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Abstract

Image Difference Captioning (IDC) aims to
generate natural language descriptions that
highlight subtle differences between two vi-
sually similar images. While recent advances
leverage pre-trained vision-language models to
align fine-grained visual differences with tex-
tual semantics, existing supervised approaches
often overly focus on dataset-specific language
patterns and fail to capture fine-grained and
context-aware preferences on IDC, due to lim-
ited annotation diversity and a lack of seman-
tically informative negative examples during
training, To address these limitations, we pro-
pose an adversarial direct preference optimiza-
tion (ADPO) framework for IDC, which formu-
lates IDC as a preference optimization problem
under the Bradley-Terry-Luce model, directly
aligning the captioning policy with pairwise
difference preferences via Direct Preference
Optimization (DPO). To model more accurate
and diverse IDC preferences, we introduce an
adversarially trained hard negative retriever that
selects counterfactual captions, This results in
a minimax optimization problem, which we
solve via policy-gradient reinforcement learn-
ing, enabling the policy and retriever to im-
prove jointly. By dynamically generating se-
mantically challenging negatives, our method
reduces reliance on dataset-specific patterns.
Experiments on benchmark IDC datasets show
that our approach outperforms existing base-
lines, especially in generating fine-grained and
accurate difference descriptions.

1 Introduction

Image Difference Captioning (IDC) requires a
model to generate natural-language descriptions
that highlight salient differences between a pair of
visually similar images. It serves as a core capa-
bility in applications such as visual quality inspec-
tion (Jhamtani and Berg-Kirkpatrick, 2018), image
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Query: Please describe what the difference is between the 
target image and the reference image 

Reference Image Target Image

Chosen: “the person is folding a green paper in right image”
Rejected: “the blue truck is now in the picture on the right”

GT IDC:“the person is folding a green paper in right image”

SFT can overly focus on dataset-specific language patterns, 
e.g., “the person”, “right image”.

DPO with trivial comparisons fail to learn subtle differences 

Chosen: “the person is folding a green paper in right image”
Rejected: “the person is folding a red paper in right image”

Adversarial DPO with adversarial learned negative retrieval 
benefits to learn more difficult IDC with nuanced difference 

Figure 1: Comparison among supervised fine-tuning
(SFT), conventional direct preference optimization
(DPO), and our proposed adversarial DPO (ADPO).
The paper-folding images are AI-generated for illustra-
tive purposes.

editing feedback (Tan et al., 2019), and fine-grained
visual understanding for multimodal agents (Zhang
et al., 2024; Wu et al., 2025b; Wang et al., 2025).
Unlike generic image captioning (Xu et al., 2015;
Stefanini et al., 2022), which focuses on holistic
scene descriptions, IDC requires the model to pre-
cisely isolate and describe subtle, localized changes
while preserving shared content.

Existing IDC systems are mostly trained under
supervised fine-tuning over human captions (Jham-
tani and Berg-Kirkpatrick, 2018; Park et al., 2019a),
advanced through multimodal instruction tuning
(Liu et al., 2023; Wu et al., 2024a), alignment
(Zhang et al., 2025; Wu et al., 2024b, 2025c),
and test-time inference (Chen et al., 2024; Wu
et al., 2024d). Recent approaches incorporate
vision–language pre-training and contrastive ob-
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jectives (Hao et al., 2022; Liu et al., 2023; Yan
et al., 2024). However, existing methods poten-
tially suffer from the challenges of (i) overly focus
on dataset-specific language patterns, (ii) confusion
between global scene semantics and local edits, and
(ii) a lack of exposure to fine-grained and context-
aware differences. Collecting extra human anno-
tations to repair these deficiencies is prohibitively
expensive. Adapted from Souček et al. (2022), Fig-
ure 1 illustrates these issues through an example
with two images1: SFT tends to overly focus on
dataset-specific expressions like “people standing”
or “right image”, rather than the underlying se-
mantic change. Conventional DPO, when trained
with semantically irrelevant negatives (e.g., “blue
truck”), fails to capture subtle yet meaningful dif-
ferences in count or spatial context. In contrast,
our proposed adversarial DPO introduces more tar-
geted hard negatives (e.g., “less people in park-
ing lot”) that challenge the model to disambiguate
nuanced edits, leading to better alignment with
ground-truth IDC.

To overcome these challenges, we formulate
IDC as a direct preference optimization (DPO)
problem (Rafailov et al., 2023; Wu et al., 2025a;
Xie et al., 2025). Specifically in IDC, given two
candidate captions, preference signals capture the
visual difference and provide feedback with pair-
wise comparison, even when an absolute numeric
reward is unavailable. DPO converts such compar-
isons into a likelihood objective under the Bradley-
Terry-Luce (BTL) model, avoiding unstable reward
models typical of RLHF pipelines (Ouyang et al.,
2022a). However, DPO alone inherits the quality
of negative captions supplied during training.

To further enable robust IDC preference align-
ment, we introduce Adversarial Direct Preference
Optimization (ADPO), a minimax framework that
couples a captioning policy with an adversarial
hard-negative retriever. At each iteration, the re-
triever proposes counterfactual (Liu et al., 2025;
Wu et al., 2024c) captions that are semantically
close to the ground truth yet subtly incorrect. The
policy then learns via the DPO loss, to prefer posi-
tives over these informative negatives. We solve the
resulting game using an efficient policy-gradient al-
gorithm that alternates between closed-form DPO

1In Figures 1 and 2, the paper-folding images were gener-
ated using OpenAI’s ChatGPT (GPT-5, using the image gen-
eration feature, September 2025). The prompts were: “Two
hands folding an orange paper.” and “Two hands folding a
green paper.” These images are solely for illustrative purposes.

updates for the policy and REINFORCE updates
for the retriever.

We summarize our contributions as follows,

• We formulate IDC as pairwise preference
learning by a novel preference model.

• We propose ADPO, a minimax learning frame-
work that jointly trains a captioning policy and
an adversarial hard-negative retriever.

• We derive a minimax learning objective with
closed-form DPO policy updates with policy-
gradient retriever updates.

2 Related Work

Image Difference Captioning Image Difference
Captioning (IDC) aims to generate descriptions of
subtle distinctions between similar images. Early
supervised methods such as CLIP4IDC (Guo et al.,
2022) and IDC-PCL (Yao et al., 2022a) lever-
age pretrain-finetune frameworks to bridge do-
main gaps and improve IDC performance. Souček
et al. (2022) introduce a dataset of untrimmed
web videos for object states and state-modifying
actions, and address their temporal localization
with minimal supervision. Recent work expands
IDC capabilities with new frameworks and data
strategies. VisDiff (Dunlap et al., 2024) highlights
set-level reasoning over multiple images, while
BLIP2IDC (Evennou et al., 2025) uses synthetic
augmentation to mitigate data scarcity. DIRL (Tu
et al., 2024) improves robustness against distrac-
tors, and FINER-MLLM (Zhang et al., 2024) ap-
plies LoRA tuning to enhance change captioning.
OneDiff (Hu et al., 2024) adopts a siamese en-
coder with a visual delta module for fine-grained
difference detection. While these advancements
have significantly improved IDC methodologies,
challenges remain, particularly in capturing fine-
grained distinctions and maintaining data diversity.
Addressing these issues will require a concerted
effort toward developing sophisticated models that
leverage cross-modal learning and scalable dataset
generation techniques, as highlighted in previous
studies (Yao et al., 2022b).

Direct Policy Optimization Direct Policy Opti-
mization (DPO) has emerged as a pivotal frame-
work for aligning models with human prefer-
ences, streamlining the optimization process com-
pared to conventional reinforcement learning ap-
proaches. Rafailov et al. (2023) introduced DPO
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as a binary classification task, which simplifies
fine-tuning large language models (LLMs) with-
out the complexities of sampling and hyperparam-
eter tuning. This framework has been effectively
extended to multimodal contexts. For instance,
CHiP (Fu et al., 2025) integrates visual and tex-
tual preferences, enhancing the model’s ability to
discern hallucinations from accurate descriptions.
MDPO (Wang et al., 2024) addresses the uncon-
ditional preference problem by optimizing both
image and language preferences, significantly im-
proving performance in multimodal scenarios. Fur-
thermore, S-VCO (Wu et al., 2025d) introduces a
finetuning objective that aligns visual details with
text, thereby reducing hallucinations. DAMA (Lu
et al., 2025) employs dynamic adjustments based
on data hardness and model responsiveness, re-
sulting in enhanced alignment performance across
benchmarks. The advancements underscore the
critical role of DPO in refining multimodal align-
ment and preference learning.

3 Preliminary

3.1 Direct Preference Alignment
Direct Preference Optimization (Rafailov et al.,
2023) provides a method for reinforcement learn-
ing from human feedback (Ouyang et al., 2022b)
that does not require explicit reward modeling.
DPO builds on the Bradley-Terry-Luce (BTL)
model, which defines the probability of preferring
one response over another using a sigmoid function
applied to their respective reward differences:

p∗(y1 ≻ y2 | x) = σ (r(x, y1)− r(x, y2)) , (1)

where σ(z) = 1/(1 + exp[−z]).
Instead of modeling rewards directly, DPO im-

plicitly aligns the policy with pairwise human pref-
erences by maximizing the likelihood of preferred
responses under the BTL model. The resulting
DPO loss is:

LDPO(πθ;πref) =

−E(x,y1,y2)∼D[ log σ(β log
πθ(y1 | x)
πref(y1 | x)

−β log
πθ(y2 | x)
πref(y2 | x)

)],

where the normalization constants cancel out. This
objective directly optimizes the target policy πθ to
reflect human preference data, bypassing the need
for reward regression.

3.2 Image Difference Captioning

Image Difference Captioning (IDC) aims to gen-
erate a natural language description that captures
the subtle differences between two similar images.
Formally, given an image pair (X1, X2), where
X1, X2 ∈ RH×W×C , the objective is to learn a
mapping

π : (X1, X2)→ T,

where T = {t1, t2, . . . , tn} is a sequence of tokens
forming a descriptive caption that highlights the
differences between the images.

4 Method

IDC is uniquely challenging due to the need to cap-
ture subtle, localized changes rather than general
scene descriptions. This challenge is underscored
by our analysis of the IDC dataset, as illustrated in
Figure 3, which reveals that the vast majority of im-
age pairs exhibit high similarity. We assessed the
degree of difference for 100 randomly selected im-
age pairs on a scale from 1 (completely different) to
5 (almost identical), using both human evaluators
and GPT-4o. Over 88% of the pairs were rated as
4 (very similar) or 5 (almost identical) by both hu-
mans and GPT-4o, with average scores of 4.12 and
4.58 respectively. The prevalence of such highly
similar pairs underscores the difficulty of captur-
ing subtle, localized variations within the IDC data.
Existing methods often miss these fine distinctions
and focus on general language patterns. To address
this, we first formulate the task as IDC preference
optimization (Section 4.1). Then, we introduce
an adversarial preference optimization framework
that leverages hard negative retrieval (Section 4.2
and 4.3), explicitly pushing the model to focus on
nuanced visual differences. To solve the minimax
learning problem, we propose policy-gradient op-
timization strategy to enable joint optimization of
both policies (Section 4.4). We illustrate our frame-
work in Figure 2.

4.1 IDC Preference Optimization Objective

We aim to optimize an image difference caption-
ing (IDC) policy that generates captions describing
the salient differences between a given image pair
Q = (X1, X2). To this end, we formulate the task
using the Bradley-Terry-Luce (BTL) model, which
compares two textual responses T and T ′ condi-
tioned on the same image pair. The probability that
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IDC Preference Optimization (Section 4.3)

IDC 
Multimodal 
LLMs (𝜋𝜃)

the person is folding a red 
paper in right image

Rejected
IDC

the person is folding a 
green paper in right image

Chosen
IDC

The white vehicle driving in 
the lot on the left is gone. 

Candidate
Captions

Adversarial Retriever (Section 4.2)

CLIP Retriever Policy (𝑞𝜙)

Image
Pair

Softmax Sampling
 (Eq. 3)

the person is folding a red 
paper in right image

Logits Distribution

Image PairRetrieval Gradient (Eq. 7):
𝑅 𝑇′ ⋅ ∇𝜙 log 𝑞𝜙(𝑇′| 𝑋1 , 𝑋2)  

DPO Loss (Eq. 4): log 𝜎(𝑀(𝜃))

NLL as Reward

Update 𝜋𝜃

Update 𝑞𝜙

Figure 2: Overview and illustration of our proposed ADPO framework.
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Figure 3: Distribution of similarity scores for 100 ran-
dom image pairs from the IDC (Spot-the-Diff) dataset,
as evaluated by humans and GPT-4o. A score of 5 indi-
cates “Almost Identical” images. The prevalence of high
scores (4 and 5) shows that discerning subtle differences
is common in IDC task.

T is preferred over T ′ is defined as:

p∗(T ≻ T ′ | X1, X2) =

σ
(
r(X1, X2, T )− r(X1, X2, T

′)
)
,

where σ denotes the sigmoid function, and
r(X1, X2, T ) is a reward model that scores the
quality or informativeness of caption T given the
image pair. Here, T ′ is an alternative caption (i.e.,
a negative sample) for the same image pair.

We seek to learn a policy πθ that assigns higher
probabilities to better captions under this pairwise
preference. To encourage divergence from a fixed
reference policy πref while aligning with human
preferences, we define the margin-based score:

M(θ) =β log
πθ(T | X1, X2)

πref(T | X1, X2)

− β log
πθ(T

′ | X1, X2)

πref(T ′ | X1, X2)
, (2)

where β is a temperature scaling parameter control-
ling the sharpness of the preference.

Using this margin, we define the IDC policy
learning objective as:

LIDC(πθ;πref) = −E(X1,X2,T,T ′)∼D

[
log σ(M(θ))

]
,

where D is a dataset of quadruples containing
image pairs and corresponding positive and nega-
tive captions. This objective encourages πθ to favor
captions aligned with the implicit reward function
learned from preferences.

4.2 IDC Negative Sampling
The effectiveness of the IDC training objective
hinges on the quality of negative samples T ′, which
ideally should be similar to T but less informative
or accurate. Poor or irrelevant negatives can make
the learning signal weak or noisy.

To address this, we adopt a hard negative sam-
pling strategy inspired by CLIP2IDC. Specifically,
we introduce a retriever model qϕ that selects se-
mantically similar but suboptimal captions:

T ′(ϕ) ∼ qϕ(· | X1, X2). (3)

The retriever qϕ is parameterized to select high-
quality negative captions from a candidate pool
conditioned on the input image pair. The goal is to
find challenging negatives that force the policy to
learn more discriminative representations of image
differences. Once a negative caption T ′ is selected
using qϕ, it is paired with the positive caption T
from the dataset to construct training tuples.

4.3 Adversarial Learning Objective
Rather than fixing the negative sample retriever,
we propose a joint learning framework where the
policy πθ and the retriever qϕ are trained adversari-
ally. In this setting, qϕ acts as an adversary trying
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to find the hardest negatives that maximize the loss
for the policy, improving the sample efficiency and
robustness of the learning process. We redefine the
margin with the learned negative sample T ′(ϕ):

M(θ, ϕ) =β log
πθ(T | X1, X2)

πref(T | X1, X2)

− β log
πθ(T

′(ϕ) | X1, X2)

πref(T ′(ϕ) | X1, X2)
. (4)

Plugging this into the IDC loss yields the adversar-
ial learning objective:

LIDC-A(πθ; qϕ) =

− E(X1,X2,T )∼D, T ′∼qϕ(·|X1,X2)

[
log σ(M(θ, ϕ))

]
.

(5)

This leads to a minimax optimization problem,
where the policy minimizes the adversarial loss
while the retriever maximizes it, encouraging the
discovery of progressively harder negatives over
training.

4.4 Minimax Optimization
The adversarial objective in IDC policy optimiza-
tion is given by:

(θ∗, ϕ∗) = argmax
ϕ

min
θ
LIDC-A(πθ;πref; qϕ),

(6)
where the policy πθ aims to minimize the IDC-
A loss by increasing the preference score of the
positive caption T over the sampled negative T ′,
and the retriever qϕ learns to select hard negatives
that maximize the loss.
Policy Update of θ. Given a mini-batch of train-
ing examples and corresponding negatives sam-
pled from the retriever T ′ ∼ qϕ(· | X1, X2), we
compute the policy gradient by backpropagating
through the IDC-A loss in Eq. 5. The policy param-
eters θ are updated using gradient descent:

θ ← θ − ηθ∇θLIDC-A(θ, ϕ).

Retriever Update of ϕ via REINFORCE. Since
T ′ is sampled from a discrete distribution qϕ(· |
X1, X2), we cannot backpropagate through the
sample. Instead, we optimize ϕ using the REIN-
FORCE estimator. Let R(T ′) = − log σ(M(θ, ϕ))
be the reward signal. The gradient for retriever
parameters is:

∇ϕET ′∼qϕ

[
R(T ′)

]
(7)

= ET ′∼qϕ

[
R(T ′) · ∇ϕ log qϕ(T

′ | X1, X2)
]
.

We approximate this expectation using a Monte
Carlo sample for each training instance. Optionally,
a baseline can be subtracted from the reward to
reduce variance. We illustrate the algorithm in
Algorithm 1.

Algorithm 1 Policy-gradient updates for joint cap-
tioning and retrieval policy learning

Require: Dataset D, initial policy θ0, retriever ϕ0,
reference policy πref, learning rates ηθ, ηϕ

1: for iteration k = 0, 1, 2, . . . until convergence
do

2: Sample mini-batch B ⊂ D
3: for each (X1, X2, T ) ∈ B do
4: Sample negative T ′ ∼ qϕk

(· | X1, X2)
5: Compute margin: M(θ, ϕ) in Eq. (4)
6: Compute reward: R(T ′) = − log σ(M)
7: Accumulate policy loss:

Lθ ← Lθ + log σ(M)

8: Accumulate retriever gradient:

∇ϕLϕ ← ∇ϕLϕ+
R(T ′) · ∇ϕ log qϕk

(T ′ | X1, X2)

9: end for
10: Update policy: θk+1 ← θk − ηθ∇θLθ
11: Update retriever: ϕk+1 ← ϕk − ηϕ∇ϕLϕ
12: end for

5 Experiment

Dataset Following previous IDC works (Zhang
et al., 2024; Guo et al., 2022; Hu et al., 2023),
we evaluate the performance of models using
3 popular image difference captioning datasets,
CLEVR-Change (Park et al., 2019b), Spot-the-
Diff (Jhamtani and Berg-Kirkpatrick, 2018) and
Image-Editing-Request (Tan et al., 2019).
Implementation Details We adopt Qwen2.5-VL-
3B-Instruct (Yang et al., 2024; Team, 2025) as
our baseline multimodal large language model
(MLLM). We trained our model with Adam Op-
timizer and FSDPTrainer in a two-phase pipeline,
SFT tuning and RL tuning, on 2 A6000 GPUs.

In SFT tuning, we tune Qwen2.5 in float32, with
learning rate set as 5e-7 and warmup steps as 150.
The batch size is set as 16, with a gradient accumu-
lation step of 8. In the RL tuning, we further tune
model based on the SFT fine-tuned model through
traditional DPO and our proposed ADPO in bf16.
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In this stage, the learning rate of Qwen is set within
a range of 3e-6 to 5e-6 and ADPO retriever as 1e-4.
A larger batch size range from 24 to 32 is applied
in RL stage to improve training stability.
Evaluation Metrics Following previous IDC
works (Huang et al., 2022; Guo et al., 2022), we
use the standard evaluation protocol to evaluate the
image difference captioning quality with metrics in-
cluding BLEU-4 (B4) (Papineni et al., 2002), ME-
TEOR (M) (Banerjee and Lavie, 2005), ROUGE-L
(R) (Lin, 2004) and CIDEr-D (C) (Vedantam et al.,
2015).
Baselines We compare ADPO fine-tuned Qwen2.5
VL 3b with SFT (Ouyang et al., 2022a) fine-tuned
Qwen2.5 VL 3b and zero-shot Qwen2.5 VL 3b
baseline. Besides, we compare ADPO fine-tuned
Qwen2.5 VL 3b with various IDC baselines which
can be roughly categorized into five main groups.

• Attention-based Methods: dual attention ap-
proaches DUDA (Park et al., 2019b) and hy-
brid attention-reinforcement learning meth-
ods VAM (Shi et al., 2020), IFDC (Huang
et al., 2022) and VACC (Kim et al., 2021a).
These methods focus on learning spatial rela-
tionships with attention mechanisms.

• Reinforcement Learning Approaches:
Comprising SRDRL (Tu et al., 2021b),
R3Net (Tu et al., 2021a), BiDiff (Sun et al.,
2022), and SCORER (Tu et al., 2023c),
which employ various reinforcement learning
paradigms for decision-making in IDC.

• Representation Learning Methods: In-
cluding prototype-based IDC-PCL (Yao
et al., 2022a), variational autoencoder-based
VARD (Tu et al., 2023a), and noise-tolerant
approaches NCT (Tu et al., 2023b) that focus
on learning robust feature representations.

• Pixel-level Alignment Methods: Such as
DDLA (Kim et al., 2021b), which perform
clustering-based pixel alignment.

• Pretrained Model-based Approaches: In-
cluding CLIP with two-stage fine-tuning
based CLIP4IDC (Guo et al., 2022) and
MLLM-based FMLLM (Zhang et al., 2024),
leveraging large pretrained models for IDC.

LLM Usage In this paper, LLMs are only used for
refining the writing of natural language.

5.1 Results

Results on Image-Editing-Request. The Image-
Editing-Request dataset focuses on generating cap-
tions for multiple differences between image pairs,
requiring models to generate various captions to
describe different variations between image pairs.
We employ this dataset to evaluate a model’s ca-
pability in distinguishing and describing multiple
differences between image pairs. It is challenging
for even state-of-the-art models to completely cap-
tion various differences in two images, particularly
when dealing with visually subtle distinctions. As
shown in Table 1, we evaluate the effectiveness
of ADPO on this multi-difference captioning task.
Our results demonstrate that ADPO achieves con-
sistent improvements over both SFT and standard
DPO, with a CIDEr score gain of 3.09% and 1.01%,
respectively. Notably, the Qwen 2.5 VL 3B model
fine-tuned with ADPO outperforms all other IDC
baselines on this dataset. This improvement sug-
gests that ADPO enhances model’s ability to iden-
tify and caption multiple differences by exposing it
to carefully constructed negative captions that high-
light semantic details highly related to each image
pairs, thereby encouraging more comprehensive
analysis of subtle changes.

Result on CLEVR-change. CLEVR-Change
consists of synthetic geometric image pairs con-
taining subtle semantic variations in object color,
shape, and position, along with visual distractors
like perspective shifts. This dataset presents the
unique challenge of determining whether visual
differences correspond to actual semantic changes.
Table 2 presents our evaluation of ADPO’s abil-
ity to improve model performance on geometric
shape difference captioning. ADPO consistently
surpasses both SFT and DPO, achieving CIDEr im-
provements of 2.95% and 0.7%, respectively. Be-
sides, ADPO-tuned Qwen 2.5 VL 3B outperforms
all baselines on CLEVR-Change, achieving supe-
rior performance on more than half of the evalua-
tion metrics. These results indicate that ADPO’s re-
trieval of strategically confusing negative captions,
such as those misattributing perspective changes to
semantic differences, effectively enhances model
performance on synthetic geometric IDC.

Result on Spot-the-Diff. Spot-the-Diff is a real-
world IDC dataset containing temporal image pairs
that may or may not contain semantic differences at
specific locations. This dataset tests models’ ability
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Table 1: IDC evaluation results on Image-Editing-
Request.

Method B4 M R C

DUDA (Park et al., 2019b) 6.5 12.4 37.3 22.8
BiDiff (Sun et al., 2022) 6.9 14.6 38.5 27.7
CLIP4IDC (Guo et al., 2022) 8.2 14.6 40.4 32.2
NCT (Tu et al., 2023b) 8.1 15.0 38.8 34.2
VARD (Tu et al., 2023a) 10.0 14.8 39.0 35.7
SCORER (Tu et al., 2023c) 10.0 15.0 39.6 33.4
FMLLM (Zhang et al., 2024) 13.3 14.6 39.6 50.5

Qwen-2.5-VL 3.8 15.0 28.6 13.7
ADPO 13.9 17.4 42.0 60.0

w/o Preference Optimization 13.1 17.1 41.4 58.2
w/o Retrieval Adversarial 13.8 17.5 41.9 59.4

Table 2: IDC evaluation results on CLEVR-change.

Method B4 M R C

DUDA (Park et al., 2019b) 47.3 33.9 - 112.3
VAM (Shi et al., 2020) 50.3 37.0 69.7 114.9
VAM+ (Shi et al., 2020) 51.3 37.8 70.4 115.8
IFDC (Huang et al., 2022) 49.2 32.5 69.1 118.7
DUDA+Aux 51.2 37.7 70.5 115.4
VACC (Kim et al., 2021a) 52.4 37.5 - 114.2
SRDRL (Tu et al., 2021b) 54.9 40.2 73.3 122.2
R3Net (Tu et al., 2021a) 54.7 39.8 73.1 123.0
BiDiff (Sun et al., 2022) 54.2 38.3 - 118.1
IDC-PCL (Yao et al., 2022a) 51.2 36.2 71.7 128.9
CLIP4IDC (Guo et al., 2022) 56.9 38.4 76.4 150.7
NCT (Tu et al., 2023b) 55.1 40.2 73.8 124.1
VARD (Tu et al., 2023a) 55.2 40.8 74.1 124.1
SCORER (Tu et al., 2023c) 56.3 41.2 74.5 126.8
FMLLM (Zhang et al., 2024) 55.6 36.6 72.5 137.2

Qwen2.5-VL 4.5 17.1 50.7 90.5
ADPO 54.3 38.5 78.4 153.6

w/o Preference Optimization 54.2 37.6 76.4 149.2
w/o Retrieval Adversarial 53.0 38.4 78.2 152.5

to detect subtle semantic variations among diverse
real-world objects. As shown in Table 3, ADPO
demonstrates significant improvements over con-
ventional SFT and DPO approaches, with CIDEr
score increases of 7.47% and 1.82%, respectively.
However, we observe that Qwen 2.5 VL fine-tuned
with ADPO exhibits suboptimal performance to
FMLLM on Spot-the-Diff. We attribute this to two
factors: (1) FMLLM’s parameter advantage (7B
vs. 3B) may enhance its IDC performance on real-
world IDC tasks, and (2) Spot-the-Diff’s real-world
image distribution aligns closely with Vicuna’s pre-
training data. Nevertheless, ADPO’s substantial
performance gains over other training paradigms
highlight its effectiveness in improving represen-
tation learning efficiency for real-world IDC tasks
during preference optimization.

Table 3: IDC evaluation results on Spot-the-Diff.

Method B4 M R C

DDLA (Kim et al., 2021b) 8.5 12.0 28.6 32.8
DUDA (Park et al., 2019b) 8.1 11.8 29.1 32.5
VAM (Shi et al., 2020) 10.1 12.4 31.3 38.1
VAM+ (Shi et al., 2020) 11.1 12.9 33.2 42.5
IFDC (Huang et al., 2022) 8.7 11.7 30.2 37.0
DUDA+Aux 8.1 12.5 29.9 34.5
VACC (Kim et al., 2021a) 9.7 12.6 32.1 41.5
SRDRL (Tu et al., 2021b) - 13.0 31.0 35.3
R3Net (Tu et al., 2021a) - 13.1 32.6 36.6
BiDiff (Sun et al., 2022) 6.6 10.6 29.5 42.2
CLIP4IDC (Guo et al., 2022) 11.6 14.2 35.0 47.4
VARD (Tu et al., 2023a) - 12.5 29.3 30.3
SCORER (Tu et al., 2023c) 10.2 12.2 - 38.9
FMLLM (Zhang et al., 2024) 12.9 14.7 35.5 61.8

Qwen-2.5-VL 4.0 13.3 23.9 16.6
ADPO 10.7 14.7 34.2 56.1

w/o Preference Optimization 10.4 14.0 32.2 52.2
w/o Retrieval Adversarial 10.6 14.7 34.1 55.1

6 Analysis

6.1 Ablation Study

In this section, we study the ablation of ADPO re-
triever module and the influence of two key param-
eters, namely the temperature (τ ) and the negative
candidate set size |N |, on the ADPO performance,
as are shown in Figure 4. τ is used to adjust the
Logits Distribution (in Figure 2) of the similarity-
based retriever, controlling the sharpness of the out-
put probability distribution over candidate items,
which in turn influence the randomness of decid-
ing final retrieved negative caption. |N | represents
the size of a randomly selected candidate set from
the dataset prior to calculating Logits Distribution
by ADPO retriever, serving as a parameter that in-
fluences the randomness of the ADPO retriever’s
outputs. Smaller |N | introduces higher randomness
to the ADPO process.
Ablation Study on ADPO retriever. As is shown
in Table 1, Table 2 and Table 3 ablating the modules
leads to significant performance degradation across
all evaluated datasets. Without SFT, zero-shot
Qwen fails to follow captioning instructions. The
introduction of SFT brings performance improve-
ments, placing Qwen at a medium level among all
IDC baselines. However, at this stage, the model
still struggles with challenging IDC samples con-
taining subtle image differences. The subsequent
application of the DPO module yields further per-
formance gains, demonstrating that conventional
DPO enhances the model’s capability to caption
images with fine-grained visual distinctions. Never-
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theless, Qwen remains inadequate for particularly
difficult cases involving extremely subtle differ-
ences and visually ambiguous content. Finally, by
incorporating ADPO, which emphasizes learning
from high-quality, confusing positive-negative cap-
tion pairs, we observe substantial improvements,
elevating Qwen’s performance to state-of-the-art
levels across almost all evaluated scenarios.
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Figure 4: Ablation results on two key factors of retriever:
(a), (b) negative candidate set size; (c), (d) temperature.

Ablation Study on τ . As shown in Figure 4a and
4b, the IDC performance of ADPO-finetuned Qwen
initially improves and then declines as 1

τ increases.
This suggests that maintaining an appropriate level
of randomness in the ADPO retriever’s negative
caption selection is crucial. The observed trend
can be explained by the trade-off in negative sam-
ple diversity. While a sharp distribution (low τ )
intuitively enhances the likelihood of selecting the
most semantically similar negative caption thereby
contributing to the performance, it also reduces the
variability of sampled negatives. Consequently,
positive captions within a subset tend to be re-
peatedly paired with the same negative captions,
thereby weakening preference optimization. Based
on empirical results, we set τ ≈ 2 to balance se-
mantic relevance and diversity in negative sample
selection.
Ablation Study on |N |. We further investigate the
impact of the negative candidate set size |N | on
ADPO performance. As illustrated in Figure 4c
and 4d, we evaluate |N | ∈ {16, 64, 128, 256} and
observe that IDC performance initially increase
with larger |N | and then decrease. This trend sug-
gests that expanding the retriever’s search space en-
hances its ability to retrieve more highly-confusing
negative captions, thereby improving IDC prefer-
ence optimization efficacy. Specifically, a larger
|N | allows the retriever to sample from a broader

pool of candidates, increasing the likelihood of re-
trieving high-quality negatives that challenge the
model’s discriminative capabilities which is the key
to ADPO’s success. However, we find that exces-
sively large candidate sets (e.g., |N | = 256) de-
grade performance compared to |N | = 128. We at-
tribute this to a diversity-accuracy trade-off: while
a larger |N | improves the retriever’s coverage, it
also encourages retriever to select more globally op-
timal negatives across the dataset. This reduces the
variability of training signals, ultimately hindering
the model’s ability to generalize. Thus, |N | ≈ 128
strikes an optimal balance, providing sufficient di-
versity without sacrificing the precision of negative
sample retrieval.

6.2 Case Study
In this section, we compare the negative samples
employed by DPO with negative samples selected
and employed by ADPO retriever through a case
study in Figure 5. We observe that the negative cap-
tions retrieved by ADPO exhibit more semantically
nuanced and challenging characteristics compared
to the original DPO negatives, thereby enhancing
the effectiveness of preference optimization.

In row (a) of Figure 5, the positive caption is
focused on a missing white car on the left-top of
the image. ADPO retriever select a negative sam-
ple that describes the location change of a notice-
able red car on these images, which is a subtle
perspective change of camera between these two
images and is semantically incorrect but very likely
to cause confusion in model’s visual module and
captioning process. Therefore, by adding such cap-
tions into negative sample, the model is encouraged
to learn more semantic knowledge about caption-
ing subtle image differences during the preference
optimization process. While in DPO, a caption-
ing describing a car moving downward is selected
which is less correlated with the image pair and
less semantically confusing, which is harder for
model to learn the captioning of subtle changes
between the given image pair. Similarly in row
(b) of Figure 5, the retriever selects a caption that
has at least two confusing semantic factors, the
colour of the car and the temporal sequence of the
image pair. Firstly, the leaving car is grey instead
of black, which is a critical semantic factor while
captioning the difference. Besides, distinguishing
the temporal information of the images is crucial in
IDC, where the ADPO retriever select car entering
to encourage the learning of temporal information.
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Dataset Positive 
Caption

ADPO Negative 
Caption

DPO Negative 
Caption

(a) "there is white car is 
missing"

"the red car is in a 
different location"

"a car is now traveling 
down the street"

"there s no longer a grey 
car next to the red car"

"the black car is 
entering the lot"

"the person in the before 
picture is standing next to a 
gray car while he is not next to 
any cars in the after picture"

(b)

(c)
"four people standing 
in the right image"

"more people in 
parking lot"

"the blue truck is now in 
the picture on the right"

Figure 5: Case study on negative samples retrieved by ADPO and DPO.

Table 4: Comparison of training efficiency between SFT, DPO, and ADPO processing each 208 samples.

Method Total Time (s) Samples/s Memory Usage
SFT 133.45 1.56 28.6 GB
DPO 182.82 1.14 39.0 GB
ADPO 196.07 1.06 41.3 GB

While the DPO negative sample focus on person
near grey car, which is less semantically related
with the difference captioning of this image pair.

However, we also observe some cases where
ADPO retriever may not be able to retrieve precise
semantically difference. For example, in row (c) of
Figure 5, the ADPO retriever selects a captioning
that is actually semantically correct from a broader
perspective. In this image pair, there is truly more
people in the image, meaning that this captioning
can also be viewed as a positive sample for this
image pair. In our study, we have implemented a fil-
tering to exclude annotated positive samples when
constructing the negative candidate pool, thereby
preventing the selection of high-quality positive
samples for the specific image pair. This ensures
that even if semantically correct samples are cho-
sen, they are significantly less precise than the an-
notated positive samples, avoiding confusion dur-
ing training. However, we note that more rigorous
filtering mechanisms, such as utilizing MLLMs for
semantic judgment, could potentially further im-
prove precision, but could also require substantially
more computational resources and time. How to
rigorously filter out semantically correct caption
candidates remains as a challenge and a valuable
direction for future work.

6.3 Overhead Analysis
To evaluate computational overhead of ADPO, we
present a detailed efficiency analysis in Table 4.

Compared to the standard DPO, our proposed
ADPO framework introduces only a marginal in-
crease in computational cost, with a 7.2% longer
training time and a 5.9% higher GPU memory
footprint. This additional overhead, attributed to
the adversarial minimax optimization, is a mod-
est trade-off for the performance improvements
demonstrated in our experiments. Crucially, this
analysis shows that ADPO remains highly practical
for real-world deployment, as its time and memory
overhead are efficient on modern hardware.

7 Conclusion

We propose Adversarial Direct Preference Opti-
mization (ADPO) for Image Difference Captioning,
which aligns captioning policy with fine-grained
human preferences via adversarial hard negative
retrieval and direct preference optimization. By
framing IDC as a pairwise preference problem with
a novel preference model, our method overcomes
limitations of supervised learning and enhances
subtle difference localization. We derive a rein-
forcement learning objective that enables closed-
form DPO policy updates and policy-gradient re-
triever updates. Experiments on standard IDC
benchmarks show that ADPO delivers robust and
discriminative captions, outperforming existing ap-
proaches and establishing a strong baseline for fu-
ture work.
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8 Limitation

Our approach focuses on caption-level descrip-
tions, which are standard in IDC benchmarks and
provide a well-defined setting for evaluating fine-
grained visual differences. The framework is also
compatible with more structured outputs, includ-
ing region-level alignments or paragraph-level ex-
planations, although additional effort may be re-
quired to support such representations in practice,
depending on the needs of downstream applica-
tions. While our method is designed for natural
image inputs, the underlying preference optimiza-
tion framework is modality-agnostic and could in
principle be adapted to structured visual formats
such as HTML renderings or document layouts.
These domains pose different types of reasoning
challenges, and more efforts might be needed to
adapt the framework effectively to such inputs.
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