.2 Subquery Planning: Evidence-grounded
Updates

After identifying the columns to update, Castle
proceeds to handle causally-dependent updates se-
curely through structured subquery planning. In-
stead of exposing actual table content data to LLMs,
Castle only provides the table schema along with
system instructions as input to LLMs integrated
with the system. For each causally dependent col-
umn (¢ € Ceascade) that needs to be updated, the
LLM generates SELECT subqueries to fetch the cor-
rect value to update. Each subquery expects a result
cardinality of at most one, guaranteeing legal and
precise updates without data exposure, shown as
an example in the dashed box in the middle of the
right column of Figure 1.
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Figure 1: A sample workflow of Castle illustrates how a single transaction with natural language instructions
as input is completed as a cascading update SQL transaction, incorporating the reasoning procedures of LLMs

alongside the database.

Moreover, prior to query composition and exe-
cution, each generated subquery undergoes syntax
checking to ensure its cardinality and compatibil-
ity with database-specific dialect rules, explicitly
validating clauses like LIMIT (e.g., PostgreSQL
and MySQL) or TOP (e.g., Microsoft SQL Server),
thereby minimizing syntax-related runtime errors.

2.3 Trigger Verification and Generation

Aggregate and derived columns (e.g., counts, aver-
ages, or percentage metrics) or materialized tables
in relational databases often reflect precomputed
summarized information crucial for fast analytical
retrieval (Jugel et al., 2016) in Business Intelli-
gence (BI). When underlying data changes occur
(e.g., player transfers or retail records change), tra-
ditional ETL-based methods may rely on sched-
uled batch data recomputing to maintain data con-
sistency. Castle addresses this through automatic
verification and generation of SQL TRIGGER, which
efficiently maintains these derived metrics in real-
time upon data modification events. This mech-
anism provides robustness, consistency, and effi-
ciency for event-driven causal cascade updates.

Trigger Verification. Given columns identified
either directly or via causal reasoning (Ceascade U
Clirect), Castle first checks existing SQL Triggers
from the database. Checking the existence and
syntax of triggers is based on the current schema
from the system’s maintained triggers table/view.

Trigger Generation. If the verification reveals
missing triggers, Castle utilizes the schema-
based causal reasoning capability of LLMs to dy-
namically generate efficient SQL trigger scripts
with functions to maintain data consistency from
events. The triggers are designed explicitly
to accurately reflect updated derived (or aggre-
gate) metrics like squad_size, average_age,
and foreigners_percentage. Such one-time
effort can automatically and consistently prop-
agate changes without further manual interven-
tion, thereby enhancing data integrity across the
database.

In Castle, generated triggers are subsequently
deployed to the database and seamlessly integrated
into transaction workflows. This proactive trigger
management significantly reduces runtime compu-
tational overhead and LLM token usages, but also
guarantees consistency for aggregate and derived
data metrics in databases.

2.4 Compatibility with other systems

Castle is designed to be broadly compatible with
industry standard DBMS such as PostgreSQL !,
MySQL 2 Microsoft SQL Server 3, and so on. On
the one hand, it runs purely at the schema level,
without requiring system-specific modules, exten-
sions, and configurations (e.g., indices, paging,
caching). Thus, it can be seamlessly integrated
"https://www.postgresqgl.org/

Zhttps://www.mysql.com/
3https://www.microsoft.com/en-us/sql-server
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into existing data infrastructure without requiring
modifications or additional extensions to the under-
lying database engine.

3 Experiments

We run our experiment on PostgreSQL 17 hosted
on Neon 4, a serverless database platform built on
AWS Aurora Postgres, with different LLMs inte-
grated in the system workflow, including ChatGPT-
407, LLaMA-3.1-8B-Instruct © and Qwen2.5-7B-
Instruct 7 as SQL generators.

3.1 Dataset

To evaluate our approach to causally driven cas-
cade updates in structured relational databases, we
utilize two real-world datasets:

Dataset Size  #Columns Data Type
Soccer Transfer 1M+ 28 Date, Text, Numeric
UCI Retail 541K 12 Date, Text, Numeric

Table 2: Overview of relational datasets used in our
experimental evaluation.

Soccer Transfer Dataset. A complete and com-
prehensive dataset recording over a million foot-
ball player appearances and transfers worldwide
yearly, including personal details, club and na-
tional team affiliations, transfer histories, and per-
formance statistics. The relational structure allows
users to model complex dependencies. Our ground
truth of one year’s update information is based on
the following year’s player record. We compare
every pair of adjacent year records and find out
those players who changed their club; such differ-
ence provides the club update information for us
to extract the fact from the later year and evaluate
LLM’s ability to perform causal cascade update on
the earlier year’s record 8.

UCI Online Retail IT Dataset. This dataset con-
tains over half a million transactional records from
a UK-based online retailer to worldwide customers,
covering sales and returns over two years. Each
record includes attributes like invoice number, prod-
uct code, quantity, invoice date, unit price, cus-

*https://www.neon.tech/

>https://openai.com/index/hello-gpt-4o/

Shttps://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

"https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

8https://www.kaggle.com/datasets/davidcariboo/player-
scores

tomer ID, and country (Chen, 2012). We augment
this dataset by: (1) Deriving the Quarter from the
invoice date, corresponding to the quarter report in
a materialized view (table) for faster data retrieval.
(2) Mapping Country to Region for geographical
analysis.

3.2 Evaluation Metrics

In retrieval-focused Text2SQL, one of the met-
rics is Execution Accuracy, which measures how
close the results of the generated SQL query are
to the ground truth results. In MultiSQL (Li et al.,
2024), the evaluation metric for update operations
in databases is state comparison, which directly
compares the whole content of two database states
(before and after update operation), returning a bi-
nary result of O (different) or 1 (same). Unlike the
metric in MultiSQL, according to our workflow de-
sign, while performing database update operations,
the first question is to identify the data to update.
Thus, for the update operations, given the causal
and ripple-effect nature of cascade updates, we
evaluate the model’s reasoning capability of the
causal cascade update scenario through recall (how
many of the truly needed updates were found), with
breakdown into those directly updated columns and
cascade updated columns. This metric assesses the
model’s ability to holistically reason about multiple
column dependencies within and outside the data
table, quantifying how many of the truly needed
updates were identified after the LLM reasoning
procedure, and corresponds to evaluating the pro-
posed "where to update" challenge in this work.

|5Identiﬁed Cell to Update |

Recall = (D

|ATotal Cell Requiring Updates|

On the other hand, after we quantify the columns
identified by LLMs to update, we also need to know
the proportion of correctly updated causal columns
among those targeted for update by the model. For
example, after identifying columns to update, if
the model fails to update all required columns, two
kinds of errors are possible: Type I (unnecessary
update) errors and Type II (missed update) errors.
Either of these errors can happen when conducting
updates to the database. The F1-score summarizes
both aspects, indicating the model’s overall effec-
tiveness in both identifying and accurately updating
causally dependent columns.

Besides, correctness is the final requirement in
our task settings, where correct results would jus-
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Method \ Model

\ ChatGPT-40

LLaMA-3.1-8B-Instruct

Qwen2.5-7B-Instruct

Castle(w/o data)
Multi-SQL (w/ data)
Baseline (w/ data)

99.96 | 89.39 | 80.82
99.25 | 88.62 | 79.45
99.18 | 88.35 | 79.00

99.49 | 88.62 | 79.45
95.50 | 82.93 | 70.76
99.32 | 88.19 | 78.76

96.32 | 87.58 | 77.45
90.41 | 84.01 | 72.22
96.10 | 83.41 | 71.98

Method \ Model

\ ChatGPT-4o

LLaMA-3.1-8B-Instruct

Qwen2.5-7B-Instruct

Castle(w/o data)
Multi-SQL (w/ data)
Baseline (w/ data)

95.93 | 86.45 | 83.55
93.68 | 85.83 | 81.68
92.15 | 84.76 | 80.58

91.25 | 84.32 | 81.63
79.87 | 71.83 | 73.39
75.78 | 69.12 | 65.13

89.23 | 84.03 | 81.90
81.34 | 73.47 | 75.90
74.89 | 72.09 | 64.63

Table 3: Evaluation of update performance across models with methods on Soccer Transfer and Retail dataset,
respectively. Each cell reports: Recall, F1-score, and cell-wise correct rate of directly-updated columns.

Method \ Model

\ ChatGPT-40

LLaMA-3.1-8B-Instruct

Qwen2.5-7B-Instruct

Castle(w/o data)
Multi-SQL (w/ data)
Baseline (w/ data)

99.95 | 85.25 | 85.21
52.2168.58 | 52.16
52.16 | 68.53 | 52.09

80.84 | 81.24 | 80.43
50.31| 68.97 | 52.17
50.09 | 67.55 | 52.00

75.52 | 72.01 | 67.93
52.39| 68.73 | 55.39
51.12 65.80 | 52.06

Method \ Model

\ ChatGPT-4o

LLaMA-3.1-8B-Instruct

Qwen2.5-7B-Instruct

Castle(w/o data)
Multi-SQL (w/ data)
Baseline (w/ data)

93.03 | 90.02 | 85.93
89.10 | 74.12 | 69.58

88.45|76.16 | 70.15

89.32 | 81.36 | 83.31
83.80 | 58.80 | 56.09
82.42 | 55.14 | 53.76

87.98 | 83.21 | 84.02
85.91 | 65.01 | 61.23
85.04 | 66.10 | 70.49

Table 4: Evaluation of update performance across models with methods on Soccer Transfer and Retail dataset,
respectively. Each cell reports: Recall, F1-score, and cell-wise correct rate of causal cascade updated columns

(without derived values).

tify the usability of our proposed workflow. Thus,
we introduce cell-wise correctness (CC), which
evaluates fine-grained correct rate on how accu-
rately the model updates each individual cell (i.e.,
each column within each row) across the entire
database after applying one natural language up-
date instruction. The Cell-wise correctness (CC) is
defined as follows:

5C0rrect Cell Updated
CC _ ’ p ’

‘ATotal Cell Requiring Updates‘

2

Last but not least, in order to further assess
whether causal dependent columns are correctly
updated aside from direct updates, we further break
these metrics down into two complementary com-
ponents: columns explicitly mentioned in the nat-
ural language instruction (Cgirect) and cascading
columns inferred from causal or structural depen-
dencies (Ccascade)~

3.3 Results

While Castle does not provide a SELECT-like query
result as output, we evaluated our update results
by querying them and comparing them with the
corresponding ground truth, as soon as the update
operation occurred in the database. In Table 3 and
Table 4, we present the evaluation results of update
performance for directly-updated columns (Clirect)
and causal cascade-updated columns (Claseade, but
without derived columns for TRIGGERs to main-
tain) across three representative LLMs and three
SQL generation methods: Castle (ours, schema-
only), MultiSQL (content-augmented), and base-
line method (content-augmented).

In addition to direct update commands, we also
evaluated the ability of LLMs to generate cor-
rect SQL TRIGGER statements within our workflow
that enforce ripple-effect data consistency with our
causal cascade UPDATE queries. The generated trig-
ger is considered correct if, once after deployment,
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Method / Model ChatGPT-40 LLaMA-3.1-8B-Instruct Qwen2.5-7B-Instruct
Castle (Trigger only) 83.31 79.37 77.29
Castle w/ trigger 83.84 79.91 73.53
Method / Model ChatGPT-40 LLaMA-3.1-8B-Instruct Qwen2.5-7B-Instruct
Castle (Trigger only) 87.64 77.90 81.01
Castle w/ trigger 86.81 79.51 81.78

Table 5: Evaluation of LLM-generated TRIGGER via cell-wise correctness, bottom row represents Castle’s average
cell-wise correctness over all data columns and tables with integrated trigger generation mechanism.

it consistently maintains the correctness of the sum-
mary table right after transactional updates, as com-
pared with ground truth using cell-wise correct-
ness. The result is shown in Table 5 alongside
Castle having trigger generated in the system, both
of their cell-wise correctness are the average rate
of experiments conducted 100 times. Our exper-
iments demonstrate that data consistency can be
maintained automatically and robustly, even across
complex, multi-row updates.

3.4 Discussion

E

In our evaluation, we measured “where to update
via the recall metric of cascade reasoning, and also
“what to update” with F1-score and cell-wise cor-
rectness metrics.

The recall metric in our experiment directly
evaluates the LLM’s ability to correctly identify
where to update in the given table schema(s), i.e.,
which columns (both direct and causal/cascade)
should be updated based on natural language in-
structions. Our schema-only approach, Castle,
consistently achieves the highest recall across all
models, particularly with GPT-40, outperforming
content-augmented baseline methods on both di-
rectly and causally updated columns. This demon-
strates Castle’s ability to reason over schema se-
mantics and relationships without access to table
content.

F1-score and cell-wise correctness indicate the
model’s proficiency in determining what values to
update and producing the correct SQL subqueries
filling the outer skeleton. The experiments show
that Castle performs consistently better, especially
in scenarios with larger or more complex schemas,
or having column interdependencies (as in the Re-
tail dataset), where achieving high cell-wise cor-
rectness becomes more challenging.

Table 5 presents the evaluation of LLM-
generated triggers for maintaining aggregate or ma-

terialized columns in real-time. The results show
that triggers generated by Castle (both standalone
and integrated) are comparable to LLM-generated
complex SQL queries. However, triggers are in-
stantly activated and only require one-time effort
that can provide long-term, automatic consistency
without requiring repetitive code generation or hu-
man intervention. This finding shows the potential
of integrating LLM-based trigger generation into
modern DBMS.

4 Related Work

4.1 Text2SQL

In general, Text2SQL (or NL2SQL) takes a given
natural language text query as a task, generates
the task-specific SQL queries (Mitsopoulou and
Koutrika, 2025; Liu et al., 2024; Ma et al., 2025),
and compares the query result table with the
groundtruth provided by baselines such as Spi-
der (Lei et al., 2024), BIRD (Li et al., 2023), and
CoSQL (Yu et al., 2019). However, until recently,
Text2SQL datasets contained almost exclusively
SELECT queries, and update operations have been
little investigated in Text2SQL research. The re-
cent MultiSQL approach (Li et al., 2024) supports
the generation of simple direct update commands
with table content provided to LLMs for SQL
generation (Shen and Kejriwal, 2024; He et al.,
2025). Moreover, the authors of MultiSQL pro-
vided a benchmark dataset that includes UPDATE
commands. However, those LLM-generated vir-
tual data lack quality and real-world verifiability
for causal relationships. In our work, two real verifi-
able datasets from different domains with different
structures are used to verify our proposed method
in causal cascade update.

In Text2SQL tasks, another common shortcom-
ing for accurate query generation is the need for
table context to understand natural language intents
better (Sun et al., 2018). If table content from the
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actual query table is provided, it could significantly
increase the accuracy of the generated query (Mit-
sopoulou and Koutrika, 2025). However, such an
approach undermines data confidentiality. By con-
trast, our approach achieves schema-only reasoning
without having to send table content to LL.Ms.

Recent approaches, such as CHASE-SQL (Pour-
reza et al., 2025), focus on improving SQL query
generation via divide-and-conquer strategies and
chain-of-thought (CoT) (Wei et al., 2022). Our
approach also applies this reasoning strategy to
address the challenges mentioned in the paper’s
introduction section.

4.2 LLM-Assisted Data Wrangling

Recent research has expanded the role of LLMs
from purely generating SQL statements to perform-
ing broader data wrangling tasks. For instance,
CodexDB (Trummer, 2022) leverages Codex mod-
els to automate database interactions, demonstrat-
ing LLM capabilities for diverse database opera-
tions. TableLLM (Zhang et al., 2025) is a dedicated
model for document-level (lightweighted) spread-
sheet manipulations, including insert, update, and
delete operations. However, these operations re-
quire the whole table to be provided as input to the
context window of LLMs. In addition, each opera-
tion is generated in isolation, neglecting cascades
or multi-record dependencies.

Unlike these methods, Castle combines LLM-
generated SQL code with a schema-driven reason-
ing process, systematically managing those causal
cascade updates in denormalized schemas.

4.3 Ripple Effects in Knowledge Editing

Knowledge editing (Mitchell et al., 2021; Meng
etal., 2022) in LLMs aims to update specific factual
information within a model without necessitating
retraining. However, such interventions often lead
to “ripple effects” (Cohen et al., 2024), where mod-
ifications to one fact inadvertently influence related
or unrelated knowledge within the model. (Cohen
et al., 2024) introduced the RippleEdits benchmark
to assess these effects, revealing that current editing
methods frequently fail to ensure consistent knowl-
edge updates, thereby compromising the model’s
reliability. Further analysis in GradSim (Qin et al.,
2024) identified gradient similarity (GradSim) as
a key indicator of ripple effects, demonstrating a
strong positive correlation between GradSim and
the successful propagation of edits. To address
these challenges, (Zhao et al., 2024) proposed Rip-

pleCOT, an in-context learning approach that inte-
grates chain-of-thought reasoning to enhance the
accurate dissemination of edits across related facts.
Collectively, these works underscore the complex-
ities inherent in knowledge editing for LLMs and
highlight the necessity for advanced methods to
manage unintended ripple effects.

While prior research has primarily examined rip-
ple effects within LL.Ms (Cohen et al., 2024; Qin
et al., 2024), our work shifts focus to the ripple
effects occurring in external databases that serve as
knowledge bases for LLMs. In retrieval-augmented
generation (RAG) pipelines, effectively managing
ripple effects during data retrieval by the DBMS
can significantly enhance the accuracy and reliabil-
ity of downstream LLM outputs (Shi et al., 2024;
Zhao et al., 2024). Our approach offers a comple-
mentary perspective to existing model-level inter-
ventions, emphasizing the importance of database-
level strategies in mitigating unintended ripple ef-
fects.

5 Conclusion

Castle addresses the challenge in causal-driven cas-
cade updates with respect to both “where to update”
and “what to update”. It also demonstrates that
general pre-trained LLMs can reason over schema
structures to perform cascade-consistent SQL up-
dates without requiring access to table contents,
thus providing a broader, trustworthy, structured
LLM reasoning for general data systems and code
generation.

Limitations

Like most practical analytical queries and business
intelligence (BI) workloads, we also assume sce-
narios where data and its derived values are stored
in a single unified database for optimized query
performance. We thus do not consider federated or
multi-database environments. Additionally, we do
not consider multi-hop post-cascade updates due to
the absence of real-world, verifiable datasets that
reliably capture such propagation chains. Lastly,
our work considers natural language instructions
for the database to be explicit, which are generated
via a unified script as part of input to LLMs; our
study does not consider instructions in different
languages aside from English.
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A Table Schema

Soccer Transfer Database Schema

CREATE TABLE IF NOT EXISTS {
table_name} (
player_id

SERIAL PRIMARY KEY,
player_code

VARCHAR (100) ,
first_name

VARCHAR (100) ,
last_name

VARCHAR (100) ,
full_name

VARCHAR (255) ,
date_of_birth

VARCHAR (100) ,
age

NUMERIC ,
height

DECIMAL (4,2),
citizenship

VARCHAR (100) ,
position

VARCHAR (100) ,
foot

VARCHAR (20) ,
contract_expires

VARCHAR (100) ,
social_media

JSONB,
birthplace_city

VARCHAR (100) ,
birthplace_country

VARCHAR (100) ,
club_code

VARCHAR (100) ,
club_name

VARCHAR (255),
squad_size

NUMERIC,
average_age

DECIMAL (4,2),
foreigners_number

NUMERIC,
foreigners_percentage

DECIMAL(5,2),
national_team_players

NUMERIC,
stadium_name

VARCHAR (255) ,
stadium_seats

VARCHAR (50) ,
net_transfer_record

VARCHAR (50) ,
coach_name

VARCHAR (255) ,
competition_code

VARCHAR (50) ,
competition_type

VARCHAR (50) ,
competition_country

VARCHAR (100) ,
competition_seasoned_href TEXT

)

UCI Retail Database Schema

CREATE TABLE IF NOT EXISTS {
table_name} (
stockcode TEXT,
description TEXT,
quantity INTEGER,
country TEXT,
region TEXT,
y2010q4_quantity INTEGER,
y2011ql_quantity INTEGER,
y20119g2_quantity INTEGER,
y2011qg3_quantity INTEGER,
y2011q9g4_quantity INTEGER,
PRIMARY KEY (stockcode,
country)

B Trigger

SELECT event_object_table AS table_name,
trigger_name

FROM information_schema.triggers

GROUP BY table_name, trigger_name

ORDER BY table_name, trigger_name;

Code 2: An example query of listing Triggers names
and corresponding tables in a PostgreSQL database.

SELECT tgname

FROM pg_trigger

WHERE tgrelid =
regclass;

'"player_record'::

Code 3: An example query of checking Trigger on table
player_record

CREATE OR REPLACE FUNCTION
update_squad_size_transfer ()
RETURNS TRIGGER AS $%
BEGIN
-- Decrement squad size from old
club
IF OLD.club_code IS NOT NULL THEN
UPDATE player_record

SET squad_size = squad_size - 1
WHERE club_code = OLD.club_code;
END IF;

-- Increment squad size for new club
IF NEW.club_code IS NOT NULL THEN
UPDATE player_record

SET squad_size = squad_size + 1
WHERE club_code = NEW.club_code;
END IF;
RETURN NEW;

END;

Code 4: An example of trigger function on table
player_record
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C LLM Prompts Examples

Castle Prompt

Database Schema:
{schema}

Instruction:
{instruction}

Generate an UPDATE SQL statement
to update the player's
club_name and club_code columns
, and do consider the ripple
effects via this update, since
this update may cause other
columns update. Other columns,
if required, should be handled
via subqueries, you will never
know the content of the data
table except table schema.

Think about this step by step, and
you need just one SQL UPDATE
query (could be with subqueries
) as output.

1. First, what are the columns
needed to be updated for this
table schema? Come up with a
UPDATE skeleton with columns
need to update, no LIMIT is
needed in outer skeleton.

2. Second, query each column data
needed to be used for each
columns update, remember to use

the LIMIT clause in SUBQUERY
since the subquery is used to
fill the outer skeleton.

3. Combine the previous two
queries.

Carefully follow these rules for
SQL formatting:

- Use double quotes for all SQL
identifiers (table names,
column names).

- Use single quotes around all
literal string values (such as
player codes or club names).

Think step-by-step and return
exactly one SQL UPDATE query as
output. Please only return the
SQL statement in a code block
and do not generate anything
else.

\.

Baseline Prompt

Database Schema:
{schema}

Instruction:
{instruction}

You need just one SQL UPDATE query
as output. Please only return
the SQL statement in a code
block and do not generate
anything else.

Multi-SQL Prompt

Database Schema:
{schema}

Instruction:
{instruction}

Sample table data:
{table_sample_content}

Generate an UPDATE SQL statement
to update the player's
club_name and club_code columns

# Chain of Thought:

1. Identify which table and
columns to update.

2. Determine the WHERE clause to
target the correct rows.

3. Compute any needed values via
subqueries if necessary (e.g.,
aggregations).

4. Assemble into one valid UPDATE
statement.

Think step-by-step and return
exactly one SQL UPDATE query as
output. Please only return the
SQL statement in a code block
and do not generate anything
else.

J

Soccer Transfer Instruction

Player '{first_name} {last_name}'
(code: {player_code}) changed
club from {from_club_code} to {
dest_club_code}. Update his/her

information.

UCI Retail Instruction

Now a return / refund case
happened, stockcode is '{
StockCode}', quantity in this
case is {Quantity}, and its
invoicedate is at {InvoiceDate
}, unitprice: {UnitPrice}, and
it happend in {Country}. Update

this transaction in the
summary table.
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D LLM Generated SQL Examples

ChatGPT-40 with Castle on UCI Retail

UPDATE
online_retail_quarterly_summary
SET

"quantity"” = "quantity” + (
SELECT SUM("quantity")
FROM (

SELECT -1 AS "quantity

WHERE "stockcode" = '
84978' AND "country
" = 'United Kingdom
' AND "invoicedate”
BETWEEN '
2011-10-01"' AND '
2011-12-31"

LIMIT 1

) AS subquery_quantity

) ’

"y2011g4_quantity” =
y2011qg4_quantity"” + (
SELECT SUM("quantity")
FROM (

SELECT -1 AS "quantity

”n

WHERE "stockcode” = '
84978' AND "country
" = 'United Kingdom
' AND "invoicedate”
BETWEEN '
2011-10-01"' AND '
2011-12-31"
LIMIT 1
) AS subquery_y2011qg4
)
WHERE "stockcode” = '84978' AND "
country” = 'United Kingdom';

ChatGPT-40 with Multi-SQL on UCI Retail

UPDATE
online_retail_quarterly_summary

SET
quantity = quantity - 1,
y2011qg4_quantity =
y2011g4_quantity - 1
WHERE
stockcode = '84978' AND
country = 'United Kingdom';

\

ChatGPT-40 with Baseline on UCI Retail

UPDATE
online_retail_quarterly_summary

SET y2011g4_quantity =
y2011qg4_quantity - 1

WHERE stockcode = '84978' AND
country = 'United Kingdom';
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