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Abstract

There is increasing evidence of Human La-
bel Variation (HLV) in Natural Language In-
ference (NLI), where annotators assign differ-
ent labels to the same premise-hypothesis pair.
However, within-label variation—cases where
annotators agree on the same label but pro-
vide divergent reasoning—poses an additional
and mostly overlooked challenge. Several NLI
datasets contain highlighted words in the NLI
item as explanations, but the same spans on
the NLI item can be highlighted for different
reasons, as evidenced by free-text explanations,
which offer a window into annotators’ reason-
ing. To systematically understand this problem
and gain insight into the rationales behind NLI
labels, we introduce LITEX, a linguistically-
informed taxonomy for categorizing free-text
explanations in English. Using this taxonomy,
we annotate a subset of the e-SNLI dataset, val-
idate the taxonomy’s reliability, and analyze
how it aligns with NLI labels, highlights, and
explanations. We further assess the taxonomy’s
role in explanation generation, demonstrating
that conditioning generation on LITEX yields
explanations that are linguistically closer to hu-
man explanations than those generated using
only labels or highlights. Our approach thus
not only captures within-label variation but also
shows how taxonomy-guided generation for
reasoning can bridge the gap between human
and model explanations more effectively than
existing strategies.

1 Introduction

Natural Language Inference (NLI), a cornerstone
task in Natural Language Processing (NLP), has
inspired extensive research on human disagreement
and model interpretability. A key focus of recent

* Equal contribution.
† Main work carried out while at LMU Munich.

Premise: A man in an Alaska sweatshirt stands behind a 
counter.
Hypothesis: The man is wearing a tank top.

Explanation 1: The man cannot simultaneously be 
wearing a sweatshirt and a tank top.
Explanation 2: A man in Alaska would typically not be 
wearing a tank top, as it is rather cold there most times 
of the year.
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Premise: A crowd is watching a group of men in suits 
with briefcases walk in formation down the street led by 
a woman holding a sign.

Hypothesis: The sign the woman is holding states that 
'Freedom is free'.

Explanation 1: it doesn' t tell you what the sign says.

Explanation 2: There's no explanation that the sign the 
woman is holding state that "Freedom is free".

Different explanations
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Figure 1: Our LITEX taxonomy reveals within-label
variation not captured by highlights: the same highlights
can yield different explanations (Example B), and vice
versa (Example A).

work has been Human Label Variation (HLV, Plank
2022) — cases in which annotators assign differ-
ent labels to the same premise-hypothesis pair (Nie
et al., 2020b; Jiang et al., 2023; Weber-Genzel et al.,
2024). This variation has been acknowledged as
a reflection of subjective judgment (Cabitza et al.,
2023) and linguistic ambiguity (de Marneffe et al.,
2012; Uma et al., 2022). Comparatively, the is-
sue of within-label variation (Jiang et al., 2023)
– cases where annotators agree on the same label,
yet provide different explanations or rationales for
their decision – has received less attention. Such
variation reveals the plurality of valid reasoning
strategies and highlights the richness of human in-
ference beyond label selection.

Free-text explanations offer a rich perspective

34065

mailto:pingjun.hong@univie.ac.at
mailto:beiduo.chen@lmu.de
mailto:siyao.peng@lmu.de
mailto:b.plank@lmu.de
mailto:marie-catherine.demarneffe@uclouvain.be


on reasoning variation. However, their open-ended
form makes it difficult to extract information that
is directly useful for downstream analysis. As a
result, structured formats are often used when col-
lecting human explanations. Highlights are one
such mechanism (Tan, 2022). Jiang et al. (2023)
acknowledge that textual highlight spans alone are
insufficient to capture deeper reasoning distinctions
including within-label variation, especially when
explanations focus on different parts of the input or
rely on different assumptions. As illustrated in Fig-
ure 1, two explanations in Example B may share the
same highlighted spans (here sweatshirt and tank
top) but reflect different reasoning strategies (one
annotator focuses on the fact that sweatshirt and
tank top are not typically worn together, whereas
the other says that one does not wear a tank top
in Alaska); or conversely, different highlights may
convey essentially the same explanation, as seen in
Example A.

To address this gap, (1) we introduce LITEX, a
LInguistic Taxonomy of EXplanations for under-
standing within-label variation in English natural
language inference explanations. (2) We validate
our taxonomy through human inter-annotator agree-
ment and model-based classification. We further
analyze its alignment with NLI labels and quantify
within-label variation by examining category dis-
tribution and their similarity—demonstrating the
taxonomy’s ability to capture different types of
explanations. (3) While human explanations are
costly, LLMs offer a scalable alternative for gen-
erating explanations in NLI (Chen et al., 2025b).
Through generation experiments, we demonstrate
that taxonomy-based guidance provides a more
effective signal for LLMs than highlight-based
prompts.

2 Related Work

Explaining NLI Labels Explanations play a cru-
cial role in making NLI decisions interpretable. As
Tan (2022) highlights, explanations vary in form
and quality, and improving their usefulness requires
distinguishing between different explanation types
and recognizing human limitations in producing
them. Among existing methods, token-level high-
lights serve as a proxy for explanations, guiding an-
notators to mark relevant spans that support their la-
bel choice. Several NLI datasets provide such anno-
tations (including free-text explanations also), col-
lected either during labeling (e.g., LiveNLI (Jiang

et al., 2023) and ANLI (Nie et al., 2020a)) or post-
hoc (e.g., e-SNLI (Camburu et al., 2018)). Here,
we focus on both types of explanations (free-text
and highlights) from e-SNLI.

Taxonomies of Variation in NLI In the context
of NLI, earlier taxonomies focused on categorizing
the kind of inferences present in NLI items (Sam-
mons et al., 2010; Simons et al., 2011; LoBue and
Yates, 2011). Later work proposed a taxonomy
that identifies characteristics of the items that can
cause variation in annotation (Jiang and de Marn-
effe, 2022). Jiang et al. (2023) shifted the focus
from the NLI items, collecting free-text explana-
tions provided by the annotators themselves, apply-
ing Jiang and de Marneffe (2022)’s taxonomy to the
explanations. Jayaweera and Dorr (2025) further
argued for an ambiguity-aware NLI framework that
detects ambiguous instances and classifies them us-
ing the taxonomy of Jiang and de Marneffe (2022).

Our work builds on this direction by proposing a
taxonomy of explanations for instances that share
the same NLI label, aiming to capture within-label
variation in reasoning. Compared to Jiang et al.
(2023), our taxonomy is thus grounded in the ex-
planations. It also makes world knowledge in NLI
reasoning explicit.

LLM-Based Explanation Generation Recent
studies explored the use of LLMs to generate
natural language explanations across a range of
NLP tasks, aiming to improve transparency and
support downstream analysis. Li et al. (2024)
proposed prompting LLMs to generate chain-of-
thought (CoT) explanations to improve the per-
formance of small task-specific models. Chen
et al. (2025a) further repurposed CoTs as a for-
ward source of explanation-label pairs, applying
discourse-guided segmentation to extract structured
rationales. Huang et al. (2023) investigated whether
LLMs could generate faithful self-explanations to
justify their own predictions during inference.

In NLI, Jiang et al. (2023) employed GPT-3 to
generate post-prediction explanations (predict-then-
explain) and found this strategy to outperform CoT
prompting. Chen et al. (2025b) showed that LLMs
can effectively generate explanations to approxi-
mate human judgment distribution, offering a scal-
able and cost-efficient alternative to manual anno-
tation. Building on this line of work, we use our
proposed taxonomy to guide LLM prompting for
more informative and human-aligned explanations.
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Text-Based Reasoning (TB)

Coreference Q: Does the explanation rely on resolving coreference between entities?
Check: Determine whether the main entities in the premise and hypothesis refer to the same real-world

referent, including via pronouns or phrases.

Syntactic Q: Does the explanation involve a change in sentence structure that preserves meaning?
Check: Determine whether the premise and hypothesis differ in structure, such as active vs. passive,

reordered arguments, or coordination/subordination, while preserving the same meaning.

Semantic Q: Does the explanation involve semantic similarity or substitution of key concepts?
Check: Evaluate whether core words or expressions - including verbs, nouns, and adjectives - are semanti-

cally related between the premise and hypothesis. This includes synonymy, antonymy, lexical
entailment, or category membership.

Pragmatic Q: Does the explanation rely on pragmatic cues like implicature or presupposition?
Check: Look for meaning beyond the literal text - including implicature, presupposition, speaker intention,

and conventional conversational meaning.

Absence
of Mention

Q: Does the explanation point out information not mentioned in the premise?
Check: Check whether the hypothesis introduced information that is neither supported nor contradicted

by the premise - i.e., it is not mentioned explicitly.

Logic
Conflict

Q: Does the explanation refer to logical constraints or conflict?
Check: Evaluate whether the hypothesis interacts with the premise via logical structures, such as exclusiv-

ity, quantifiers (“only”, “none”), or conditionals, which constrain or conflict with each other.

World Knowledge-Based Reasoning (WK)

Factual
Knowledge

Q: Does the explanation rely on widely shared, intuitive facts acquired through everyday experience?
Check: Determine whether the explanation invokes commonly known facts, such as physical properties

or universal experiences, that are not stated in the premise.

Inferential
Knowledge

Q: Does the explanation rely on real-world norms, customs, or culturally grounded reasoning?
Check: Determine whether the explanation requires reasoning based on general world knowledge, in-

cluding cultural expectations, social norms, or typical causal inferences, that are not stated in the
premise.

Table 1: Guiding questions and decision criteria for our LITEX taxonomy.

3 LITEX: Linguistically-informed
Taxonomy of NLI Reasoning

To systematically capture the different types of rea-
soning strategies underlying within-label variation
in NLI, we propose LITEX, a LInguistic Taxonomy
of EXplanation classification, focusing strictly on
the reasoning explicitly stated in the explanations.

3.1 Taxonomy Categories

LITEX organizes explanations into two broad cate-
gories based on their reliance on textual evidence or
external knowledge, as shown in Table 1. This cate-
gorization builds on the work of Jiang and de Marn-
effe (2022).

The first broad category, Text-Based (TB) Rea-
soning, includes explanations that depend solely
on surface-level linguistic evidence found within
the premise and hypothesis, without appealing to
world knowledge. Six subtypes are defined: Coref-
erence, Syntactic, Semantic, Pragmatic, Absence
of Mention and Logic Conflict.

The second category, World-Knowledge (WK)
Reasoning, includes explanations that invoke back-

ground knowledge or domain-specific information
beyond what is explicitly stated in the text. Fac-
tual knowledge refers to widely shared, intuitive
facts acquired through everyday experience, such
as fire is hot. Inferential Knowledge involves cultur-
ally or contextually grounded understanding, such
as recognizing that wearing white to a funeral is
inappropriate (a norm that varies across cultures)
(Davis, 2017; Ilievski et al., 2021).

Table 1 presents guiding questions and decision
criteria for each taxonomy category to help anno-
tators identify the reasoning behind explanations.
These questions, along with illustrative examples
in Appendix A, clarify the conceptual boundaries
between categories. For example, to distinguish
between Logic Conflict and Semantic, consider the
following two explanations: (a) A man cannot be
both tall and short at the same time and (b) Tall
and short are not the same. Explanation (a) reflects
a logical inconsistency, pointing to the mutual ex-
clusivity of properties, and thus labeled as Logic
Conflict, whereas explanation (b) highlights lexi-
cal contrast or antonymy without explicit logical
reasoning, and thus Semantic.
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Classifiers Acc P R F1

Random Baseline 12.5 11.8 10.8 10.2
Majority Baseline 31.3 3.9 12.5 6.0

BERT-base 70.2 60.5 57.9 57.8
RoBERTa-base 68.9 48.4 53.4 50.4

Llama-3.2-3B-Instruct 35.7 44.0 35.7 29.1
gpt-3.5-turbo 30.5 31.7 30.5 26.2
gpt-4o 58.3 55.0 54.8 49.2
DeepSeek-v3 52.6 51.9 56.3 47.8

Table 2: Taxonomy classification results (%) on LITEX-
SNLI. Fine-tuning methods are evaluated with a 50/50
data split; Prompt-based methods use taxonomy de-
scriptions with two examples per category. P(recision),
R(ecall), and F1 are at the macro-level.

3.2 Taxonomy Annotation
We randomly selected a subset (1,002 items) of the
e-SNLI dataset, in which each item received three
post-hoc human-written explanations accompanied
by highlights. We conduct LITEX annotations on
these explanations. To better capture distinct rea-
soning strategies, we manually segment the long
explanations that potentially include multiple infer-
ences into shorter ones. As a result, the original
3,006 explanations are expanded to 3,108. One
trained annotator applied LITEX to these 3,108 ex-
planations (and the associated premise, hypothesis,
and NLI label are provided as context), labeling
each with one of the eight categories.

3.3 Taxonomy Validation
To validate the consistency and generalizability of
our LITEX taxonomy, we provide human inter-
annotator agreement (IAA) and benchmark experi-
ments on automatic explanation classification.

IAA We assess the consistency of our human an-
notations by calculating IAA on a subset of the
e-SNLI explanations, separate from LITEX-SNLI
used in our main experiments. Two annotators, the
one from the initial phase and one newly recruited,1

annotated 201 explanations from 67 extra e-SNLI
items, using the proposed taxonomy. The agree-
ment is high (Cohen’s k of 0.862), suggesting that
the taxonomy can be applied consistently between
annotators. Appendix B presents the confusion
matrix and representative examples of annotation
disagreements.

Taxonomy Classification To validate the taxon-
omy and test its usefulness for automated classifica-

1Both are trained and paid according to national standards.
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Figure 2: Distribution of LITEX categories on LITEX-
SNLI explanations across NLI labels (n = 3,108).

Category
#

Entailment
# (%)

Neutral
# (%)

Contradiction
# (%)

Total

1 76 (22.0) 171 (52.3) 142 (43.0) 389
2 179 (51.9) 139 (42.5) 156 (47.3) 474
≥ 3 90 (26.1) 17 (5.1) 32 (9.7) 139

Table 3: Distribution of NLI items that receive 1, 2, or
>=3 LITEX categories on their explanations (n = 1,002).

tion, we fine-tuned two pre-trained language mod-
els, BERT-base-uncased (Devlin et al., 2019) and
RoBERTa-base (Liu et al., 2019), to classify expla-
nations in LITEX-SNLI to the annotated LITEX

categories. We also few-shot prompt 4 generative
AI models: Llama-3.2-3B-Instruct (Meta, 2024),
GPT-3.5-turbo (Brown et al., 2020), GPT-4o (Ope-
nAI, 2023) and DeepSeek-v3 (DeepSeek-AI et al.,
2024); see Appendix C for details.

Table 2 gives the classification results. BERT-
base and RoBERTa-base achieve strong results on
this 8-way classification task, with macro-F1 scores
of 57.8% and 50.4%, and accuracies of 70.2% and
68.9%, respectively. These results substantially
surpass both a random baseline of 12.5% and a
majority-class baseline of 31.3% (based on the
dominant category, Inferential Knowledge), em-
phasizing the benefits of task-specific supervision.
LLMs, when prompted with detailed taxonomy de-
scriptions and illustrative examples, also perform
better than random and majority-class baselines,
further confirming our taxonomy’s learnability.

In sum, the findings suggest that the proposed
taxonomy is learnable, reinforcing its applicability
for both annotation and LLM-based reasoning.

3.4 Taxonomy Analysis

Co-occurrence of Explanation Categories and
NLI Labels Figure 2 plots the distribution of
our explanation categories and their co-occurrence
with NLI labels. We observe that different expla-
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Figure 3: Boxplot of explanation similarities grouped
by number of LITEX categories on an NLI item.

nation categories show distinct distributions over
NLI labels. Logic Conflict is dominated by contra-
diction, because this category focuses on captur-
ing logical inconsistency. Syntactic, Semantic, and
Pragmatic are primarily associated with entailment,
suggesting that these reasoning types tend to sup-
port alignment. Factual Knowledge and Inferential
Knowledge are more evenly distributed across the
labels, since world knowledge could be involved
in different inference scenarios. Lastly, Absence
of Mention aligns strongly with neutral, consistent
with its reliance on unstated information.

Within-label Variation Table 3 gives the counts
of our 1,002 NLI items for which the three (or
more) explanations were annotated with 1, 2, or
≥ 3 LITEX categories (cf. §3.2 for explanation
segmentation). These counts show that within-label
variation is prevalent in e-SNLI, e.g., 613 out of
1,002 (61.2%) items received more than one taxon-
omy category across explanations.

To quantify it further, we compute pairwise simi-
larity of explanations for each NLI item using stan-
dard metrics, following Giulianelli et al. (2023) and
Chen et al. (2025b). These include lexical (word
n-gram overlap), morphosyntactic (POS n-gram
overlap), and semantic similarity (cosine/Euclidean
distance2), along with BLEU (Papineni et al., 2002)
and ROUGE-L (Lin, 2004). Figure 3 shows that
explanation similarity decreases as the number of
taxonomy categories increases, while explanations
within the same category remain more similar, sup-
porting the taxonomy’s ability to capture within-
label variation.

2We compute semantic similarity using sentence embed-
dings from Sentence-BERT (Reimers and Gurevych, 2019).
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Figure 4: Average number of highlighted words in each
premise-hypothesis pair across LITEX categories.

Highlights vs. Taxonomy We analyze highlight
span lengths for different explanation categories
in Figure 4. On average, premises and hypotheses
contain 13.81 and 7.41 words. Syntactic expla-
nations have the longest spans in both, reflecting
sentence-level understanding. Absence of Mention
highlights are minimal in premises but more in
hypotheses, marking new mentions in the hypothe-
ses. Inferential and Factual Knowledge rely on
short spans in the premise, pointing to external
knowledge needs. These observations demonstrate
that the length of highlight spans and distribution
vary systematically across reasoning types, offer-
ing evidence that different types of reasoning reveal
distinct linguistic patterns in NLI explanations.

4 Explanation Generation using
Taxonomy and Highlight

To investigate the interpretability and generalizabil-
ity of our taxonomy, particularly in comparison to
highlight approaches, we experiment on a practical
usage: generating explanations with taxonomy or
with highlight annotations. The goal is to generate,
for a given NLI item and its label, multiple explana-
tions that reflect different plausible reasoning paths.
While collecting such varied human-authored ex-
planations is expensive—and often infeasible to
elicit from a single annotator—LLMs offer a scal-
able alternative (Chen et al., 2025b). We discuss
various prompting paradigms (§4.1) and measure
the similarities between LLM-generated and hu-
man explanations (§4.2).

4.1 Prompting Paradigms
We experiment with three prompting paradigms
and evaluate our approach on three instruction-
tuned LLMs: GPT-4o, DeepSeek-v3, and Llama-
3.3-70B-Instruct, with full prompt templates pre-
sented in Appendix E.
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Mode Word n-gram POS n-gram Semantic NLG Eval Avg_len
1-gram 2-gram 3-gram 1-gram 2-gram 3-gram Cos. Euc. BLEU ROUGE-L

GPT4o baseline 0.291 0.117 0.049 0.882 0.488 0.226 0.556 0.524 0.051 0.272 24.995
highlight (indexed) 0.402 0.124 0.053 0.878 0.481 0.222 0.554 0.522 0.051 0.269 28.240
taxonomy (two-stage) 0.418 0.128 0.071 0.886 0.495 0.242 0.593 0.537 0.071 0.314 19.991
taxonomy (end-to-end) 0.437 0.166 0.083 0.898 0.511 0.255 0.608 0.540 0.074 0.323 26.672

DeepSeek-v3 baseline 0.369 0.087 0.034 0.847 0.449 0.195 0.428 0.490 0.042 0.245 20.288
highlight (indexed) 0.364 0.091 0.037 0.861 0.450 0.196 0.464 0.499 0.034 0.242 27.301
taxonomy (two stage) 0.391 0.122 0.055 0.884 0.475 0.219 0.544 0.522 0.057 0.293 20.894
taxonomy (end-to-end) 0.404 0.140 0.067 0.897 0.486 0.233 0.556 0.528 0.063 0.306 25.960

Llama-3.3-70B baseline 0.392 0.106 0.044 0.863 0.478 0.224 0.466 0.496 0.046 0.250 27.148
highlight (indexed) 0.317 0.065 0.024 0.807 0.408 0.173 0.367 0.478 0.031 0.199 24.987
taxonomy (two-stage) 0.444 0.167 0.082 0.889 0.512 0.256 0.609 0.541 0.078 0.321 22.340
taxonomy (end-to-end) 0.383 0.110 0.048 0.896 0.499 0.232 0.505 0.510 0.047 0.262 28.870

Table 4: Similarity of LLM-generated explanations to human references.

Baseline The model only sees the NLI item
(premise and hypothesis) and a label, and generates
explanations based on this input.

Highlight-Guided Adding to the baseline inputs,
we include highlight annotations of the premise and
hypothesis—as indices (indexed) or tokens marked
by surrounding ** in text (in-text). We ask the
LLMs to first predict the highlighted tokens in the
premise and hypothesis and subsequently gener-
ate relevant explanations. We report results in the
indexed setup, as it yields marginally better aver-
age performance across metrics; see Appendix F
for similar in-text results and when using e-SNLI
highlights.

Taxonomy-Guided The model is provided with
the taxonomy description (Table 1), one example
for each of the eight reasoning categories, and the
full taxonomy. We experiment with two prompting
setups: two-stage and end-to-end. The two-stage
setup separates classification and generation—first
predicting the taxonomy label for a given NLI item,
then generating explanations conditioned on it. The
end-to-end approach performs both steps in a single
prompt. This comparison addresses concerns that
end-to-end generation may introduce a bias toward
certain reasoning categories.

4.2 Model Generation Results
We evaluate similarities between LLM- and human-
generated explanations using the same metrics as in
§3.4. For each generated explanation, we evaluate
it against the human-written references individually
by computing all metrics. We then select the best-
scoring reference for that explanation and retain its
score. The score for each NLI item is then obtained
by averaging over all its generated explanations.

The final reported result is the average of these
per-item scores across our entire dataset.

Table 4 reports our generation results. Notably,
end-to-end taxonomy prompting performs best on
GPT-4o and DeepSeek-v3, while two-stage prompt-
ing yields better performance on Llama 3.3. Across
all models, taxonomy-guided generation achieves
higher alignment with human explanations than
both the baseline and highlight-based approaches.
This is reflected in higher POS tag n-gram overlap,
which captures morphosyntactic structural similar-
ity, and in stronger semantic similarity metrics like
Cosine. In contrast, highlight-guided explanations
perform comparably or slightly worse than the base-
line, and tend to have longer average lengths with
lower lexical and semantic overlap with the refer-
ences. This suggests that highlighting alone may
not sufficiently inform the model to produce rele-
vant explanations. It is also worth noting that the
open-source Llama model performs on par with the
closed-source GPT model.

While high similarity to human references is de-
sirable, overly verbose content may indicate unnec-
essary redundancy (Holtzman et al., 2020). From
Table 4, we observe that highlight-guided gener-
ations tend to produce longer explanations (e.g.,
28.24 for GPT-4o and 30.42 for DeepSeek-v3)
while yielding lower BLEU and ROUGE-L scores
compared to both the baseline and taxonomy-
guided variants. This indicates that the predicted
highlights did not improve alignment with human-
written explanations and may instead reflect re-
dundancy. Rather, taxonomy-based methods re-
sult in higher similarity and more concise explana-
tions. This effect, however, is driven by the taxon-
omy two-stage approach: while it produces notably
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Figure 5: Representative t-SNE visualizations of explanation embeddings. The blue convex hull represents the span
of human-written explanations, while the gray illustrates the spread of GPT4o-generated explanations.

shorter outputs, the end-to-end taxonomy variant
often generates longer explanations, in some cases
exceeding those of highlight-based methods for
Llama.

4.3 Model Generation Validation

To assess the quality of model-generated NLI expla-
nations, we conduct a round of human validation.
Specifically, we evaluate 8,373 explanations pro-
duced by GPT-4o under the taxonomy two-stage
prompting paradigm introduced in §4.1, as this
setup yields a broader coverage of reasoning cate-
gories compared to the end-to-end variant, allowing
for more comprehensive validation across the tax-
onomy. For each explanation, one trained annotator
is provided with the premise, hypothesis, NLI label,
the generated explanation, and the corresponding
taxonomy category. The annotator is instructed to
answer the following two binary questions:

1. NLI label consistency: Does the explanation
fit the gold label? (Yes/No)

2. Taxonomy consistency: Does the explanation
fit the taxonomy? (Yes/No)

The results show that overall 98.27% of the
generated explanations align with the NLI label
and 83.84% match the prompted taxonomy cat-
egory. Some categories showed high alignment
rates, such as Syntactic (94.88%) and Absence of
Mention (92.47%), while others were more chal-
lenging, such as Coreference (57.25%) and Logic
Conflict (63.05%). A detailed breakdown by tax-
onomy category, along with further discussion, is
provided in Appendix G.

Coverage Area
Mode Full Partial Rec Prec

GPT4o baseline 1.9 21.6 16.5 5.7
highlight (indexed) 1.1 13.5 10.0 4.7
taxonomy (end-to-end) 10.7 56.1 49.3 5.6

DeepSeek-v3 baseline 4.0 20.5 17.5 2.7
highlight (indexed) 2.3 14.9 12.5 2.9
taxonomy (end-to-end) 17.8 61.8 54.7 3.8

Llama-3.3-70B baseline 1.7 15.4 12.2 2.9
highlight (indexed) 0.5 8.2 6.5 2.5
taxonomy (end-to-end) 16.7 65.2 59.8 5.7

Table 5: Results on the semantic coverage of model
explanations regarding human reference explanations.

5 Assessing Explanation Coverage:
Human vs. LLM Outputs

Besides evaluating the similarity between human-
written and LLM-generated explanations, the more
fundamental question is how much within-label
variation can LLM-generated explanations capture.
Are LLMs too repetitive and only cover a subset
of human explanations? Can LLMs unearth ap-
propriate new explanations that are missing from a
few human-written ones? This section presents our
attempt to measure coverage in LLM-generated ex-
planations. Given that LLMs are prompted to gen-
erate multiple explanations, we examine whether
they can fully cover the semantic space of human
explanations and potentially extend beyond it.

Figure 5 illustrates this semantic coverage for
three representative instances from LITEX-SNLI.
From left to right, the examples demonstrate: (1)
full coverage, where the convex hull of model-
generated explanations fully encloses the human ex-
planation points; (2) partial coverage, where model
generations cover some of the human reference
points and (3) no coverage, where model outputs
cover no human explanation point.
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Premise: A person wearing a straw hat, standing outside working a steel apparatus with a pile of coconuts on the
ground.

Hypothesis: A person is near a pile of coconuts.
Label: Entailment

Source Explanations

Human - With a pile of coconuts implies near a pile of coconuts. [Semantic]
- A person standing near a pile of coconuts would be standing outside. [Inferential Knowledge]
- If the person is with the pile of coconuts on the ground, they are near them. [Inferential Knowledge]

Baseline - There is no indication in the content that the person and the coconuts are separated by any significant
distance.
- The use of “near” in the statement aligns with the spatial arrangement described in the content, where the
person and coconuts are part of the same setting.
- The person is described as standing outside, suggesting they are near the objects in the scene.

Highlight - The phrase “standing outside” in the content implies that the person is near the ground where the pile of
coconuts is located, supporting the statement that the person is near the pile of coconuts. ["12,13,14,15,16",
"3,4,5,6,7"]
- The content describes “a pile of coconuts on the ground,” which directly correlates to the statement’s “a pile
of coconuts,” indicating the same pile is being referenced. ["6,7", "3"]
- The person “working a steel apparatus” in the content might suggest proximity to the pile of coconuts since
the work being done is likely related to the coconuts, thus supporting the statement that the person is near
them. ["1,12,16,19", "1,3,7"]

Taxonomy - Standing outside implies proximity to the objects on the ground, including the pile of coconuts. [Inferential
Knowledge]
- The word ‘near’ denotes closeness, which is implied by the person standing in the vicinity of the coconuts.
[Semantic]
- The hypothesis simplifies the structure of the premise by focusing on the person’s proximity to the coconuts,
which is implied by the premise. [Syntactic]

Table 6: Explanations from different generation strategies for one LITEX-SNLI item. For human explanations,
annotator-assigned categories are in purple. Model-generated taxonomy categories and highlight indexes are in blue.

Proposed Measures We propose four measures,
full coverage, partial coverage, area precision,
and area recall to analyze the semantic space be-
tween model- and human-generated explanations
using t-SNE visualizations and convex hull statis-
tics (van der Maaten and Hinton, 2008).

We define full coverage as a binary condition:
an NLI item is fully covered (yes) if all human ex-
planation reference points fall within the convex
hull spanned by the model explanations, and not
covered (no) otherwise. Similarly, it is partially
covered if at least one human reference point is
within the model explanation space. Full and par-
tial coverage computes the percentage of 1,002
LITEX-SNLI items whose explanations are fully
or partially covered within the convex hull of the
model explanations.

On the other hand, area precision and recall
assess for each NLI item, the overlapping area be-
tween the space spanned by all reference explana-
tions and that spanned by all model explanations.
Area precision measures the ratio of the overlap-
ping area over the area spanned by model expla-
nations, and area recall over the area spanned by
human explanations. We report the average of area

precision and area recall over 1,002 instances.

Results Table 5 shows that taxonomy-guided ex-
planation generation consistently achieves the high-
est full and partial coverage of reference explana-
tion points. They also yield the highest average
area recall and precision, in all test cases except the
GPT4o baseline, indicating that the semantic space
overlap between taxonomy-guided model explana-
tions and human explanations is large.

In contrast, baseline and highlight-guided modes
show much lower full and partial coverage and
smaller overlap ratios. It indicates that the expla-
nation spaces are less aligned with human explana-
tions. Although highlight-guided outputs tend to
form smaller and more concentrated explanation re-
gions (as seen in their low area precision), this com-
pactness does not mean their explanations are more
meaningful. When guided by highlights, the model
often fails to generate explanations that reflect the
essential ideas expressed by humans. These results
highlight that prompting using taxonomy-based
guidance is more effective at generating human-
aligned explanations in the embedding space.

We observe in Table 5 that GPT4o exhibits lower
coverage compared to DeepSeek and Llama, which
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can partly be attributed to the smaller number of
explanations generated per instance. In our setup,
the models are prompted to produce all possible
explanations given an NLI instance, a label, and op-
tionally a taxonomy category or relevant highlights.
On average, GPT4o generates 3.59 explanations
per example, while DeepSeek and Llama produce
5.90 and 6.14, respectively. This difference in out-
put quantity naturally contributes to GPT4o’s lower
coverage.

Case Study Table 6 provides a concrete example
(the leftmost case in Figure 5) where the human
explanations are fully covered by the taxonomy-
guided generation but only partially captured by
label- and highlight-guided generations.

Human explanations focus on spatial proximity
(near) and real-world expectations (i.e., coconuts
being outdoors). The baseline and highlight-guided
explanations also refer to the spatial proximity.
However, the reasoning is less precise and often
vague, lacking the structure seen in human expla-
nations. Instead, taxonomy-guided generations are
not only more coherent and concise, but also cover
a broader range of reasoning types. In addition
to producing outputs aligned with Semantic and
Inferential Knowledge, they provide an additional
Syntactic-labeled explanation, addressing the sen-
tence simplification from premise to hypothesis.

However, while the taxonomy-generated expla-
nation “standing outside implies proximity to the
objects on the ground, including the pile of co-
conuts” captures the essence of the human-written
“a person standing near a pile of coconuts would be
standing outside,” it is more abstract and less natu-
ral when expressing the casual contexts. All gen-
erated explanations, particularly highlight-guided
ones, are also longer than the human-written ones,
echoing the redundancy issue discussed in §4.2.

6 Conclusion

In this work, we introduce LITEX, a linguistically-
informed taxonomy designed to capture different
reasoning strategies behind NLI explanations, with
a particular focus on within-label variation. The
learnability evaluation shows that models, after
fine-tuning or few-shot prompting, can effectively
classify explanations into our taxonomy, demon-
strating its practicality. We further demonstrate that
taxonomy guidance consistently helps generation,
resulting in model explanations that are semanti-
cally richer and closer to human explanations than

baseline or highlight-based approaches.
Overall, our work bridges human reasoning

strategies and model predictions in a structured
way, providing a foundation for more interpretable
NLI modeling. In addition, we enhance the e-SNLI
dataset with fine-grained taxonomy categories for
explanations, providing a resource to support fu-
ture work. While our current evaluation focuses
on a specific subset of NLI data, future work will
extend this approach to broader variation-aware
benchmarks such as ANLI (Nie et al., 2020a) and
LiveNLI (Jiang et al., 2023). These extensions will
enable a more comprehensive assessment of the tax-
onomy’s generalizability across diverse inference
settings. Annotations, generated explanations, and
code will be released publicly upon publication.3

Limitations

While our taxonomy offers a structured and linguis-
tically informed perspective to analyze different
types of explanation in NLI, it has several limita-
tions. First, the annotation process, though guided
by detailed definitions, still involves subjective
interpretation from a single annotator, especially
for borderline categories such as Factual Knowl-
edge versus Inferential Knowledge. This highlights
the inherent subjectivity of explanation annotation,
where different annotators may reasonably disagree
on the most appropriate category. Second, our tax-
onomy focuses solely on explicit explanations pro-
vided in natural language. It does not account for
the implicit reasoning process that may not be ver-
balized in text. This may limit the taxonomy’s
applicability to inferred or implied reasoning, es-
pecially when applying it to other NLI datasets
without free-text explanations. Finally, our current
experiments are conducted on the e-SNLI dataset,
which may not represent the full spectrum of natu-
ral language inference.

Ethical considerations

We do not foresee any ethical concerns associated
with this work. All analyses were conducted using
publicly available datasets and models. No private
or sensitive information was used. Additionally, we
will release our code, prompts, and documentation
to support transparency and reproducibility.

3Dataset and implementation are publicly available at
https://github.com/mainlp/LiTEx for reproduction.
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categories: Text-Based (TB) Reasoning and World-
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34075

https://doi.org/10.1162/tacl_a_00523
https://doi.org/10.1162/tacl_a_00523
https://doi.org/10.18653/v1/2023.findings-emnlp.712
https://doi.org/10.18653/v1/2023.findings-emnlp.712
https://openreview.net/forum?id=rH8ZUcfL9r
https://openreview.net/forum?id=rH8ZUcfL9r
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-2057/
https://aclanthology.org/P11-2057/
https://aclanthology.org/P11-2057/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.emnlp-main.734
https://doi.org/10.18653/v1/2020.emnlp-main.734
https://doi.org/10.18653/v1/2020.emnlp-main.734
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/P10-1122/
https://aclanthology.org/P10-1122/
https://doi.org/10.3765/salt.v0i20.2584
https://doi.org/10.18653/v1/2022.naacl-main.158
https://doi.org/10.18653/v1/2022.naacl-main.158
https://doi.org/10.1613/jair.1.12752
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.18653/v1/2024.acl-long.123
https://doi.org/10.18653/v1/2024.acl-long.123
https://doi.org/10.18653/v1/2024.acl-long.123


Coreference

Premise: The man in the black t-shirt is trying to throw something.
Hypothesis: The man is in a black shirt.
Gold Label: Entailment
Explanation: The man is in a black shirt refers to the man in the black t-shirt.

Premise: A naked man rides a bike.
Hypothesis: A person biking.
Gold Label: Entailment
Explanation: The person biking in the hypothesis is the naked man.

Semantic

Premise: A man in a black tank top is wearing a red plaid hat.
Hypothesis: A man in a hat.
Gold Label: Entailment
Explanation: A red plaid hat is a specific type of hat.

Premise: Three man are carrying a red bag into a boat with another person and boat in the background.
Hypothesis: Some people put something in a boat in a place with more than one boat.
Gold Label: Entailment
Explanation: Three men are people.

Syntactic

Premise: Two women walk down a sidewalk along a busy street in a downtown area.
Hypothesis: The women were walking downtown.
Gold Label: Entailment
Explanation: The women were walking downtown is a rephrase of, Two women walk down a sidewalk along a busy street

in a downtown area.

Premise: Bruce Springsteen, with one arm outstretched, is singing in the spotlight in a dark concert hall.
Hypothesis: Bruce Springsteen is a singer.
Gold Label: Entailment
Explanation: Springsteen is singing in a concert hall.

Pragmatic

Premise: A girl in a blue dress takes off her shoes and eats blue cotton candy.
Hypothesis: The girl is eating while barefoot.
Gold Label: Entailment
Explanation: If a girl takes off her shoes, then she becomes barefoot, and if she eats blue candy, then she is eating.

Premise: A woman wearing bike shorts and a skirt is riding a bike and carrying a shoulder bag.
Hypothesis: A woman on a bike.
Gold Label: Entailment
Explanation: Woman riding a bike means she is on a bike

Absence of Mention

Premise: A person with a purple shirt is painting an image of a woman on a white wall.
Hypothesis: A woman paints a portrait of a person.
Gold Label: Neutral
Explanation: A person with a purple shirt could be either a man or a woman. We can’t assume the gender of the painter.

Premise: A young man in a heavy brown winter coat stands in front of a blue railing with his arms spread.
Hypothesis: The railing is in front of a frozen lake.
Gold Label: Neutral
Explanation: It does not say anything about there being a lake.

Logic Conflict

Premise: Five girls and two guys are crossing an overpass.
Hypothesis: The three men sit and talk about their lives.
Gold Label: Contradiction
Explanation: Three is not two.

Premise: Many people standing outside of a place talking to each other in front of a building that has a sign that says
“HI-POINTE”.

Hypothesis: The group of people aren’t inside of the building.
Gold Label: Entailment
Explanation: The people described are standing outside, so naturally not inside the building.

Table 7: Illustrative examples of the taxonomy (Text-Based Reasoning).
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Factual Knowledge

Premise: Two people crossing by each other while kite surfing.
Hypothesis: The people are both males.
Gold Label: Neutral
Explanation: Not all people are males.

Premise: Here is a picture of people getting drunk at a house party.
Hypothesis: Some people are by the side of a swimming pool party.
Gold Label: Neutral
Explanation: Not all houses have swimming pools.

Inferential Knowledge

Premise: A girl in a blue dress takes off her shoes and eats blue cotton candy.
Hypothesis: The girl in a blue dress is a flower girl at a wedding.
Gold Label: Neutral
Explanation: A girl in a blue dress doesn’t imply the girl is a flower girl at a wedding.

Premise: A person dressed in a dress with flowers and a stuffed bee attached to it, is pushing a baby stroller down the
street.

Hypothesis: An old lady pushing a stroller down a busy street.
Gold Label: Neutral
Explanation: A person in a dress of a particular type need neither be old nor female. A street need not be considered busy

if only one person is pushing a stroller down it.

Table 8: Illustrative examples of the taxonomy (World Knowledge-Based Reasoning).
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B Taxonomy Validation: IAA
Classification Report

Figure 6 presents the inter-annotator confusion
matrix for explanation category annotation, used
to validate the proposed taxonomy. Overall, we
observe strong agreement across most categories,
with especially high consistency in categories such
as Logic Conflict and Inferential Knowledge. Some
confusion appears between semantically adjacent
categories, such as Factual Knowledge vs. Inferen-
tial Knowledge, and Semantic vs. Syntactic.
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Figure 6: Inter-Annotator Confusion Matrix for Expla-
nation Category Annotation.

To better understand the nature of inter-annotator
disagreement in our taxonomy-based labeling,
we present a qualitative analysis of several items
with mismatched labels in the confusion matrix.
The following examples shed light on how subtle
differences in reasoning can lead to divergent
category assignments:

Factual Knowledge vs. Logic Conflict
Premise: An old man with a package poses in
front of an advertisement.
Hypothesis: A man walks by an ad.
Explanation: Poses is different from walks.
Category (Annotator 0): Factual Knowledge
Category (Annotator 1): Logic Conflict
Analysis: Annotator 0 likely interprets the expla-
nation as highlighting a factual discrepancy in the
physical action “posing” vs.“walking”), treating
this as a knowledge-based distinction about what
the person is doing. Annotator 1, on the other
hand, may view the same contrast as introducing a
logical inconsistency in the event semantics—i.e.,

the man cannot be simultaneously posing and
walking, which reflects a conflict in entailment
assumptions. This illustrates how borderline cases
between fact-based knowledge and event logic can
be interpreted differently, especially when both
literal and inferential mismatches are present.

Inferential vs. Factual Knowledge
Premise: A young family enjoys feeling ocean
waves lap at their feet.
Hypothesis: A young man and woman take their
child to the beach for the first time.
Explanation: The young family does not mean
that they have a child at the beach.
Category (Annotator 0): Inferential Knowledge
Category (Annotator 1): Factual Knowledge
Analysis: Annotator 0 interprets the inference
from “young family” to “having a child present”
as requiring reasoning with world knowledge
about family structures. In contrast, Annotator
1 views this as an incorrect factual claim, where
the hypothesis wrongly assumes a child is present.
This disagreement highlights the challenge of
distinguishing between inferential reasoning and
factual correction, indicating a need for clearer
taxonomy boundaries.

Syntactic vs. Semantic
Premise: Two children are laying on a rug with
some wooden bricks laid out in a square between
them.
Hypothesis: Two children are on a rug.
Explanation: To say the children are “laying on”
a rug is rephrasing “on” a rug.
Category (Annotator 0): Syntactic
Category (Annotator 1): Semantic
Analysis: Annotator 0 classifies the change from
“laying on” to “on” as a simple syntactic variation,
treating it as a surface-level rewording. In contrast,
Annotator 1 interprets this shift as semantically
meaningful, possibly inferring that “laying on”
conveys posture or state, thus labeling it as a
Semantic shift. This disagreement illustrates a key
challenge in NLI: distinguishing between purely
syntactic paraphrases and cases where subtle
wording changes alter meaning. Such distinctions
become especially nuanced when modifications
involve minor phrasing differences.
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C Taxonomy Validation: LM and LLM
Classification

In Table 10 the hyperparameter setup of fine-tuning
BERT and RoBERTa is listed. We follow a stan-
dard supervised classification pipeline, where the
model takes as input the concatenated premise,
hypothesis, label, and explanation, and predicts
the correct explanation category among eight cate-
gories. For validation, we measured both the clas-
sification accuracy and the macro-F1 score across
the explanation categories, as shown in Table ??.
We selected the best-performing checkpoint based
on the highest macro-F1 on the dev set for final
evaluation.

We design a set of experiments to assess the abil-
ity of LLMs to classify NLI explanations into one
of eight fine-grained categories (introduced in Sec-
tion 3). Our evaluation covers zero-shot prompting
(no training examples), one-shot prompting (a sin-
gle annotated example), and few-shot prompting
(two examples per category). A consistent prompt-
ing strategy is applied across models, with all tem-
plates provided in Table 11.

Hyperparameter BERT RoBERTa

Learning Rate Decay Linear Linear
Weight Decay 0.0 0.0
Optimizer AdamW AdamW
Adam ϵ 1e-8 1e-8
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Warmup Ratio 0% 0%
Learning Rate 2e-5 3e-5
Batch Size 8 8
Num Epoch 4 3

Table 10: Hyperparameter used for fine-tuning BERT
and RoBERTa models.

Specifically, we experiment with Llama-3.2-3B-
Instruct (Meta, 2024), GPT-3.5-turbo (Brown et al.,
2020), GPT-4o (OpenAI, 2023), and DeepSeek-v3
(DeepSeek-AI et al., 2024), under six experimental
configurations:

1. without instruction and without examples
2. with general task instruction but no examples
3. with one example per category
4. with two representative examples per category
5. with instruction plus one example per category
6. with instruction plus two examples per cate-

gory
For the few-shot settings, one or two representa-

tive examples from the training set were selected
for each of the eight categories and incorporated

into the prompt. The LLMs were instructed to out-
put the category index (1–8) for each explanation.
We evaluate both classification accuracy and the
distributional alignment between LLM predictions
and the gold human label distributions, as reported
in Table 12.

From the results, we observe that GPT-4o consis-
tently delivers the strongest performance across
most experimental configurations, achieving its
highest accuracy of 0.594 in the + one example
per category setting. Its macro-F1 reaches 0.492
in the + instruction + one example per category
setting, while its weighted-F1 peaks at 0.583 in the
+ one example per category setting, both surpass-
ing all other LLMs. To gain deeper insight, we
further analyze the confusion cases under the + one
example per category setting, focusing on GPT-4o
as a representative model.
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Figure 7: Confusion matrix of GPT-4o on the NLI ex-
planation classification task using the + one example
per category prompting style.

Figure 7 provides a detailed view of the error
patterns in GPT-4o’s predictions. We observe that
Syntactic and Semantic are frequently confused,
indicating that the model has difficulty capturing
the fine-grained distinction between structural
and meaning-oriented reasoning. Similarly, a
considerable number of Factual Knowledge
instances are mislabeled as Inferential Knowledge,
suggesting that GPT-4o often fails to separate lexi-
cal associations from broader factual inferences.
To further illustrate these confusions, consider the
following examples:

Syntactic vs. Semantic
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Mode General Instruction Prompt

without instruction and example “role”: “user”, “content”:
You are an expert in solving Natural Language Inference tasks. Your task is to classify the
following explanations into one of the categories listed below. Each category reflects a
specific type of inference in the explanation between the premise and hypothesis. Here are
the categories:
1. Coreference
2. Syntactic
3. Semantic
4. Pragmatic
5. Absence of Mention
6. Logic Conflict
7. Factual Knowledge
8. Inferential Knowledge

+ instruction “role”: “user”, “content”:
You are an expert in solving Natural Language Inference tasks. Your task is to classify the
following explanations into one of the categories listed below. Each category reflects a
specific type of inference in the explanation between the premise and hypothesis.
Here are the categories:
1. Coreference - The explanation resolves references (e.g., pronouns or demonstratives)
across premise and hypothesis.
2. Syntactic - Based on structural rephrasing with the same meaning (e.g., syntactic
alternation, coordination, subordination). If the explanation itself is the rephrasing of the
premise or hypothesis, it should be included in this category.
3. Semantic - Based on word meaning (e.g., synonyms, antonyms, negation).
4. Pragmatic - This category would capture inferences that arise from logical implications
embedded in the structure or semantics of the text itself, without relying on external context
or background knowledge.
5. Absence of Mention - Lack of supporting evidence, the hypothesis introduces information
that is not supported, not entailed, or not mentioned in the premise, but could be true.
6. Logic Conflict - Structural logical exclusivity (e.g., either-or, at most, only, must),
quantifier conflict, temporal conflict, location conflict, gender conflict etc.
7. Factual Knowledge - Explanation relies on common sense, background, or
domain-specific facts. No further reasoning involved.
8. Inferential Knowledge - Requires real-world causal, probabilistic reasoning or unstated
but assumed information.
Respond **only with the number (1–8)** corresponding to the most appropriate category.

Table 11: Instruction prompts for LLMs as classifiers.

Premise: A man in a black shirt overlooking bike
maintenance.
Hypothesis: A man watches bike repairs.
Explanation: A man is watching the bike
maintenance which is repairs.
Category (Human): Syntactic
Category (GPT-4o): Semantic
Analysis: Human annotators classify this case as
Syntactic, since the paraphrase between “mainte-
nance” and “repairs” is treated as a surface-level
syntactic variation. In contrast, GPT-4o labels it
as Semantic, interpreting the paraphrase primarily
as a meaning equivalence rather than a structural
rewording.

Inferential vs. Factual Knowledge
Premise: A blond-haired doctor and her African
American assistant looking through new medical
manuals.
Hypothesis: A doctor is studying.

Explanation: Answer: Just because the doctor
is studying it doesn’t mean he is reading medical
manuals.
Category (Human): Inferential Knowledge
Category (GPT-4o): Factual Knowledge
Analysis: Human annotators label this case as
Inferential Knowledge, since the reasoning requires
recognizing the pragmatic gap between “studying”
in general and “studying medical manuals” in
particular. GPT-4o, however, classifies it as
Factual Knowledge, suggesting that it grounds
the judgment in the surface facts of the premise
rather than modeling the inference beyond what is
explicitly mentioned.

In contrast, Absence of Mention is classified with
high reliability, as reflected by the strong diagonal
concentration in its row. These observations high-
light that GPT-4o is more robust when reasoning
relies on explicit absence cues, while it struggles

34080



Classifiers Accuracy Precision Recall F1 Invalid predictions
macro weighted macro weighted macro weighted

Llama-3.2-3B-Instruct 0.357 0.440 0.581 0.373 0.357 0.291 0.310 0 (0.00%)
+ instruction 0.229 0.379 0.465 0.281 0.229 0.227 0.256 918 (29.54%)
+ one example per category 0.340 0.393 0.540 0.343 0.340 0.255 0.293 23 (0.74%)
+ two example per category 0.160 0.243 0.302 0.252 0.160 0.139 0.163 277 (8.91%)
+ instruction + one example per category 0.357 0.440 0.581 0.272 0.357 0.291 0.310 0 (0.00%)
+ instruction + two example per category 0.538 0.484 0.591 0.402 0.538 0.397 0.522 0 (0.00%)

gpt-3.5-turbo 0.289 0.264 0.351 0.286 0.289 0.239 0.279 0 (0.00%)
+ instruction 0.366 0.314 0.431 0.357 0.366 0.295 0.336 0 (0.00%)
+ one example per category 0.175 0.162 0.244 0.155 0.175 0.139 0.182 28 (0.90%)
+ two example per category 0.297 0.281 0.403 0.265 0.297 0.237 0.308 1 (0.03%)
+ instruction + one example per category 0.274 0.286 0.393 0.264 0.274 0.236 0.290 36 (1.16%)
+ instruction + two example per category 0.305 0.317 0.420 0.301 0.305 0.262 0.303 8 (0.26%)

gpt-4o 0.433 0.402 0.495 0.409 0.433 0.321 0.411 0 (0.00%)
+ instruction 0.410 0.465 0.536 0.438 0.410 0.357 0.404 0 (0.00%)
+ one example per category 0.594 0.530 0.619 0.486 0.594 0.476 0.583 0 (0.00%)
+ two example per category 0.589 0.545 0.631 0.532 0.589 0.491 0.579 0 (0.00%)
+ instruction + one example per category 0.583 0.550 0.643 0.548 0.583 0.491 0.578 0 (0.00%)
+ instruction + two example per category 0.574 0.541 0.648 0.552 0.574 0.492 0.573 0 (0.00%)

DeepSeek-v3 0.340 0.306 0.409 0.389 0.340 0.268 0.312 1 (0.03%)
+ instruction 0.422 0.423 0.508 0.480 0.422 0.369 0.388 0 (0.00%)
+ one example per category 0.540 0.483 0.592 0.514 0.540 0.461 0.529 0 (0.00%)
+ two example per category 0.560 0.498 0.611 0.520 0.560 0.475 0.552 0 (0.00%)
+ instruction + one example per category 0.495 0.504 0.603 0.544 0.495 0.453 0.474 0 (0.00%)
+ instruction + two example per category 0.526 0.519 0.626 0.563 0.526 0.478 0.515 0 (0.00%)

Table 12: LLM as classifiers results.

when categories require distinguishing subtle lin-
guistic or knowledge-based inferences.

To further assess the impact of supervised adap-
tation, we finetune Llama-3.2-3B-Instruct using
LoRA (Hu et al., 2022), a parameter-efficient fine-
tuning method. We adopt a 50/50 train-test split
based on pairID. Fine-tuning is conducted using
SFTTrainer with standard causal language model-
ing objectives and a maximum input length of 512
tokens. The LoRA configuration used is displayed
in Table 13.

Hyperparameter Value

Model Llama-3.2-3B-Instruct
Gradient Accumulation 4
Max Sequence Length 512
Warmup Steps 50
Scheduler Cosine
Learning Rate 2e-4
Batch Size 4
Num Epoch 3
Trainer SFTTrainer (TRL)

Table 13: Training hyperparameters used for LoRA fine-
tuning on Llama-3.2-3B. LoRA settings: r = 8, α = 16,
dropout = 0.05.

The fine-tuned Llama-3.2-3B model achieves an
accuracy of 0.509 and a macro-F1 score of 0.302
on the test set. Detailed per-category results are
presented in Table 14.

Explanation Category Precision Recall F1

Coreference 0.429 0.052 0.092
Semantic 0.250 0.489 0.331
Syntactic 0.548 0.182 0.273
Pragmatic 0.273 0.200 0.231
Absence of Mention 0.000 0.000 0.000
Logic Conflict 0.735 0.758 0.746
Factual Knowledge 0.138 0.041 0.064
Inferential Knowledge 0.562 0.861 0.680

Summary
accuracy 0.509
F1 Score (macro) 0.302

Table 14: LoRA fine-tuning results using Llama-3.2-3B-
Instruct on the explanation categorization task.

While zero-shot prompting offers a lightweight
baseline, these results suggest that parameter-
efficient fine-tuning can boost performance in struc-
tured reasoning categories such as Logical Con-
flict and Inferential Knowledge. However, per-
formance remains limited in categories such as
Factual Knowledge, which require external world
knowledge, and Absence of Mention, where low
performance may be attributed to the small number
of training examples.

We accessed GPT-3.5 and GPT-4o via OpenAI’s
hosted API and DeepSeek-V3 via DeepSeek’s
hosted API. Experiments with Llama-3.2-3B-
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Instruct were run on a single NVIDIA A100 GPU.

D Human Highlight IAA

To understand whether human-generated highlights
are consistent and reproducible, we conducted a
highlight-level inter-annotator agreement (IAA)
study on 201 items from the e-SNLI dataset. Two
annotators were asked to highlight the parts of the
premise and hypothesis that support the given ex-
planation. Each item included the premise, hypoth-
esis, gold label and the explanation.

We measured agreement using Intersection over
Union (IoU). The results are as follows:

• Annotator 1 vs Annotator 2: 0.889

• Annotator 1 vs e-SNLI Highlight: 0.659

• Annotator 2 vs e-SNLI Highlight: 0.712

These results show that the two annotators had
high agreement with each other, suggesting that the
highlighting task is fairly consistent when done
by different people. However, their agreement
with the original e-SNLI highlights is lower, which
means there are some differences in how people
choose text spans, even when they agree on the
explanation. This may be partially attributed to dif-
ferences in annotation setup: in e-SNLI, the same
annotator provided the NLI label, explanation, and
highlight jointly, whereas in our IAA study, annota-
tors re-annotated highlights for a given explanation
under fixed label and span constraints. Although
we adopted the same span-level constraints as e-
SNLI (e.g., highlighting only the hypothesis for
neutral items), our task required linking highlights
to prewritten explanations rather than authoring
them jointly, introducing a structural difference
that may affect highlight choices.

E Prompting Templates for Generating
Model Explanations

For the generation experiments, we prompt three
LLMs to generate NLI explanations: GPT-4o,
DeepSeek-V3, and Llama-3.3-70B-Instruct. We
accessed GPT-4o via OpenAI’s hosted API and
DeepSeek-V3 via DeepSeek’s hosted API. The gen-
eration experiments using Llama-3.3-70B-Instruct
were conducted on two NVIDIA A100 GPUs.

Table 15 presents the prompt templates used to
generate NLI explanations from LLMs. These tem-
plates are adapted and refined based on the ap-
proach of Chen et al. (2024). For LLMs that imply

a “system” role within their chat format, the “sys-
tem” role content is unset to maintain alignment
with the design choices applied to other LLMs.
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Mode General Instruction Prompt

baseline You are an expert in Natural Language Inference (NLI). Please list all possible
explanations for why the following statement is {gold_label} given the content below
without introductory phrases.
Context: {premise}, Statement: {hypothesis}

highlight indexed You are an expert in Natural Language Inference (NLI). Your task is to generate possible
explanations for why the following statement is {gold_label}, focusing on the
highlighted parts of the sentences.
Context: {premise}, Highlighted word indices in Context: {highlighted_1}
Statement: {hypothesis}, Highlighted word indices in Statement: {highlighted_2}
Please list all possible explanations without introductory phrases.

highlight in-text You are an expert in Natural Language Inference (NLI). Your task is to generate possible
explanations for why the following statement is {gold_label}, focusing on the
highlighted parts of the sentences. Highlighted parts are marked in “**”.
Context: {marked_premise} Statement: {marked_hypothesis}
Please list all possible explanations without introductory phrases.

highlight generation You are an expert in NLI. Based on the label ’gold_label’, highlight relevant word
indices in the premise and hypothesis. Highlighting rules: For entailment: highlight at
least one word in the premise. For contradiction: highlight at least one word in both the
premise and the hypothesis. For neutral: highlight only in the hypothesis.
Premise: {premise}, Hypothesis: {hypothesis}, Label: {gold_label}
Please list **3** possible highlights using word index in the sentence without
introductory phrases. Answer using word indices **starting from 0** and include
punctuation marks as tokens (count them). Respond strictly this format:
Highlight 1:
Premise_Highlighted: [Your chosen index(es) here]
Hypothesis_Highlighted: [Your chosen index(es) here]
Highlight 2: ...

taxonomy (two-stage) You are an expert in Natural Language Inference (NLI). Given the following taxonomy
with description and one example, generate as many possible explanations as you can
that specifically match the reasoning type described below. The explanation is for why
the following statement is {gold_label}, given the content.
The explanation category for generation is: {taxonomy_idx}: {description}
Here is an example: Premise: {few_shot[’premise’]}, Hypothesis:
{few_shot[’hypothesis’]}
Label: {few_shot[’gold_label’]}, Explanation: {few_shot[’explanation’]}
Now, consider the following premise and hypothesis:
Context: {premise} Statement: {hypothesis}
Please list all possible explanations for the given category without introductory phrases.

taxonomy end-to-end You are an expert in Natural Language Inference (NLI). Your task is to examine the
relationship between the following content and statement under the given gold label, and:
First, identify all categories for explanations from the list below (you may choose more
than one) that could reasonably support the label. Second, for each selected category,
generate all possible explanations that reflect that type.
The explanation categories are:
{taxonomy_idx}: {description}
Context: {premise}, Statement: {hypothesis}, Label: {gold_label}
Please list all possible explanations without introductory phrases for all the chosen
categories.
Start directly with the category number and explanation, following the strict format
below:
1. Coreference: - [Your explanation(s) here]
... (continue for all reasonable categories)

taxonomy two-stage (classification) You are an expert in Natural Language Inference (NLI). Your task is to identify all
applicable reasoning categories for explanations from the list below that could reasonably
support the label. Please choose at least one category and multiple categories may apply.
One example for each category is listed as below:
{examples_text}
Given the following premise and hypothesis, identify the applicable explanation
categories:
Premise: {premise}, Hypothesis: {hypothesis}, Label: {gold_label}
Respond only with the numbers corresponding to the applicable categories, separated by
commas, and no additional explanation.

Table 15: Instruction prompts for LLMs to generate NLI explanations (all prompts are issued as user messages in
the chat format).
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F Additional Generation Results

Table 16 presents the full evaluation results of our
explanation generation experiments, covering two
highlight formats (indexed vs. in-text) and both
human-provided and model-generated highlights.

Human Highlights vs. Model Generated High-
lights Overall, model highlights achieve com-
parable performance to human highlights across
most lexical and semantic metrics, with slight im-
provements in certain surface-level features (e.g.,
BLEU, ROUGE-L). However, these gains are of-
ten marginal. Notably, models like Llama-3.3-70B
show a larger drop in similarity metrics when using
model-generated highlights, indicating that auto-
matic highlight classification may not always align
with human judgment.

Indexed vs. In-text We compare the indexed and
in-text variants of human and model highlights to
assess whether highlight format affects similarity
scores. Across all three models, the performance
differences between the two formats are generally
minor with the indexed variant performing slightly
better. For instance, GPT-4o yields similar scores
in both settings (e.g., cosine: 0.549 vs. 0.519 for
human highlights; 0.554 vs. 0.555 for model high-
lights). The same trend holds for DeepSeek-v3
and Llama-3.3-70B, where average performance
differences across metrics remain negligible.

G Human Validation of Model-Generated
Explanations

Table 17 reports human validation results for
model-generated explanations, broken down by tax-
onomy category. This analysis helps us better ex-
amine how explanation faithfulness and taxonomy
alignment vary across different reasoning types.

Taxonomy Q1 Yes (%) Q1 No (%) Q2 Yes (%) Q2 No (%)

Coreference 269 (97.46) 7 (2.54) 158 (57.25) 118 (42.75)
Syntactic 780 (99.87) 1 (0.13) 741 (94.88) 40 (5.12)
Semantic 1716 (95.12) 88 (4.88) 1273 (70.57) 531 (29.43)
Pragmatic 131 (99.24) 1 (0.76) 109 (82.58) 23 (17.42)
Absence of Mention 3794 (99.16) 32 (0.84) 3538 (92.47) 288 (7.53)
Logic Conflict 428 (98.85) 5 (1.15) 273 (63.05) 160 (36.95)
Factual Knowledge 949 (99.16) 8 (0.84) 789 (82.45) 168 (17.55)
Inferential Knowledge 161 (98.17) 3 (1.83) 139 (84.76) 25 (15.24)

Table 17: Human validation results for model-generated
explanations by taxonomy category. Q1: Whether the
explanation supports the gold label. Q2: Whether the
explanation matches the assigned taxonomy.

Across all categories, validation question 1 —
evaluating whether the explanation supports the

gold NLI label — yields consistently high agree-
ment, with most categories exceeding 98% “Yes”
responses. This indicates that the generated ex-
planations are largely faithful to the NLI decision,
regardless of the reasoning type. In contrast, vali-
dation question 2 — assessing whether the explana-
tion aligns with the specified taxonomy — shows
greater variation across categories. Categories such
as Syntactic and Absence of Mention achieve the
highest taxonomy agreement, with 94.88% and
92.47% of explanations remaining consistent with
their respective reasoning types. These categories
tend to involve explicit cues, which may be eas-
ier for LLMs to identify and replicate during gen-
eration. For example, explanations like “A is a
rephrase of B” or “A in the premise is rephrased
in the hypothesis” are common and prototypical
forms of the Syntactic category. Similarly, in the
Absence of Mention category, model outputs often
include patterns such as “The premise discusses A
but does not mention B” or “A is absent from the
premise”, which directly map onto the intended rea-
soning structure and are relatively easy to pattern-
match.

In contrast, categories like Coreference (57.25%)
and Logic Conflict (63.05%) show significantly
lower alignment with the taxonomy categories.
These types require discourse-level understanding
or implicit logical inference, such as tracking entity
references across clauses or identifying contradic-
tions in different logical forms (temporal contradic-
tion, location contradiction, gender conflict, etc.).
Such reasoning is more abstract and difficult to
control through prompting, which likely explains
the increased rate of taxonomy mismatches.

Categories such as Semantic, Factual Knowl-
edge, and Inferential Knowledge fall in an interme-
diate range (70–85%), likely due to their broader
and more flexible definitions. For instance, se-
mantic reasoning can often overlap with world
knowledge or pragmatic cues, making it harder for
models (and annotators) to sharply distinguish the
boundaries of the category. This pattern is consis-
tent with our IAA findings reported in §3.3, where
we observed lower precision for Semantic (0.643)
and lower recall for Factual Knowledge (0.652).
These results point to potential ambiguities in dis-
tinguishing these categories from others, particu-
larly from Inferential Knowledge.
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Mode Cosine Euclidean 1gram 2gram 3gram BLEU ROUGE-L Avg_len
Word POS Word POS Word POS

GPT4o
baseline 0.556 0.524 0.291 0.882 0.117 0.488 0.049 0.226 0.051 0.272 24.995
human highlight (indexed) 0.549 0.521 0.395 0.882 0.116 0.478 0.050 0.219 0.047 0.264 30.771
human highlight (in-text) 0.519 0.511 0.367 0.873 0.085 0.442 0.031 0.187 0.034 0.269 28.606
model highlight (indexed) 0.554 0.522 0.402 0.878 0.124 0.481 0.053 0.222 0.051 0.269 28.240
model highlight (in-text) 0.555 0.523 0.380 0.888 0.109 0.468 0.044 0.208 0.044 0.270 28.160
model taxonomy (two-stage) 0.593 0.537 0.418 0.886 0.128 0.495 0.071 0.242 0.071 0.314 19.991
model taxonomy (end-to-end) 0.608 0.540 0.437 0.898 0.166 0.511 0.083 0.255 0.074 0.323 26.672

DeepSeek-v3
baseline 0.428 0.490 0.369 0.847 0.087 0.449 0.034 0.195 0.042 0.245 20.288
human highlight (indexed) 0.463 0.498 0.358 0.864 0.084 0.436 0.033 0.184 0.035 0.243 29.293
human highlight (in-text) 0.551 0.522 0.362 0.885 0.091 0.449 0.033 0.191 0.036 0.261 28.527
model highlight (indexed) 0.464 0.499 0.364 0.861 0.091 0.450 0.037 0.196 0.034 0.242 27.301
model highlight (in-text) 0.447 0.457 0.341 0.869 0.073 0.422 0.026 0.171 0.030 0.248 31.328
model taxonomy (two stage) 0.544 0.522 0.391 0.884 0.122 0.475 0.055 0.219 0.057 0.293 20.894
model taxonomy (end-to-end) 0.556 0.528 0.404 0.897 0.140 0.486 0.067 0.233 0.063 0.306 25.960

Llama-3.3-70B
baseline 0.466 0.496 0.392 0.863 0.106 0.478 0.044 0.224 0.046 0.250 27.148
human highlight (indexed) 0.453 0.484 0.362 0.859 0.082 0.446 0.031 0.194 0.035 0.228 29.912
human highlight (in-text) 0.499 0.505 0.348 0.875 0.059 0.415 0.019 0.165 0.024 0.270 34.827
model highlight (indexed) 0.367 0.478 0.317 0.807 0.065 0.408 0.024 0.173 0.031 0.199 24.987
model highlight (in-text) 0.400 0.486 0.300 0.831 0.047 0.385 0.014 0.150 0.021 0.227 29.763
model taxonomy (two-stage) 0.609 0.541 0.444 0.889 0.167 0.512 0.082 0.256 0.078 0.321 22.340
model taxonomy (end-to-end) 0.505 0.510 0.383 0.896 0.110 0.499 0.048 0.232 0.047 0.262 28.870

Table 16: Full evaluation results for LLM-generated explanations (lexical, morphosyntactic, semantic, and summa-
rization levels).
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