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Abstract

As large language models (LLMs) become in-
tegral to code-related tasks, a central question
emerges: Do LLMs truly understand program
semantics? We introduce EquiBench, a new
benchmark for evaluating LLMs through equiv-
alence checking, i.e., determining whether
two programs produce identical outputs for
all possible inputs. Unlike prior code gen-
eration benchmarks, this task directly tests a
model’s ability to reason about program seman-
tics. EquiBench consists of 2400 program pairs
across four languages and six categories. These
pairs are generated through program analysis,
compiler scheduling, and superoptimization,
ensuring high-confidence labels, nontrivial dif-
ficulty, and full automation. We evaluate 19
state-of-the-art LLMs and find that in the most
challenging categories, the best accuracies are
63.8% and 76.2%, only modestly above the
50% random baseline. Further analysis reveals
that models often rely on syntactic similarity
rather than exhibiting robust reasoning about
program semantics, highlighting current limita-
tions. Our code and dataset are publicly avail-
able at https://github.com/Anjiang-Wei/
equibench

1 Introduction

Large language models (LLMs) have rapidly be-
come central to software engineering workflows,
powering tools for code generation, program repair,
test case generation, debugging, and beyond, sig-
nificantly boosting developers’ productivity (Jain
et al., 2024; Yang et al., 2024a, 2023). This surge
of capability has prompted a natural yet fundamen-
tal question: Do LLMs merely mimic code syntax
they have seen during training, or do they genuinely
understand what programs do?

Unlike natural language, code is executable.
Two programs may differ syntactically yet be se-
mantically equivalent, producing identical outputs
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for all inputs. Conversely, programs with only mi-
nor syntactic differences can behave quite differ-
ently at runtime. This gap between surface-level
program features and actual execution behavior
raises an important question: Does training on
static code corpora equip LLMs with a grounded
understanding of program semantics?

To rigorously assess whether LLMs truly under-
stand code, we need benchmarks that demand rea-
soning about program semantics. However, widely
used coding benchmarks such as HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021) pri-
marily test a model’s ability to generate short code
snippets from natural language descriptions, offer-
ing limited insight into whether the model grasps
the underlying semantics of the code it generates.

In this work, we introduce equivalence check-
ing as a new task for evaluating LLMs’ ability
to reason about program semantics. Unlike tasks
based on syntactic similarity, equivalence checking
asks whether two programs are semantically equiv-
alent, i.e., whether they produce identical outputs
for all possible inputs, regardless of how differently
they are written. Program equivalence problems
test directly whether and how well models reason
about code. Any question about program seman-
tics can be formulated as an equivalence checking
problem, and program equivalence problems can
have any level of difficulty from trivially easy to
extremely difficult. Program equivalence is unde-
cidable in general: no algorithm can determine
program equivalence for all cases while guaran-
teeing termination. This fundamental theoretical
impossibility underscores the intrinsic difficulty of
our task.

Designing a benchmark for equivalence check-
ing requires both equivalent and inequivalent pro-
gram pairs spanning diverse categories, which
poses several challenges in terms of label sound-
ness, problem difficulty, and automation. First, it
is difficult to guarantee high-confidence labels, as
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(In)Equivalent Program Pairs

int main() {
  int a, b;
  ...
  if (a < b) {
    a = 1;
  }
  ...
}

if (b > a) {
  a = 1;
}

if (b <= a) {
  a = 1;
}

Program Analysis

Compiler Scheduling

Superoptimization

Algorithm / Variable Changes

Automated  TransformationInput Source Programs

Randomly C programs

CUDA tensor programs

x86-64 instructions 

Competitive programming 

Figure 1: Overview of EquiBench. We construct (in)equivalent program pairs from diverse sources, including C
and CUDA programs, x86-64 assembly, and competitive programming, using automated transformations based on
program analysis, compiler scheduling, superoptimization, and changes in algorithms or variable names.

verifying equivalence by exhaustively executing
all possible inputs is almost always computation-
ally infeasible. Second, existing generation tech-
niques rely on superficial syntactic edits (Badihi
et al., 2021; Maveli et al., 2024), which are too sim-
plistic to meaningfully challenge state-of-the-art
LLMs and fail to probe their semantic reasoning
limits. Third, to enable comprehensive evaluation,
the benchmark must be large-scale and modular, ne-
cessitating a fully automated construction pipeline.

In this work, we introduce EquiBench, a dataset
of 2400 program pairs for evaluating large lan-
guage models on equivalence checking. Covering
Python, C, CUDA, and x86-64 programs, it enables
a systematic assessment of LLMs’ ability to reason
about program semantics.

As illustrated in Figure 1, EquiBench addresses
these challenges by automatically constructing both
equivalent and inequivalent program pairs from di-
verse input sources, including randomly generated
C and CUDA code, assembly instructions, and com-
petitive programming solutions. To ensure label
soundness without exhaustive execution, we ap-
ply program transformation techniques grounded
in program analysis and superoptimization. To in-
crease problem difficulty beyond trivial edits, we
incorporate structural transformations through com-
piler scheduling and algorithmic equivalences. The
entire generation pipeline is fully automated, en-
abling scalable construction of a large and diverse
benchmark. Finally, EquiBench is extensible to
additional categories of equivalence checking prob-
lems, which we anticipate will be useful as LLMs
improve.

Our experiments show that EquiBench is a chal-
lenging benchmark for LLMs. Among the 19 mod-
els evaluated, OpenAI o4-mini performs best over-
all, yet achieves only 60.8% in the CUDA category
despite reaching the highest overall accuracy of
82.3%. In the two most difficult categories, the

best accuracies are 63.8% and 76.2%, respectively,
only modestly better than the random baseline of
50% for binary classification. In contrast, purely
syntactic changes such as variable renaming are
much easier, with accuracies as high as 96.5%. We
further find, through difficulty analysis, that models
often rely on superficial form features such as syn-
tactic similarity rather than demonstrating robust se-
mantic reasoning. Moreover, prompting strategies
such as few-shot in-context learning and Chain-of-
Thought (CoT) prompting barely improve LLM
performance, underscoring the difficulty of reason-
ing about program semantics.

In summary, our contributions are as follows:

• New Task and Dataset: We introduce equiva-
lence checking as a new task to assess LLMs’
reasoning about program semantics. We
present EquiBench, a benchmark for equiv-
alence checking spanning four languages and
six equivalence categories.

• Automated Generation: We develop a fully
automated pipeline for constructing diverse
(in)equivalent program pairs using techniques
that ensure high-confidence labels and nontriv-
ial difficulty. The pipeline covers transforma-
tions ranging from syntactic edits to structural
modifications and algorithmic equivalence.

• Evaluation and Analysis: We evaluate 19
state-of-the-art models on EquiBench. In the
two most challenging categories, the best ac-
curacies are only 63.8% and 76.2%, highlight-
ing fundamental limitations. Our analysis
shows that models often rely on superficial
form features rather than demonstrating ro-
bust reasoning about program semantics.

2 Related Work

LLM Reasoning Benchmarks Extensive re-
search has evaluated LLMs’ reasoning capabilities
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across diverse tasks (Cobbe et al., 2021; Huang
and Chang, 2022; Bubeck et al., 2023; Mirzadeh
et al., 2024; Zhou et al., 2022; Ho et al., 2022; Wei
et al., 2022; Chen et al., 2024; Clark et al., 2018;
Zhang et al., 2024). In the context of code reason-
ing, i.e., predicting a program’s execution behavior
without running it, CRUXEval (Gu et al., 2024)
focuses on input-output prediction, while Code-
Mind (Liu et al., 2024) extends evaluation to natu-
ral language specifications. Another line of work
seeks to improve LLMs’ code simulation abilities
through prompting (La Malfa et al., 2024) or tar-
geted training (Liu et al., 2023; Ni et al., 2024; Ding
et al., 2024; Chen et al., 2025). Unlike prior work
that tests LLMs on specific inputs, our benchmark
evaluates their ability to reason over all inputs.

Equivalence Checking Equivalence checking
underpins applications such as performance op-
timization (Shypula et al., 2023; Cummins et al.,
2023, 2024), code transpilation (Lu et al., 2021;
Yang et al., 2024b; Ibrahimzada et al., 2024; Pan
et al., 2024), refactoring (Pailoor et al., 2024), and
testing (Felsing et al., 2014; Tian et al., 2024). Due
to its undecidable nature, no algorithm can decide
program equivalence for all program pairs while al-
ways terminating. Existing techniques (Sharma
et al., 2013; Dahiya and Bansal, 2017; Gupta
et al., 2018; Mora et al., 2018; Churchill et al.,
2019; Badihi et al., 2020) focus on specific do-
mains, such as SQL query equivalence (Zhao
et al., 2023; Ding et al., 2023; Singh and Be-
dathur, 2024). EQBENCH (Badihi et al., 2021)
and SeqCoBench (Maveli et al., 2024) are the main
datasets for equivalence checking, but have limi-
tations. EQBENCH is too small (272 pairs) for
LLM evaluation, while SeqCoBench relies only
on statement-level syntactic changes (e.g., renam-
ing variables). In contrast, our work introduces a
broader set of equivalence categories, creating a
more systematic and challenging benchmark.

3 Benchmark Construction

While we have so far discussed the standard notion
of equivalence, namely that two programs produce
the same output on any input, each benchmark cat-
egory adopts a more precise definition tailored to
its domain. All follow the principle of “produc-
ing the same output given the same input,” but the
exact criteria differ. For example, the CUDA cat-
egory tolerates small discrepancies from floating-
point rounding rather than requiring strict bit-level

char b[2];
static int c = 0;

int main() {
  char* p1 = &b[0];
  int*  p2 = &c;
  ...
  if (p1 == p2) {
   // code eliminated
  }
  return 0;
}

char b[2];
static int c = 0;

int main() {
  char* p1 = &b[0];
  int*  p2 = &c;
  ...
  if (p1 == p2) {
     // dead code
     c = 1;
  }
  return 0;
}

Figure 2: An equivalent pair from the DCE category
in EquiBench. In the left program, c = 1 is dead code
that has no effect on the program state and is removed
in the right program. Such pairs are generated using the
Dead Code Elimination (DCE) pass in compilers.

equivalence. These definitions are grounded in
real-world use cases and chosen to capture practi-
cal notions of equivalence in each setting. For each
category, we provide the corresponding definition
in the prompt when testing LLM reasoning. We de-
scribe how we generate (in)equivalent pairs across
the six categories as follows:

• DCE: C program pairs generated via the com-
piler’s dead code elimination (DCE) pass (Sec-
tion 3.1).

• CUDA: CUDA program pairs created by ap-
plying different scheduling strategies using a
tensor compiler (Section 3.2).

• x86-64: x86-64 assembly program pairs gen-
erated by a superoptimizer (Section 3.3).

• OJ_A, OJ_V, OJ_VA: Python program
pairs from online judge submissions, featur-
ing algorithmic differences (OJ_A), variable-
renaming transformations (OJ_V), and com-
binations of both (OJ_VA) (Section 3.4).

3.1 Pairs from Program Analysis (DCE)

Dead code elimination (DCE), a compiler pass, re-
moves useless program statements. After DCE, the
remaining statements in the modified program nat-
urally correspond to those in the original program.

Definition of Equivalence. Two programs are
considered equivalent if, when executed on the
same input, they always have identical program
states at all corresponding points reachable by pro-
gram execution. We expect language models to
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__global__ void GEMV(const float* A,
                     const float* x,
                     float* y, 
                     int R,
                     int C) {
    
    // Calculate the row index
    // assigned to the thread
    int r = blockIdx.x * blockDim.x
            + threadIdx.x;

    // Return if out of bounds
    if (r >= R) return;
    float s = 0.0f;

    for (int c = 0; c < C; c++) {
        s += A[r * C + c] * x[c];
    }

    y[r] = s;
}

__global__ void GEMV(const float* A, const float* x,
                     float* y, int R, int C) {
    __shared__ float tile[32]; // tiling with shared memory
    int r = blockIdx.x * blockDim.x + threadIdx.x;
    bool valid = (r < R);
    float s = 0.0f;
    for (int start = 0; start < C; start += 32) {
        for (int i = threadIdx.x; i < 32; i += blockDim.x) {
            int c = start + i;
            if (c < C) tile[i] = x[c]; // load x into tile
        }
        __syncthreads();
        if (valid) {
            for (int j = 0; j < min(32, C - start); j++) {
                s += A[r * C + (start + j)] * tile[j];
            }
        }
        __syncthreads();
    }
    if (valid) y[r] = s;
}

Figure 3: An equivalent pair from the CUDA category in EquiBench. Both programs perform matrix-vector
multiplication (y = Ax). The right-hand program uses shared memory tiling to improve performance. Tensor
compilers are utilized to explore different scheduling strategies, automating the generation.

identify differences between the two programs,
align their states, and determine whether these
states are consistently identical.

Example. Figure 2 illustrates an equivalent pair
of C programs. In the left program, the condition
(p1 == p2) compares the memory address of the
first element of the array b with that of the static
variable c. Since b and c reside in different memory
locations, this condition can never be satisfied. As
a result, the assignment c = 1 is never executed
in the left program and is removed in the right
program.

Automation. This reasoning process is auto-
mated by compilers through alias analysis, which
statically determines whether two pointers can ref-
erence the same memory location. Based on this
analysis, the compiler’s Dead Code Elimination
(DCE) pass removes code that does not affect pro-
gram semantics to improve performance.

Dataset Generation. We utilize CSmith (Yang
et al., 2011) to create an initial pool of random C
programs. Building on techniques from prior com-
piler testing research (Theodoridis et al., 2022), we
implement an LLVM-based tool (Lattner and Adve,
2004) to classify code snippets as either dead or
live. Live code is further confirmed by executing
random inputs with observable side effects. Equiv-
alent program pairs are generated by eliminating

dead code, while inequivalent pairs are generated
by removing live code.

3.2 Pairs from Compiler Scheduling (CUDA)

Definition of Equivalence. Two CUDA pro-
grams are considered equivalent if they produce
the same mathematical output for any valid input,
disregarding floating-point rounding errors. This
definition differs from that in Section 3.1, as it does
not require the internal program states to be identi-
cal during execution.

Example. Figure 3 shows an equivalent CUDA
program pair. Both compute matrix-vector multi-
plication y = Ax, where A has dimensions (R, C)
and x has size C. The right-hand program applies
the shared memory tiling technique, loading x into
shared memory tile (declared with __shared__).
Synchronization primitives __syncthreads() are
properly inserted to prevent synchronization issues.

Automation. The program transformation can be
automated with tensor compilers, which provide a
set of schedules to optimize loop-based programs.
These schedules include loop tiling, loop fusion,
loop reordering, loop unrolling, vectorization, and
cache optimization. For any given schedule, the
compiler can generate the transformed code. While
different schedules can significantly impact pro-
gram performance on the GPU, they do not affect
the program’s correctness (assuming no compiler
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size_t popcnt(uint64_t x) {
  int res = 0;
  for ( ; x > 0; x >>= 1 ) {
    res += x & 0x1ull;
  }
  return res;
}

.L0:
  xorl  %eax, %eax
  testq %rdi, %rdi
  je    .L2
.L1:
  movq  %rdi, %rdx
  andl  $0x1, %edx
  addq  %rdx, %rax
  shrq  $0x1, %rdi
  jne   .L1
  retq
.L2:
  retq

.L0:
  popcnt %rdi, %rax
  retq
   

Compiler Superoptimizer

Figure 4: An equivalent pair from the x86-64 cate-
gory in EquiBench. Both programs are compiled from
the same C function shown above, the left using a com-
piler and the right using a superoptimizer. The function
counts the number of set bits in the input %rdi register
and stores the result in %rax. Their equivalence has
been formally verified by the superoptimizer.

bugs), providing the foundation for automation.

Dataset Generation. We utilize TVM as the ten-
sor compiler (Chen et al., 2018) and sample ten-
sor program schedules from TenSet (Zheng et al.,
2021) to generate equivalent CUDA program pairs.
Inequivalent pairs are created by sampling code
from different tensor programs.

3.3 Pairs from a Superoptimizer (x86-64)
Definition of Equivalence. Two x86-64 assem-
bly programs are considered equivalent if, for any
input provided in the specified input registers, both
programs produce identical outputs in the specified
output registers. Differences in other registers or
memory are ignored for equivalence checking.

Example. Figure 4 shows an example of an
equivalent program pair in x86-64 assembly. Both
programs implement the same C function, which
counts the number of bits set to 1 in the variable x
(mapped to the %rdi register) and stores the result
in %rax. The left-hand program, generated by GCC
with O3 optimization, uses a loop to count each
bit individually, while the right-hand program, pro-

def fib(n):
  a, b = 0, 1
  for _ in range(n):
    a, b = b, a + b
  return a

def f(n):
  if n <= 1:
    return n
  return f(n-1)
         + f(n-2)

Problem Description:
Given an integer n, compute the
n-th Fibonacci number:

F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2) for n ≥ 2

Input:
A single integer n
(0 ≤ n ≤ 10000).

Output:
Output a number.

Algorithmic
Equivalence

def var2(q):
  if q <= 1:
    return q
  return var2(q-1)
         + var2(q-2)

OJ_A
Category

def func(x):
  m, n = 0, 1
  for _ in range(x):
    m, n = n, m + n
  return m

Variable Renaming
OJ_V Category

OJ_VA
Category

Both

Figure 5: Equivalent pairs from the OJ_A, OJ_V,
OJ_VA categories in EquiBench. OJ_A pairs demon-
strate algorithmic equivalence, OJ_V pairs involve vari-
able renaming transformations, and OJ_VA pairs com-
bine both types of variations.

duced by a superoptimizer, leverages the popcnt
instruction, a hardware-supported operation for effi-
cient bit counting. The superoptimizer verifies that
both programs are semantically equivalent. Deter-
mining this equivalence requires a solid understand-
ing of x86-64 assembly semantics and the ability
to reason about all possible bit patterns.

Automation. A superoptimizer searches a space
of programs to find one equivalent to the target.
Test cases efficiently prune incorrect candidates,
while formal verification guarantees the correctness
of the optimized program. Superoptimizers apply
aggressive and non-local transformations, making
semantic equivalence reasoning more challenging.
For example, in Figure 4, while a traditional com-
piler translates the loop in the source C program
into a loop in assembly, a superoptimizer can find
a more optimal instruction sequence by leveraging
specialized hardware instructions. Such transfor-
mations are beyond the scope of traditional compil-
ers.

Dataset Generation. We use Stoke (Schkufza
et al., 2013) to generate program pairs. Assembly
programs are sampled from prior work (Koenig
et al., 2021), and Stoke applies transformations to
produce candidate programs. If verification suc-
ceeds, the pair is labeled as equivalent; if the gen-
erated test cases fail, it is labeled as inequivalent.
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Category Language # Pairs Lines of Code

Min Max Avg.

DCE C 400 98 880 541
CUDA CUDA 400 46 1733 437
x86-64 x86-64 400 8 29 14
OJ_A Python 400 3 3403 82
OJ_V Python 400 2 4087 70
OJ_VA Python 400 3 744 35

Table 1: Statistics of the EquiBench dataset.

3.4 Pairs from Programming Contests

Definition of Equivalence. Two programs are
considered equivalent if they solve the same prob-
lem by producing the same output for any valid
input, as defined by the problem description. Both
programs, along with the problem description, are
provided to determine equivalence.

Example. Given the problem description in Fig-
ure 5, all four programs are equivalent as they
correctly compute the nth Fibonacci number.
The OJ_A pairs demonstrate algorithmic equiva-
lence—the left-hand program uses recursion, while
the right-hand program employs a for-loop. The
OJ_V pairs are generated through variable renam-
ing, a purely syntactic transformation that obscures
the program’s semantics by removing meaningful
variable names. The OJ_VA pairs combine both
algorithmic differences and variable renaming.

Dataset Generation. We sample Python submis-
sions using a publicly available dataset from Online
Judge (OJ) (Puri et al., 2021). For OJ_A pairs, ac-
cepted submissions are treated as equivalent, while
pairs consisting of an accepted submission and a
wrong-answer submission are considered inequiva-
lent. Variable renaming transformations are auto-
mated with an open-source tool (Flook, 2025).

4 Experimental Setup

Dataset. EquiBench consists of 2,400 program
pairs across six equivalence categories, each with
200 equivalent and 200 inequivalent pairs. Table 1
summarizes the statistics of program lengths. Con-
structing the program pairs required substantial sys-
tems effort. For example, for the DCE category, we
developed a 2,917-line LLVM-based tool, includ-
ing 1,472 lines in C and C++, with alias analysis
and path feasibility analysis to accurately classify
live and dead code.

Prompts. The 0-shot evaluation is conducted us-
ing the prompt “You are here to judge if two pro-
grams are semantically equivalent. Here equiva-
lence means {definition}. [Program 1]: {code1}
[Program 2]: {code2} Please only output the an-
swer of whether the two programs are equivalent
or not. You should only output Yes or No.” The
definition of equivalence and the corresponding
program pairs are provided for each category. Ad-
ditionally, for the categories of OJ_A, OJ_V, and
OJ_VA, the prompt also includes the problem de-
scription. The full prompts used in our experiments
for each equivalence category are in Appendix A.3.

5 Results

5.1 Model Accuracy

Table 2 shows the accuracy results for 19 state-of-
the-art large language models on EquiBench under
zero-shot prompting. Our findings are as follows:

Reasoning models achieve the highest perfor-
mance. As shown in Table 2, reasoning models
such as OpenAI o3-mini, DeepSeek R1, and o1-
mini significantly outperform all others in our eval-
uation. This further underscores the complexity
of equivalence checking, where reasoning models
exhibit a distinct advantage.

EquiBench is a challenging benchmark.
Among the 19 models evaluated, OpenAI o4-mini
achieves only 60.8% in the CUDA category despite
being the top-performing model overall, with an
accuracy of 82.3%. For the two most difficult
categories, the highest accuracy across all models
is 63.8% and 76.2%, respectively, only modestly
above the random baseline of 50% accuracy for
binary classification, highlighting the substantial
room for improvement.

Scaling up models improves performance.
Larger models generally achieve better perfor-
mance. Figure 6 shows scaling trends for the
Qwen2.5, Llama-3.1, and Mixtral families, where
accuracy improves with model size. The x-axis is
on a logarithmic scale, highlighting how models
exhibit consistent gains as parameters increase.

5.2 Difficulty Analysis

We conduct a detailed difficulty analysis across
equivalence categories and study how syntactic
similarity influences model predictions.
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Model DCE CUDA x86-64 OJ_A OJ_V OJ_VA Overall Accuracy

Random Baseline 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Llama-3.2-3B-Instruct-Turbo 50.0 49.8 50.0 51.5 51.5 51.5 50.7
Llama-3.1-8B-Instruct-Turbo 41.8 49.8 50.5 57.5 75.5 56.8 55.3
Mistral-7B-Instruct-v0.3 51.0 57.2 73.8 50.7 50.5 50.2 55.6
Mixtral-8x7B-Instruct-v0.1 50.2 47.0 64.2 59.0 61.5 55.0 56.1
Mixtral-8x22B-Instruct-v0.1 46.8 49.0 62.7 63.5 76.0 62.7 60.1
Llama-3.1-70B-Instruct-Turbo 47.5 50.0 58.5 66.2 72.0 67.5 60.3
QwQ-32B-Preview 48.2 50.5 62.7 65.2 71.2 64.2 60.3
Qwen2.5-7B-Instruct-Turbo 50.5 49.2 58.0 62.0 80.8 63.0 60.6
gpt-4o-mini-2024-07-18 46.8 50.2 56.8 64.5 91.2 64.0 62.2
Qwen2.5-72B-Instruct-Turbo 42.8 56.0 64.8 72.0 76.5 70.8 63.8
Llama-3.1-405B-Instruct-Turbo 40.0 49.0 75.0 72.2 74.5 72.8 63.9
DeepSeek-V3 41.0 50.7 69.2 73.0 83.5 72.5 65.0
gpt-4o-2024-11-20 43.2 49.5 65.2 71.0 87.0 73.8 65.0
claude3.5-sonnet-2024-10-22 38.5 62.3 70.0 71.2 78.0 73.5 65.6
claude3.7-sonnet-2025-04-16 40.5 63.8 64.8 70.5 89.2 73.5 67.0
o1-mini-2024-09-12 55.8 50.7 74.2 80.0 89.8 78.8 71.5
DeepSeek-R1 52.2 61.0 78.2 79.8 91.5 78.0 73.5
o3-mini-2025-01-31 68.8 59.0 84.5 84.2 88.2 83.2 78.0
o4-mini-2025-04-16 76.2 60.8 83.0 89.0 96.5 88.5 82.3

Mean 49.0 53.4 66.7 68.6 78.1 68.5 64.0

Table 2: Accuracy of 19 models on EquiBench under 0-shot prompting. We report accuracy for each of the six
equivalence categories along with the overall accuracy.

Difficulty by Transformation Type. Each cate-
gory adopts a specific definition of equivalence (see
Section 3), and the program transformations used
in each category differ accordingly. We find that
purely syntactic transformations are substantially
easier for models, while structural and compiler-
involved transformations are much harder. Specifi-
cally, OJ_V (variable renaming) achieves the high-
est mean accuracy of 78.1%, as it only requires
surface-level reasoning. OJ_A (algorithmic equiv-
alence) and OJ_VA (variable renaming combined
with algorithmic differences) achieve similar accu-
racies of 68.6% and 68.5%, respectively. In con-
trast, x86-64 (66.7%) and CUDA (53.4%) involve
complex instruction-level or memory-level trans-
formations, requiring deeper semantic reasoning.
DCE (dead code elimination) is the most difficult
category, with a mean accuracy of 49.0%, suggest-
ing that models struggle with nuanced program
analysis concepts.

Difficulty by Syntactic Similarity. To assess
whether LLM predictions reflect understanding of
program semantics rather than reliance on surface-
level syntax, we analyze how syntactic similarity
affects model behavior. Using Moss (Schleimer
et al., 2003), a plagiarism detection tool, we ob-
serve the following:

• For program pairs with low syntactic simi-
larity, models tend to predict “inequivalent,”

even when the programs are semantically
equivalent. This suggests an overreliance on
the superficial form of the code.

• For syntactically similar pairs, models are
more likely to predict “equivalent,” indicat-
ing a tendency to associate similarity in form
with equivalence in program semantics.

We validate this trend through statistical testing:
at significance level (α = 0.05), model accuracy
on equivalent pairs increases with syntactic similar-
ity, while accuracy on inequivalent pairs decreases.
This disconnect between syntactic form and execu-
tion behavior, as discussed in Section 1, suggests
that models do not fully grasp program semantics.

Implications for Benchmark Design. These
findings suggest that future benchmarks should
emphasize syntactically dissimilar yet equivalent
program pairs and syntactically similar yet inequiv-
alent program pairs to create more challenging and
diagnostic benchmarks for evaluating the deep se-
mantic reasoning capabilities of LLMs.

5.3 Bias in Model Prediction
We evaluate the prediction bias of the models
and observe a pronounced tendency to misclassify
equivalent programs as inequivalent in the CUDA
and x86-64 categories. Table 3 presents the results
for four representative models, showing high accu-
racy for inequivalent pairs but significantly lower
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Figure 6: Scaling Trend on EquiBench. Models ex-
hibit consistent gains as parameters increase.

accuracy for equivalent pairs, with full results for
all models in Appendix A.2.

The bias in the CUDA category arises from ex-
tensive structural transformations, such as loop
restructuring and shared memory optimizations,
which make paired programs appear substantially
different. In the x86-64 category, superoptimiza-
tion applies non-local transformations to achieve
optimal instruction sequences, introducing aggres-
sive code restructuring that complicates equiva-
lence reasoning and leads models to misclassify
equivalent pairs as inequivalent frequently.

Model CUDA x86-64

Eq Ineq Eq Ineq

Random Baseline 50.0 50.0 50.0 50.0
o3-mini 27.5 90.5 69.5 99.5
o1-mini 2.5 99.0 50.0 98.5
DeepSeek-R1 28.0 94.0 57.5 99.0
DeepSeek-V3 8.5 93.0 44.0 94.5

Table 3: Accuracies on equivalent and inequivalent
pairs in the CUDA and x86-64 categories under 0-shot
prompting, showing that models perform significantly
better on inequivalent pairs. Random guessing serves
as an unbiased baseline for comparison. More results
are in Appendix A.2.

5.4 Prompting Strategies Analysis
We study few-shot in-context learning and Chain-
of-Thought (CoT) prompting, evaluating four
strategies: 0-shot, 4-shot, 0-shot with CoT, and
4-shot with CoT. For 4-shot, prompts include 2
equivalent and 2 inequivalent pairs. Table 4 shows
the results.

Our key finding is that prompting strategies
barely improve performance on EquiBench, high-

Model 0S 4S 0S-CoT 4S-CoT

o1-mini 71.5 71.5 71.9 71.9
gpt-4o 65.0 66.5 62.5 62.7
DeepSeek-V3 65.0 66.9 63.3 62.5
gpt-4o-mini 62.2 63.5 60.2 61.2

Table 4: Accuracies of different prompting tech-
niques. We evaluate 0-shot and 4-shot in-context learn-
ing, both without and with Chain-of-Thought (CoT).
Prompting strategies barely improve performance.

lighting the difficulty of understanding program
semantics.

6 Discussion and Future Directions

Scope and Positioning Machine learning has
been applied to many code-related tasks, such
as clone detection (White et al., 2016), code
search (Gao et al., 2024), and bug finding (Deng
et al., 2023). EquiBench focuses on equivalence
checking, which differs fundamentally by evalu-
ating a model’s understanding of program seman-
tics. Unlike natural language, code is executable,
and its correctness depends on execution results
rather than form. For example, clone detection
captures syntactic or structural similarity without
considering behavior. In contrast, EquiBench tests
whether two programs produce the same outputs
for all inputs, offering an informative benchmark
for reasoning about program behavior.

Developer Use Cases EquiBench evaluates
whether LLMs truly understand program seman-
tics, a capability that underpins downstream tasks
such as program optimization, software refactor-
ing, and transpilation. These tasks are central to
practical scenarios where coding assistants must
propose improvements or transformations without
changing program behavior. For example, after a
developer performs a refactoring, a coding assistant
that performs well on EquiBench would be better
positioned to judge whether the transformed code
preserves the same functionality as the original.

Labeling Soundness To ensure high-assurance
equivalence labels, EquiBench relies on transfor-
mations grounded in program analysis, compiler
scheduling, and superoptimization, all of which
offer strong soundness guarantees. In contrast, ap-
proaches such as random testing (Jiang and Su,
2009), similarity-based tools (Silva and Valente,
2017), and refactoring datasets lack formal guaran-
tees and risk introducing incorrect labels.
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Design and Extensibility EquiBench is designed
with modularity in mind: each equivalence cat-
egory corresponds to a distinct class of pro-
gram transformations. Demonstrating strong per-
formance in these settings would indicate that
LLMs could support some components of com-
piler pipelines (e.g., dead code elimination (DCE)
as a core compiler optimization, or CUDA program
scheduling for high-performance ML systems). We
focus on the six categories where large-scale, high-
confidence labels can be generated automatically.
That said, equivalence checking is a general task
that is applicable to all programming languages.
We view our benchmark as a first step, and its mod-
ular design allows future extension to additional
categories and languages.

Evaluation of Reasoning Trace While our eval-
uation centers on binary classification, understand-
ing the rationale behind model predictions is an
important direction. Explanations may take the
form of natural language or formal proofs, but ver-
ifying their correctness remains difficult. Natural
language lacks reliable automated validation, since
using LLMs as judges can produce unsound results.
Building a proof-based evaluation framework using
tools such as Lean is also highly nontrivial. We
present a manual case analysis of reasoning trace
correctness in Appendix A.1 and leave automated
robust evaluation of reasoning as future work.

Effect of Fine-Tuning We tested whether su-
pervised fine-tuning improves performance. Fine-
tuning Qwen2.5-14B-Instruct with LoRA for 3
epochs on 1,200 labeled examples increased ac-
curacy from 59.8% to 63.2%. The small gain sug-
gests that binary labels alone provide limited learn-
ing signals for reasoning about program semantics.
Prior work has explored training with program exe-
cution traces to better capture execution behavior.
We conducted an additional experiment to evalu-
ate the training approach from SemCoder (Ding
et al., 2024). The base model (DeepSeek-Coder-
6.7B) achieves 49.9% accuracy on our benchmark,
and the fine-tuned model released by SemCoder
reaches 54.9%. While this shows some benefit,
the improvement remains modest. These results
support our broader claim: EquiBench presents a
difficult and meaningful challenge even for fine-
tuned models, and deeper semantic understanding
remains out of reach for current approaches.

Future Directions We believe EquiBench can in-
form future research on task-specific training meth-
ods, including: (1) distilling reasoning traces from
stronger models, (2) scaling training with larger
datasets generated through our pipeline, (3) devel-
oping agentic approaches where LLMs actively
execute and compare programs using tools (e.g., a
Python interpreter) to generate inputs that expose
differences, (4) applying reinforcement learning
with execution-based feedback, and (5) creating
datasets with program analysis concepts (see Ap-
pendix A.1) for training LLMs.

7 Conclusion

EquiBench is a benchmark for evaluating whether
large language models (LLMs) truly understand
program semantics. We propose the task of equiva-
lence checking, which asks whether two programs
produce identical outputs for all possible inputs,
as a direct way to test a model’s ability to reason
about program behavior. The dataset consists of
2400 program pairs across four languages and six
categories, constructed through a fully automated
pipeline that provides high-confidence labels and
nontrivial difficulty. Our evaluation of 19 state-of-
the-art LLMs shows that even the best-performing
models achieve only modest accuracy in the most
challenging categories. Further analysis shows that
LLMs often rely on syntactic similarity instead of
demonstrating robust reasoning about program se-
mantics, underscoring the need for further advances
in the semantic understanding of programs.

Limitations

While we make every effort to ensure that all pro-
gram pairs in EquiBench are correctly labeled, we
cannot guarantee absolute accuracy. The dataset is
built through automated transformation pipelines
that rely on external toolchains such as compilers,
superoptimizers, and analysis frameworks. These
components, although carefully chosen for their
soundness guarantees, are not immune to subtle
bugs or rare edge cases that may produce incorrect
outputs. Furthermore, in the categories based on
competitive programming submissions, some in-
put programs may themselves be mislabeled due
to incorrect online judge verdicts or subtle imple-
mentation flaws that escape the test cases. These
sources of noise, though limited in scope, remain a
potential source of labeling inaccuracy.
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A Appendix

A.1 Case Studies

Models lack capabilities for sound equivalence
checking. We find that simple changes that lead
to semantic differences can confuse the models,
causing them to produce incorrect predictions de-
spite their correct predictions on the original pro-
gram pairs. For example, o3-mini, which is one
of the top-performing models in CUDA category,
can correctly classify the pair shown in Figure 3
as equivalent. Next, we introduce synchroniza-
tion bugs into the right-hand program, creating two
inequivalent pairs with the original left-hand pro-
gram: (1) removing the first __syncthreads();
allows reads before all writes complete, caus-
ing race conditions; (2) removing the second
__syncthreads(); lets faster threads overwrite
shared data while slower threads read it. Despite
these semantic differences, o3-mini misclassifies
both pairs as equivalent.

Proper hints enable models to correct misjudg-
ments. After o3-mini misclassifies the modified
pairs, a hint about removed synchronization primi-
tives allows it to correctly identify both as inequiv-
alent, with accurate explanations highlighting data
races. This suggests that training models on dedi-
cated program analysis datasets, beyond only raw
source code, may be useful for improving their
code reasoning capabilities.

A.2 Model Prediction Bias

We evaluate the prediction bias of the models
and observe a pronounced tendency to misclassify
equivalent programs as inequivalent in the CUDA
and x86-64 categories. Figure A1 here shows the
full results on models under 0-shot prompting.

A.3 Prompts

A.3.1 DCE Category
We show the prompts for the 0-shot setting.

You are here to judge if two C programs are
semantically equivalent.
Here equivalence means that, when run on the
same input, the two programs always have the
same program state at all corresponding points
reachable by program execution.
[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please only output the answer of whether the
two programs are equivalent or not. You should
only output YES or NO.

A.3.2 CUDA Category

We show the prompts for the 0-shot setting.
You are here to judge if two CUDA programs

are semantically equivalent.
Here equivalence means that, when run on the
same valid input, the two programs always compute
the same mathematical output (neglecting floating
point rounding errors).
[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please only output the answer of whether the
two programs are equivalent or not. You should
only output YES or NO.

A.3.3 x86-64 Category

We show the prompts for the 0-shot setting.
You are here to judge if two x86-64 programs

are semantically equivalent.
Here equivalence means that, given any input
bits in the register {def_in}, the two programs
always have the same bits in register {live_out}.
Differences in other registers do not matter for
equivalence checking.

[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please only output the answer of whether the
two programs are equivalent or not. You should
only output YES or NO.
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Model CUDA x86-64

Eq Ineq Eq Ineq

Random Baseline 50.0 50.0 50.0 50.0
deepseek-ai/DeepSeek-V3 8.5 93.0 44.0 94.5
deepseek-ai/DeepSeek-R1 28.0 94.0 57.5 99.0
meta-llama/Llama-3.1-405B-Instruct-Turbo 6.0 92.0 68.5 81.5
meta-llama/Llama-3.1-8B-Instruct-Turbo 2.0 97.5 1.0 100.0
meta-llama/Llama-3.1-70B-Instruct-Turbo 7.0 93.0 27.5 89.5
meta-llama/Llama-3.2-3B-Instruct-Turbo 0.0 99.5 0.0 100.0
anthropic/claude-3-5-sonnet-20241022 62.5 62.0 49.5 90.5
Qwen/Qwen2.5-7B-Instruct-Turbo 18.5 80.0 17.5 98.5
Qwen/Qwen2.5-72B-Instruct-Turbo 14.5 97.5 36.0 93.5
Qwen/QwQ-32B-Preview 35.0 66.0 39.0 86.5
mistralai/Mixtral-8x7B-Instruct-v0.1 18.0 76.0 50.5 78.0
mistralai/Mixtral-8x22B-Instruct-v0.1 10.5 87.5 32.5 93.0
mistralai/Mistral-7B-Instruct-v0.3 52.5 62.0 87.0 60.5
openai/gpt-4o-mini-2024-07-18 0.5 100.0 16.5 97.0
openai/gpt-4o-2024-11-20 0.0 99.0 68.5 62.0
openai/o3-mini-2025-01-31 27.5 90.5 69.5 99.5
openai/o1-mini-2024-09-12 2.5 99.0 50.0 98.5

Figure A1: Model prediction bias.

A.3.4 OJ_A, OJ_V, OJ_VA Category
We show the prompts for the 0-shot setting.

You are here to judge if two Python programs
are semantically equivalent.
You will be given [Problem Description],
[Program 1] and [Program 2].
Here equivalence means that, given any valid input
under the problem description, the two programs
will always give the same output.

[Problem Description]:

{problem_html}

[Program 1]:

{program_1_code}

[Program 2]:

{program_2_code}

Please only output the answer of whether the
two programs are equivalent or not. You should
only output YES or NO.

33881


