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Abstract

Large Reasoning Models (LRMs) are often bot-
tlenecked by the high cost of output tokens.
We show that a significant portion of these to-
kens are useless self-repetitions — what we call

“word salad” — that exhaust the decoding bud-
get without adding value. Interestingly, we ob-
serve that LRMs are self-aware when trapped in
these loops: the hidden states of <\n\n> tokens
trailing each reasoning chunk exhibit patterns
that allow us to detect word salad behavior on-
the-fly via a single-layer linear classifier. Once
detected, a simple chop appended by a straight-
forward regeneration prompt yields substantial
length savings with minimal quality loss. Our
work offers WordSaladChopper (WSC) — a
lightweight, turnkey component for LRM that
is minimally invasive to its reasoning trajectory
by only removing semantically redundant to-
kens. Given its low overhead, strong savings,
and the lack of semantic value of word salad
tokens, we believe it is not too far-fetched
to argue that WSC — or a similar compo-
nent — is a must-have for all LRM applica-
tions with user experience in mind. Our code
is publicly available at https://github.com/
wenyaxie023/WordSaladChopper.

1 Introduction
Despite the drastic boost in performance over their
non-reasoning counterparts, one innate issue of
LRMs is that they essentially trade more decoded
tokens for capabilities. However, a prolonged de-
coding section is among the most expensive op-
erations a Large Language Model (LLM) can
experience due to compute, memory, and schedul-
ing challenges. For instance, OpenAI o3 charges
$10/$40 per one million of input/output tokens,1 a
striking 4× difference between decoding and pre-
fill. Despite the high cost of long thinking traces, a
less well-known and rarely quantified fact (Li et al.,

* Equal contribution.
1https://openai.com/api/pricing/

2025; Yeo et al., 2025) is that LRMs tend to waste
an enormous amount of decoding budget, sim-
ply by repeating themselves verbatim, with slight
variations, or engaging in endless enumeration of
cases until all budget has been expensed (see exam-
ples at Appendix G) — we refer to such behavior
as Word Salad, a term often used to mock pub-
lic spokespersons for giving long-winded, jargon-
filled responses that ultimately lack substance or
clear meaning. The “Original” column in Table 1
shows that when answering GPQA-Diamond (Rein
et al., 2024), we observe 55%+ of tokens generated
by DeepSeek-R1-Distill models are marked as
“word salad tokens,” where they do not add value
from a semantic standpoint.2

Table 1: Percentage of word salad tokens in answering
GPQA-Diamond. 55%+ of the budget has been wasted.

Model Original After Chop

DeepSeek-R1-Distill-Qwen-1.5B 63.37 5.29
DeepSeek-R1-Distill-Qwen-7B 61.92 4.23
DeepSeek-R1-Distill-Llama-8B 56.60 5.60

Naturally, making such thinking sections shorter
while preserving answer quality has become a ma-
jor goal of the efficiency community. In fact, many
works have emerged in a short period, forming
a new subfield of long-to-short (L2S); with some
of the most effective L2S methods often requir-
ing training intervention (Sui et al., 2025; Wang
et al., 2025a; Liu et al., 2025). While effective,
with major parameter updates, such training-based
L2S methods surely introduce a rather aggressive
“invasion” into the original reasoning trajectory of
LRMs, where the side effects remain largely un-
known. Moreover, such methods typically do not
stack well with one another, as different training
recipes often demand intrinsically conflicting oper-

2For better flow, we refer readers to Section 2.1 for the
technical definition of word salad tokens. Intuitively, one
can understand them as a rough catch-all for different kinds
of verbatim or non-verbatim repetitive behaviors that do not
provide much value from a semantic standpoint.
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Maybe the carbonyl
group is part...\n\n

Wait, perhaps
I'm wrong.\n\n

Option C has a
singlet ..\n\n

Option D has two
doublets and ...\n\n

Perhaps the carbonyl
group is part...\n\n

Wait, maybe I'm
wrong.\n\n

Chopping Point

Original Reasoning Flow

 < Let me reconsider this problem with a
clear and confident mindset. >

Option A has a
singlet at ...

So, the
answer is A.

Rescue
Regeneration

< Append regeneration prompt. >

Generation Flow

Pruned PathBenign Reasonning Chunk

Repetitive Word Salad Chunk

Repitition Detection

On-the-fly word salad repetation detection with lightweight linear classifier (input: hidden state of <\n\n>）

Figure 1: General workflow of WordSaladChopper. 1) Detect: We allow the reasoning model to freely generate,
following its original reasoning flow. Meanwhile, we classify the hidden state of each chunk’s trailing <\n\n> token
using our trained linear classifier in an on-the-fly manner; 2) Chop: Once a chopping point is reached — in this
case, it is defined by having two consecutive word salad chunks detected — we truncate the generation to the left
of it; 3) Regenerate: We append a regeneration prompt with constant budget, allowing the model to complete its
answer by its own via <eos> or until the new budget is fully expensed.

ations. Instead, in this work, we explore whether
it is possible to advance efficient reasoning in a
turnkey and minimally invasive manner, just by re-
ducing the word salad behavior — as such salad
tokens are likely universally agreed to be redundant,
if not at all useless, from a semantic standpoint.

Surprisingly, we find that the model is actu-
ally self-aware when it is trapped in such “word
salad” loops — specifically, the hidden states of
<\n\n> tokens at the end of each reasoning chunk
show distinguishable patterns when the model is
trapped versus when it is not. Leveraging this ob-
servation, we train a lightweight linear classifier
that runs on-the-fly to detect this word salad be-
havior. Once detected, a simple chop and regen-
eration prompt yields significant length savings
with minimal quality loss — e.g., the chopping
would immediately reduce up to 92% of word
salad tokens in DeepSeek-R1-Distill-Qwen-7B
when undergoing GPQA-Diamond (Table 1). In
summary, our main contributions are as follows:

• Comprehensive investigation of LRM word
salad behavior. To the best of our knowledge,
we are the first to systematically study the general
repetition phenomenon in LRM reasoning traces,
identifying its key characteristics, persistence,
and its robustness to existing reputation penalties.

• Empirical evidence that LRMs are self-aware
when trapped in word salad loops. We show
that the hidden states of <\n\n> tokens carry dis-
tinct signals when the model is stuck in word
salad loops versus when it is reasoning normally
— revealing a hidden opportunity for detection
and intervention.

• A lightweight, turnkey, minimally invasive
component for all LRM applications. We

propose a specially-trained linear classifier that
runs on-the-fly without retraining or architectural
modification on the LRM end. Once word salad
behavior is detected, a chop-then-regenerate rou-
tine significantly reduces output length with min-
imal reasoning quality degradation.

In this work, we aim to deliver our following mes-
sages clearly and quickly: 1) Word salad is an
overlooked but severe issue present across likely
all LRMs. It offers no benefit yet consumes an atro-
cious amount of decoding budget; and 2) LRMs are
self-aware of such behavior, where on-the-fly de-
tection and intervention is possible. We believe any
LRM-serving application should consider adopt-
ing our component — or something similar — as
an almost-free-lunch solution for immediate cost
savings and latency improvements. Due to page
limitations and lack of tightly relevant art, we re-
fer the reader to Appendix A for Related Work
discussions.

2 Observations
In this section, we outline four empirically sup-
ported observations of LRM word salad behavior.

2.1 A Heavy Contributor of Long Thinking is
Word Salad-like Self-Repetitions

Much of the contribution of our work depends on
whether there truly exists a significant amount of
word-salad-like self-repetitions within LRM’s rea-
soning traces. Defining such behavior demands
carefulness, as LRMs typically do not exhibit
strictly verbatim repetitions, rendering rule-based
methods not applicable. To achieve an accurate yet
simple flagging, we employ an embedding model
E. Then, for a given trace T , we first chunk T
into different chunks based on some common de-
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limiter — in this case, <\n\n> — so we’d have
T = c1 ⊕ c2 ⊕ · · · ⊕ cn where ci represents the
i-th chunk of T and ⊕ represents concatenation.
A chunk ci is considered a “word salad chunk” if
E(ci, cj) ≥ θ for j = {1, 2, . . . , i − 1}, where θ
is a similarity threshold.3 Namely, ci is flagged
as a word salad chunk if it is highly similar to a
previous chunk cj within the thinking trace T , per
the embedding model E. We consider all tokens
within a word salad chunk as word salad tokens.

Table 2: Percentage of word salad chunks within reason-
ing traces. Result are presented as (temp τ = 0.0, 0.6).

Model GSM8K MATH-500 AIME25 GPQA-Diamond

Qwen-1.5B (51.2, 37.4) (62.9, 10.6) (77.5, 18.7) (87.7, 42.4)
Qwen-7B (23.9, 8.1) (45.4, 10.9) (52.1, 10.9) (72.7, 25.3)
Llama-8B (35.0, 8.3) (53.1, 10.5) (62.9, 13.6) (60.1, 18.0)

Table 2 indicates that such word salad chunks
indeed occupy a non-trivial presence in the rea-
soning traces. We additionally note that, unless
otherwise specified, all reported models are of
DeepSeek-R1-Distill series with temp τ = 0.

2.2 Once Word Salad Happens, LRMs are
Unlikely to Get Out on Their Own

One unique characteristic of word salad that would
result in a poor user experience is that once the
model triggers word salad, it is unlikely to untrap
itself. Thus, the model will most likely be trapped
in such word salad loops until all the decoding
budget has been fully expensed. We refer to this
boundary as the chopping point (Table 3).

Table 3: Percentage of word salad chunks before / after
the chopping point.

Model GSM8K MATH-500 AIME25 GPQA-Diamond

τ = 0.0

Qwen-1.5B 2.08 / 98.00 9.48 / 94.91 11.68 / 99.05 17.19 / 96.93
Qwen-7B 1.21 / 98.30 6.59 / 89.63 10.03 / 81.82 13.13 / 95.63

τ = 0.6

Qwen-1.5B 2.75 / 97.21 8.23 / 51.35 8.95 / 60.07 8.84 / 93.92
Qwen-7B 0.34 / 77.32 2.30 / 21.80 3.10 / 13.79 1.93 / 42.81

Needless to say, this presents a catastrophic issue
to users, as an ideally much shorter thinking section
is now maximized with useless repetitions. So
the user is essentially paying the maximum cost
for a (likely) wrong answer, while enduring the
longest end-to-end latency. In practice, we find that
Qwen-1.5B often requires a much longer runtime
than its 7B counterpart, for the exact reason that it
is maximizing its decoding budget a lot more often
with word salad chunks. This goes against the main
drive of using smaller LRM in the first place.

3In practice, we set θ = 0.99 & E = all-MiniLM-L6-v2.

2.3 Such Kind of “Word Salad” Behavior is
Hard to Address with Existing Means.

The previous two observations demonstrated the
prevalence and severity of word salad. However,
this is really only an issue if it cannot be trivially
addressed via existing detection methods or various
available repetition penalty designs. Given that our
word salad detection, as described in Section 2.1,
relies on leveraging an embedding model E to com-
pute pairwise chunk similarities, the pipeline itself
naturally serves as a mechanism for identifying
word salad behavior. However, this approach is
far from efficient enough to be deployed on-the-fly,
as it incurs a complexity of Θ

(
n2) for n chunks.

Even with cashing, each operation requires fully
passing one chunk through E, which is infeasible
to be deployed on-the-fly.

One alternative avenue is to employ existing
decoding penalties, such as repeat (Keskar et al.,
2019), presence, and frequency penalties. Unfortu-
nately, those penalties introduce much randomness
to the correctness of LRMs, often negatively. Re-
sults from Table 4 suggest they are too aggressive
in their invasions of the reasoning trajectory of
LRMs, and therefore too volatile to be usable.

Table 4: Task performance w/ penalties (τ = 0.6)

Decoding Setting GSM8K MATH-500 AIME25 GPQA-Diamond

Vanilla 89.76 90.80 37.92 43.43

Repeat Penalty 86.05 87.20 25.83 49.49
Presence Penalty 89.61 89.80 41.67 48.48
Frequency Penalty 78.54 43.80 13.33 36.87

2.4 Models are Self-Aware when it is Trapped
in Word Salad Loops

We, rather surprisingly, find that LRMs are self-
aware when they are trapped in word salad loops.
Specifically, we find that it is possible for us to train
a simple linear classifier — with special data cura-
tion and training recipe detailed in Section 3.1 —
to distinguish the hidden state of trailing <\n\n> to-
ken of word salad chunks versus benign reasoning
chunks. The lightweightness of this linear classi-
fier opens the door for on-the-fly detection, where
we can effectively intervene with different opera-
tions to address models trapped in word salad loops.
Table 5 supports the effectiveness of this classifier.

Table 5: Classifier performance on word salad chunks
detection with Qwen-7B. Results as (Acc. / AUROC).

Temp GSM8K MATH-500 AIME25 GPQA-Diamond

τ = 0.0 92.72 / 98.63 92.31 / 95.95 89.77 / 95.84 93.52 / 97.89
τ = 0.6 91.42 / 96.22 88.14 / 95.26 77.96 / 80.15 93.80 / 96.96
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3 Proposed Method

3.1 Training a Lightweight Linear Classifier
as the Word Salad Chunk Detector

Based on observations from Section 2.1 and 2.2, we
are aware that chunks after the chopping point are
primarily word salad chunks. Thus, it is practically
sensible to mark all chunks after these chopping
points as word salad chunks — even if some of
them are not by definition of Section 2.1 — as stop-
ping generation at the chopping point is reasonable.

Data Curation Following this design principle,
we collect 1,000 seed thinking traces by feeding
the s1 (Muennighoff et al., 2025) questions to
each model tested. Adopting the similar methodol-
ogy from Section 2.1, we first chunk each thinking
trace T as n chunks by T = {c1, c2, . . . , cn} by
<\n\n>.4 Then, we label chunk ci as “word salad
chunk” (say label 1) if E(ci, cj) ≥ θ for j < i,
where θ is a similarity threshold set to 0.99; other-
wise, ci is labeled as a “benign reasoning chunk”
(say with label 0). Additionally, to avoid undesired
long range dependency (labeling a chunk as word
salad because a much, much earlier chunk is con-
sidered similar to it), we limited (j − i) ≤ 100.
We then identify the chunk of the earliest chopping
point ct within this labeled T , where k − 1 con-
secutive chunks of ct are all labeled as word salad
chunks. We then relabel all chunks before ct as
label 0 and all chunks including and after ct as 1.

Training Recipe With this relabeled data col-
lected, we collect the output of the final transformer
block of each <\n\n> from models, along with
their binary labels, to train a linear classifier con-
sisting of a fully-connected layer, as detailed in Ap-
pendix C. We emphasize that we essentially only
“pretrain” this lightweight linear classifier once per
each model on our s1-curated data, where all rea-
soning evaluation results are collected on unseen
data with no finetuning involved.

3.2 Detect, Chop, then Regenerate
Due to space limits, we refer readers to Figure 1 for
the WordSaladChopper workflow. As supporting
evidence, Table 5 shows that the linear classifier
is extremely accurate in detecting the word salad
chunks; yet Table 6 demonstrates that the regener-
ation prompt helps recover the task accuracy lost
from brute-force chopping.

4To clarify, n is not a constant set by us, but naturally
derived from the number of <\n\n> in T .

Table 6: Original/Chopped/Regenerated Acc. for
Qwen-7B at τ = 0.6

GSM8K MATH-500 AIME25 GPQA-Diamond

89.76 / 78.24 / 89.69 90.8 / 83.2 / 89.60 37.92 / 29.17 / 37.92 43.43 / 42.93 / 43.43

4 Experiments and Discussion
Table 7: End-to-end task performance of WSC w/ τ =
0 in terms of task accuracy and length compression.
(AIME25 is omitted here as the variance can be extreme w/
τ = 0, where only one pass of 30 questions is possible.)

Setting GSM8K MATH-500 GPQA-Diamond

Acc. Len. Acc. Len. Acc. Len.

Qwen-1.5B

Original 82.03 1904 72.20 8126 32.83 23449

WSC (Ours)
82.64 1082 72.60 4253 31.82 10004
↑0.61 ↓43.19% ↑0.40 ↓47.66% ↓1.01 ↓57.34%

Qwen-7B

Original 89.99 758 87.60 4925 44.95 12974

WSC (Ours)
90.45 567 86.80 3399 42.42 6027
↑0.46 ↓25.23% ↑0.20 ↓31.00% ↓2.53 ↓53.55%

Llama-8B

Original 85.60 894 79.20 5556 38.89 11969

WSC (Ours)
85.67 667 80.4 3684 38.89 7292
↑0.07 ↓25.40% ↑1.20 ↓33.69% ↑0.00 ↓39.07%

Table 8: End-to-end task performance of WSC w/ τ =
0.6. (AIME25 results are averaged over 8 passes.)

Setting GSM8K MATH-500 AIME25 GPQA-Diamond

Acc. Len. Acc. Len. Acc. Len. Acc. Len.

Qwen-1.5B

Original 82.56 1012 81.60 4485 21.67 16462 35.86 7790

WSC (Ours)
83.02 818 80.40 4065 21.67 13591 35.35 5708
↑0.46 ↓19.20% ↓1.23 ↓9.38% ↑0.00 ↓17.44% ↓0.45 ↓26.73%

Qwen-7B

Original 89.76 565 90.80 3597 37.92 15305 43.43 6201

WSC (Ours)
89.99 545 90.40 3215 36.25 12239 43.43 5345
↑0.23 ↓3.44% ↓0.40 ↓10.62% ↓1.67 ↓20.03% ↑0.00 ↓13.81%

Llama-8B

Original 85.75 650 83.60 3899 28.75 14358 44.44 7061

WSC (Ours)
85.67 650 83.8 3641 29.16 13768 44.44 6604
↓0.08 ↓1.32% ↑0.20 ↓6.60% ↑0.42 ↓4.11% ↑0.00 ↓6.46%

Result Discussion Table 7 and 8 showcased the
effectiveness of our method, where we shall ob-
serve WordSaladChoper is capable of yielding sim-
ilar reasoning benchmark performance to the orig-
inal model but with reduced length. We empha-
size that this is achieved with negligible overhead,
as once the linear classifier is trained, the infer-
ence of this linear classifier consists of passing
the hidden state of just one <\n\n> token for each
chunk. Given the fact that this linear classifier is so
lightweight, its wall-clock runtime is exponentially
quicker than decoding a full chunk in an LRM,
making the overhead nicely hidden from an LRM
inference perspective (see Appendix I for details).

5 Conclusion
Our work investigates the phenomenon of
word salad behavior in LRM and introduces a
lightweight, turnkey, minimally invasive way to
reduce such useless budget wasting.
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Limitations

While our WordSaladChopper successfully curbs
the onset of repetition and maintains answer com-
pleteness through fixed-budget regeneration, we ob-
serve that certain generations still lapse into repeti-
tive loops even after the rescue regeneration phase.
This suggests that future work will require more
robust and adaptive interventions to effectively dis-
engage the model from such failure modes.

We emphasize that our work is not to present
an end-to-end solution that addresses the gen-
eral long-to-short task of efficient reasoning;
rather, we intend to highlight the severity of
word salad behaviors and present a new avenue
for effective LRM control and usage. Our regen-
eration prompt is presented as the most straightfor-
ward way to accompany word salad reduction, and
there sure can be more sophisticated ways to deal
with such post-chopping operations. For instance,
one can explore the following strategies.

• Grant the model a small regeneration budget after
the regeneration prompt (our approach in this
work). So even if it repeats, it will max out soon.

• Continuously apply WordSaladChopper for more
chopping and more regenerations.

• Force append an end-of-think token and compel
the model to output an answer on the spot. This
can be combined with strategies above — giving
the model a limited regeneration budget, letting it
keep thinking, chopping and regenerating if nec-
essary; then, when the budget is nearly or fully
expended, forcing it to conclude and provide a
short answer.

We made the decision (of not exploring sophisti-
cated end-to-end solutions) consciously because
we truly believe a WSC-like component can be a
must-have turnkey addition to any LRM serving
system — as no one wants to waste decoding bud-
get on useless repetitions. So, how it is integrated
into different systems will naturally demand varia-
tions.

Further, it is our honest belief that many
efficient reasoning methods appear effective
partly because current reasoning evaluation
benchmarks have much room for improvement.
Should we develop more comprehensive evalua-
tion suites (Gema et al., 2025; Huan et al., 2025)
— which we surely will in the future — we expect
to see many efficient reasoning methods fail, or

behave much differently than their vanilla LRM
counterparts.5 For this reason, we want to make
our approach as faithful to the original reason-
ing trajectory of the LRM as possible, as this
is failproof to benchmark deficiency. We there-
fore keep the operations after the chop simple and
straightforward — as there is no useful “reason-
ing trajectory ground truth” to adhere to once the
model is already trapped in a word salad loop.

Last, we want to highlight that since our Chopper
requires model-specific training, it is possible that
its performance may vary under different model-
task combinations. We kindly ask our end users to
practice caution when adopting our method.

Ethical Considerations

We do not believe our work is applicable to eth-
ical review, though our work does interfere with
the original output of the model, where end users
should treat its output with care.
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A Related Works

Training-based Long to Short (L2S) Large rea-
soning models often produce lengthy chain-of-
thoughts due to the refinement of intermediate rea-
soning, inflating latency and cost. A series of post-
training approaches (Yan et al., 2025; Munkhbat
et al., 2025) teach models to reach correct answers
with fewer tokens by constructing more concise
training data. TokenSkip (Xia et al., 2025), SPIRIT-
FT (Cui et al., 2025), Coconut (Hao et al., 2024),
and CCoT (Nayab et al., 2024), which shorten
reasoning traces via finetuning or latent-space su-
pervision. These methods are effective but re-
quire re/post-training and are sometimes tied to
specific architectures. Reinforcement learning ap-
proaches (Aggarwal and Welleck, 2025; Hou et al.,
2025) explicitly give short length as a reward to re-
duce response length. While effective, all of these
approaches require additional finetuning (either on
LRMs or from a non-thinking model) and cannot
directly function upon off-the-shelf LRMs.

Our main reservation about such kinds of ap-
proaches is, finetuning heavily perturbs the original
reasoning trajectory of the LRMs. Although most
L2S literature claims that they experience minimal
performance degradation, it is our honest belief that
many efficient reasoning methods appear effective
partly because current reasoning evaluation bench-
marks have much room for improvement. Should
we develop more comprehensive evaluation suites
— which we surely will in the future — we expect
to see many efficient reasoning methods fail, or
behave much differently than their vanilla LRM
counterparts (and there is nothing wrong with that,
just the typical trade-offs and good progression of
science). For this very reason, we want to make
our approach as faithful to the original reasoning
trajectory of the LRM as possible, as this is fail-
proof to benchmark deficiency. We therefore keep
the operations after the chop simple and straightfor-
ward — as there is no useful “reasoning trajectory
ground truth” to adhere to once the model is already
trapped in a word salad loop.

On the fly and training-free intervention
Rather than additional finetuning, many meth-
ods attempt lightweight control during inference.
Prompt-based strategies like TALE (Han et al.,
2025) and Sketch-of-Thought (Aytes et al., 2025)
control generation budgets via prompt engineer-
ing, but they rely on accurate length estimation and
often struggle with complex reasoning. Difficulty-
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aware budgeting approaches such as DSC (Wang
et al., 2025b) and Dynasor (Nayab et al., 2024)
dynamically allocate compute based on estimated
query difficulty or model confidence. While they
share similarities with WSC in adapting decoding,
they operate at the query level, whereas WSC mon-
itors intra-sequence reasoning dynamics.

A second line of work directly manipulates the
decoding process. ESC (Li et al., 2024) dynam-
ically stops the sampling process when a local
observation window reaches a low-entropy state,
while DEER (Yang et al., 2025b) exploits hidden-
state transitions to plant new reasoning paths upon
high provisional confidence. Zhang et al. (2025a)
trains a linear probe on hidden states to predict
correctness and halt decoding early. Addition-
ally, some methods apply decoding-time penalties
to discourage repetitive outputs, such as repeat
penalty (Keskar et al., 2019) and frequency and
presence penalties6. However, these methods can
alter the model’s original reasoning trajectory and
may damage overall performance. In contrast, our
method focuses on identifying the onset of repeti-
tive behavior — an orthogonal dimension of redun-
dancy — and intervenes only to prevent pretentious
loops, thereby preserving the model’s full reason-
ing capabilities.

LRM repetition We emphasize that repetition
(and, by extension, overthinking) in LLMs/LRMs
has received increasing attention, where our work
is certainly not the first to notice such repetition
behaviors — evident from the long-standing rep-
etition penalties highlighted and featured in our
Section 2.3. Here, we feature several more modern
studies regarding LRM repetition.

Wang et al. (2025c) provides a valuable analy-
sis of overthinking behaviors and proposes a self-
training-based finetuning approach to simplify rea-
soning trajectories. Its link to repetition appears
mainly in Section 2.3, where the authors observe
that later solutions sometimes repeat earlier ones
and therefore promote solution diversity. Ulti-
mately, Wang et al. (2025c) is a typical L2S method
that utilizes a compound finetuning approach to
encourage several desirable reasoning behaviors
(not just repetition reduction) by finetuning on the
model’s self-generated data. WSC differs from it
by providing inference-time repetition detection
with negligible overhead. To the best of our

6See https://platform.openai.com/docs/
api-reference/completions for details

knowledge, no prior work offers on-the-fly detec-
tion of repetition in LRMs, and this lightweight
capability makes WSC a turnkey drop-in for
most reasoning pipelines, including Wang et al.
(2025c).

Yao et al. (2025) leverages pretrained Sparse Au-
toencoders (SAEs) to pinpoint layer-specific “rep-
etition features,” then performs activation patch-
ing to damp those features and lower the repeat
score. The method is not lightweight enough for
true on-the-fly use: as one must load pretrained
SAE encoder + decoder for every steered layer,
where each SAE block can be larger than the layer
it modifies. Further, the patch is applied to every
newly decoded token, thus risking divergence from
the LRM’s original reasoning path — a concern
we have discussed above under the L2S paragraph,
given today’s limited reasoning benchmarks.

Last, we have Mahaut and Franzon (2025) being
a phenomenological/diagnostic study that analyzes
how repetition arises via attention-head patterns
but proposes no application-focused solutions. Its
relationship to WSC is rather tangential, but we
thought featuring here might interest the broader
audiences.

B Details of Regeneration.

We conduct all generation experiments on 4×
NVIDIA A100 80G GPUs. During the rescue re-
generation stage, we use tensor_parallel = 4
to fully leverage model parallelism across the avail-
able GPUs.

B.1 Initial Generation Settings

We allow the model to generate up to 32k tokens
during the initial decoding phase. This is consistent
across all models and tasks.

B.2 Rescue Regeneration Settings

we apply a fixed token budget during the rescue
regeneration stage. Table 9 summarizes the settings
used in our experiments.

Rescue Regeneration Prompt

I can find a clearer solution if I focus on the
core problem.

C Training Details of Linear Classifier

We train a single-layer logistic classifier with
its default hyper-parameters: Adam optimizer
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Table 9: Rescue regeneration budget (after chopping)
for all experiments. (unit: # of tokens)

Model GSM8K MATH-500 AIME25 GPQA-Diamond

τ = 0.0

Qwen-1.5B 4k 4k NA 4k
Qwen-7B 4k 4k NA 4k
Llama-8B 4k 4k NA 4k

τ = 0.6

Qwen-1.5B 4k 4k 8k 4k
Qwen-7B 4k 4k 8k 4k
Llama-8B 4k 4k 4k 4k

(learning rate 1 × 10−2, weight decay 0),
BCEWithLogitsLoss, and a mini-batch size of
8 192. Training proceeds for 50 epochs, with all
random seeds fixed at 41 for reproducibility. To
mitigate label imbalance, we first rebalance the
training set to a 1:1 ratio of positive to negative
chunks, and (where minor residual skew remains)
set pos_weight to the inverse class frequency.

D Details of Chopper

At each generation step we compute a repeti-
tion score pi and classify the current sentence
as short or long based on its token count and
the parameter len_threshold. We maintain two
counters: long_streak for consecutive long sen-
tences with pi > thresh and short_streak for
consecutive short sentences with pi > thresh.
Whenever pi ≤ thresh we reset the correspond-
ing counter. We stop generation and trim all
remaining sentences as soon as long_streak
reaches streak_len or short_streak reaches
short_streak_len. In our experiments we set
thresh=0.5, streak_len=2, len_threshold=10,
and short_streak_len=5.

E Datasets Details

E.1 Linear Classifier Training Corpus

s1K (Muennighoff et al., 2025) contains 1 000
multi-domain, competition-style questions (math,
science, logic, general reasoning) with chain-of-
thought solutions. The dataset is released under the
Apache 2.0 license.

E.2 Evaluation Datasets.

• GSM8K: 8792 grade-school word-problems
(7473 train / 1319 test) that each require 2–8
arithmetic steps. We use the 1,319-item test set.

• MATH-500: A 500-problem test subset drawn
from the 12,500-item MATH dataset. We use this

500-item test set. MATH benchmark, covering
algebra, number theory, geometry, combinatorics
and precalculus with worked solutions.

• GPQA-Diamond: 198 multiple-choice graduate-
level questions across physics, biology and chem-
istry designed to defeat information-retrieval
baselines.

• AIME25 (2025): 30 free-response problems
(AIME I + II 2025) requiring creative high-
school competition math; answers are three-digit
integers.

E.3 Availability and Licensing of Artifacts
• Datasets

– s1K: Apache 2.0.
– GSM8K: MIT.
– MATH-500: MIT (inherits parent benchmark

license).
– GPQA Diamond: MIT.
– AIME25: MIT license for the JSON wrapper;

original problem statements © 2025 MAA, re-
distributed here under academic fair use.

• Models
– DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-

R1-Distill-Qwen-7B, and DeepSeek-R1-
Distill-Llama-8B: All three checkpoints
are released by DeepSeek under the MIT
License, which permits commercial use,
redistribution, and the creation of derivative
works without additional approval.7 Although
each model is distilled from its respective
parent (Qwen-2.5 (Yang et al., 2024) or
Llama-3.1 (Grattafiori et al., 2024)), the
redistributed weights themselves inherit the
MIT terms.

• Code All custom scripts will be released under
the MIT license.
All artifacts used in this work have been utilized

in a manner consistent with their original intended
use, as specified by their respective licenses. No
proprietary or restricted data were included.

F WordSaladChopper Algorithm

We present the pseudocode for WordSaladChopper
in Algorithm 1.

G Case Studies

We provide qualitative demonstrations of degen-
eration behaviors and our method’s intervention

7See the model cards on HuggingFace for the exact license
text.
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Algorithm 1 WordSaladChopper
1: Inputs: M , C, P , R, L, params
2: ids← tokenize(P )
3: long_streak, short_streak ← 0, 0
4: last_nl_pos← |ids| − 1
5: while |ids| < L do
6: logits, h←M.forward(ids)
7: next_id← sample(logits)
8: ids.append(next_id)
9: if next_id ∈ NEWLINE_TOKEN_IDS then

10: // repetition probability
11: p← C(h)
12: chunk_len← |ids| − last_nl_pos− 1
13: last_nl_pos← |ids| − 1
14: is_rep← (p > thresh)
15: if is_rep then
16: if chunk_len ≥ len_threshold then
17: long_streak ← long_streak + 1
18: short_streak ← 0
19: else
20: short_streak ← short_streak + 1
21: long_streak ← 0
22: end if
23: else
24: long_streak, short_streak ← 0, 0
25: end if
26: chop_now ← (long_streak ≥ streak_len)
27: or (short_streak ≥ short_streak_len)
28: if chop_now then
29: // CHOP
30: ids← ids[: −(chunk_len+ 1)]
31: // Append regeneration prompt
32: ids.extend(tokenize(R))
33: return continue_until_eos(M, ids, L)
34: end if
35: end if
36: end while
37: return detokenize(ids)

strategy.

Case 1: Semantic Loop from Unresolved Am-
biguity (MATH-500 #462). The model begins
with valid reasoning but then becomes trapped in
a semantic loop — repeating the same confusion
without resolution:

“But when I added step-by-step, I got
9997.\n\n”
“But wait, 6270 + 3737 is 10,007, so why
is the step-by-step adding 3000, 700, 30,
and 7 giving me 9997?\n\n”
“But why does the step-by-step addition
give me 9997?\n\n” (chopped here)
“Wait, so 6270 + 3737 is 10,007...\n\n”

WSC detects early signs of degeneration and
chops at the third chunk, followed by a regenera-
tion prompt. The regenerated continuation quickly
resolves the problem with correct reasoning within
a 4k budget.

Case 2: Endless Enumeration without Conver-
gence (MATH-500 #110). The model attempts

a brute-force enumeration without reaching a con-
clusion:

“For k=1: ...”
“k=12: ...”
“k=14: ...” (chopped here)
“k=27: ...”

Here, WSC intervenes at chunk 318 to prevent
further unbounded enumeration, ensuring the con-
tinuation remains within budget. This illustrates
WSC’s ability to detect degeneration early and pre-
vent catastrophic repetition.

H Discussion on Choice of Delimiter

A natural question concerns our use of “\n\n” as
the segmentation point for reasoning traces. We
provide both intuition and empirical evidence for
this choice.

Rationale We opt for “\n\n” because it is (i)
prevalent in the reasoning traces of Large Reason-
ing Models (LRMs), and (ii) carries minimal se-
mantic meaning. In contrast, tokens such as “Wait”
or “Alternatively” embed semantic cues that may
bias downstream classifiers. While there is no uni-
versally agreed delimiter for LRMs due to their
recency, choosing minimal or non-semantic trail-
ing tokens as chunk representatives has long been a
practice in NLP. For example, dense retrievers often
use the <eos> token at the end of a passage as the
vector representation of the whole passage (Wang
et al., 2024), and efficiency works register special
<beacon> tokens at chunk boundaries to encode
chunk-level information (Zhang et al., 2025b). The
“\n\n” token naturally fulfills both criteria (mini-
mal / non-semantic + trailing), making it a strong
candidate for our purposes.

Empirical Evidence We further observe that sen-
tences with similar semantic content yield differ-
ent classifier scores at their trailing “\n\n”. As
repetitions accumulate, later chunks become pro-
gressively easier for the classifier to identify as
degenerate. Table 10 illustrates this progression:
classifier scores (0 – 1, with higher scores indicat-
ing stronger repetition) sharply increase with more
repetitions, making “\n\n” an effective marker for
repetition detection.

Takeaway These results demonstrate that “\n\n”
provides both a theoretically sound and empiri-
cally effective delimiter for identifying the onset of
repetitive behavior in LRMs. It strikes a balance
between being common in generation, semantically
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Table 10: Classifier scores at the trailing “\n\n” across
repetitions (MATH-500 #462, DeepSeek-R1-Distill-
Qwen-7B, Temp=0.6).

Chunk idx Sentence Score

209 “But when I added step-by-step, I got 9997.\n\n” 1.19e-10
255 “But when I did the step-by-step addition, I got 9997.\n\n” 3.69e-5
· · · · · · · · ·
430 “Wait, so that must mean that 6270 + 3737 is 9997.\n\n” 1.000

neutral, and progressively sensitive to degenerative
repetition patterns.

I Latency of On-the-fly Detector and its
Integration Strategies

Takeaway Our linear classifier for word-salad de-
tection can be integrated into LRM decoding with
negligible to near-zero latency overhead. When
implemented asynchronously (in parallel with the
LLM forward pass), it introduces effectively no ex-
tra wall-clock latency. When implemented sequen-
tially (LLM waits for the classifier at each \n\n),
the overhead is bounded to roughly 0 – 0.4% under
our settings.

I.1 Integration Strategies

Asynchronous (parallel) integration Once an
\n\n token is generated, we extract its hidden state
and run the linear classifier in parallel with the
next LLM forward. Because a single LLM forward
step is consistently slower than a single classifier
forward, the classifier latency is fully hidden. This
mode adds practically no additional latency.

Sequential (wait-on-classifier) integration Al-
ternatively, the LLM may wait for the classifier
decision at each \n\n before proceeding. In that
case, the overhead equals one classifier forward
per reasoning chunk. Based on the runtimes in Ta-
ble 11 and an average chunk length of ∼32 tokens
on MATH-500, this corresponds to an estimated
overhead of about 0.4% per chunk for a 7B model.

I.2 Empirical Runtime

We benchmark the latency of a one-token LLM for-
ward pass versus a single classifier prediction using
the hidden state of the trailing \n\n. The classifier
inference is consistently ∼5 ms, significantly faster
than an LLM forward step.

I.3 Overhead Analysis

Let TLLM and Tclf denote the per-step runtime of
the LLM and the classifier, respectively, and let L̄

Table 11: Average runtime over 5 runs. “LLM Fwd” =
one-token forward; “Clf Fwd” = one classifier predic-
tion from the trailing hidden state.

Model LLM Fwd (1 tok) Clf Fwd (1 pred.) Hidden Dim

DeepSeek-R1-Distill-Qwen-1.5B 31.52 ms 4.96 ms 1536
DeepSeek-R1-Distill-Qwen-7B 39.16 ms 4.95 ms 3584
DeepSeek-R1-Distill-Llama-8B 41.12 ms 4.95 ms 4096

be the average chunk length (in tokens). Under the
sequential mode, the per-chunk overhead ratio is

Tclf
L̄·TLLM

.

With TLLM ≈ 39.16ms, Tclf ≈ 4.95ms, and L̄ ≈
32, the estimated overhead is

4.95

32× 39.16
≈ 0.004 = 0.4% .

This is a theoretical estimate rather than an end-to-
end measurement.

J Additional Results on Qwen3

Setup To assess generalization beyond
DeepSeek-R1 models, we evaluate the WordSal-
adChopper (WSC) classifier on Qwen3-8B (Yang
et al., 2025a) in the thinking mode across three
benchmarks (GSM8K, MATH-500, AIME25)
and two decoding temperatures (0.0, 0.6). The
classifier operates on the hidden state of the trailing
“\n\n” token to detect repetitive (“word salad”)
chunks on-the-fly.

Table 12: Classifier accuracy (%) for word-salad chunk
detection on Qwen3-8B. Higher is better.

Temp GSM8K MATH-500 AIME’25

0.0 78.0 88.1 81.4
0.6 78.9 87.0 84.3

Findings As shown in Table 12, the classifier
achieves robust accuracy on Qwen3-8B, averaging
around ∼83% across datasets/temperatures. This is
lower than on DeepSeek-R1-Distill-Qwen-7B (e.g.,
92.72/92.31/89.77 at τ = 0.0), but remains usable
in practice since WSC triggers a chop only after
multiple consecutive detections, and simple gating
rules can further reduce unnecessary interventions
in hybrid reasoning pipelines.
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