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Abstract

Existing text-to-audio (TTA) generation meth-
ods have neither systematically explored au-
dio event relation modeling, nor proposed any
new framework to enhance this capability. In
this work, we systematically study audio event
relation modeling in TTA generation models.
We first establish a benchmark for this task by:
(1) proposing a comprehensive relation corpus
covering all potential relations in real-world
scenarios; (2) introducing a new audio event
corpus encompassing commonly heard audios;
and (3) proposing new evaluation metrics to as-
sess audio event relation modeling from various
perspectives. Furthermore, we propose a gated
prompt tuning strategy that improves existing
TTA models’ relation modeling capability with
negligible extra parameters. Specifically, we
introduce learnable relation and event prompt
that append to the text prompt before feeding
to existing TTA models 1.

1 Introduction
Text-based crossmodal content generation has
gained significant attention in recent years as
it opens up new possibilities for even amateur
users to create professional content. Typical
such methods include text-to-image (TTI) (Ho
et al., 2020), text-to-music (TTM) (Copet et al.,
2023), text-to-point (TTP) (Nichol et al., 2022),
text-to-speech (TTS) (Ren et al., 2019) text-to-
audio (TTA) (Liu et al., 2024; Huang et al., 2023b).
Among all of them, text-to-audio (TTA) genera-
tion stands out as a particularly promising area,
enabling the synthesis of complex acoustic environ-
ments or soundscapes directly from textual descrip-
tions. Recent advances have demonstrated impres-
sive progress in generating high-quality, detail-rich
audio described in input text prompt (Liu et al.,
2024, 2023; Huang et al., 2023b,a; Ghosal et al.,
2023; Majumder et al., 2024; Kreuk et al., 2023).

1Code: https://github.com/yuhanghe01/RiTTA

Text Prompt: generate dog barking audio,
followed by cat meowing audio

Method Rel? Remark
AudioLDM (2023) ✗ just cat meow
AudioLDM 2 (2024) ✗ output dog barking
MakeAnAudio (2023b) ✗ just cat meow
AudioGen (2023) ✗ output wrong audios
Tango (2024) ✗ two audios
Tango 2 (2024) ✗ can output two audios
TangoFlux (2024) ✗ can not satisfy relation

Table 1: A case study on existing TTA methods. “Rel”
means “if the relation is correctly modeled?”.

When perceiving the physical world acoustically,
whether through text or audio, the fundamental unit
is the audio event, a distinct acoustic signal repre-
senting an independent source. The essence of
perception lies in understanding the relationships
emerging from events. Audio events are spatiotem-
porally distributed in the physical world. Together
with relation, they contribute for holistic acous-
tic scene understanding (Qu et al., 2022). Stud-
ies in psychology (Zacks et al., 2007) and neuro-
science (Lake et al., 2015; Hirsh et al., 1967) show
that the human brain perceives the environment
through discrete events and the relations between
them. Humans are adept at using rich language to
describe both audio events and their intricate rela-
tionships. While current TTA models can generate
audios with high fidelity, their ability to generate
audios that not only includes audio events but also
preserves the text-informed relationships between
them remains unexplored.

As a primary study, we prompt the latest six TTA
models with an exemplar text with explicit audio
events and their relation generate dog barking au-
dio, followed by cat meowing audio. Next we check
if the specified audio events are present and if so,
their relations are correct in the generated audios.
As is shown in Table 1, all existing TTA models
fail to properly model temporal relationships in the
generated audio, even when they succeed in gener-
ating the correct audio events. The generated audio
waveform, spectrum and another case study with a
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much complex text are shown in Fig. 1. The poor
performance of current TTA models in modeling
audio events relation, along with the lack of sys-
tematic discussion on this topic, motivates us to
explore Relation in TTA (dubbed RiTTA) in depth
in this work. We visualize the motivation in Fig. 1.

To systematically study RiTTA, we first bench-
mark it from four key perspectives: 1. we con-
struct a comprehensive audio event relation corpus
that captures common relationships found in the
physical world. Unlike visual relations in cross-
modal image tasks, which mainly focus on spatial
aspects (e.g., left, bottom) (Gokhale et al., 2022),
audio events exhibit far more complex relationships
spanning spatial, temporal, and compositional di-
mensions. Consequently, we define four primary
relation categories: Temporal Order, Spatial Dis-
tance, Count, and Compositionality. 2. Accompa-
nying the relation corpus, we build an audio event
category corpus derived from five main sources,
each of which is further linked to multiple seed
audios. 3. devise a <text,audio> pair generation
strategy emphasizing both text prompt and audio di-
versity. 4. propose a new relation aware evaluation
protocol that assesses the relation in a multi-stage
manner. The proposed benchmark will benefit the
community to explore RiTTA in greater depth. Ad-
ditionally, we introduce gated prompt tuning strat-
egy to significantly improve existing TTA models’
relation modeling capability by simply introducing
a negligible parameters.
1. We conduct extensive evaluation on existing

TTA models’ inability in relation modeling.

2. We benchmark RiTTA by introducing three
corpora: relation corpus, audio event corpus
and seed audio corpus, as well as a new
<text,audio> pair generation strategy.

3. We propose a new multi-stage relation aware
evaluation framework.

4. We introduce gated prompt tuning to improve
existing TTA models’ relation modeling capa-
bility by introducing tunable prompts.

2 Related Work
Text-to-Audio (TTA) Generation involves pro-
ducing audio that faithfully reflects the acous-
tic content or behavior described by the input
text. Recent advancements have significantly im-
proved the quality and intelligibility of generated
audio (Liu et al., 2024, 2023; Kreuk et al., 2023;
Yang et al., 2022; Ghosal et al., 2023; Liao et al.,

2024). AudioLDM (Liu et al., 2023) builds on
latent space (Rombach et al., 2022) to learn con-
tinuous representation. The most recent work Tan-
goFlux (Hung et al., 2024) adopts flow matching
to improve the performance. Despite the improve-
ment, existing TTA methods still lag significantly
in their ability to model relationships between au-
dio events in the generated audio.

Audio Events Relation Modeling Based on how
audio interact with the physical world in space,
time and perceptual aspects, the resulting audio
events exhibit complex relationships in spatial, tem-
poral and compositional aspects. Prior work has
partially addressed modeling certain temporal re-
lations (e.g., order) in TTA (Xie et al., 2024) and
compositional reasoning (Ghosh et al., 2024) for
discriminative tasks, such as audio classification
and audio-text retrieval. While prior research has
touched on modeling audio event relations, their
potential in TTA remains largely underexplored.
If we analogize an audio event to an object in im-
age, the corresponding relationships exhibited in
an image are mainly limited to 2D spatial relation-
ship (e.g., before, bottom, left). Despite object of
interest spatial relationship learning and evaluation
have received lots of attention in recent years (Kr-
ishna et al., 2016; Gokhale et al., 2022; Okawa
et al., 2023), the research on audio event relation
modeling has been almost ignored.

Prompt Tuning (Jia et al., 2022; Liang et al.,
2025; Lester et al., 2021) is originally proposed
in Natural Language Processing (NLP) (Lester
et al., 2021) as an efficient alternative to full fine-
tuning for large pre-trained models. Prompt tun-
ing method proposes learnable prompts as task-
specific continuous vectors that are directly op-
timized via gradients during fine-tuning. In re-
cent years, prompt tuning has been successfully
adopted in computer vision as visual prompt tun-
ing (VPT) (Jia et al., 2022; Sohn et al., 2023) and
audio as audio prompt tuning (APT) (Liang et al.,
2025; Oiso et al., 2024). Inspired by the prompt
tuning, we introduce gated prompt tuning strat-
egy that significantly improves existing TTA mod-
els performance on relation-aware generation in a
parameter-efficient way.

3 Benchmark Relation-Aware TTA

3.1 Audio Event Relation Corpus

An audio event refers to a distinct acoustic sig-
nal occurrence with specific frequency, duration
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Method Waveform Spectrum RelationMethod Waveform Spectrum Relation

A. Audio events exhibit different relations in physical 
world and we often use text to describe the relations.

�� event A event B��
B. Existing TTA models generated audios often fail to predict all target audio events and 
model the text-specified audio events relations. 

Figure 1: RiTTA Motivation: The acoustic world is rich with diverse audio events that exhibit various relationships.
While text can precisely describe these relationships (Fig. A), current TTA models struggle to capture both the audio
events and the relations conveyed by the text (Fig. B). This challenge motivates us to systematically study RiTTA.

Main
Relation

Sub-
Relation

Sample Text Prompt

Temporal
Order

before;
after;

simultaneity

generate dog barking audio,
followed by cat meowing;

Spatial
Distance

close first;
far first;

equal dist.

generate dog barking audio
that is 1 meter away, follow-
ed by another 5 meters away.

Count count produce 3 audios: dog bark-
ing, cat meowing and talking.

Composit
ionality

and; or;
not;

if-then-else
create dog barking audio
or cat meowing audio.

Table 2: Audio Events Relation Corpus.

Main
Category

Sub-Category

Human
Audio

baby crying; talking; laughing;
coughing; whistling

Animal
Audio

cat meowing; bird chirping; dog
barking; rooster crowing; sheep
bleating

Machinery boat horn; car horn; door bell;
paper shredder; telephone ring

Human-Object
Interaction

vegetable chopping; door slam;
footstep; keyboard typing; toilet
flush

Object-Object
Interaction

emergent brake; glass drop;
hammer nailing; key jingling;
wood sawing

Table 3: Audio Events Category Corpus.

and context characteristics that can be attributed to
distinguish an independent sound source (He et al.,
2021) in an environment. Audio event is ubiquitous
in the physical world and serves as the fundamental
entity to analyze and interpret the acoustic scene.
We embrace the audio event as the fundamental
element to construct the relation corpus.

We construct the audio events relation corpus
based on two key aspects. First, we consider rela-
tions commonly found in the physical world, such
as those arising from spatial and temporal varia-
tions, which test TTA models’ ability to replicate
audio events’ interactions in real-world scenarios.
Second, we focus on relations that challenge TTA
models’ logical reasoning, evaluating their ability
to determine both which audio events to generate
and how to generate them. These two aspects par-
tially overlap. Specifically, we define five main
audio event categories, each associated with five
subcategories of audio events. The detailed relation
corpus is provided in Table 2, including,

1. Number Count: The number of audio events
included in audio, testing TTA models’ ability
to address acoustic polyphony challenge.

2. Temporal Order: Temporal order refers to
the sequence of audio events in the generated
audio. We include three basic temporal rela-
tions for two audio events: before, after, and
simultaneity, testing the TTA models’ abil-
ity to distinguish and generate the correct event
order as specified in the input text prompt.

3. Spatial Distance: Spatial distance refers to the
variation in relative spatial distances inferred
from the generated audio. It evaluates the TTA
models’ ability to capture the spatial distance
differences specified in the text prompt. Since
we focus on mono-channel audio, obtaining the
absolute distance for each audio event is nearly
impossible (He et al., 2021). Therefore, we rely
on loudness differences within intra-class audio
events to verify their spatial distance variations.

4. Compositionality: Compositionality relation
describes how multiple individual audio events
are integrated together to form a complex au-
ditory structure that specified in the input text
prompt. It tests TTA models’ logical reasoning
capability in determining which audio events
to generate and how to structure them, by fol-
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lowing the guidance illustrated in the input text
prompt. Specifically, we incorporate four main
compositionality relations: Conjunction (And,
e.g., generate audio A and audio B together);
Disjunction (Or, e.g., generate audio A or Au-
dio B, not both); Negation (Not, exclude one
particular audio event, e.g., do not generate dog
barking audio); Condition (if-then-else, ei-
ther generate two audio events if the condition
is met, otherwise generate the third audio if the
condition is not met).

Most of the relations relate to two audio
events (see Table 3 for more detail). Expanding
to include more complex relations with a greater
number of audio events is left for future work.

3.2 Audio Event Category Corpus

Alongside the relation corpus presented in Sec. 3.1,
we further construct a comprehensive audio event
category corpus. The two corpora serve as fun-
damental dataset for constructing text prompts for
TTA models. Since different audio event signals are
generated from various sources or through differ-
ent interactions, we first establish four main audio
source categories, further detailing each category
with five sub-categories. These constructed audio
categories encompass the majority of ubiquitous
audio events encountered in our daily lives. Specif-
ically, the audio event category corpus contain,

1. Human Audio: the audio generated by human
beings in our daily life, including baby crying,
coughing, laughing, whistling, female speech
and male speech.

2. Animal Audio: the audio generated by animals,
including cat meowing, dog barking, bird chirp-
ing, horse neighing, rooster crowing, sheep
bleating and pig oinking.

3. Machinery Audio: audio generated by vari-
ous machinery devices while they are working,
including car horn, doorbell, telephone ring,
paper shredder and boat horn.

4. Human-Object Interaction Audio: human-
object interaction audios include vegetable chop-
ping, keyboard typing, toilet flushing, door slam-
ming and foot step.

5. Object-Object Interaction Audio: we further
incorporate object-object interaction audios, in-
cluding glass dropping, car emergency brake,
hammering nail, wood sawing and keys jingling.

The detailed audio event corpus is given in Table 3.
With the constructed relation and audio event cor-
pus, we can create relation aware text prompts for
TTA models.

4 Seed Audio and Text-Audio Pair
Creation

1. generate audio A succeeded by B;
2. start with A, followed by B;
3. play A initially, B afterwards;
4. generate A preceded by B;
5. A in the beginning, B coming next;

Figure 2: GPT-4 augmented prompts (before relation).

In order to create the corresponding audio for
any constructed text prompt, we instantiate each
audio event presented in Sec. 3.2 in the main
paper with five exemplar seed audios collected
from freesound.org 2. Since most audio files on
freesound.org are uploaded by volunteers who
recorded them in their daily lives, incorporating
five exemplar audios for each individual audio
event category enhances both the diversity and re-
alism of the seed audio. For instance, in the case of
the dog barking audio event, the five selected au-
dios vary in terms of dog breeds and barking styles.
To further enhance an audio event’s temporal length
diversity, we randomly slice each seed audio into
non-overlapping clips ranging from 1 sec to 5 secs.
In summary, we have constructed 11 relations (see
Table 2 Sub-Relation column), and 25 audio events
across five main audio events categories. Each au-
dio event has been associated with 5 diverse audio
clips ranging from 1 sec to 5 secs collected from
freesound.org dataset.

Text Prompt Generation: a proper audio events
relation aware text prompt comprises of two parts:
a relation (e.g., <before>) and audio events cate-
gories. The audio event categories can be either
intra-class or inter-class, and the audio event num-
ber depends on the relation. We first instantiate an
initial text prompt describing this relation. For ex-
ample, for the temporal order before relation, the
initial text prompt can be like: generate audio A,
followed by audio B. To enrich the text prompts, we
further use the initial text prompt to query LLM (in
our case GPT-4) to provide more text prompts with
diverse descriptive language for the same relation.
One such GPT-4 augmented text prompts is shown

2since freesound.org does not contain meaningful peo-
ple talking audio, we collect people talking audio from
VCTK (Yamagishi et al., 2019)
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A. Relation Corpus B. Audio Event Category Corpus C. Seed Audio Corpus

e.g. before e.g. chopping, talking

initial prompt: generate chopping audio,
followed by people talking audio

GPT-4 Prompt
Augmentation

1. create chopping audio preceded by people talking audio
2. chopping in the beginning, people talking coming next
3. start with chopping audio, followed by people talking

……

chopping 2s talking 4s

Reference Audio
Generation 10s

……
D. Created Text Prompts D. Created Corresponding Audio

Figure 3: Relation aware <textprompt,audio> pair
creation pipeline. It introduces large diversity in both
text prompt and audio.

in Fig. 2, which illustrates that the same relation
can be exactly expressed by multiple different text
prompts. By incorporating GPT-4, we create 5 text
prompts for each individual relation.

Audio Generation: Given the aforementioned
audio events categories and relation, we randomly
select an exemplar seed audio for each audio event
and further linearly blend them together by satisfy-
ing the specified relation. For example, the relation
<before> requires two audio events, the two se-
lected audios can be blended together to form the
final audio as long as the two seed audios satisfy
the <before> relation (Fig. 3, D). Notably, unlike
blending two objects in an image that requires care-
ful consideration of factors like occlusion and view-
ing angle, combining two audio signals simply in-
volves linearly adding them together (Pierce, 2019).
This offers an advantage for audio generation, as
it eliminates the need for additional operations be-
yond the specified relation.

The generation of the <text,audio> pair is
further illustrated in Fig. 3. With the proposed
<text,audio> pair generation strategy, we can cre-
ate massive diverse pairs even for the same audio
events and the same relation, significantly enhanc-
ing the diversity and generalization capability of
our generated dataset.

4.1 Relation-Aware Evaluation Protocol

Existing TTA methods adopt general evaluation
metrics to asses the similarity between generated
audio and reference audio, including Fréchet Au-
dio Distance (FAD), Fréchet Distance (FD) (Heusel
et al., 2017), Kullback–Leibler (KL) divergence,
Fréchet Inception Distance (FID) etc., among oth-

general eval with 
reference audio

time

<sim
ulta
neit
y>

<before>

relation aware eval on top of audio events

event detection

audio event

t1 t2, s, c, 

Figure 4: Relation aware evaluation. Audio event de-
tection model is applied to get audio events. The meta
data of each event contains start time t1, end time t2,
confidence score s and class label c. Various relations
can be discovered from these audio events.

ers. While those general evaluation metrics give an
overall estimation of the similarity between the two
comparing audios, they do not offer direct relation-
aware evaluations. In addition to incorporating gen-
eral evaluation metrics, we further propose multi-
stage relation-aware evaluation metrics, with which
we can gain insight on how the method performs
w.r.t. difference relations.

General Evaluation Metric: We incorporate
three widely used general evaluation metrics: the
objective evaluation FAD, FD and KL divergence
scores. FAD and FD measure the distribution simi-
larity with feature embedding extracted from pre-
trained on VGGish model (Hershey et al., 2017).

Relation aware Evaluation Metric: To directly
measure how accurately the text-indicated relation
is reflected in the generated audio, we incorporate
relation aware metrics for each specified relation.

In relation aware evaluation, we base on the in-
dividual audio event to compute the metrics, which
allows us to measure the relation between audio
events. Let’s denote pAg, T ,R,Apq by ground
truth audios, text prompts, relations and gener-
ated audios, respectively. We first extract audio
events E from generated audios Ap. For exam-
ple, for the i-th generated audio api , we apply pre-
trained audio event detection model (we use fine-
tuned PANNS (Kong et al., 2020), see Sec. A in
Appendix) to extract all potential audio events in-
volved in the audio Eapi

“ tpej ,mjq|suki“1 by a
given event confidence threshold s P S, where ej
is the j-th audio event and mj is the correspond-
ing meta data (e.g., class label, confidence score,
temporal start and end time, see Fig. 4). To ob-
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tain audio events data for ground truth audios, we
can either apply the same pre-trained model or di-
rectly extract from text prompts. Finally, we can
get pAg, T ,R,Ap, Ep, Egq, the relation aware eval-
uation function fp¨q depends on the audio events
Ep, Eg and relations R, fpEp, Eg|R, sq. We adopt a
multi-stage relation aware evaluation strategy.

Stage 1: Target Audio Events Presence (Pre).
The paramount requirement for a successful audio
generation is the presence of text-specified audio
events in the generated audio. In this evaluation,
the ground truth audio events and generated audio
events are treated as set. For a given ground truth
and generated audio events pair pEg, Epq, we iter-
ate over each audio event eg in the ground truth Eg

to check if it exists in the generated audio events
Ep, regardless of its number and temporal position.

fppEp, Egq “ 1

k

ÿ

egPEg

1peg, Epq;

1peg, Epq “
#
1, if eg P Ep,

0, otherwise.

(1)

where k is event number in the ground truth. slpegq
is a potential event meeting the confidence thresh-
old in the generated audio. We select the event with
the highest confidence score as the target.

Stage 2: Relation Correctness (Rel). Once con-
firming the aforementioned target audio presence,
we further investigate if these audio events obey
text-specified relation. The relation is correctly
modeled if at least a subset of generated audio
events meet the relation. We give score 1 if relation
is correctly modeled, otherwise score 0.

frpEp|Rq “ max
EtPEpXEg

t1pEt, Rqu;

1pEt, Rq “
#
1, if Et meets R,

0, otherwise,

(2)

Stage 3: Audio Parsimony (Par). Apart from
requiring to generate all target audios, we should
discourage the model from generating excessive
intra-class audio events or irrelevant inter-class au-
dio events. We call this property Audio Parsimony.
Once it is violated, we introduce extra penalty,

fspEp, Egq “ exp p´ws ¨ |npEpq ´ npEgq|q (3)

where np¨q indicates event number. ws is the
weight adjusting the penalty (in our case, ws “
0.1). The higher audio event number incurs lower
parsimony score, the resulting parsimony score lies

existing TTAmodel

Text Prompt

FLAN-T5

Relation Prompt Event Prompt

CrossAttn

gat-

ing

gat-

ing

learnable

Figure 5: Gated Prompt Tuning Illustration.

within p0, 1q. The final relation aware score based
on event confidence threshold s equals to the mul-
tiplication of the three stage scores,

fpEp, Eg|R, sq “ 1

N

ÿ

pEp,Eg ,RqPpEp,Eg ,Rq
fppEp, Egq ¨ frpEp|Rq ¨ fspEp, Egq

(4)

where N is data number. The final average
MSR (AMSR) score fpEp, Eg|R, sq lies within
r0, 1q (the higher of the score, the better of the
model’s performance). Following prior COCO ob-
ject detection evaluation strategy (Lin et al., 2014),
we further average across multiple discrete audio
event confidence thresholds to get the mean aver-
age MSR score (mAMSR), fpEp, Eg|Rq,

fpEp, Eg|Rq “ 1

K

ÿ

sPS
fpEp, Eg|Rq (5)

where K is the discrete audio event confidence
thresholds number. In our case we use uni-
formly sample four confidence thresholds in range
r0.5, 0.8s with step size 0.1.

5 Gated Prompt Tuning

We introduce gated prompt tuning, a new strategy
that enables parameter-efficient and task-adaptive
relation-modeling without explicitly intervening
existing TTA models’ design. Specifically, draw-
ing inspiration from recent advancement in prompt
tuning (Liang et al., 2025; Jia et al., 2022), we in-
troduce learnable relation prompt for each relation
and event prompt for each audio event class, and
further feed these prompts alongside text prompts
to the TTA neural network for optimization.

Formally, we construct a learnable one-
dimensional prompt for each relation and each au-
dio event rPr, Pes,(Pr P RTrˆd, Pe P RTeˆd, Tr

is the relation numer, Te is the audio event class
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number), the prompt size equals to text prompt to-
ken embedding size (in our case, 1024). Instead of
directly concatenating all prompts with text prompt
tokens, we first condition the learnable prompts on
the input text tokens via cross attention (Vaswani
et al., 2017). Afterwards, we compute a gated com-
bination for Pr and Pe separately, resulting in one
integrated relation prompt and another integrated
event prompt. By appending these two integrated
prompts to text tokens and feeding them to an ex-
isting TTA model, we jointly tuning the prompts
and the TTA model to instill relation modeling ca-
pability into the TTA model.

As each input text just relies on sparse audio
events and relations, we adopt the entmax1.5 (Pe-
ters et al., 2019) gating mechanism to encourage
the model to focus on a small subset of prompts.
Unlike softmax, the entmax1.5 transformation
yields sparse probability distributions, enabling
some prompts to be assigned zero weights. To com-
pute this gating, we first extract a summary repre-
sentation of the prompts using mean average pool-
ing, which is further fed to fully-connect layers to
learn the gating logits (the value before entmax1.5).
With the entmax1.5 computed weight, we weight-
sum the relation prompts (or event prompts) to get
one relation prompt (or one event prompt, accord-
ingly). The whole pipeline is illustrated in Fig. 5.

Since each added prompt is associated with a
specific relation or event class, we add a classifica-
tion loss to each learnable prompt during training
phase to encourage each prompt to learn its desig-
nated class. It is worth noting that the introduced
prompts’ parameter size (5 M) is negligible with
comparing with the existing TTA model parameter
size (e.g., the Tango parameters is 866 M), and it
does not intervene existing TTA model architec-
ture. We experimentally show the effectiveness of
this design in distilling relation modeling capability
into existing TTA models.

6 Experiment

We run two experiments: benchmarking existing
TTA methods on our curated 22 hrs dataset (aka
testing dataset); comparing gated prompt tuning
strategy with other baselines to show its efficiency.

6.1 More Discussion on Data Creation

We follow the strategy presented in Sec. 4 to cre-
ate the dataset. Specifically, for each of the 11
sub-relations in Table 2, we create 720 (2 hrs)

<text,audio> pairs for testing (aka benchmark
dataset) and 1440 pairs (4 hrs audio) for train-
ing (aka finetuning dataset). The highlight of train-
ing/testing dataset is in Table III Appendix.

To ensure all relations can be effectively evalu-
ated, we applied two key constraints during the data
creation process. First, to make the audio events
countable without ambiguity, we selected inter-
category audio events to form the <text,audio>
pairs. This avoids the ambiguity that arises when
using intra-category events, especially for those
with repetitive, similar local occurrences (e.g., mul-
tiple instances of dog barking). Second, for the
Spatial Distance relation, we introduced a temporal
order constraint to ensure that the two audio events
do not overlap in time. Temporal overlap would
require complex source separation models (Peter-
mann et al., 2023) to distinguish individual events.
By enforcing this non-overlapping constraint, the
evaluation of Spatial Distance becomes manage-
able using an audio event detection model (see
Sec. A in Appendix). To make all the proposed
relation measurable, we approximate spatial dis-
tance by loudness distance. More evaluation setup
is given in Sec. B in Appendix.

6.2 Relation-Aware Benchmarking Result
We benchmark our curated test dataset on 8
most recent TTA models: AudioLDM (Liu et al.,
2023) (two versions), AudioLDM 2 (Liu et al.,
2024), MakeAnAudio (Huang et al., 2023b), Au-
dioGen (Kreuk et al., 2023), Tango (Ghosal et al.,
2023), Tango 2 (Majumder et al., 2024) and Tan-
goFlux (Hung et al., 2024). We directly depend on
their released models to generate a 10 second audio
from each text prompt, detailed configuration is
given in Table I in Appendix. We further bench-
mark agentic workflow based methods, in which
we leverage LLM (GPT-4) acting as an agent to
analyze the input text and output the separate au-
dio events an TTA model needs to generate. At
the same time, the same LLM works as the third
agent to output the python code that merges the
audios generated by the TTA model. The reason
of experimenting agentic flow is to see if we can
decompose the relation-aware generation task into
simple single audio event generation task.

The quantitative evaluation results across all re-
lations are shown in Table 4. From this table we
can observe that the general evaluation results are
inconsistent with our proposed relation aware eval-
uation metrics. The best performing methods un-
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Benchmark
Method Model #param General Evaluation Relation Aware Evaluation (Ò)

FAD Ó KL Ó FD Ó mAPre mARel mAPar mAMSR

Zero-Shot

AudioLDM (S-Full) (2023) 185 M 5.65 38.95 37.30 2.76 0.50 2.52 0.04
AudioLDM (L-Full) (2023) 739 M 5.47 38.42 37.96 3.09 0.77 2.56 0.08
AudioLDM 2 (L-Full) (2024) 844 M 6.68 29.07 35.85 12.26 2.41 10.01 3.39
MakeAnAudio (2023b) 452 M 9.46 82.72 45.98 8.14 1.68 6.47 1.02
AudioGen (2023) 1.5 B 6.43 28.01 32.04 9.61 2.12 8.60 2.27
Tango (2023) 866 M 10.79 90.26 39.46 11.13 2.27 9.88 3.10
Tango 2 (2024) 866 M 13.84 89.66 44.03 16.63 4.40 12.53 11.55
TangoFlux (2024) 515 M 8.07 32.80 47.92 33.83 7.02 29.01 76.57

LLM+Agentic
+TTA Model

Tango (2023) 866 M 11.88 92.19 41.44 12.33 9.21 11.28 19.17
Tango 2 (2023) 866 M 14.76 93.10 44.89 19.33 9.37 14.13 20.31
TangoFlux (2024) 515 M 8.93 32.99 49.00 35.19 9.69 28.22 79.43

Table 4: Benchmark quantitative result across all relations. mAPre, mARel and mAPar are in 10´2. mAPre and
mARel can be treated as presence, relation correctness percentage ratio, in range r0, 100s. mAPar score also lies
within r0, 100s. mAMSR (10´4) lies in range r0, 1s. The LLM is deligated by GPT-4. The top- , second- and

third- performing methods are labeled in different colors.

Model General Evaluation Relation Aware Evaluation (Ò) mAMSR Across Four Main Relations
FAD Ó KL Ó FD Ó mAPre mARel mAPar mAMSR Count TempOrder SpatDist Compos

Tango (finetune) 4.60 23.92 27.03 21.23 10.78 20.35 48.67 8.04 324.10 1.88 44.42
Tango (ours GPT) 3.12 20.21 25.11 25.77 15.38 27.19 59.13 10.11 378.90 3.12 54.87

TangoFlux (finetune) 2.94 20.10 21.09 37.12 11.11 33.99 83.44 13.56 368.77 5.10 58.88
TangoFlux (ours GPT) 1.60 17.98 18.20 43.11 15.33 39.10 127.98 13.04 425.98 3.10 69.56

Table 5: The quantitative comparison across general and relation-aware evaluation between finetuing strategy and
our proposed gated prompt tuning strategy. The gated prompt tuning (GPT) just introduces extra 5 M parameters.

der generational evaluations (the two AudioLDM
versions) perform the worst under relation aware
evaluations, and vice versa. These discrepancies
highlight the necessity of proposing evaluation met-
rics specifically tailored for audio events relations.
Additionally, while the performance differences
among the seven benchmarking methods under gen-
eral evaluation are relatively minor, the correspond-
ing differences under relation aware evaluation are
significantly more pronounced (e.g., Tango 2 out-
performs AudioLDM (S-Full) by about 200 times).
However, even the top-performing method, Tan-
goFlux (Hung et al., 2024), still struggles to model
audio events relations, as both its presence accu-
racy and relation accuracy rate are small (less than
30% accuracy rate on average). Moreover, agentic
workflow performs slightly better under relation-
aware evaluation but worse under general evalua-
tion, which shows LLM involved agentic workflow
cannot address relation modeling sufficiently. All
of these observations demonstrate the limitations
of existing TTA methods in modeling audio events
relation and the necessity to systematically study
audio events relation in TTA, highlighting the im-
portance of our proposed work. More experimental
result is given in Sec. F in Appendix.

In summary, we conclude that, 1. existing TTA
models lack the ability to model audio events rela-
tion described by the text prompt in the generated

audio, emphasizing the importance of our work in
systematically study audio events relation in TTA.
2. Existing TTA evaluation metrics fall short in
accurately measuring audio events relations from
the generated audio. Our proposed multi-stage rela-
tion evaluation framework suffices to measure the
relation accuracy from various aspects. 3. LLM in-
volved agentic workflow does not suffice to address
relation modeling.

6.3 Gated Prompt Tuning Result

We run gated prompt tuning on two most advanced
TTA models, Tango and TangoFlux, by initializ-
ing their model weights from pretrained model.
All the learnable prompts are randomly initial-
ized, each prompt is of size 1024. For Tango, we
tune learnable prompts (5 M) and latent diffusion
model (UNet, 866 M). For TangoFlux, we tune
learnable prompts and Transformer blocks (515 M).
We use Adam optimizer with the learning rate
3 ˆ 10´5, batch size of 16, SNR gamma value
5. We finetune 40 epochs on 4 A100 GPUs. The
results, shown in Table 5, show that 1. finetuning
either Tango or TangoFlux results in significant per-
formance improvement in both relation-aware and
general evaluation, and TangoFlux achieves better
performance than Tango. 2. The introduced gated
prompt tuning further improves the performance
drastically. Considering the fact that gated prompt
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Figure 6: Qualitative visualization comparison of Tango w/o finetuning (A) and mAPre w.r.t. 11 sub-relations.

tuning just introduced negligible parameters, the
performance gain directly shows the effectiveness
of our proposed gated prompt tuning design.

Two qualitative examples of w/o finetuning
Tango are in Fig. 6 A. It is evident that the fine-
tuned Tango successfully models the <before> re-
lation (Table 1 and Fig. 1 show all existing TTA
models fail on this case), and <count> relation.
The mAPre score w.r.t. the 11 600 sub-relations
is shown in Fig. 6 B (the mARel, mA- 601 Par,
mAMSR are in Fig. I in Appendix).

6.4 Ablations on Gated Prompt Tuning

GPT-
only

GPT-
Rel

GPT-
Event

PT-
only

GPT (ours)

40.12 91.98 87.65 102.33 127.98

Table 6: Ablation Study Result on TangoFlux Model.
We report mAMSR (Ò) score (10´4).

We run 4 main ablations on TangoFlux (Hung
et al., 2024) based gated prompt tuning (GPT) to
validate the effectiveness of our gated prompt tun-
ing design. 1. GPT-only: just train gated prompts
without tuning the existing TTA model, which
helps to test if tuning existing TTA model is nec-
essary; 2. GPT-Rel, just introduce learnable rela-
tion prompts, which helps to test if jointly tuning
event prompts is necessary; 3. GPT-Event, just
introduce learnable event prompts, which in turn
tests if jointly tuning relation prompts is necessary;
4. PT-only, prompt tuning without gating mecha-
nism (just mean-average all prompt to obtain the
final single prompt).

The mAMSR metric is given in Table 6. From
this table we can observe that just tuning gated
prompts leads to obvious performance drop (it per-
forms even worse than zero-shot based benchmark,
see Table 4). We assume that such large difference
results from the domain gap between conventional
TTA and our introduced relation-aware TTA task,

which naturally requires to tune large number of pa-
rameters to fill in the gap; Discarding either relation
prompts (GPT-Event) or events prompts (GPT-Rel)
also leads to obvious performance drop; Removing
gating mechanism also sees performance drop (but
still performs better than GPT-Rel and GPT-Event);
All of these ablation study results shows the im-
portance of each of our introduced gated prompt
tuning component.

7 Conclusion

We demonstrate existing TTA models struggle with
relation modeling. Despite its importance, relation
modeling has received rare attention in previous
research. To address this gap, we introduce a new
benchmark, a relation-aware evaluation metric, and
a gated prompt tuning strategy. More discussion is
in Sec. G in Appendix.

8 Limitations

There are two main limitations in this work.
First, in this work, we incorporate 11 relation

and 25 audio event in the relation corpus and event
corpus, respectively. They are not sufficient enough
to reflect the potential relations and audio events
existing in the real scenarios. It is desirable to
scale up the benchmark by introducing more audio
event categories and accommodating more com-
plex relations (e.g., the nested combination of the
25 relations to generate more complex relation).

Second, a powerful relation-aware TTA model
should be scalable to extend to incorporate new
relations or new audio events automatically (ope-
nended setting). Our current setting is close-ended,
disallowing novel audio events or relation handling.
This openended relation-aware TTA model also
remains as a future research direction.
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Appendix

A Audio Event Detection Model Finetune
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Figure I: The comparison of mARel, mAPar, mAMSR
on Tango w/o finetuning.

To detect the audio events from generated au-
dio, we employ a pre-trained audio event detec-
tion model (in our case, we adopt PANNS (Kong
et al., 2020)) to detect all audio events, each de-
tected event has class label with a confidence score,
start time and end time. Analyzing these detected
audio events can uncover various audio events rela-
tions (see Fig. 4 in the main paper).

The PANNS model (Kong et al., 2020) is pre-
trained on the large-scale 527 class AudioSet
dataset (Gemmeke et al., 2017). It contains an
audio tagging model and an audio event detection
model. Directly applying the pre-trained detection
model to detect audio events from our generated au-
dios inevitably results in false positive and ambigu-
ous detections. For instance, a door slam sound
may be incorrectly detected as speech or music
with high confidence scores. To mitigate the ambi-
guity and inaccuracies, we finetune the detection
model (“Cnn14_DecisionLevelMax” variant) on
our specially curated 100 k dataset by just tuning
the last classification layer. Finally the finetuned
model achieves mAP 0.57 on our curated 10k test
sets, far outperforming the original model with
mAP 0.43.

We based on the pretrained PANNS (Kong et al.,
2020) audio event detection model to finetune it
on our curated 100 k audio training dataset. Each
audio is 10 s long with sampling rate 16 kHz. More-
over, each audio randomly contains one to five au-
dio events, each event has a random start time posi-
tion in the 10 s long audio. The input is 10 s long
audio waveform. The output is a confidence map of
shape r20, 25s, where 20 is the time steps with the
temporal resolution 0.5 s and 25 is the audio event
class number. Potential audio events are extracted
from the confidence map by thresholding the con-
fidence map, audio events with too short time du-
ration (in our case, less than 0.5 s) are discarded.

The training and testing datasets size are 100 k and
10 k respectively. We adopt Adam (Kingma and Ba,
2015) to train the model with initial learning rate
0.0001 but decays every 200 epochs with decaying
rate 0.5. Finally, we train 350 epochs. The loss
function is binary cross-entropy loss (BCE). On the
testing dataset, the finetuned model achieves mAP
0.57. We use the finetuned audio event detection
model to detection audio events from the generated
audios.

B More Discussion on RiTTA Evaluation

We specifically adjust the audio generation process
for relations under Compositionality and Spatial
Distance to so as to ensure these relations can be ac-
curately evaluated under our proposed framework.

First, we skip general evaluation for <Not> as it
lacks a corresponding ground truth reference au-
dio. During fintuning, we generate silent audio for
<Not> for create finetuing pairs. Second, for the
<if-then-else> and <Or> sub-relations, which
correspond to two possible ground truth audios, we
handle evaluation by computing the L2 distance (in
the time domain) between the generated audio and
the two reference audios. For example, for the
prompt if event A then event B, else event C, the
first reference is the combination of events A and
B, while the second contains only event C. We use
the reference audio with smaller L2 distance to the
generated audio for general evaluation.

Third, precise evaluation of the three sub-
relations (<closefirst>, <farfirst>, and
<equaldist>) under Spatial Distance from
unconstrained audio requires sound event detection
and localization (SELD (He and Markham, 2023;
Grondin et al., 2019)) techniques to spatially
localize each audio event, which is impossible
with mono-channel audio. To address this, we
approximate spatial distance by calculating the
loudness, which can be estimated using the L2
norm of the audio waveform. The rationale
behind this approach is that greater distances
result in a dampening of waveform amplitude (and
consequently reduced loudness) due to energy
decay along the audio propagation path. When
the loudness difference exceeds a predefined
threshold (for <closefirst>, <farfirst>) or
is within that threshold (for <equaldist>), we
consider the evaluation accurate. Specifically, we
use a loudness reduction ratio σ1 (with σ1 “ 0.2
in our case). For <closefirst>, if the closer
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Methods Setting
AudioLDM (S-Full) (2023) guidance_scale=5, random_seed=42, n_candidates=3
AudioLDM (L-Full) (2023) guidance_scale=5, random_seed=42, n_candidates=3
AudioLDM 2 (L-Full) (2023b) guidance_scale=3.5, random_seed=45, n_candidates=3
MakeAnAudio (2023b) ddim_steps = 100, scale = 3.0
AudioGen (2023) model name: audiogen-medium
Tango (2023) num_steps = 200, guidance=3, num_samples=1
Tango 2 (2024) num_steps = 200, guidance=3, num_samples=1

Table I: Detail setting for each TTA method.

event’s loudness is at least σ times greater than the
further event’s loudness, the relation is considered
correct. Similarly, for <equaldist>, the loudness
difference between the two events should be within
σ2 (with σ2 “ 0.4 in our case) of the louder
event’s loudness. This estimation is also reflected
in the data generation process (see Sec 6.1).

C Existing TTA model Setting

We test 8 most recent TTA models: Audi-
oLDM (Liu et al., 2023) (two versions), Audi-
oLDM 2 (Liu et al., 2024), MakeAnAudio (Huang
et al., 2023b), AudioGen (Kreuk et al., 2023),
Tango (Ghosal et al., 2023), Tango 2 (Majumder
et al., 2024) and TangoFlux (Hung et al., 2024).
We depend on their released pre-trained model and
use their recommended hyperparameter setting for
benchmarking (from their Github page). The de-
tailed setting for each TTA method is given in Ta-
ble I.

D More Result on Tango Finetuning

The mARel, mAPar and mAMSR score w.r.t. 11
sub-relations is given in Fig. I.

E <Text,Audio> pair generation and
RiTTA benchmark highlight

The RiTTA <Text,Audio> pair generation pipeline
is illustrated in Fig. 3 and RiTTA benchmark sum-
mary is highlighted in Table III.

F Key Findings of TTA models on RiTTA
Benchmark

The quantitative evaluation results (mAMSR score)
w.r.t the four main relation categories are pre-
sented in Table II. We observe that both general
and relation-aware evaluations show better perfor-
mance on Temporal Order and Compositionality
compared to Count and Spatial Distance. This sug-
gests that the Count and Spatial Distance relations

pose significant challenges for TTA tasks. Addi-
tionally, we visualize the detailed relation aware
evaluation results for the 11 sub-relations, high-
lighting the top three performing methods Audi-
oLDM 2 (Liu et al., 2024), Tango (Ghosal et al.,
2023), and Tango 2 (Majumder et al., 2024), in
Fig. II. We can observe that all the three methods
1. achieve exceedingly high presence score on Not
relation, which is expected since a high Presence
score (Subfig. A) can be easily obtained by simply
not generating the specified audio event. 2. perform
well in modeling And relation (Subfig. B) (then
<equaldist> and the three relations in Temporal
Order); 3. exhibit strength in generating concise au-
dios particularly for Not relation (Subfig. C). Over-
all, all the three methods excel in modeling And
relation and then the three sub-relations in Tempo-
ral Order, which is also reflected by the result in
Table II. The key findings from the relation-aware
benchmarking are summarized in the Table IV.

The key findings of TTA models is summarized
in Table IV.

G Conclusion and Future Works

Complex relationships within audio bring the world
to life. While text-to-audio (TTA) generation mod-
els have made remarkable progress in generating
high-fidelity audio with fine-grained context un-
derstanding, they often fall short in capturing the
relational aspect of audio events in real-world. The
world around us is composed of interconnected
audio events, where audio event rarely occurs in
isolation. Simply generating single sound sources
is insufficient for producing realistic audio that re-
flects the richness of the world.

To analyze the capabilities of current state-of-
the-art TTA generative models, we first conduct a
systematic study of these models in audio event re-
lation modeling. We introduce a benchmark for this
task by creating a comprehensive relational corpus
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Table II: Benchmark quantitative result w.r.t. the four main relations. We report FAD sore and mAMSR score for
general evaluation and relation aware evaluation, respectively.

Model General Evaluation (FAD Ó) Relation Aware Eval. (mAMSR Ò)
Count TempOrder SpatDist Compos Count TempOrder SpatDist Compos

AudioLDM (S-Full) (Liu et al., 2023) 3.85 6.86 4.56 9.36 0.00 0.05 0.00 0.18
AudioLDM (L-Full) (Liu et al., 2023) 3.68 6.45 4.10 8.98 0.00 0.05 0.06 0.17
AudioLDM 2 (L-Full) (Huang et al., 2023b) 5.03 8.94 4.72 9.41 0.14 1.87 1.46 9.89
MakeAnAudio (Huang et al., 2023b) 6.02 10.21 8.18 12.78 0.12 0.66 0.44 2.40
AudioGen (Kreuk et al., 2023) 6.14 8.39 3.38 9.98 0.32 3.83 0.48 4.18
Tango (Ghosal et al., 2023) 8.54 10.25 10.11 13.97 0.16 3.44 0.82 8.10
Tango 2 (Majumder et al., 2024) 10.01 13.91 13.23 17.04 0.96 20.92 1.92 23.25
TangoFlux (Hung et al., 2024) 6.02 8.00 52.20 60.22 1.72 111.51 0.00 47.71
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Figure II: Top 3 performing in audio events relation modelling TTA methods’ performance w.r.t. the 11 sub-relations. We report
mAPre, mARel, mAPar and mAMSR scores separately.

covering all potential relations in the real-world sce-
narios. Further, we propose new evaluation metric
framework to assess audio event relation modeling
from various perspectives. Additionally, we pro-
pose a finetuning strategy to boost existing models’
ability in modelling audio events relation, and we
show improvement across all relation metrics. Fi-
nally, we will release both the dataset and the code
for the evaluation metrics, which will be useful for
future research in this domain.

Going forward, our work provides a unique re-
search opportunity to bring the world to life by ex-
ploring ways to generate long-term audio events to
acoustically understand the physical world. Further,
understanding the successes and failures of these
models in generating such complex audio events is
another promising research direction. This analysis
could lead to further improvements in TTA mod-
els and their applications in areas such as virtual
reality, cinema and immersive media.

Entry Highlight

seed audio
one event has 5 audios

each has 1 s-5 s audio clips
audio categ-
ory corpus

5 main categories
25 sub-categories

relation
corpus

4 main 11 sub relations

relation -
event number

count: 2-5 events;
Not: 1 event;

if-then-else: 3 events
others: 2 events.

train and
test data info

each audio is 10 s long
sampling rate 16 kHz

train: 44 hrs, 1.6 k pairs
test: 22 hrs, 0.8 k pairs

data creation
constraint

count inter-category audio
SpatialDist intra-category

and require temporder

audio
diversity

one event Ñ multi-audios;
seed audio Ñ multi time len;
seed audios various start time

text prompts
diversity

GPT-4 augmented prompts;
one template Ñ multi-events.

Table III: RiTTA benchmark highlights.
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1. generation eval. contradicts with RiTTA eval.
2. TemOrder/Compos better than Count/SpatDist
3. event presence in Not is the highest;
4. relation correctness in And is the highest;
5. parsimony score in Not is the highest;
6. event presence accuracy rate is below 1%;
7. relation correctness accuracy rate is below 1%;
8. An average of 2 redundant audio events;

Table IV: Key findings from experiments of TTA models
on our RiTTA benchmark.
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