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Abstract

Recent advancements in speech synthesis have
significantly improved the audio quality and
pronunciation of synthesized speech. To fur-
ther advance toward human-like conversational
speech synthesis, this paper presents Filler-
Speech, a novel speech synthesis framework
that enables natural filler insertion and control
over filler style. To address this, we construct
a filler-inclusive speech data, derived from the
open-source large-scale speech corpus. This
data includes fillers with pitch and duration in-
formation. For the generation and style con-
trol of natural fillers, we propose a method
that tokenizes the filler style and utilizes cross-
attention with the input text. Furthermore, we
introduce a large language model-based filler
prediction method that enables natural insertion
of fillers even when only text input is provided.
The experimental results demonstrate that the
constructed dataset is valid and that our pro-
posed methods for filler style control and filler
prediction are effective.

1 Introduction

Text-to-Speech (TTS) synthesis systems (Lee et al.,
2022; Li et al., 2024; Peng et al., 2024; Wang et al.,
2025) have seen remarkable advancements in re-
cent years, particularly in achieving high-quality
audio generation (Kim et al., 2024; Lee et al.,
2025a,b) and natural pronunciation (Ju et al., 2024).
These improvements have paved the way for ap-
plications in various domains, such as virtual as-
sistants, audiobooks, and human-computer inter-
action. Despite these advancements, achieving
human-like conversational speech remains an open
challenge.

Fillers, such as "um", "uh", or "well", are an inte-
gral part of natural human conversation (Zhu et al.,
2022; Dinkar et al., 2022). They serve various func-
tions, including signaling hesitation, buying time
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for thought formulation, or maintaining the flow of
dialogue. When these elements are missing from
synthesized speech, the speech can sound unnatu-
ral, reducing its effectiveness in applications that
require natural human interaction.

Previous research has attempted to address filler
speech synthesis. (Éva Székely et al., 2019a) fo-
cused on training fillers as separate acoustic mod-
els to generate natural speech, while (Éva Székely
et al., 2019b) learned fillers as tokens from a spon-
taneous conversational speech dataset. However,
these models were limited to a narrow range of
filler types (e.g., "uh" and "um"), limiting their abil-
ity to handle diverse speaking styles. (Yan et al.,
2021) introduced an adaptive text-to-speech model
to capture spontaneous speaking styles but did not
explicitly focus on modeling fillers as non-verbal
components of speech. (Fernandez et al., 2022) pro-
posed a method to incorporate conversational style,
including interjections, but struggled to generate
and control fillers in a natural and seamless man-
ner. (Wang et al., 2022) adopted a sampling-based
approach for filler insertion but relied heavily on
statistical methods, which often lacked coherence
with the given textual context. These studies, while
pioneering, highlighted challenges in modeling di-
verse filler styles and achieving precise text-based
control for natural synthesis.

To tackle this challenge, we propose Filler-
Speech, a novel framework for text-to-speech syn-
thesis with filler insertion and filler style control.
We first construct a filler-inclusive speech dataset
derived from the large-scale LibriHeavy corpus
(Kang et al., 2024) using an automated method to
label fillers with pitch and duration information,
thereby eliminating the need for manual annota-
tion. To achieve speech synthesis with controllable
filler style, we tokenize filler style attributes and use
cross-attention to incorporate these word-level style
tokens. Additionally, we integrate a pitch predictor
into the text encoder to enhance the overall quality
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of the synthesized speech and improve control over
filler style. While filler selection can be performed
manually, we additionally introduce a large lan-
guage model (LLM)-based filler prediction method
that automatically inserts fillers based solely on
the input text. Experimental results validate the
effectiveness of our approach, demonstrating that
FillerSpeech synthesizes natural and controllable
speech, thereby enhancing the realism of conversa-
tional speech applications. Our demo is available
at https://fillerspeech.github.io/main.

2 Related Work

2.1 Flow Matching in Speech Synthesis

Flow matching (Lipman et al., 2023) has emerged
as a powerful technique for speech synthesis, offer-
ing advantages in both output quality and efficiency
compared to traditional diffusion-based approaches
(Popov et al., 2021; Kim et al., 2022).

Several recent works have explored the applica-
tion of flow matching to various aspects of speech
synthesis. (Velugoti et al., 2023) builds upon the
flow-matching framework by introducing a recti-
fied flow approach that improves synthesis effi-
ciency while maintaining high-quality audio gener-
ation. (Le et al., 2023) further advances the field by
adopting a versatile, non-autoregressive approach.
This model not only generates Mel-spectrograms
but also supports speech inpainting and style trans-
fer, showcasing robustness in both seen and un-
seen scenarios. (Kim et al., 2023) proposes a data-
efficient zero-shot TTS method that leverages a
speech-prompted text encoder combined with flow
matching. (Mehta et al., 2024) leverages optimal-
transport conditional flow matching (OT-CFM) to
generate high-quality speech with only a few syn-
thesis steps. More recently, (Wu et al., 2024) takes
flow-matching-based synthesis a step further by in-
corporating dynamic emotional control, enabling
the generation of speech with time-varying emo-
tional expressions. Similarly, (Kanda et al., 2024)
focuses on fine-grained emotional control, specif-
ically targeting laughter synthesis. This approach
offers a highly expressive and adaptable speech
synthesis framework.

Flow matching enables the generation of diverse
and natural outputs with high computational effi-
ciency (Yun et al., 2025). Building on this property,
we adopt flow matching to synthesize expressive,
filler-inclusive speech with both high quality and
fine-grained controllability.

2.2 Large Language Models

Large language models such as GPT-3 (Brown
et al., 2020) and PaLM (Chowdhery et al., 2023)
have demonstrated strong capabilities in reasoning
and context modeling, which are essential for pre-
dicting fillers in conversational speech. However,
these proprietary models are not publicly available
for fine-tuning, limiting their direct applicability to
our task.

The LLaMA family of models (Touvron et al.,
2023a,b) provides open-source, efficient architec-
tures pretrained on diverse corpora, balancing per-
formance with accessibility for research. Building
on this foundation, Vicuna (Chiang et al., 2023)
enhances conversational ability through fine-tuning
on dialogue datasets. Vicuna-7B, in particular, spe-
cializes in context-aware and coherent dialogue
generation, making it well-suited for tasks that re-
quire inserting contextually appropriate fillers.

We therefore adopt Vicuna-7B as the backbone
of our filler prediction module, leveraging its open-
source availability, efficiency, strong conversational
performance, and compatibility with parameter-
efficient fine-tuning methods such as low-rank
adaptation (LoRA) (Hu et al., 2022; Cha et al.,
2025).

3 Dataset Construction

3.1 Filler-Inclusive Data Collection

To train FillerSpeech, we construct a dataset com-
prising speech samples, each of which contains at
least one filler. Fillers can generally be categorized
into lexical fillers (e.g., "like", "you know") and
non-lexical fillers (e.g., "uh", "um"). In this work,
we focus on non-lexical fillers, as they are more
universally applicable and less dependent on lin-
guistic context. Based on previous studies (Ward,
2006; Wang et al., 2022), we curate a list of com-
mon fillers: "ah", "aha", "eh", "ha", "hm", "huh",
"oh", "uh", "um", "well", "yeah", "ya". Using a
large-scale corpus of high-quality speech, we iden-
tify and extract speech samples that contain these
fillers. This process enables us to build a compre-
hensive and diverse dataset tailored to the specific
needs of filler-inclusive speech synthesis.

3.2 Style Labeling for Fillers

In addition to collecting filler-inclusive data, we
also label each filler occurrence with style infor-
mation to facilitate controllable generation. The
style labels focus on two key attributes: pitch (F0)
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Figure 1: Overview of FillerSpeech. During inference, our method leverages a fine-tuned LLM to predict filler
attributes from the input text, or alternatively, users can manually select the desired filler details.

and duration. To accurately identify the locations
of fillers within the audio samples, we first align
the speech with its corresponding text using an
external aligner. This alignment step provides pre-
cise segmentation of fillers, which is essential for
subsequent style labeling.

For pitch labeling, we first extract F0 values from
the audio and then label each filler as high, medium,
or low based on its average pitch. We compute
these averages in two ways: one method calcu-
lates the average pitch for each filler type, and the
other computes the average pitch of words within
an utterance. Details are provided in Appendix D.1.
Since pitch characteristics differ significantly by
gender, we label male and female speakers sepa-
rately. To determine the pitch height, we use semi-
tone differences as a threshold. Specifically, we
label a filler as high or low if its pitch deviates by
more than four semitones from the reference.

For duration labeling, we calculate the average
duration of each filler type and categorize each
instance as long or short. We label fillers in the
top 25% of the duration distribution as long, while
those in the bottom 25% are labeled as short. By
labeling both pitch and duration, our dataset cap-
tures the prosodic and temporal characteristics of
fillers, providing detailed annotations for precise
control in filler synthesis.

4 Method

We present a speech synthesis method that inserts
fillers and enables control over their style. Our

model leverages filler style tokens in conjunction
with a pitch predictor and cross-attention to mod-
ulate the speaking style of synthesized speech. In
addition to directly manipulating filler style, we
propose a fine-tuning approach for LLMs to pre-
dict filler insertions along with their style attributes,
thereby enabling filler-inclusive speech synthesis
from text alone. Detailed descriptions of each com-
ponent are provided in the following subsections.

4.1 Tokenization of Filler

To effectively incorporate fillers into speech syn-
thesis, we adopt a phoneme-based tokenization ap-
proach for fillers rather than treating each filler
word as an indivisible token. Since there are far
fewer distinct filler words than phonemes, using
phoneme-level tokenization ensures smooth inte-
gration of fillers with regular words in synthesized
speech.

For filler style, we tokenize pitch and duration us-
ing discrete labels. Regular words, which lack pitch
and duration labels, are assigned null labels. Since
pitch is strongly correlated with speaker gender, we
further tokenize pitch labels based on gender.

4.2 Filler Style Control

To condition the encoder on pitch of filler at
the phoneme level, we first embed the pitch to-
kens, then expand them to match phoneme-level
resolution, and finally concatenate them with
the phoneme embeddings of the text. To fur-
ther enhance the integration of fillers into synthe-
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sized speech, the encoder computes cross-attention
between phoneme-level text representations and
word-level pitch embeddings.

For duration control, we embed the duration to-
kens and use them together with the text represen-
tations as input to the duration predictor. To enable
more precise filler style control, we explicitly in-
corporate pitch information during training via a
dedicated pitch predictor that estimates appropri-
ate pitch values from the text representation. By
modeling pitch explicitly during training, the text
encoder learns to better capture the prosodic char-
acteristics necessary for natural filler generation
and effective style control.

4.3 Prior Loss for Filler Representation
We compute a prior loss between the encoder out-
puts and the target Mel-spectrograms. Unlike con-
ventional methods (Popov et al., 2021; Mehta et al.,
2024) that compute prior loss on a sampled subset
of encoder outputs for training efficiency, we com-
pute the loss using all encoder outputs. Since fillers
constitute only a small fraction of the text and style
tokens appear exclusively in filler-containing seg-
ments, sampling could exclude them and thereby
diminish filler style controllability. After comput-
ing the prior loss, we follow standard practice by
sampling a subset of encoder outputs as input to
the decoder to improve training efficiency.

4.4 Flow Matching Decoder
Our decoder is built on the flow matching frame-
work, a generative diffusion model that employs
optimal transport conditional flow matching for ef-
ficient and probabilistic data transformation. The
flow matching process models a probability path
that connects a simple prior distribution p0, such
as Gaussian noise, to a complex data distribution
q(x), such as a Mel-spectrogram. This is achieved
by defining a vector field vt(x) that governs the
transformation of samples over time t through an
ODE as follows:

d
dtϕt(x) = vt(ϕt(x)); ϕ0(x) = x. (1)

Here, ϕt(x) represents the trajectory of a sample
from the prior distribution to the target distribution.
In OT-CFM, the training objective minimizes the
difference between the predicted vector field vt(x)
and the ideal vector field ut(x) as follows:

L(θ) = Et,x0,x1∥uOT
t (ϕOT

t (x)|x1)− vt(ϕ
OT
t (x)|µ; θ)∥2.

(2)

Figure 2: Overview of the LoRA fine-tuning for filler
prediction in the LLM.

This formulation ensures that the decoder learns
an efficient and smooth transformation from la-
tent noise to Mel-spectrograms. The simplicity
of the vector field ut(x), which changes linearly
along the trajectory, reduces the number of required
synthesis steps compared to traditional diffusion
models, thereby significantly improving speed and
accuracy.

4.5 LLM-based Filler Prediction

To insert fillers naturally based on the input text,
we propose an LLM-based filler prediction module.
To leverage the reasoning capabilities of LLMs
(Wei et al., 2022) while mitigating catastrophic
forgetting, we fine-tune an LLM using a LoRA
(Hu et al., 2022; Cha et al., 2025). Our method
predicts both the position and type of each filler, as
well as an appropriate duration and pitch for each,
by considering the surrounding context in the input
text.

To allow a single model to handle a variety of
filler prediction scenarios, we design a set of in-
struction prompts with different levels of specifi-
cation. These prompts cover cases where the filler
type is specified; where both the filler type and
position are given; where a set of potential filler
candidates is provided; or where only the filler po-
sition is specified. In each scenario, the model is
trained to predict the remaining characteristics such
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as duration, pitch, and type that are not provided.
The LLM is trained separately from the TTS

model, and during speech synthesis inference, the
LLM-based filler prediction can be utilized as
needed. Detailed information on the prompt de-
sign is provided in Appendix A.

5 Experiments

5.1 Dataset

Using the method described in Section 3, we con-
structed a filler-inclusive speech dataset from the
large-scale Libriheavy corpus, which comprises
50,000 hours of speech data. The resulting dataset
comprises 4,460 speakers and a total of 2,116 hours
of speech. Each sentence contains at least one filler,
and each filler instance is annotated with pitch and
duration information. For the validation and test
sets, we selected 50 speakers and obtained 2,707
and 2,966 samples, respectively.

5.2 Implementation Details

5.2.1 Data Construction
In constructing the filler-inclusive dataset, we em-
ployed the Montreal Forced Aligner1 (MFA) as the
external aligner and Parselmouth2 for pitch extrac-
tion.

5.2.2 Speech Synthesis
The flow-matching decoder in our model was im-
plemented using a Transformer-based U-Net archi-
tecture, ensuring efficient and high-quality Mel-
spectrogram generation. For speaker information
extraction, we employed the style encoder from the
Meta-StyleSpeech model (Min et al., 2021). We
integrated the pitch predictor into our framework
to achieve accurate and controllable style genera-
tion, adopting the structure proposed in (Ren et al.,
2021). To compute the alignment between the en-
coder outputs and the Mel-spectrogram, we em-
ployed super monotonic alignment search (MAS)
(Lee and Kim, 2024).

For training, we used two NVIDIA RTX A6000
GPUs with a batch size of 32 per GPU. The model
was trained for one million steps (approximately
83 hours). Our model contains 60.11M parameters,
and additional hyperparameter details are provided
in Table 4. We used BigVGAN (Lee et al., 2023)
as the vocoder for waveform generation.

1https://montreal-forced-aligner.readthedocs.
io

2https://github.com/YannickJadoul/Parselmouth

5.3 LLM-based Filler Prediction

We employed Vicuna-7B (Chiang et al., 2023) as
the base LLM for the filler prediction task. We
fine-tuned this model using a LoRA adapter, which
reduced the number of trainable parameters to only
4.20M. Additionally, we evaluated several other
instruction-tuned LLMs from the LLaMA (Tou-
vron et al., 2023a) and Qwen (Yang et al., 2024)
families as alternative bases for filler prediction.
For each of these models, we froze the model
weights and fine-tuned a LoRA adapter on our filler
prediction task. Their performance is compared in
Table 3. In particular, we implemented a variant
termed Vicuna w/ SFI (sampling-based filler inser-
tion, following (Wang et al., 2022)) by adding an
additional output branch to Vicuna-7B following
the SFI approach, with a LoRA adapter integrated
during fine-tuning. This branch consists of a single
13-way softmax layer that predicts one of 13 filler
words or no filler insertion.

5.4 Evaluation Metrics

5.4.1 Speech Synthesis

We evaluated the performance of the synthesized
speech using both subjective and objective met-
rics. To evaluate the naturalness of the synthesized
speech and the similarity to the target speaker, we
conducted a mean opinion score (MOS) test and
a similarity mean opinion score (sMOS) test. In
the MOS test, evaluators rated the naturalness of
the speech on a 5-point scale (1 to 5), while in
the sMOS test, they assessed how similar the syn-
thesized speech was to the target speech on the
same scale. We also conducted filler naturalness
MOS (fMOS) and filler style controllability MOS
(cMOS) evaluations to assess the naturalness of
filler segments in speech and the effectiveness of
filler style control. Detailed information on the
MOS evaluation can be found in Appendix B.1.

We employed the UTMOS (Saeki et al., 2022)
model to automatically predict MOS scores, pro-
viding an objective measure of speech quality.
To evaluate the pronunciation accuracy of synthe-
sized speech, we used automatic speech recogni-
tion (ASR) models, specifically Whisper (Radford
et al., 2023) and wav2vec 2.0 (Baevski et al., 2020),
to calculate word error rate (WER) and phoneme
error rate (PER). To verify how well the synthe-
sized speech matched the target speaker’s voice,
we extracted speaker embeddings using WavLM-

34112

https://montreal-forced-aligner.readthedocs.io
https://montreal-forced-aligner.readthedocs.io
https://github.com/YannickJadoul/Parselmouth


Table 1: Experimental results of the proposed method. Con, PP, and CA indicate style controllability, pitch predictor,
and cross-attention, respectively. The MOS results are reported with a 95% confidence interval.

Method Con Token PP CA MOS (↑) sMOS (↑) fMOS (↑) cMOS (↑) UTMOS (↑) WER (↓) PER (↓) SIM (↑)
GT - - - - 4.02 ± 0.05 4.22 ± 0.05 4.04 ± 0.06 3.91 ± 0.07 3.6038 5.64 14.27 -
Vocoded - - - - 3.99 ± 0.05 4.16 ± 0.05 3.98 ± 0.07 3.85 ± 0.06 3.4116 5.64 14.48 -

Matcha-TTS ✗ ✗ ✗ ✗ 3.62 ± 0.07 3.47 ± 0.07 3.86 ± 0.07 3.69 ± 0.07 3.3536 4.56 11.11 0.9269

✓ ✓ ✗ ✗ 3.21 ± 0.07 3.39 ± 0.07 3.54 ± 0.08 3.36 ± 0.08 3.2020 4.60 11.05 0.9280
FillerSpeech ✓ ✓ ✓ ✗ 3.80 ± 0.06 3.53 ± 0.07 3.92 ± 0.07 3.81 ± 0.07 3.8307 9.36 14.28 0.9293

✓ ✓ ✓ ✓ 3.84 ± 0.06 3.50 ± 0.07 3.96 ± 0.07 3.82 ± 0.07 3.8780 6.33 12.10 0.9309

base-plus for speaker verification3 and computed
speaker embedding similarity (SIM) with the re-
constructed waveform.

5.4.2 Filler Prediction

To evaluate the performance of the language
model’s filler prediction, we calculate the accu-
racy of filler position, type, duration, and pitch by
comparing the model’s outputs to the ground truth,
with results reported as percentages. This evalua-
tion measures the degree of agreement between the
predicted and ground truth labels for each aspect.
Note that the accuracy for filler type, duration, and
pitch is computed only for those instances where
the predicted filler is inserted at the correct position
as specified in the ground truth.

In addition to quantitative accuracy, qualitative
evaluation is conducted using GPT-4o (OpenAI,
2024), which assigns scores to the model’s per-
formance in two filler prediction tasks: position
(Score-P) and type (Score-T). Scores range from
1 to 5, where a score of 1 indicates poor perfor-
mance and a score of 5 indicates excellent perfor-
mance. Given the inherent variability of natural
speech, multiple filler placements may appear nat-
ural within a sentence. Therefore, qualitative eval-
uation is crucial to capture these nuances, which is
why we leverage GPT-4o for this assessment.

The scoring process for all tasks takes into ac-
count factors such as naturalness, contextual rele-
vance, fluency, and overall suitability for speech
interaction, providing a comprehensive assessment
of the model’s performance. For more details on
the evaluation process, please refer to Appendix
B.3.

3https://huggingface.co/microsoft/
wavlm-base-plus-sv/

6 Results

6.1 Speech Synthesis with Filler Insertion

Table 1 shows the subjective and objective evalu-
ation results. The proposed method successfully
synthesizes speech with natural-sounding, contex-
tually appropriate filler insertion. Through both
subjective MOS tests and objective metrics such as
UTMOS and SIM, the synthesized speech demon-
strated high naturalness, even when fillers were
inserted at various positions in the text.

Notably, the inclusion of pitch information led
to a significant improvement in UTMOS, indicat-
ing enhanced speech naturalness. However, a de-
cline in pronunciation accuracy was observed, as
reflected by increased WER and PER values. This
suggests that incorporating pitch information into
the prior loss computation may cause the text en-
coder to focus more on acoustic features at the ex-
pense of text-based representations. Consequently,
the encoder’s ability to represent phonetic informa-
tion accurately could be negatively impacted, lead-
ing to reduced pronunciation accuracy. Neverthe-
less, incorporating cross-attention helped improve
both pronunciation accuracy and speaker similarity.

To specifically evaluate the naturalness of the
filler segments in speech, we additionally con-
ducted an fMOS evaluation. As shown in Table
1, using filler tokenization alone generally resulted
in reduced naturalness. However, by incorporating
a pitch predictor and cross-attention mechanism,
our method improved the naturalness of the filler
segments.

6.2 Filler Style Control

Our method provides precise control over filler
style, allowing the pitch and duration of fillers to
be modulated as desired. To validate this capabil-
ity, we conducted an experiment using the same
input text, where a particular filler word was syn-
thesized under different style conditions. Figure
3 presents pitch track plots, showing that the gen-
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(a) FillerSpeech without pitch predictor and cross attention

(b) FillerSpeech without cross attention

(c) FillerSpeech

Figure 3: Pitch track visualization of synthesized speech with different filler styles. The red boxes highlight regions
where filler words occur. The left column shows varying pitch control, while the right column shows varying
duration control.

erated pitch contours vary according to the spec-
ified style tokens. For example, when a higher-
pitch style was applied, the filler’s pitch was consis-
tently higher than in other conditions, demonstrat-
ing the method’s robustness in controlling prosodic
attributes. This highlights the model’s ability to
adapt fillers dynamically based on stylistic require-
ments, a critical feature for expressive and context-
aware speech synthesis.

Comparisons between FillerSpeech and ablated
versions (with certain modules removed) reveal
that both the pitch predictor and cross-attention sig-
nificantly affect the filler’s pitch control. Notably,
while the pitch predictor slightly degrades pronun-
ciation accuracy, it markedly improves control over
the filler’s pitch. Similarly, cross-attention—by in-
corporating word-level pitch conditioning—adds
stability to pitch control. In contrast, duration
control remains largely unchanged, indicating that
pitch information does not substantially contribute
to predicting duration.

We also conducted a subjective evaluation cMOS
to measure how well the fillers in the generated
speech matched the intended style labels. As shown
in Table 1, simply adding filler tokenization (with-
out our other modules) degraded performance rela-
tive to the baseline. However, when tokenization
was combined with the pitch predictor and cross-
attention, the filler style controllability improved
beyond the baseline.

6.3 LLM-based Filler Prediction

Table 2 shows that our proposed method outper-
forms all baseline models in the filler prediction
task. Specifically, the Vicuna w/o FT model fails to
predict fillers accurately. Although the Vicuna w/
SFI model predicts only filler position and type (not
duration or pitch), its performance is significantly
inferior to that of our model.

To verify that Vicuna-7B was the optimal choice
for the LLM component, we compared its perfor-
mance with other instruction-tuned LLMs. All
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models were trained under identical conditions,
with only the LLM component varied. The results,
presented in Table 2, show that Vicuna-7B (fine-
tuned on GPT-human dialogue data) outperforms
the other models.

6.3.1 Accuracy Evaluation

As shown in Table 3, the Qwen series shows con-
sistent improvements as the model size increases,
but overall remains weaker than the LLaMA fam-
ily. Even the smallest LLaMA model surpasses all
Qwen variants, highlighting the stronger general-
ization ability of the LLaMA backbone. Within the
LLaMA series, different model sizes provide com-
plementary strengths, with some models favoring
duration while others perform better on pitch.

Vicuna-7B achieves the best overall perfor-
mance, particularly in position and type prediction.
Its dialogue-oriented pretraining allows it to cap-
ture contextual cues more effectively than other
instruction-tuned LLMs, making it the most reli-
able model for filler prediction across the evaluated
metrics.

6.3.2 LLM-based Evaluation

Table 3 also presents the GPT-based evaluation of
naturalness. The trend largely mirrors the accu-
racy results: Qwen models lag behind, whereas the
LLaMA family achieves stronger scores. Within
LLaMA, performance improves steadily with scale,
reflecting better contextual modeling.

Vicuna-7B again demonstrates the most human-
like behavior, receiving the highest evaluations for
both filler placement and type. This confirms that
its dialogue-focused adaptation not only improves
discrete accuracy but also translates into more nat-
ural and contextually appropriate filler generation.

6.4 Addressing Potential Hallucination

To address concerns about potential hallucinations
in filler prediction, we conducted experiments us-
ing a random sampling baseline. The random sam-
pling method generates fillers based on the distribu-
tion observed in our training dataset. As shown
in Table 2, our proposed Vicuna w/ LoRA ap-
proach significantly outperforms the random sam-
pling method. These findings support our claim
that the superior performance of our model is due
to meaningful filler predictions appropriate to the
input text, rather than mere hallucinations.

Table 2: Comparison of filler prediction performance.
The Vicuna w/ SFI model only predicts filler position
and type.

Accuracy GPT Scores
Method Position Type Duration Pitch Position Type

GT - - - - 3.25 3.30

Random Sampling 4.32 28.87 - - 2.80 2.77

Vicuna w/o FT 1.35 13.33 46.67 24.44 2.44 2.47
Vicuna w/ SFI 59.67 38.14 - - 2.41 2.81
Vicuna w/ LoRA 82.56 78.44 52.46 63.27 3.31 3.27

Table 3: Comparison of LoRA-based fine-tuning results
for filler prediction across instruction-tuned LLMs.

Accuracy GPT Scores
Method Position Type Duration Pitch Position Type

GT - - - - 3.25 3.30

Qwen-1.5B 69.65 60.15 49.87 61.95 3.10 3.13
Qwen-3B 73.59 57.66 49.03 61.19 3.23 3.14
Qwen-7B 75.20 59.76 51.43 62.02 3.23 3.19

LLaMA-1B 81.11 72.85 52.54 62.36 3.25 3.22
LLaMA-3B 80.13 73.78 50.28 62.68 3.27 3.20
LLaMA-8B 81.65 76.43 50.55 63.71 3.29 3.22

Vicuna-7B 82.56 78.44 52.46 63.27 3.31 3.27

7 Conclusion

In this paper, we introduced FillerSpeech, a novel
speech synthesis framework that integrates filler
insertion with filler style control. We constructed
a filler-inclusive speech dataset from a large-scale
speech corpus by leveraging an automated method
to label fillers with pitch and duration information,
thereby eliminating the need for manual annotation.
Our approach employs cross-attention mechanisms
and a pitch predictor to condition the model on
filler style, which enhances control over prosody,
especially pitch. While fillers can be manually ad-
justed to achieve a desired style, we further propose
an LLM-based filler prediction method that enables
natural filler insertion given only text input. Ex-
perimental results demonstrate that our methods
substantially improve both speech quality and style
control, and that the LLM-based filler prediction
effectively predicts filler attributes from text.

8 Limitations

In this work, we employed Vicuna-7B to achieve
the best possible performance in filler prediction.
However, such a large model can be inefficient in
terms of inference speed and resource usage. Nev-
ertheless, our LoRA-based fine-tuning approach is
also applicable to smaller LLMs, and we demon-
strate that even a 1B-parameter model can outper-
form existing baselines. This suggests that using a
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smaller model is a viable alternative when compu-
tational efficiency is a priority.

While our discrete labeling approach allows for
effective control within a predefined label space,
it limits the model’s ability to achieve very fine-
grained or extreme stylistic control. In future work,
we aim to explore more expressive speech synthesis
and investigate control methods based on continu-
ous values rather than categorical labels.
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Table 4: Hyperparameters of FillerSpeech.

Module Hyperparameter FillerSpeech

Embedding

Text 192
Speaker 64
Pitch 64
Duration 64

Encoder

Prenet Conv. Hidden Dim. 192
Prenet Conv. Layers 3
Prenet Conv. Kernel Size 5
Prenet Dropout 0.5
Transformer Hidden Dim. 320
Transformer FFN Filter Channels 768
Transformer Layers 6
Transformer Kernel Size 3
Transformer Attention Heads 2
Transformer Dropout 0.1
Projection Hidden Dim. 320
Projection Layers 2
Projection Kernel Size 3
Projection Dropout 0.5

Pitch predictor

Conv. Hidden Dim. 192
Conv. Layers 5
Conv. Kernel Size 5
Conv. Dropout 0.5

Duration predictor

Conv. Hidden Dim. 384
Conv. Layers 2
Conv. Kernel Size 3
Conv. Dropout 0.1

CFM decoder

Channels [512, 512]
Dropout 0.05
Blocks 1
Mid Blocks 2
Attention Heads 2
Activation snakebeta
Solver euler
Sigma min 1e-4

Optimizer
Optimizer Adam
Learning Rate 0.0001
Beta [0.9, 0.98]

A Prompt for Filler Prediction

To train our LLM to predict the appropriate posi-
tion, type, duration, and pitch of fillers, as shown
in Figure 4, we employed four different types of
prompts.

In the first prompt type, the desired filler type
is explicitly specified for prediction. In this case,
<TGT_SEN> denotes the sentence into which the
filler will be inserted, and <FILLER> indicates
the desired filler type.

The second prompt type involves specifying both
the desired filler type and the insertion position
within the sentence. Here, <TGT_SEN> repre-
sents the sentence for filler insertion, <FILLER>
stands for the desired filler type, and <TGT_POS>
indicates the token position within <TGT_SEN>
where the filler should be inserted.

For the third prompt type, a set of filler type
options is provided, and the LLM selects the most
appropriate filler from these options to insert into
<TGT_SEN>.

In the fourth prompt type, similar to the third, a

set of filler type options is given. However, in this
case, the LLM not only selects the appropriate filler
but also inserts it at the specified token position
<TGT_POS> within <TGT_SEN>.

Across all prompt types, the predicted duration
for each filler is classified as either short, medium,
or long, while the predicted pitch is categorized as
low, medium, or high.

B Details of Evaluation Metrics

B.1 Mean Opinion Score Test

For the subjective evaluation, we conducted both
MOS and sMOS tests using Amazon Mechanical
Turk, recruiting 20 evaluators for each test. For the
evaluations, 50 utterances were randomly sampled
from the test set. Additionally, we interspersed
fake samples among the test utterances. We filtered
out ratings from workers who gave scores to fake
samples to exclude unreliable participants.

B.2 Automatic Speech Recognition for
Filler-inclusive Speech

In typical TTS tasks, ASR used for pronunciation
evaluation employs a text normalization process
that includes the removal of filler words from the
ASR output. However, because our approach inten-
tionally synthesizes speech with fillers, we delib-
erately bypass the removal of filler words during
text normalization. This allows us to directly as-
sess the performance of our system in generating
filler-inclusive speech.

B.3 GPT Score

Building on the studies (Chiang and Lee, 2023;
Chiang et al., 2023; Zheng et al., 2023; Fang et al.,
2025) that use LLM models to evaluate model out-
puts, we employ GPT-4o (OpenAI, 2024) to as-
sess the filler prediction ability of our fine-tuned
LLM. In this evaluation, GPT-4o examines two key
aspects: the prediction of filler positions and the
prediction of filler types.

For the filler position, GPT-4o assigns a score
ranging from 1 to 5, where a higher score indicates
better performance (1: Poor, 2: Below Average, 3:
Neutral, 4: Good, 5: Excellent). The evaluation of
filler types is carried out in the same manner, with
GPT-4o using the identical 1 to 5 scoring scale.
Detailed information on the evaluation prompt can
be found in Figure 5. Here, the term {sentence}
refers to the sentence into which the predicted filler
is inserted.
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Target sentence: <TGT_SEN>
USER: Add the specified fillers (like <FILLER>) at target positions <TGT_POS> in the target sentence. 
For each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural.
ASSISTANT:

Type 2: Prompt template for filler prediction

Target sentence: <TGT_SEN>
Filler word options: oh, ah, ha, eh, aha, huh, hm, uh, yeah, mm, um, ya, well
USER: Add contextually appropriate fillers to the target sentence. For each filler, also specify its duration 
(short, medium, long) and pitch (low, medium, high) that sound contextually appropriate and natural."
ASSISTANT:

Type 3: Prompt template for filler prediction

Target sentence: <TGT_SEN>
Filler word options: oh, ah, ha, eh, aha, huh, hm, uh, yeah, mm, um, ya, well
USER: Add contextually appropriate fillers at target positions <TGT_POS> in the target sentence. For 
each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural."
ASSISTANT:

Type 4: Prompt template for filler prediction

Target sentence: <TGT_SEN>
USER: Add the specified fillers (like <FILLER>) to the target sentence to make it sound more natural. 
For each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural.
ASSISTANT:

Type 1: Prompt template for filler prediction

You are an expert evaluator of filler placement. 
I need your help to evaluate the performance of a model in a filler prediction scenario. 
The model receives a target sentence and generates a response by inserting fillers at specific positions.
Your task is to rate the model’s response based only on the correctness of filler positions.
Ignore the content of the fillers themselves and focus strictly on whether the placement of the fillers 
aligns with natural speaking patterns.

### Scoring Guidelines (Evaluate only the filler position!)
Provide a single score on a scale from 1 to 5, where:

- 1: Poor 
- Fillers are placed incorrectly, disrupting the sentence’s natural flow. 
- 2: Below Average 
- Some fillers are misplaced, causing minor disruptions. 
- 3: Neutral 
- Fillers are placed in acceptable locations but do not necessarily enhance the sentence. 
- 4: Good 
- Fillers are mostly well-placed, making the sentence sound natural. 
- 5: Excellent 
- Fillers are placed perfectly, improving the conversational tone. 

Important: Focus only on filler position for this evaluation.

After evaluating, output the score only as a number (e.g., `4`).
Evaluate the following sentence:\n'{sentence}'

Prompt for GPT Scores – Filler Position (Model: GPT-4o)

You are an expert evaluator of filler types in natural speech.
I need your help to evaluate the performance of a model in a filler prediction scenario. 
The model receives a target sentence and generates a response by inserting fillers of specific types at 
particular positions.

Your task is to rate the model’s response based only on the naturalness and appropriateness of the 
filler types used in the sentence. 
Consider the following aspects:

1. Contextual Suitability: Assess whether the chosen filler types (e.g., "um," "oh," "yeah") fit naturally 
within the conversational context of the sentence, enhancing the flow and coherence.
2. Human-like Selection: Determine if the filler type corresponds to what a human speaker would likely 
use in the given situation, considering the tone, intent, and conversational style of the sentence.

### Scoring Guidelines
Provide a single score on a scale from 1 to 5, where:

- 1: Poor 
- Filler types are unnatural or disrupt the conversational flow. 
- 2: Below Average 
- Some filler types seem out of place or could be improved. 
- 3: Neutral 
- Filler types are acceptable but do not necessarily enhance the sentence. 
- 4: Good 
- Fillers are mostly well-chosen, making the sentence sound natural. 
- 5: Excellent 
- Filler types are perfectly suited, improving the conversational tone. 

Important: Focus only on the filler type selection, not the placement. 
Ignore grammar, word choice, and meaning—evaluate only whether the type of fillers used is what a 
human would naturally say.
After evaluating, output the score only as a number (e.g., `4`). 
Evaluate the following sentence:\n'{sentence}'

Prompt for GPT Scores – Filler Type (Model: GPT-4o)

Figure 4: Sample templates for filler prediction (Type 1, 2, 3, 4).

C Analysis on Sampling Steps

In our analysis of the CFM decoder during infer-
ence, we evaluated the effect of varying the number
of sampling steps by measuring the real time fac-
tor (RTF), UTMOS, WER, and speaker embedding
cosing similarity (SECS) using Resemblyzer4 for
efficient experiments. As shown in Tables 5 and
6, our model achieves rapid performance improve-
ments even with fewer sampling steps. This im-
provement is attributed to the use of a pitch predic-
tor, which enables the decoder to condition on en-
coder outputs that include pitch information. Con-
versely, as the number of sampling steps increases,
we observed a decline in UTMOS and WER, in-
dicating that the pitch information employed for
enhanced pitch style control does not necessarily
improve pronunciation accuracy. Moreover, with
additional sampling steps, SECS increases. This
can be explained by the fact that our model’s en-
coder outputs combine text, filler pitch style, and
speaker representations, thereby reducing the rel-
ative influence of speaker information. Since the

4https://github.com/resemble-ai/Resemblyzer

Table 5: Inference performance of the CFM decoder
with pitch predictor.

# Steps RTF (↓) UTMOS (↑) WER (↓) SECS (↑)
1 0.0206 3.7519 6.41 0.7507
2 0.0213 3.8945 5.59 0.7600
4 0.0227 3.8780 6.33 0.7736
8 0.0259 3.8260 7.03 0.7779

Table 6: Inference performance of the CFM decoder
without pitch predictor.

# Steps RTF (↓) UTMOS (↑) WER (↓) SECS (↑)
1 0.0201 2.0691 3.56 0.6925
2 0.0210 2.6805 3.66 0.7323
4 0.0224 3.0658 4.18 0.7578
8 0.0255 3.2020 4.60 0.7698

sampling process further conditions on the speaker
information with encoder outputs, speaker similar-
ity improves with more sampling iterations.
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D Analysis on Constructed Data

D.1 Comparison between Pitch labeling
Method

We employ two complementary strategies for anno-
tating filler pitch, each designed to capture different
aspects of prosodic variation. First, we extract F0
values using Parselmouth and identify filler regions
with the MFA. Based on these boundaries, we com-
pute two sets of average F0 values: one for the filler
segments and one for the entire utterance.

Our first labeling strategy focuses on comparing
F0 values across fillers, independent of their utter-
ance context. For each filler type, we calculate the
median F0 separately for male and female speakers
to reduce the impact of outliers and account for
gender-specific pitch differences. We use XLSR-
52-based gender recognition model5. Each filler
instance is then labeled as low, medium, or high
based on whether its F0 is at least four semitones
below or above the gender-specific median. The
threshold is defined as:

threshold± = median × 2±
4
12 . (3)

The second strategy normalizes filler pitch rela-
tive to the overall utterance. Here, we compare the
F0 of filler regions to the average F0 of the entire
sentence. Fillers whose F0 deviates by at least four
semitones from the utterance average are labeled
as low or high. If the proportion of fillers labeled
as low or high is below 15% when using a four-
semitone threshold, a three-semitone threshold is
applied instead. As with the first method, these
calculations are performed separately for male and
female speakers to accommodate gender-specific
pitch characteristics. The F0 ratio is computed as:

F0 ratio =
F0_mean

sentence_F0_mean
, (4)

with the threshold given by:

threshold± = 2±
4
12 . (5)

These two methods provide complementary per-
spectives on pitch variation: one capturing filler-
specific deviations across speakers and the other
contextualizing filler pitch within each utterance.
We evaluated both labeling strategies in our exper-
iments and, as shown in Table 7, found that the

5https://huggingface.co/alefiury/
wav2vec2-large-xlsr-53-gender-recognition-librispeech

Table 7: Performance comparison of pitch labeling
strategies.

Method UTMOS (↑) WER (↓) SECS (↑)
First Strategy 3.8780 6.33 0.7736

Second Strategy 3.8240 7.55 0.7631

first method yields superior performance in speech
synthesis.

Figure 6 shows the F0 distributions for fillers
computed using the first strategy. For most filler
types, the distribution near the median is skewed
toward values below the median. However, in gen-
eral, the proportion of fillers labeled as high tends
to be higher than those labeled as low.

E Discussion

E.1 General Word Style Control
Due to our model’s design which applies style con-
ditioning at the positions of designated tokens, it is
capable of modulating the style not only of these
tokens but also of general words. Consequently, we
demonstrate that even when only a subset of words
in the speech data contains pitch or duration infor-
mation, our approach enables fine-grained control
over the overall speech style.

E.2 Potential Risks
While the advancements in speech synthesis tech-
nology offer significant benefits, they also raise
concerns about potential malicious uses. The abil-
ity to generate highly realistic synthesized speech
can be exploited to produce deceptive content, such
as deepfakes or misleading information, which may
have harmful societal implications. To address
these risks, a discussion on synthesized speech de-
tection and watermarking techniques during syn-
thesis is necessary to authenticate and trace speech
outputs.

E.3 AI asist
We used GPT-4o for proofreading, including typo
and sentence correction.
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Target sentence: <TGT_SEN>
USER: Add the specified fillers (like <FILLER>) at target positions <TGT_POS> in the target sentence. 
For each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural.
ASSISTANT:

Type 2: Prompt template for filler prediction

Target sentence: <TGT_SEN>
Filler word options: oh, ah, ha, eh, aha, huh, hm, uh, yeah, mm, um, ya, well
USER: Add contextually appropriate fillers to the target sentence. For each filler, also specify its duration 
(short, medium, long) and pitch (low, medium, high) that sound contextually appropriate and natural."
ASSISTANT:

Type 3: Prompt template for filler prediction

Target sentence: <TGT_SEN>
Filler word options: oh, ah, ha, eh, aha, huh, hm, uh, yeah, mm, um, ya, well
USER: Add contextually appropriate fillers at target positions <TGT_POS> in the target sentence. For 
each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural."
ASSISTANT:

Type 4: Prompt template for filler prediction

Target sentence: <TGT_SEN>
USER: Add the specified fillers (like <FILLER>) to the target sentence to make it sound more natural. 
For each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural.
ASSISTANT:

Type 1: Prompt template for filler prediction

You are an expert evaluator of filler placement. 
I need your help to evaluate the performance of a model in a filler prediction scenario. 
The model receives a target sentence and generates a response by inserting fillers at specific positions.
Your task is to rate the model’s response based only on the correctness of filler positions.
Ignore the content of the fillers themselves and focus strictly on whether the placement of the fillers 
aligns with natural speaking patterns.

### Scoring Guidelines (Evaluate only the filler position!)
Provide a single score on a scale from 1 to 5, where:

- 1: Poor 
- Fillers are placed incorrectly, disrupting the sentence’s natural flow. 
- 2: Below Average 
- Some fillers are misplaced, causing minor disruptions. 
- 3: Neutral 
- Fillers are placed in acceptable locations but do not necessarily enhance the sentence. 
- 4: Good 
- Fillers are mostly well-placed, making the sentence sound natural. 
- 5: Excellent 
- Fillers are placed perfectly, improving the conversational tone. 

Important: Focus only on filler position for this evaluation.

After evaluating, output the score only as a number (e.g., `4`).
Evaluate the following sentence:\n'{sentence}'

Prompt for GPT Scores – Filler Position (Model: GPT-4o)

You are an expert evaluator of filler types in natural speech.
I need your help to evaluate the performance of a model in a filler prediction scenario. 
The model receives a target sentence and generates a response by inserting fillers of specific types at 
particular positions.

Your task is to rate the model’s response based only on the naturalness and appropriateness of the 
filler types used in the sentence. 
Consider the following aspects:

1. Contextual Suitability: Assess whether the chosen filler types (e.g., "um," "oh," "yeah") fit naturally 
within the conversational context of the sentence, enhancing the flow and coherence.
2. Human-like Selection: Determine if the filler type corresponds to what a human speaker would 
likely use in the given situation, considering the tone, intent, and conversational style of the sentence.

### Scoring Guidelines
Provide a single score on a scale from 1 to 5, where:

- 1: Poor 
- Filler types are unnatural or disrupt the conversational flow. 
- 2: Below Average 
- Some filler types seem out of place or could be improved. 
- 3: Neutral 
- Filler types are acceptable but do not necessarily enhance the sentence. 
- 4: Good 
- Fillers are mostly well-chosen, making the sentence sound natural. 
- 5: Excellent 
- Filler types are perfectly suited, improving the conversational tone. 

Important: Focus only on the filler type selection, not the placement. 
Ignore grammar, word choice, and meaning—evaluate only whether the type of fillers used is what a 
human would naturally say.
After evaluating, output the score only as a number (e.g., `4`). 
Evaluate the following sentence:\n'{sentence}'

Prompt for GPT Scores – Filler Type (Model: GPT-4o)

Figure 5: Prompt templates for GPT-based filler evaluation, using a 1–5 scoring scale.
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Figure 6: F0 distribution for each filler type. Odd-numbered columns correspond to female speakers, while even-
numbered columns correspond to male speakers.
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Figure 7: MOS evaluation interface.

Figure 8: sMOS evaluation interface.
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Figure 9: fMOS evaluation interface.

Figure 10: cMOS evaluation interface.
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