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Abstract

The resurgence of autonomous agents built us-
ing large language models (LLMs) to solve
complex real-world tasks has brought increased
focus on LLMs’ fundamental ability of tool or
function calling. At the core of these agents,
an LLM must plan, execute, and respond us-
ing external tools, APIs, and custom functions.
Research on tool calling has gathered momen-
tum, but evaluation benchmarks and datasets
representing the complexity of the tasks have
lagged behind. In this work, we focus on one
such complexity, nested sequencing, with the
goal of extending existing benchmarks and eval-
uations. Specifically, we present NESTFUL,
a benchmark to evaluate LLMs on nested se-
quences of API calls, i.e., sequences where
the output of one API call is passed as in-
put to a subsequent call. NESTFUL contains
1800+ nested sequences where all the func-
tion calls are executable. Experimental results
on a variety of models show that the best-
performing model (GPT-4o) achieves a full
sequence match accuracy of 28% and a win-
rate of 60%, necessitating a large scope for im-
provement in the nested sequencing aspect of
function calling. Our analysis of these results
provides possible future research directions for
the community, in addition to a benchmark to
track progress. We have released the NEST-
FUL dataset under the Apache 2.0 license at
https://github.com/IBM/NESTFUL.

1 Introduction

Autonomous agents, built with Large language
models (LLMs), are gaining popularity in solving
complex, real-world problems (Yao et al., 2023;
Deng et al., 2024). LLMs handle a user’s request by
understanding their intents, planning the required
tasks to address it, executing those tasks step by
step, and providing a response. For most real-world
problems (Jimenez et al.; Roy et al., 2024; Thakur

*These authors contributed equally to this work

et al., 2023), LLMs must interact with external en-
vironments through tool, function, and API calls
(Application Programming Interface), which pri-
marily leverages LLMs’ tool calling abilities1.

The significant reliance on LLMs’ function-
calling abilities led recent research to continuously
improve this dimension of LLMs. On one hand,
approaches to improve function calling have ex-
ploded (Abdelaziz et al., 2024; Liu et al., 2024;
Srinivasan et al., 2023); on the other hand, bench-
marks and evaluations are lagging behind. For in-
stance, BFCL v1 and v2 focused on evaluating sin-
gle, multiple, and parallel function calling tasks for
both non-executable and executable versions (Yan
et al., 2024). Works such as API-Blend (Basu
et al., 2024) complement prior work by introduc-
ing granular task evaluation, such as slot-filling,
API-detection, and sequencing. BFCL v3 has pro-
gressed further into agentic use cases with multi-
step and multi-turn function calling evaluation.

However, benchmarks for fundamental but com-
plex tasks such as the sequencing of functions have
not been well explored yet, which forms the basis
of this work. Existing evaluation benchmarks pose
sequencing as the prediction of single or multiple
isolated API calls, where the output of any partic-
ular API call within that sequence is considered
irrelevant. In contrast, for many real-world tasks, a
sequence of API calls is nested, i.e., the output of
some API calls is used in the arguments of subse-
quent API calls. Figure 1 shows one such example
of a nested sequence of APIs.

In this paper, we present NESTFUL, a bench-
mark specifically designed to evaluate models on
nested API calls with over 1800 nested sequences.
It consists of: (1) user queries, (2) a catalog of
APIs and their specifications, (3) the sequence of
API calls and the corresponding parameters, and

1API, function calling, and tool-use are used interchange-
ably throughout the paper
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NESTFul Evaluation  Framework

Query

Prompting

LLM
Inference

Function
Execution

The area of a rhombus is equal to the area of a rectangle whose length is 20cm and the
breadth is 10cm. If one of the diagonals is 32cm what is the length of other diagonal?

SYSTEM: You are a helpful assistant with access to the following
function calls. ...
<|function_call_library|>{TOOL_LIBRARY}
Here are some examples:{ICL_EXAMPLES}
USER: {QUERY}
ASSISTANT: 

Direct Prompting ReAct Prompting

F1 Intent F1 Slot Partial Match
Accuracy

Full Match
Accuracy Win Rate

Answer the following questions as best you can. You have access to 
the following tools:
{TOOL_LIBRARY}
.... Remember to ALWAYS use the following format:
Question: {QUERY}
Thought: ...
Action: ...
Observation: ...

Predicted Function Sequence

[{"name": "rectangle_area", "label": "$var_1", "arguments": {"arg_0": 20, "arg_1": 10}}, 
 {"name": "multiply", "label": "$var_2", "arguments": {"arg_0": "$var_1.result$", "arg_1": 2}}, 
 {"name": "divide", "label": "$var_3", "arguments": {"arg_0": "$var_2.result$", "arg_1": 32}}]

Gold Function Sequence

[{"name": "rectangle_area", ... }, 
 {"name": "multiply", ... }, 
 {"name": "divide",  ... ]

Gold Answer
12.5

{  "name": "rectangle_area",
   "description": "Calculate the area of
a rectangle ...",
   "parameters": {
     "arg_0": {
       "description": "...",
       "type": "int or float"},
       ...
    },
    "output_parameter": {
      "result": {
        "description": "...",
        "type": "int or float"
        }
    }
},
{  "name": "multiply",
    "description": "Multiplies two
numbers"
 ....

Tool Library

Evaluation

Step 1: var_1 = rectangle_area(arg_0 = 20, arg_1 = 10) = {result: 200 }

Step 2: var_2 = multiply(arg_0 = 200 , arg_1 = 2) = {result: 400 }
$var_1.result$

$var_2.result$
var_3 = divide(arg_0 =  400  , arg_1 = 32) = {result: 12.5 }Step 3:

Figure 1: End-to-End Evaluation Pipeline: NESTFUL provides a test set of input queries and their corresponding
list of nested function calls. It also provides executable implementations for each tool in the library and allows
for evaluating models in direct prompting or REACT styles. Given a query, the pipeline infers the input LLM to
generate the required sequence of function calls, execute those functions (taking into account nested variables), and
compare the final answer with the gold one.

(4) the expected output response. The datasets
are based on the MathQA (Amini et al., 2019)
and StarCoder2-Instruct (Wei et al., 2024) datasets,
which are commonly used in the literature but are
missing the executable component. Figure 1 shows
the end-to-end evaluation pipeline of NESTFUL.

We evaluated the dataset on 19 state-of-the-art
models from the literature and exposed the gaps of
these models in handling complex function calling
sequences. GPT-4o achieved the best performance,
but did not exceed 28% full sequence match nor
60% on win rate metrics. Models struggled as
the nesting got deeper and the data dependencies
increased. To further advance research in this area,
we will publicly release the NESTFUL dataset with
executable Python implementation for each tool
and the evaluation code for all models.

2 Related Work

The best way to enable API function calling in
LLMs remains an active area of research. Meth-
ods that utilize large, general-purpose proprietary
models (e.g., Gemini (Team et al., 2023) or GPT
(Achiam et al., 2023)) typically make use of care-
fully constructed prompts and in-context learn-
ing examples, e.g., (Song et al., 2023). Smaller,

more specialized models often start from a strong-
performing code model (e.g., DeepSeek-Coder
(Guo et al., 2024), CodeLlama (Roziere et al.,
2023), or Granite Code (Mishra et al., 2024))
and fine-tune primarily on highly curated datasets
(Srinivasan et al., 2023; Ji et al., 2024; Abdelaziz
et al., 2024) that have been extended with synthetic
data (Zhang et al., 2024a).

Most of these existing works initially focused
on basic function-calling abilities that did not in-
volve much complexity. Recent advances in en-
abling LLMs to handle complex multi-API interac-
tions have introduced structured methods like Re-
verse Chain (Zhang et al., 2024c). This approach
employs backward reasoning to optimize multi-
step API planning, allowing LLMs to effectively
manage nested workflows by aligning intermediate
steps with the final goal. Such methods highlight
LLMs’ potential to perform efficient, target-driven
planning in resource-constrained environments.

To evaluate and enhance these aforementioned
approaches, numerous works released training and
benchmarking data in service of API function call-
ing, such as ToolLLM (Qin et al., 2023); APIBench
(Patil et al., 2023); APIGen (Liu et al., 2024);
or API-BLEND (Basu et al., 2024). While these
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benchmarks focus on simpler or isolated API calls,
NesTools (Han et al., 2024) and our work tar-
get more complex, real-world tasks involving in-
terdependent, nested tool use. Unlike the fully
synthetic NesTools, NESTFUL is built from es-
tablished datasets and has longer average call se-
quences (4.36 vs. 3.04). Other benchmarks like
SealTool (Wu et al., 2024) and BFCL-v3 (Yan et al.,
2024) include some nesting but are smaller and not
specifically designed for it.

ToolBench (Xu et al., 2023) includes 205 nested
samples from the Webshop and TableTop datasets,
compared to over 1800 in NESTFUL. More-
over, ToolBench supports only 34 APIs, whereas
NESTFUL features more than 900 unique func-
tions. ShortcutsBench (Shen et al., 2024) has multi-
step tool calls but is tailored specifically to the
Apple Shortcuts feature, with evaluation data gen-
erated in a proprietary format that is difficult to in-
terpret and does not follow a standard JSON struc-
ture. Finally, AgentBoard is a broad evaluation
framework for general-purpose agents for multi-
step planning tasks with fine-grained metrics and
visual tools, while NESTFUL focuses specifically
on tool-augmented LLMs with detailed offline met-
rics like F1 score and accuracy alongside win rate.

3 NESTFUL Dataset Curation

NESTFUL comprises more than 1,800 instances
designed for benchmarking tool calling in LLMs
on nested sequencing. Each instance consists of
(1) a user query, (2) a list of all available tools for
the model to choose from, (3) the gold sequence
of tools and their arguments needed to answer the
user query, and (4) the final answer that should be
obtained once the tools are executed. The dataset
also contains corresponding Python code for every
API in the library and a mechanism to run the input
query via any LLM, execute the tools predicted by
the LLM, and provide the final answer.

3.1 Nested Function Calling Data Schema

NESTFUL’s data schema, demonstrated in Figure
2, showcases the template used for representing the
Input, Tool Library, Output, and Python Code. An
important aspect of nested function calling is to
enable a mechanism for tool reference; i.e., a sub-
sequent tool call using that reference to access the
output of the previous tool execution. To do so, we
assign a unique variable name to each tool, which
distinctly identifies each tool, even when two iden-

## Output JSON ##
[
    {
      "name": < Function_Name_1 >,
      "arguments": {
        <arg_1>: <value from user query>,
        <arg_2>: <value from user query>,
        ...
      },
      "label": <variable_name_1>
    },
    {
      "name": < Function_Name_2 >,
      "arguments": {
          <arg_1>: <value from user query>,
          <arg_2>: ${variable_name_1}.{parameter}$,
          <arg_3>: <value from user query>,
          ...
        },
        "label":  <variable_name_2>
    }
    ...
  ]

## Input ##
<User Query in Natural Language>

## Tool Library ##
[
    {
      "name": <Function Name>,
      "description": <API Description>
      "parameters": {
        <arg_1>: {

   "description": <Arg. Desc.>,
           "type": <Arg. Type>
        },
        <arg_2>: {

   "description": <Arg. Desc.>,
           "type": <Arg. Type>
        },
        ... <more function parameters>
      },
      "output_parameters": {
        <out_param_1>: {

   "description": <Param. Desc.>,
           "type": <Param. Type>
        },
        <out_param_1>: {

   "description": <Param. Desc.>,
           "type": <Param. Type>
        },
        ... <more output parameters>
      },
    },
    ... <more tools> 
]

## Python Implementation ## 

def function_name(*args, **kwargs):
      """
      <function description>
      """
      # Core logic
      result = None # Calculate result

      # Return result
      return result

Figure 2: NESTFUL Data Schema for Input, Tool Li-
brary, Output, and Python implementation. In Output
JSON, the arg_2 of Function_Name_2 showcases how
the variable assignments are used to create a nested se-
quence of function calls.

{
"name": "surface_sphere",
"description": "Calculate the surface area of a sphere",
"parameters": {
"arg_0": {
"description": "Radius of the sphere",
"type": "float"

}
},
"output_parameters": {
"result": {
"description": "Surface area of the sphere",
"type": "float"

}
}

}

Figure 3: Sample specification for tools from MathQA

tical tools with different arguments appear in the
same sequence (parallel API calls). For example,
in Figure 1, “rectangle_area” tool was assigned
“label”: “$var_1”. This allows the next tool “mul-
tiply” to use the output of “rectangle_area” as an
argument: “arg_0”: “$var_1.result$”.

3.2 NESTFUL Data Domains

NESTFUL is composed of data from two domains;
1) mathematical reasoning data and 2) generic tools
from the coding domain. We describe below the
process followed to create each data category.

3.2.1 Mathematical Reasoning Data
For the first part of NESTFUL, we relied on
datasets that test the model for nested func-
tion calling in the math domain. We build on
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Problem: 
An artist wishes to paint a circular region on a square poster that is 3.4 feet on a side. if the area of the circular 
region is to be 1/2 the area of the poster, what must be the radius of the circular region in feet?

Operation Stack:
square_area(3.4) → divide(#0, 2) → divide(#1, const_pi) → sqrt(#2)

Tool Call format:
[{"name": "square_area", "arguments": {"arg_0": 3.4}, "label": "var_0"},
{"name": "divide", "arguments": {"arg_0": "$var_0.result$", arg_1: 2} "label": "var_1"},
{"name": "divide", "arguments": {"arg_0": "$var_1.result$", "arg_1": "pi"}, "label": "var_2"},
{"name": "sqrt", "arguments": {"arg_0": "$var_2.result$"}, "label": "var_3"}]

Final Answer:
1.3564

Figure 4: Sample problem from the MathQA dataset. The Operation Stack provides an ordered sequence of nested
tool calls which we transform into a Tool Call format for the NESTFUL dataset.

MathQA (Amini et al., 2019), a benchmark de-
signed to evaluate AI models’ ability to solve math-
ematical word problems. It consists of questions
that test numerical reasoning and problem-solving
skills, requiring models to both understand the text
of a word problem and perform mathematical oper-
ations to arrive at the correct solution.

Tool specifications Since MathQA provides only
the tool names, we manually created specifications
for all the tools in the dataset. This covers 40 tools
in total; e.g., divide, remainder, volume_cylinder,
permutation, etc. For each tool, we define the name,
tool description, and detailed outline of the tool in-
put and output parameters, including the parameter
data type and description as shown in Figure 3.

Tool calling input-output pairs To build the test
data, we used the test set of MathQA where the
“problem” definition is the query and parsed the
“annotated formula” into a nested sequence of tool
calls. An example is shown in Figure 4.

Executable Code and Filtering For each tool,
we also generated its corresponding implementa-
tion in Python. This allows us to execute the nested
call sequence and match the execution result with
the gold answer. It also ensures the correctness of
the set of corresponding tools and the code execu-
tion too. We then filtered out any samples where
we could not reproduce the gold answer from exe-
cuting the nested tool calls. This process resulted
in 1,415 test samples spanning 40 tools with an
average of 5.1 tool calls per sample.

3.2.2 Coding Data
We also curated test examples based on generic
Python functions from the StarCoder2-Instruct
dataset (Wei et al., 2024). This dataset has a total of
50K Python functions and covers a wide range of

tools that can be used. We started by collecting tool
instructions and their Python implementations, fol-
lowed by using Mixtral-8x22B to infer parameter
type hints. Any functions that were syntactically
incorrect or non-executable were filtered out. Next,
a synthetic data generation pipeline was used to
create instruction–nested call pairs using the valid
seed tools and examples. This pipeline included a
validator to ensure all parameters and tool names
were accurate and complete. Finally, execution-
based filtering was applied to verify that the gener-
ated samples produce the correct final output. We
elaborate on each step in the following sections.

Tool specifications We leveraged StarCoder2-
Instruct’s Python implementations and docstrings
to create API specifications, see Figure 5 for an
example. For each Python function, (1) we used
Mixtral 8x22B2 to generate the possible Python
types of the input and output arguments, and (2)
we validated and executed the function code itself
to ensure it does not produce any errors. After both
steps, we generated a corresponding JSON spec-
ification for each function documenting its input-
output arguments. Figure 5 shows an example.

Tool calling input-output pairs To create input-
output pairs, we leveraged DiGiT3 synthetic data
generation framework. DiGiT allows for defining
various synthetic data generation pipelines given
seed examples of input/output pairs. In particular,
we used 10 seed examples and used Mixtral-8x22B
as the teacher model. We also implemented a func-
tion calling validator that applies various heuristics
to check the quality of the synthetic data, ensuring
function calls adhere to the given specifications. In

2https://huggingface.co/mistralai/
Mixtral-8x22B-Instruct-v0.1

3https://github.com/foundation-model-stack/
fms-dgt
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def angle_rotation(arr, k):
"""Rotates the elements in the array by `k` positions 

in the right direction.
Args:

arr: The array of numbers.
k:   The number of positions to rotate the elements     

in the array.
Returns:

The array after rotating the elements by `k` 
positions in the right direction.

"""
if len(arr) < k:

k = k % len(arr)
return arr[len(arr)-k:] + arr[:len(arr)-k]

### Python Implementation

{
"name": "angle_rotation",
"description": "Rotates the elements in the array by `k`…",
"parameters": {

"properties": {
"arr": {

"description": "The array of numbers.",
"items": {

"type": "integer"
},
"type": "array"

},
"k": {

"description": "The number of positions to rotate …",
"type": "integer"

}
},
"required": [

"arr",
"k"

],
"type": "object"

},
"output_parameters": {

"properties": {
"output_0": {

"description": "The array after rotating …",
"type": "array"

}
}

}
}

### Tool Specification

Figure 5: [top] An example function (angle_rotation)
from StarCoder2-Instruct dataset with its docstring doc-
umentation. [bottom] Tool specification for “angle_rota-
tion” after inferring the different data types and creating
its input/output parameters.

particular, we have validations to ensure the tools
and parameters used are not hallucinated, required
parameters are specified, and there is at least one
nested tool call in the output sequence.

Filtering We further filtered the generated input-
output pairs by executing their gold nested API
sequence to ensure they execute and attach the re-
sult as the gold answer. For a function that has
a randomness element (e.g., generating a random
list), we set a fixed seed for all our experiments
and re-execute all those cases to ensure that we
are getting the same response all the time. From
this category of data, we generated 446 test exam-
ples covering more than 881 distinct tools with an
average tool sequence length of 2.1.

3.3 Dataset Quality

Our benchmark builds on MathQA and StarCoder2-
Instruct. MathQA is a well-known mathematical

reasoning dataset that was manually validated by
humans, providing the input, the correct sequence
of math operations, and the final answer. After
converting it into a nested tool sequence, we further
validate it by executing the sequence to ensure it
produces the original gold answer. However, since
the coding dataset is synthetically generated, we
also implemented multiple automatic validations
at various stages. This includes checking that the
nested tool sequences align with tool specifications
(input/output) and that they execute correctly to
produce the expected final output.

4 Evaluation

4.1 Baselines
We extensively evaluated NESTFUL on 19 propri-
etary and open-source models, ranging in size from
1B to 685B parameters. This selection includes
top tool-calling LLMs featured on the Berkeley
Function-Calling Leaderboard (BFCL) (Yan et al.,
2024), as well as state-of-the-art models known
for strong function-calling capabilities. Among
the tool-calling models, we include the xLAM
(Zhang et al., 2024b; Liu et al., 2024), Hammer
(Lin et al., 2024), ToolAce (Liu et al.) model fami-
lies, and Granite-20B-FunctionCalling (Abdelaziz
et al., 2024). We also evaluate a range of foundation
models, including multiple sizes of LLAMA 3.1
(Dubey et al., 2024), Mixtral4, and DeepSeek-V3
(Guo et al., 2024), and the state-of-the-art propri-
etary model GPT-4o (Hurst et al., 2024). To ex-
plore how an agentic LLM performs on NESTFUL,
we also include AgentLM-13B (Zeng et al., 2023),
which has been instruction-tuned using interaction
trajectories from diverse agentic tasks.

4.2 Experimental Settings
The experiments are carried out with a temperature
of 0.0 in one-shot and three-shot settings, i.e., the
prompt contains one or three in-context learning
(ICL) examples, respectively. To the best of our
knowledge, all 18 open models were not trained
with the label assignment syntax in the output API
sequence, so it was crucial to have ICL examples
to get the best results. For each model, we used its
specified prompt along with the special tags. Con-
text length limitations prevented the inclusion of
the entire API library in the prompt. Instead, we
pre-processed the data to create a shorter API list
for each sample. This list ensured the inclusion

4https://huggingface.co/mistralai/
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One-shot ICL Three-shots ICLModel #Parameters F1 Func. F1 Param. Part. Acc. Full Acc. Win Rate F1 Func. F1 Param. Part. Acc. Full Acc. Win Rate

xLAM-1b-fc-r 1B 0.19 0.08 0.09 0.00 0.01 0.22 0.09 0.09 0.03 0.02
xLAM-2-1b-fc-r 1B 0.41 0.13 0.13 0.00 0.00 0.43 0.12 0.13 0.00 0.00
xLAM-7b-fc-r 7B 0.49 0.17 0.15 0.00 0.03 0.55 0.23 0.23 0.15 0.14
xLAM-2-8b-fc-r 8B 0.48 0.15 0.14 0.00 0.01 0.47 0.17 0.15 0.04 0.04
Hammer2.0-7b 7B 0.56 0.24 0.21 0.07 0.16 0.61 0.30 0.29 0.22 0.25
Hammer2.1-7b 7B 0.10 0.05 0.05 0.01 0.01 0.16 0.10 0.11 0.08 0.08
Llama-3-1-8B-Instruct 8B 0.64 0.19 0.17 0.06 0.06 0.63 0.22 0.22 0.16 0.11
ToolACE-8B 8B 0.43 0.13 0.13 0.00 0.00 0.50 0.15 0.13 0.00 0.00
ToolACE-2-Llama-3.1-8B 8B 0.28 0.10 0.13 0.00 0.00 0.29 0.10 0.13 0.00 0.00
Granite-20B-FunctionCalling 20B 0.64 0.20 0.17 0.02 0.05 0.61 0.25 0.26 0.21 0.20
Mixtral-8x7B-Instruct-v0.1 46.7B 0.22 0.07 0.05 0.00 0.01 0.32 0.13 0.14 0.09 0.09
xLAM-8x7b-fc-r 46.7B 0.40 0.15 0.16 0.01 0.01 0.43 0.16 0.17 0.02 0.03
Llama-3-1-70B-Instruct 70B 0.41 0.19 0.15 0.04 0.09 0.33 0.17 0.15 0.07 0.11
Mixtral-8x22B-Instruct-v0.1 141B 0.49 0.21 0.17 0.06 0.07 0.65 0.29 0.28 0.21 0.23
xLAM-8x22b-fc-r 141B 0.53 0.21 0.22 0.12 0.03 0.50 0.23 0.25 0.17 0.06
Llama-3-1-405B-Instruct-fp8 405B 0.41 0.14 0.08 0.03 0.10 0.41 0.18 0.13 0.07 0.14
DeepSeek-V3 685B 0.69 0.36 0.27 0.09 0.43 0.69 0.42 0.37 0.29 0.60
GPT-4o (2024-08-06) UNK 0.73 0.41 0.38 0.28 0.59 0.74 0.41 0.38 0.28 0.60

Table 1: Evaluation results on NESTFUL on state-of-the-art LLMs with Direct Prompting technique. Models
are sorted by their size. Experiments are done in one-shot and three-shot ICL settings. The best performance is
highlighted in bold; the second best is underlined. Partial Sequence Accuracy (Part. Acc.) denotes the percentage
of calling the correct API sequence (API names and arguments), whereas Full Sequence Accuracy (Full Acc.)
counts the percentage of times where the model gets the entire sequence of APIs correctly. Both scores range from
0 to 1. We also report Win Rate, which measures whether all the predicted APIs by the model are executable and
lead to an exact match with the gold answer.

of the gold APIs, the APIs used in the in-context
learning (ICL) examples, and some random APIs,
keeping the total prompt length under 4K tokens.
On average, each input includes 11.2 tools, with
a minimum of 7 and a maximum of 21, and all
the models are evaluated on the exact same pre-
processed tool lists, and the data remains fixed
across evaluations. Output API calls were extracted
from the model’s response as a list of JSON objects,
taking into account the specific prompt format and
output structure for each model. Finally, we eval-
uated a zero-shot ReAct (Yao et al., 2022) agent
with the best 4 open models based on the win-rate
and AgentLM-13B, limiting max steps to 10.

4.3 Metrics

For a detailed evaluation, we use the following met-
rics: 1) F1 score for function and parameter names
generation (Abdelaziz et al., 2024), 2) Partial and
Full Match Accuracy, and 3) Win Rate.

LLM model response is a sequence of API calls,
with each call consisting of an API name and
its argument-value pairs. We use the Partial Se-
quence Matching metric to determine how many
predicted APIs (with their argument-value pairs)
in a sequence match with the gold API sequence.
In contrast, the Full Sequence Matching metric
evaluates whether the model predicts the exact full
sequence of APIs, including both the API names
and their argument-value pairs, when compared to
the gold API sequence. In both cases, we calculate

the scores for each sample and then compute the
statistical mean across the entire dataset as the fi-
nal score. However, F1 and Accuracy metrics can
unfairly penalize valid alternative API sequences
that differ from the gold sequence but still produce
the correct result. To address this limitation, we
introduce the Win Rate metric. Win Rate measures
whether the predicted APIs are valid and, when
executed, lead to the gold answer. In this way, Win
Rate focuses solely on the correctness of the final
output, regardless of the specific execution path. A
win is recorded if the predicted answer matches the
gold answer.

4.4 Results

Table 1 presents a comparison of different base-
lines on the NESTFUL dataset with one-shot and
three-shot ICL example settings. The low num-
bers of the best function calling models depict the
complexity and toughness of the nested sequenc-
ing problem. GPT-4o and DeepSeek-V3 achieve
the highest win-rate of 60%, which is significantly
below the acceptable numbers for real-world ap-
plications in general. This clearly depicts the sig-
nificant scope for improvements for the models
in various aspects of function calling, including
nested sequencing. We inspected the models’ out-
puts and identified several common issues across
them. These models struggle with tasks such as as-
signing variables, utilizing output parameter details
from the API specifications, and correctly passing

33543



variable names and corresponding output parame-
ters to subsequent APIs, even with ICL examples5.

As anticipated, in most of our experiments in
Table 1, the models are doing better across all the
metrics when they are provided with three ICL
examples in the prompt instead of one example.
Across all models, Partial Sequence Match scores
are consistently higher than Full Sequence Match
scores, which is expected, as the latter is a stricter
metric than the former. In many cases, the Win Rate
is higher than the Full Accuracy because models
may follow alternative reasoning paths/trajectories
to arrive at the correct final answer. While such de-
viations can penalize full or partial accuracy scores,
they are still credited under the win rate for suc-
cessfully reaching the gold answer. Hammer2.0-
7b, despite being a smaller model, outperforms
several larger tool-augmented LLMs. DeepSeek-
V3 emerges as the strongest open-source model,
closely matching GPT-4o’s performance in the
three-shot ICL setting, although it trails slightly
in the one-shot setup. These results highlight that
model size or architectural complexity is not the
primary determinant of performance; rather, the
ability to effectively follow instructions and lever-
age in-context examples plays a more critical role.
This is evident as some large models like xLAM-
8x22b-fc-r and Llama-3-1-405B-Instruct-fp8 un-
derperform, while smaller models like Hammer2.0-
7b achieve exceptional results.

ReAct-based Evaluation: The previous results
showed how poorly direct prompting of LLMs per-
formed on NESTFUL. The literature has shown
that agentic approaches have resulted in better per-
formance on complex tasks. While many agentic
architectures exist, we selected ReAct due to its
popularity and its ability to reason over the output
of the tool that is added to the prompt at each turn.

Table 2 summarizes the results of the ReAct
agent (Yao et al., 2023) compared to one-shot ICL
direct prompting. Note that there was no ICL ex-
ample provided in the ReAct case, as the expected
output does not need to follow the label assignment
syntax. We only report Win Rate, which checks if
the trajectory of output tools leads to the gold an-
swer, due to the single-step planning and execution
approach of REACT as opposed to planning the

5Note: While we acknowledge that these models were
not trained using the robust data schema outlined in Section
3.1, the challenges associated with nested sequencing persist
regardless of the schema used and remain an area where LLMs
need improvement.

Model Direct Prompting
(One-shot ICL)

ReAct Agent
(Zero-shot)

Hammer2.0-7b 0.16 0.07
AgentLM-13B 0.00 0.00
Mixtral-8x22B-Instruct-v0.1 0.07 0.30
DeepSeek-V3 0.43 0.46

Table 2: Evaluation results (Win Rate) on NESTFUL
comparing the performance of a ReAct Agent (zero-
shot) to the Direct Prompting with a one-shot ICL exam-
ple. For each model, the best performance is highlighted
in bold for comparison.

entire API sequence at once in direct prompting.
For larger models like Mixtral-8x22B-Instruct-

v0.1 and DeepSeek-V3, the ReAct approach outper-
forms direct prompting, though there is still room
for improvement. Notably, Mixtral-8x22B-Instruct-
v0.1 shows the highest win-rate gain of 30% with
ReAct. Hammer2.0-7B performs better with di-
rect prompting compared to the ReAct approach.
Although AgentLM-13B is specifically trained for
agentic tasks, it does not demonstrate strong perfor-
mance on NESTFUL, indicating that agent-specific
training or architectures do not always guarantee
improved results in this setting. Output analysis re-
veals that the top-performing models exhibited bet-
ter alignment with the ReAct format and occasion-
ally relied on their parametric knowledge to repli-
cate API functionalities. As a result, they achieved
correct final outcomes, reflected in a higher win-
rate despite inconsistencies in intermediate steps.

4.5 Dataset Analysis

To analyze the results, we model the samples in
the NESTFUL as a Directed Acyclic Graph (DAG)
where nodes are individual function calls and the
edges are data dependencies between two nodes.

Data Nesting Depth Analysis In Figure 6a, we
present the win rate for top-performing models
against varying levels of maximum depth in the
DAG structure, which corresponds to the longest
nested data dependency flow in a sample. We ob-
serve that all models perform well for samples with
maximum single nesting depth. However, the per-
formance drops sharply with depths of two or more,
suggesting that long nested sequences present diffi-
cult scenarios for current models.

Total Data Dependency Analysis In Figure 6b,
we present the win rate compared to the total num-
ber of data dependencies within a sample (a repre-
sentation of the complexity of the sequence). The
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(c) Nesting Pattern Analysis

Figure 6: Top 4 models’ performances (on the three-shot setting) with a varying number of (a) longest data
dependencies, (b) the total number of data dependencies, and (c) common data nesting patterns in NESTFUL.
We observe that models perform well for the simple data samples, however, the performance drops sharply with
complicated structural patterns in the data.

trends here are similar to the ones we observed in
the Nesting Depth Analysis section. Models per-
form well for singular nested data dependency in
the sample, achieving around 75% win-rate, but
the performance drops sharply with two or more
nested data dependencies.

Nesting Patterns Analysis We identify common
nesting patterns and analyze model performances
for individual nesting patterns. Results are shown
in Figure 6c. We observe that for a simple pattern
such as A → B, where the output of A is used as
input by B, all models perform fairly well. However,
for complex patterns such as {A, B} → C, where
the outputs of both A and B are used as input by C,
model performance decreases significantly. This
suggests that models currently struggle with more
complex patterns present in NESTFUL.

5 Challenges

Results show that NESTFUL posed a challenge for
state-of-the-art LLMs for several reasons.

Data-type Adherence for the Input/Output Pa-
rameters In the API specification, we define the
data type for all parameters. The ‘type’ field speci-
fies the data type, such as string, number, list, etc.
Since APIs follow a strict structure for both input
and output, it is crucial for the model to adhere to
these specified formats. If the model fails to follow
this, especially in cases involving nested functions
where the output of one API is used as the input
for another, the process will fail if the output type
doesn’t match the expected input type.

Variable Assignments As discussed in Section
3.1, we add variable assignments for each API in
the output to manage parallel function calls, which
is very common in real-life applications. Below is
an example of parallel nested function calls:
{"input": "What is the difference between the

squares of 4 and 3?"
"output": [

{"name": "square", "arguments": {arg_0: 4},
"label": "$var_1"},

{"name": "square", "arguments": {arg_0: 3},
"label": "$var_2"},

{"name": "subtraction", "arguments": {arg_0:
$var_1.result$, arg_1: $var_2.result$},

"label": "var_3"},
]}

The example highlights the complexity of distin-
guishing repeated functions with different outputs,
which models struggle with due to a lack of schema
training—a challenge also supported by our quali-
tative analysis in Section 4.4.
Implicit API calling Implicit function calling
occurs when a model must identify and invoke the
appropriate APIs to solve a user query, even though
the query doesn’t explicitly mention them. This re-
quires understanding the problem, selecting the
correct functions, and filling in parameters using
query details or previous outputs—adding signifi-
cant complexity to the task. Figure 1 demonstrates
an example of implicit function calling, where the
user query presents an arithmetic problem without
explicitly stating the APIs involved.

6 Conclusion

In this work, we introduced NESTFUL, a new
benchmark for evaluating the LLMs on nested se-
quences of API function calling. Existing LLMs
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perform poorly on this dataset as compared to their
performance on existing benchmarks. We also stud-
ied their performance and identified several modes
of failure. In addition, we outlined the many chal-
lenges this dataset poses to LLM function calling
approaches. By making this dataset available pub-
licly under a permissive open-source license, we
aim to push tool calling capabilities in new direc-
tions and unlock solutions to more realistic and
challenging tasks.

Limitations

A limitation of our benchmark, NESTFUL, is that
it does not involve environment interactions for AI
agents or the execution of real-world APIs. In fu-
ture work, it would be interesting to explore the
setting of embodied agents, where API calls pro-
duce changes in a grounded environment. We also
plan to expand the NESTFUL dataset with real-
world API integrations (e.g., via RapidAPI).

Ethics Statement

Our dataset does not pose any ethical concerns for
the community. All of the functions we consider
are either related to the Math domain or generic
functions that do not deal with personally identi-
fiable information or functions that could be used
maliciously. Furthermore, the user queries do not
contain any hate, profanity or toxic content.
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