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Abstract

Although transformers dominate many code-
specific tasks, they have significant limita-
tions. This paper explores State Space Mod-
els (SSMs) as a promising alternative for code
understanding tasks such as retrieval, classi-
fication, and clone detection. We introduce
CodeSSM, the first SSM-based model trained
on code corpora to assess its effectiveness. Our
results demonstrate that SSMs are more sample-
efficient and can extrapolate to longer contexts
beyond the pretraining length. Extensive ex-
periments show that SSMs offer a viable al-
ternative to transformers, addressing several
their limitations. Additionally, CodeSSM re-
duces memory usage by up to 64% compared to
transformers at a context length of 2048, with
greater savings as context length grows. The
code is available here.

1 Introduction

Transformers (Vaswani et al., 2017) have been
known to perform well in various applications. One
of the main reasons for this improvement is the pre-
training - fine-tuning paradigm used to train trans-
former models, which is possible due to the ease
of parallelization of attention-based transformer ar-
chitectures. Under this paradigm, the transformer
model is initially trained on a large corpus of unla-
beled data using a self-supervised training objec-
tive, followed by a supervised fine-tuning process
on a smaller labeled dataset.

However, the performance gain offered by the
transformer models comes with some trade-offs,
such as quadratic complexity, a substantial data
requirement, and high inference costs. Although
methods such as linear attention (Katharopoulos
et al., 2020) and sparse attention (Guo et al., 2022b;
Zaheer et al., 2020; Condevaux and Harispe, 2022)
have been proposed to address computational inef-
ficiency, the practical gains from these methods are
limited (Yang et al., 2025; Qin et al., 2022).
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Figure 1: Memory consumption and throughput of
CodeSSM and RoCoder model during inference.

Another limitation of transformers is their fixed
context window resulting from positional embed-
ding. Although methods such as AliBi (Press et al.,
2022) and RoPE (Su et al., 2024) solve the problem
of a fixed context window, transformer models still
fail to generalize to lengths not seen during pre-
training (Peng et al., 2024; Goel et al., 2025). To
overcome this challenge, additional techniques are
required to extend the context window without sig-
nificantly compromising performance (Chen et al.,
2023b; Hua et al., 2025a; Lin et al., 2024).

One-dimensional Convolutional Neural Net-
works (1D CNNs) are a fast and positional
embedding-free alternative to transformers. 1D
CNNs, when trained using the pretraining-
finetuning approach, show improved performance
on some tasks, but do not capture long-range de-
pendencies in input data (Tay et al., 2021).

State-space models (SSMs)(Gu et al., 2021,
2022b,a) represent an alternative that addresses
the limitations of transformers and 1D CNNs.
SSMs leverage the strengths of 1D CNNs while
effectively capturing long-range dependencies with
linear-time complexity. In addition, SSMs are
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position-aware, eliminating the need for positional
embedding.

In this work, we explore the application of SSMs
to the domain of code understanding. To achieve
this, we pretrain an encoder-only model based on
SSM, which we call CodeSSM, on a small code
dataset with masked language modeling (MLM)
(Devlin et al., 2019). We evaluated our model
on multiple code understanding benchmarks. We
also investigate various training aspects, such as
the effects of positional embedding, dropout, bidi-
rectional SSMs, and varying pretraining context
lengths. We compare CodeSSM with two trans-
former models that we train — (1) BertCoder: based
on the Bert architecture (Devlin et al., 2019) and
(2) RoCoder: based on the RoFormer architec-
ture (Su et al., 2024). Moreover, we compare
our model with Zamba, a hybrid SSM transformer
model based on the Zamba?2 architecture (Glorioso
et al., 2024). We also assess the performance of our
model against several high-performing transform-
ers, which are trained with larger data and complex
pretraining objectives.

Our study demonstrates that SSMs exhibit strong
sample efficiency in code modeling tasks. In partic-
ular, CodeSSM achieves more than 50% precision
in Masked Language Modeling (MLM) with fewer
than 3,000 training steps. Furthermore, we show
that CodeSSM consumes up to 64% less memory
compared to transformers and is significantly faster
(see Figure 1). The efficiency in terms of speed
and memory consumption in CodeSSM (compared
to transformers) improves with increasing input
length.

Additionally, the code language modeling capa-
bilities of CodeSSM also transfer well to down-
stream tasks, as CodeSSM outperforms transform-
ers on multiple code understanding tasks when pre-
trained under similar conditions. CodeSSM is also
competitive with (and even surpasses) transformer
models trained on significantly larger datasets and
with more complex pretraining objectives. Further-
more, another advantage of SSMs is their ability
to extrapolate to much larger contexts than those
encountered during pretraining, effectively address-
ing a key limitation of the transformer architecture.

Our goal in training the CodeSSM model is not
to achieve state-of-the-art results on coding bench-
marks, but to explore and document the strengths
and limitations of SSMs for code understanding.
This motivated our use of a small dataset and MLM
pretraining, enabling rapid experimentation with

and comparison of different model configurations
under consistent training conditions. Although we
observed that larger pretraining datasets improved
performance, the investigation of extensive datasets
and more complex training objectives is left for fu-
ture work.

Summary of contributions:

* We present the first systematic evaluation of
State-Space Models (SSMs) for code under-
standing, introducing a specialized model,
which we term CodeSSM. Our analysis re-
veals that CodeSSM achieves robust perfor-
mance on retrieval, classification and clone
detection tasks, consistently outperforming
attention-based models while requiring sub-
stantially less pretraining data and memory.

* Our study presents the first empirical evi-
dence that SSMs achieve superior sample
efficiency in code-understanding tasks com-
pared to transformers. CodeSSM substan-
tially outperforms transformer baselines in
data-constrained scenarios with only a few
thousand training samples.

* We demonstrate that CodeSSM addresses a
key limitation of transformer architectures —
extrapolation to unseen context lengths. By
examining the effects of different pretraining
context lengths and positional embeddings in
CodeSSM, we show that SSMs outperform
transformers as downstream input sequences
become longer.

* We observe that including even a small
dropout mask in the CodeSSM layer degrades
the performance of the model even on very
small benchmarks. CodeSSM also performs
very well on the adversarial text-code search
task. Together, these observations indicate
that SSMs exhibit robust semantic understand-
ing capabilities.

2 CodeSSM

In this section, we introduce the basic architecture
of CodeSSM and its variations that we investigate.
We also explain the pretraining setup.

2.1 Architecture

CodeSSM is an encoder-only model consisting of
12 layers'. This model is built upon the Bidirec-

'The trained weights are available here:
figshare.com/s/14238287e9078f92cd50

https://
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Figure 2: CodeSSM layer. Transform represents SSMs
in CodeSSMs and Discrete Fourier Transforms in CodeF.
Dropout is only present in one of the CodeSSM variants,
CodeSSM-do. In CodeSSM-uni, both the flip operations
are removed. Non-linearity is not shown for clarity.

tional Gated SSM (BiGS) architecture (Wang et al.,
2023a), incorporating certain variations that we ex-
amine and their applicability in the field of code
understanding.

CodeSSM-pos. Transformer models (Vaswani
et al., 2017) require positional embeddings to ad-
dress their permutation invariance in self-attention
layers. Since SSMs are inherently position-aware,
they do not require positional embeddings. How-
ever, to understand the implications of positional
embeddings on downstream performance, we in-
clude them in one variant of CodeSSM, which we
call CodeSSM-pos.

CodeSSM-dropout. Dropout layers (Srivastava
et al., 2014) prevent overfitting in neural networks.
So, to investigate overfitting in CodeSSM, we cre-
ate a variant with two dropout masks, positioned
after each multiplication operation (see Figure 2).
We refer to this variant as CodeSSM-do.

CodeF and CodeSSM-Uni. Recent research

questioned the necessity of self-attention in trans-
formers (Lee-Thorp et al., 2022). To investigate the
significance of SSM, we conducted a similar abla-
tion study by replacing SSM blocks in CodeSSM
with DFT (see Figure 2), creating a variant we call
CodeF. Furthermore, we analyze the importance of
bidirectional processing via CodeSSM-Uni (Unidi-
rectional Gated SSM), a variant of CodeSSM that
removes flip operations from the CodeSSM layer.

2.2 Pretraining

We trained all models with the MLM objective
using the MLM setup proposed by Devlin et al.
(2019). We use different pretraining setups to in-
vestigate various aspects of SSMs on code under-
standing tasks. Here, we explain this setup.

Dataset. We initially trained CodeSSM and a
BERT-like transformer model, which we refer to
as BertCoder, on 1.8M text code pairs from the
CodeSearchNet (CSN) dataset. The small pretrain-
ing dataset allows us to quickly experiment with
various model configurations. Both models were
trained with a context window of 2048, enabling
them to be fine-tuned on benchmarks with lengths
shorter than 2048. We refer to the CodeSSM model
trained with the CSN dataset as CodeSSM-base.
We also train CodeSSM variants such as CodeSSM-
pos, CodeSSM-do, CodeF and CodeSSM-Uni (see
2.1) on the same dataset and context length.

Context Length and Length Extrapolation To
investigate the length extrapolation capability of
SSMs, we pre-train CodeSSM with a context win-
dow of 256 length. Since we cannot change the
context window for BertCoder once pretrained with
a smaller context, we pretrained a RoFormer model
(Su et al., 2024), which is similar to the BERT
model but with Rotatory Positional Embeddings
(RoPE), with a context window of length 256. We
refer to this model as RoCoder.

The CSN dataset separates the docstring and
code, which creates an issue when they are concate-
nated and subsequently truncated. This can result
in one modality (text) being much longer than the
other modality (code). We also observed that this
discrepancy results in a reduction in performance
in tasks involving two sequences (refer to column
3 of Table 2).

To alleviate this issue, we use a subset of 1.8M
samples from the StarCoder dataset (Li et al., 2023)
to train models with 256-length context (referred
to as CodeSSM-sc-256). This subset contains 300k
samples from the six programming languages (PLs)
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Table 1: Comparison of dataset size and pretraining ob-
jective of various encoder-only models. Replaced Token
Detection (RTD), Unidirectional Language Modeling
(ULM), Denoising objective (DNS), Data Flow Edge
Prediction (DFEP), Node Alignment (NA), Masked
Span Prediction (MSP), Identifier Tagging (IP), Masked
Identifier Prediction (MIP)

MODELS DATASET PRETRAINING

SI1ZE OBJECTIVES
CODESSM-BASE 1.8M CSN MLM
CODESSM-SC 1.8M SC DATA MLM
CODESSM-SC-L 4.8M SC DATA MLM
CODEBERT 8.5M CSN MLM, RTD
UNIXCODER 6.4M CSN + C4 DATA MLM, ULM, DNS
GRAPHCODEBERT 6.4M CSN MLM, DFEP
CODETS 8.35M CSN + C, CSHARP MSP, IP, MIP

in the CSN dataset 2. We also train CodeSSM on
this dataset with a context length of 2048 (referred
to as CodeSSM-sc-2048).

Data Scaling. To study the impact of large
datasets on the downstream performance of
CodeSSM, we also train it in a large subset of
the StarCoder dataset with 4.8M samples (referred
to as CodeSSM-sc-L.-2048). This subset contains
600k samples from 8 PLs (C and C# along with
CSN PLys).

3 Experiments

In this section, we describe baselines to which we
compare CodeSSM and the benchmarks on which
we evaluate it.

3.1 Baselines

We trained two transformer-based models as base-
lines: a large context (2048) BERT model to com-
pare SSMs’ large context abilities and a small con-
text RoFormer model to compare the length extrap-
olation abilities of transformers and SSMs. We also
train a Zamba model to compare our model with
the other SSM variants. The models are trained
in the same settings: the same data set, the same
objective, the same context length, and batch size.

Additionally, we also mention the performance
of some well-performing transformer models in
each task to place CodeSSM in the context of
SOTA encoder-only transformer models. However,
it should be noted that these transformer models are
trained on a much larger dataset and with a mixture
of multiple training objectives (see Table 1).

2Go, Java, Javascript, PHP, Python, Ruby

3.2 Benchmarks

We benchmark the models on seven code under-
standing tasks: two retrieval tasks, three sequence
classification tasks, one token-level classification
task, and one clone detection task.

Retrieval tasks. There are two retrieval tasks on
which we evaluate our models, NLCodeSearch (Ad-
vTest) (Lu et al., 2021) and Stackoverflow Question
Answer (SQA). In NLCodeSearch, a description in
natural language is provided, and the goal is to find
the source code that corresponds to that descrip-
tion. To evaluate a model’s ability to generalize,
function names and variable names in the test sets
are replaced with generic tokens, for example, the
function name with func. This task is difficult
because the model has to locate the correct code
throughout the test set. In SQA, a StackOverflow
question is given, and the goal is to retrieve the
highest upvoted answer. This dataset is derived
from the original StackOverflow dataset >. The av-
erage lengths of question and answer are 1.2k and
1.4k, respectively.

Sequence classification tasks. Sequence classi-
fication includes two vulnerability detection tasks,
Devign (Zhou et al., 2019) and DiverseVul (Chen
et al., 2023a), as well as a complexity prediction
task (Jeon et al., 2023). Vulnerability detection is
a binary classification task in which the goal is to
identify whether a given code contains security vul-
nerabilities. The Devign benchmark (Zhou et al.,
2019) is a balanced dataset, while DiverseVul con-
sists of only around 5% vulnerable samples. So, we
use accuracy for the former and F1 macro for the
latter. Complexity prediction (Jeon et al., 2023) is a
small benchmark with only 3613 training samples
to predict the algorithmic complexity of a given
Java code among 7 different labels.

Token classification task. In the type-inference
task (Jesse and Devanbu, 2022), the model has to
predict the type (such as integer, boolean, etc.) of
each token in a given code. The label consists of
50K most frequent (built-in and user-defined) types,
while the remaining types have been replaced with
the UNK type. During the evaluation, predicting the
UNK token is considered incorrect.

Clone detection task. In the clone detection
task (Wang et al., 2020), two pieces of code are
given as input, and the task is to perform binary
classification to determine whether they are seman-

3https ://www.kaggle.com/datasets/
stackoverflow/stacksample/data
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tically equivalent. This task is challenging due to
the highly unbalanced dataset, which contains a
significantly high number of semantically dissimi-
lar samples. The models are evaluated using the F1
score.

For all tasks, we maintain the same context
length as specified in the original benchmarks. All
models are fine-tuned using a context length of 512
for text-to-code search, clone detection, type infer-
ence, and DiverseVul. For the Devign benchmark,
the models are fine-tuned with a context length of
400. In SQA and complexity prediction, we use a
context length of 1024.

4 Results

We present the performance of our model on vari-
ous benchmarks described in Section 3.2

4.1 Retrieval Tasks

NLCodeSearch(AdvTest). Column 3 of Table 2
presents the results of various models evaluated in
NLCodeSearch benchmark. Among the models
trained on the CSN dataset, CodeSSM-base (with
a context size of 2048) outperforms other models,
including CodeBERT, which was pretrained with
significantly more data. CodeSSM-base with a con-
text length of 256 performs poorly compared to
other variants — we explain the reason for this in
Section 2.2. CodeSSM-sc-256 shows remarkable
performance and length extrapolation to double the
length on which it was trained and is competitive
with RoCoder and CodeSSM-sc-2048. However,
Zamba — the other SSM based model — failed to
train on retrieval task. We attribute the inability to
train on retrieval-based tasks to the causal convolu-
tion in the Mamba block, which prevents bidirec-
tional understanding.

These results are particularly noteworthy given
the adversarial nature of the NLCodeSearch bench-
mark, where critical semantic identifiers such as
function and variable names are obfuscated with
generic placeholder tokens. The superior perfor-
mance of CodeSSM under these challenging con-
ditions underscores its efficiency in capturing the
underlying structure of code, independent of spe-
cific identifier names, even if it is pretrained with
much less data compared to CodeBERT.

StackOverflowQA. Table 3 presents the perfor-
mance of CodeSSM in conjunction with the base-
line models trained by us on the SQA benchmark —
BertCoder and RoCoder. SQA allows us to evalu-

ate the models with longer contexts. CodeSSM-sc
with a pretraining context length of 256 achieves
strong results: it successfully extrapolates to con-
texts four times longer than those seen during pre-
training. Furthermore, CodeSSM-sc outperforms
BertCoder (pretrained with a context length of
2048) by 6 points, despite being pretrained with a
context length eight times shorter. CodeSSM also
surpasses RoCoder, highlighting its superior ability
to extrapolate to longer contexts and capture long-
range dependencies. Furthermore, we observe that
increasing the pretraining context length leads to
further improvements in CodeSSM’s performance.
Similarly to NLCodeSearch, Zamba did not train
on SQA as well.

4.2 Sequence classification tasks

Devign. Column 3 of Table 4 shows the results
of the various models on the devign benchmark.
CodeSSM outperforms BertCoder and RoCoder as
well as CodeBERT, GraphCodeBERT, and CodeT5.
Interestingly, BertCoder, pretrained with a longer
context, also outperforms CodeBERT, showcas-
ing the importance of a longer context for trans-
formers. However, in the case of CodeSSM, the
smaller context model performs much better. No-
tably, RoCoder performs poorly, potentially due to
overfitting, as the devign dataset is very small (only
21k training samples). RoPE, used in RoCoder,
is also prone to positional overfitting (Liu et al.,
2024b; Goel et al., 2025). Despite being a unidirec-
tional model, Zamba performs slightly better than
RoCoder.

DiverseVul. Column 2 of Table 4 shows that
CodeSSM and its variants outperform BertCoder
and RoCoder on the DiverseVul benchmark, which
is a larger vulnerability detection dataset compared
to Devign. It shows that CodeSSM can perform
better than transformers even on a larger dataset.
CodeSSM even outperforms CodeBERT, Graph-
CodeBERT, and CodeT5, which are trained on a
much larger dataset and have multiple pretraining
objectives (see Table 1).

Complexity Prediction. Table 5 shows that
CodeSSM-sc-256 outperforms all transformer mod-
els, even those trained with a longer context length
(BertCoder) and larger data and more pretraining
objectives (CodeBERT, GraphCodeBERT, Unix-
Coder). Additionally, CodeSSM-sc-2048 shows
very strong performance as pretraining on longer
context length improves the performance further
on this task.
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Table 2: Results on NLCodeSearch (AdvTest), Clone detection and Type inference. The result also includes details
about the pretraining dataset and pretraining context length. The best performance is in bold and other noteworthy

results are underlined.

DATASET MODEL CONTEXT LENGTH NLCODESEARCH CLONE DETECTION TYPE INFERENCE
(PRETRAINING) (PRETRAINING) (MRR) (F1) (OVERALL F1)
CODEBERT 512 27.19 0.941 0.595
BERTCODER 2048 24.30 0.942 0.666
CODESEACHNET CODESSM-BASE 256 21.87 0.908 0.588
CODESSM-BASE 2048 28.38 0.935 0.615
CODESSM-POS 2048 26.58 0.939 0.594
CODESSM-DO 2048 26.33 0.931 0.609
ROCODER 256 29.44 0.938 0.687
ZAMBA 256 - 0.232 0.503
STARCODER CODESSM-ScC 256 28.41 0.948 0.624
CODESSM-Sc 2048 29.88 0.938 0.625
CODESSM-Sc-L 2048 30.87 0.940 0.637

Table 3: Results on SQA benchmark in terms of MRR.
The best performance is in bold and other noteworthy
results are underlined.

MODEL SQA
BERTCODER 76.25
ROCODER 80.91
ZAMBA -

CODESSM-Sc-256 82.12
CODESSM-SC-2048 82.29
CODESSM-Sc-L-2048 82.59

Table 4: Results on DiverseVul benchmark in terms of
F1 macro. The best performance is in bold and other
noteworthy results are underlined.

MODEL DIVERSEVUL DEVIGN
(F1 MACRO) (ACCURACY)
CODEBERT 37.85 62.08
GRAPHCODEBERT 36.79 63.21
CODETS 45.69 62.88
BERTCODER 65.97 62.50
ROCODER 68.15 53.47
ZAMBA 59.43 56.55
CODESSM-Sc-256 69.31 64.53
CODESSM-Sc-2048 67.72 63.14
CODESSM-Sc-L-2048 68.76 63.54

4.3 Token classification task (Type inference)

Column 5 of Table 2 shows the results on the
type inference benchmark. CodeSSM (across all
context lengths) matches or exceeds CodeBERT.
However, both RoCoder and BertCoder outperform
CodeSSM. We provide reasons for the poor perfor-
mance of CodeSSM in type inference in Section 5.6
and Appendix G.

4.4 Clone Detection

Column 4 of Table 2 shows the F1 in the clone
detection task. The CodeSSM-sc with a pretraining
context length of 256 outperforms both CodeBERT,
BertCoder, and RoCoder in terms of F1. Under a
similar training setup (2048 context in CSN), re-
moving positional embedding does have a minimal
impact on performance, but with the advantage that

Table 5: Results on Complexity Prediction. The best
performance is in bold and other noteworthy results are
underlined.

MODEL F1

CODEBERT 85.81
GRAPHCODEBERT 87.98
UNIXCODER 93.75
BERTCODER 89.66
ROCODER 93.06
ZAMBA 90.16
CODESSM-D0-2048 92.82
CODESSM-Sc-256 93.77
CODESSM-Sc-2048 94.37
CODESSM-Sc-L-2048 94.55

the maximum input length need not be fixed dur-
ing pretraining. The decrease in performance after
introducing dropout shows that the model does not
overfit despite the data set being unbalanced.

5 Research Questions

In this section, we discuss some important research
questions related to CodeSSM and its characteris-
tics.

5.1 How sample efficient is CodeSSM?

=+ CodeSSM = BertCoder

y
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Figure 3: MLM training accuracy of CodeSSM and
BertCoder, trained with a context window of 2048. The
CodeSSM model achieves decent MLM accuracy in

very few training steps.
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Figure 3 shows the MLM training accuracy tra-
jectories of CodeSSM and BertCoder, both trained
with a maximum context of 2048. CodeSSM
demonstrates rapid initial learning, achieving more
than 50% accuracy in only 3,000 training steps
(96,000 training samples). BertCoder, on the other
hand, exhibits better long-term learning character-
istics, outperforming CodeSSM by 4% points after
six training epochs (see Appendix E). However,
CodeSSM outperforms transformers in all down-
stream tasks except type inference, as discussed in
Section 4. Performance in downstream tasks shows
that the code modeling capability observed during
pretraining transfers well to multiple downstream
tasks.

We evaluated CodeSSM on two small bench-
marks: The Devign vulnerability detection bench-
mark with only 21k training samples and the com-
plexity prediction benchmark with only 3.6k train-
ing samples. In both benchmarks, CodeSSM not
only outperforms BertCoder and RoCoder but also
many other models trained with significantly more
data and multiple code-based training objectives.

Our analyses demonstrate that SSMs represent a
sample-efficient alternative to transformers for
code language modeling and understanding tasks.
We attribute the sample efficiency of CodeSSM to
the distinct inductive bias of SSM models com-
pared to transformer architectures (Wang et al.,
2023a). We also present some (informal) theo-
retical basis for CodeSSM’s performance and the
magnitude and phase spectrum of Fourier trans-
form of SSM kernel in Appendix F.

5.2 How well does CodeSSM extrapolate to
longer contexts?

We studied transformer models and CodeSSMs for
positional embedding and different pretraining con-
text lengths to investigate their length extrapolation
capabilities.

On multiple tasks, we observe that BertCoder
outperforms CodeBERT despite less pretraining
data simply due to the longer pretraining context
length. However, replacing absolute positional
embedding with RoPE can improve performance
even with a pretraining context of only 256. But
even with RoPE, RoCoder fails to match the perfor-
mance of CodeSSM except in type inference and
NLCodeSearch.

Out of two retrieval tasks, RoCoder performs
slightly better on NLCodeSearch while CodeSSM
outperforms it on SQA. The context length is

512 for the former and 1024 for the latter. Thus,
CodeSSM is better at handling unseen input lengths
as the context for the downstream task increases.
Since SSMs have linear complexity with respect to
input length, they are advantageous in terms of both
computational efficiency and performance. More-
over, with a longer pretraining context, CodeSSM
outperforms RoCoder on NLCodeSearch as well.
Therefore, with more computational resources,
CodeSSM can be efficiently trained with longer
contexts to improve the performance on retrieval
tasks. However, it is important to note that longer
pretraining contexts do not benefit all downstream
tasks; in fact, performance slightly decreases in
vulnerability detection and clone detection.

Furthermore, we observe that CodeSSM per-
forms better without positional embedding.
CodeSSMs without positional embeddings do not
face any length limitation, unlike transformers with
absolute positional embedding, or positional biases
observed with different methods such as Alibi or
RoPE (Liu et al., 2024b; Goel et al., 2025).

5.3 How fast and memory efficient is
CodeSSM?

Table 6: Memory Consumption during Inference (in
GB) on various tasks with varying context lengths.

MODEL NLCODESEARCH (512) SQA (1024) SQA (2048)
CODESSM 9.33 15.84 28.84
ROCODER 9.87 25.36 79.12

The usage of GPU memory during inference
is shown in Table 6. CodeSSM model consumes
5.5% less memory than the transformer model
(RoCoder) on the NLCodeSearch task where the
context length is 512. The difference in memory
consumption between CodeSSM and RoCoder in-
creases to 37.5% on SQA task where the context
length is 1024. As the input length increases to
2048, CodeSSM saves 63.55% memory compared
to the transformers. These findings are in line with
previous works on SSM (Le Bronnec et al., 2024).

Table 7: Inference throughput (samples per second) with
varying context lengths.

MODEL NLCODESEARCH (512) SQA (1024) SQA (2048)
CODESSM 36.38 22.50 11.49
ROCODER 38.11 19.76 8.48

Transformers are slightly faster compared to
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SSM in small input sizes (<=512) but SSMs are
faster as the input length increases.

5.4 Can SSMs be replaced by DFT?

We ask this question because Lee-Thorp et al.
(2022) showed that self-attention can be replaced
with DFT in transformers with minimal reduction
in NLP tasks. We also observed that in all tasks
RoCoder performed significantly better than Bert-
Coder. Hua et al. (2025b) showed that RoPE also
performs token-level (nonuniform) DFT. Addition-
ally, SSMs also implicitly perform DFT of input
and kernel during convolution operation.

To answer this question, we performed an abla-
tion study by replacing the SSM transformation in
CodeSSM with DFT and creating a unidirectional
variant of CodeSSM. The results are presented in
Figure 4 (and in Table 10). We observe that both
variants perform significantly worse compared to
CodeSSM. However, it is important to note that
CodeF performs better than CodeSSM-uni, i.e., the
advantages of SSM over DFT on code modeling
are only realized with bidirectional SSMs.

«+ CodeSSM-Uni = CodeF =+ CodeSSM
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Figure 4: MLM training accuracy for different vari-
ations to the SSM layer: CodeSSM (Bi-directional),
CodeSSM-Uni (Uni-directional) and CodeF (Discrete
Fourier Transform in place of SSM). Replacing SSM
with DFT reduces the modeling capacity significantly.

5.5 1Is CodeSSM robust to overfitting on small
datasets?

We study the robustness of the CodeSSM model
in two ways. First, we study the impact of adding
dropout to the CodeSSM layer. Across all tasks,
including the complexity prediction task, which
has only 3.6k samples, the performance of the
model decreases when dropout is added. This per-
formance degradation suggests that CodeSSM does
not overfit during training regardless of the size of
the finetuning dataset. Second, we evaluated the
model on the adversarial NLCodeSearch task, by

which informative tokens such as function and vari-
able names have been replaced with noninforma-
tive generic tokens. The CodeSSM model performs
very well in this task even with minimal training.

The reduction in performance with dropout and
the performance of CodeSSM in the adversarial
text-to-code search task demonstrate its robust se-
mantic understanding capabilities on code un-
derstanding tasks.

5.6 When does CodeSSM fail and why?

We discuss two possible scenarios where the perfor-
mance of SSMs on code understanding tasks can
be inferior to that of the transformers.

As discussed in Section 5.1, transformers can
outperform SSMs as the number of samples in-
creases. This phenomenon can hinder the perfor-
mance of SSMs on some tasks such as Type Infer-
ence. This benchmark consists of over 9M type
annotations, which is significantly larger than the
samples of other tasks. The total number of predic-
tions (hence, feedback to the model through loss)
is even larger since there is one prediction for every
token. However, when the number of samples is
large and the context length of finetuning datasets
is long, SSMs can surpass transformers in such
scenarios (as seen in the SQA benchmark).

SSMs can effectively capture long-range depen-
dencies, but they do not model local dependencies
(Zuo et al., 2024) very well. The type inference
benchmark requires the model to understand both
short- and long-range dependencies. For example,
in the code sample x = y+1; z = func(x), the
type of x can be inferred from the local context
(variable y), while the type of z can only be in-
ferred from the return type of the function func,
which requires capturing long-range dependencies.
We also observe that this problem becomes more
challenging when the local context is complicated.
We provide a qualitative example of the failure of
CodeSSM in the type inference task in Appendix G.
We can potentially improve CodeSSM’s perfor-
mance on this task by making the step size of SSMs
(see Appendix A) data dependent (Qi et al., 2024)
or with multiple SSM kernels (Appendix G), which
can improve its understanding of short-range de-
pendencies.

5.7 Expressivity gaps in SSMs and their fixes

Some recent theoretical works document the ex-
pressivity limitations of SSMs. In particular, Mer-
rill et al. (2024) shows that SSMs cannot express
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some important problems that require state track-
ing. This class of problems includes evaluating
Python code. However, it should be noted that
transformers have also been shown to not express
this class of problems while a single layer RNN can
(Merrill and Sabharwal, 2023). However, the ex-
pressive power of SSMs can be improved through
different architectural improvements. For example,
Merrill et al. (2024) showed that making the input
of the transition matrix independent or adding non-
linearities can extend the expressive power of SSM.
Similarly, Nishikawa and Suzuki (2025) showed
that when SSMs are preceded and followed by feed-
forward layers, they have the same dynamic token
abilities as transformers.

Another limitation is the requirement of specific
reparameterization. Agarwal et al. (2024) proposed
a new SSM formulation by augmenting spectral
filters with negative eigenvalues, which removed
the requirement of reparameterization. The SSM
variant used in CodeSSM is S4D. S4D also has
negative eigenvalues but still requires specific repa-
rameterization. The best way to parametrize SSM
and their practical benefits remain an open research
question (Wang and Li, 2024).

6 Related Work

Transformer models have been used in code intelli-
gence tasks (Feng et al., 2020; Guo et al., 2022a;
Wang et al., 2021, 2023b). However, they strug-
gle to scale with long sequence lengths due to the
quadratic complexity of self-attention (Vaswani
et al., 2017). Various approaches have been pro-
posed to address quadratic complexity, including
linear attention (Katharopoulos et al., 2020) and
methods using sparse attention patterns (Guo et al.,
2022b; Zaheer et al., 2020; Condevaux and Harispe,
2022). LongCoder (Guo et al., 2023) uses the
sparse attention mechanism.

However, efficient transformers have seen lim-
ited practical adoption due to a minimal gain in
computational cost in practice (Yang et al., 2025)
and a potential degradation in performance (Qin
et al., 2022). Dao et al. (2022) and Dao (2024) in-
troduced hardware-level optimizations, but the ben-
efits of these optimizations are hardware-specific
and do not necessarily apply to newer or different
hardware architectures (Shah et al., 2024).

Moreover, self-attention models are trained with
a fixed context window and cannot be used beyond
the pretraining context window. Techniques such

as ALiBi (Press et al., 2022) and RoPE (Su et al.,
2024) have been proposed to alleviate this problem.
HiRoPE (Zhang et al., 2024) adapted RoPE to code
models. However, these methods come with their
own set of challenges (Chen et al., 2023b; Hua
et al., 2025a; Lin et al., 2024).

In contrast, SSMs, and hence CodeSSM, are
efficient by design and have been shown to bet-
ter capture long-range dependencies compared to
self-attention (Gu et al., 2022b). Additionally,
CodeSSM does not have positional embedding, al-
leviating the issues of position-specific biases and
length generalization.

Guan et al. (2024) and Wang et al. (2024) im-
prove base transformer models for longer con-
texts using repository-level information retrieval,
while Clement et al. (2021); Cheng et al. (2024);
Lomshakov et al. (2024); Bi et al. (2024); Liu
et al. (2024a); Ma et al. (2024) use static analy-
sis tools for repository-level tasks. The usage of
static analysis tools is complementary to CodeSSM,
as the performance of CodeSSM can also be fur-
ther improved by using these tools. Additionally,
CodeSSM can be a drop-in replacement as an effi-
cient retriever model.

7 Conclusions

State-space models (SSMs) have emerged as an
efficient alternative to transformers. In this work,
we investigated the effectiveness of SSM in code
understanding tasks by introducing CodeSSM. Our
results show a significant potential for CodeSSM
in code modeling and understanding. Our find-
ings show that SSMs can be a robust and sample-
efficient alternative to transformers, offering the
added benefit of length extrapolation.

Although the training pipeline and architectural
improvements for transformers have evolved ex-
tensively in the past decade, the optimal training
conditions for SSMs have yet to be thoroughly
investigated. This work represents a step toward
understanding these conditions and uncovering the
advantages of SSMs. In particular, the performance
gains achieved by CodeSSM were obtained under
suboptimal conditions, indicating the potential for
further enhancements. With advancements in train-
ing methodologies and architectural designs for
SSM-based models, their performance could be
significantly improved.
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Limitations

Although we have done an extensive study of SSMs
for code understanding, our work has some limita-
tions.

* Single kernel transformation: We have used
a simple implementation of S4d (Gu et al.,
2022a) in the CodeSSM layer. This imple-
mentation has only one SSM kernel shared
across all input channels. Incorporating mul-
tiple kernels into an SSM block can further
improve performance.

* Short-range dependencies: We have dis-
cussed SSMs’ limitations in understanding
short-range dependencies in the context of the
type inference task. However, we do not pro-
vide a solution to this problem. While some
methods have been proposed to alleviate this
issue in the literature, we leave the their ex-
ploration in the context of code understanding
for future work.

* Generative tasks: CodeSSM currently uses
SSMs only in convolution mode. Due to bi-
directional SSMs, it cannot be used for auto-
regressive tasks. As a result, it is not appli-
cable to generative tasks. Hence, we cannot
compare CodeSSM with Mamba (Gu and Dao,
2024) or Codestral Mamba “. To alleviate this
limitation, future work can utilize the recur-
rent view of SSM to enable generative capa-
bilities.

Ethical Considerations

We have used publicly existing datasets. Code-
SearchNet dataset can contain personally identifi-
able information (PII). While the StarCoder dataset
attempts to remove PII, there might still be some
PII in the dataset. It is not clear whether our model
can leak such data if present in the pre-training
dataset, but we acknowledge that such potential
risk exists. In addition, our work involved training
multiple models. Although the size of the model
and the data set was small, training can still have
environmental impacts.
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A Background

A.1 State Space Model

A state space model (SSM for short) maps a 1-
dimensional input signal «(t) to an N-dimensional
latent state x(¢) and then projects it back to a 1-
dimensional output. The transformations follow
the equations

2'(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) )

where A controls how the system evolves, and B,
C, D are projection parameters. Previous work
(Gu et al., 2021, 2022b,a) considered SSM as a
black-box representation within a deep sequence
model. In this context, the parameters A, B, C, D
are learned with gradient descent. For simplicity,
we can assume D = 0, as it corresponds to a skip
connection and is straightforward to compute. To
apply these models to discrete input sequences, Eq.
1 is discretized with a step size of A.

=Azx;_
Tk 7$k 1+ Bug @)
yr = Cuay,

Eq. 2 can be interpreted as a convolution be-
tween the input sequence and a convolution kernel,
which is a function of A, B and C. This convolu-
tion view of SSM is expressed as follows :

Yk = CAkBuO + CA’“_lﬁul + ..+
muk_l + @uk
y=K=xu
KeR:=K. (A, B,C)

3)

where K is the SSM convolution kernel.

Throughout the paper, we denote the input length
as L and the hidden dimension as d. We follow (Gu
et al., 2022a) for all the parameterization.

A.2 BiGS Model

BiGS model (Wang et al., 2023a) is a bidirectional
gated architecture which consists of two SSM lay-
ers as shown in Fig. 2. This gated architecture is
adapted from the gated attention unit described in
(Hua et al., 2022).

A single layer of the BiGS model has a three
stage computation. The first stage utilizes a feed-
forward layer alongside gating, employing the
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GELU activation function (Hendrycks and Gimpel,
2016). The second stage consists of two sequential
SSM blocks with a multiplicative gating. The third
stage again uses feed-forward and gating.

X = LayerNorm(X;) € RE*4
c(W,X) eREx3
o(W;X) eRxd
o(WFlip(X)) € RL*d

4

\%
F
B

c RLXd
e R (5)
c RLX3d

U; = W,,SSM(F)
Uy = W,,SSM(B)
U = o0(W,(U; ® Flip(Ug)))

0=W,(UoV) R

(6)
Xy =0+X; eRbX

The BiGS model consists of 23 layers and in-
cludes a positional embedding.

A.3 Model Size

All the models we used, CodeSSM, BertCoder and
RoCoder, has 190M parameters.

B Hardware Details

We run all our experiments on Nvidia A100 GPUs
with 80GB memory. All pretraining is done on 4
GPUs and all finetuning is done on a single GPU.

C Dataset

CodeSearchNet Dataset. The CodeSearchNet
dataset (Husain et al., 2019) used in this work is
the unofficial dataset available on Huggingface hub
> using datasets library 6, since the official dataset
is no longer accessible. The unofficial dataset is
significantly smaller compared to the original CSN
dataset used for training other attention-based mod-
els for code understanding, such as CodeBERT.
StarCoder Dataset. The StarCoder Dataset
(Li et al., 2023) is a cleaned and de-duplicated
dataset with Personally Identifiable Information
(PII) redacted. The dataset contains git-issues
and git-commits along with 86 programming lan-
guages. Additionally, the authors add additional
information to every sample such as GitHub star,

5https ://huggingface.co/datasets/
code-search-net/code_search_net
https://github.com/huggingface/datasets

Table 8: Size of Finetuning datasets

BENCHMARKS TRAIN VALIDATION TEST

NLCODESEARCH 251K 9.6K 19K
CLONE DETECTION 900K 416K 416K
TYPE INFERENCE IM 201K 224K
SQA 251K 9.6K 19K
DEVIGN 21K 2.7K 2.7K
DIVERSEVUL 419K 52K 52K
COMPLEXITY PREDICTION 3613 452 452

repository name and path. We remove these infor-
mation along with the accompanying tokens such
as <gh-stars> before using the dataset. To create
the subset used in our work, we simply select the
first N samples, where N = 300k or 600k.

Finetuning Datasets. The details about finetun-
ing datasets is presented in Table 8.

All pretraining and finetuning data used in the
paper are publicly available.

D Other Training Setup and Details

In this section, we briefly mention different training
setups we experimented with and their impact on
performance.

Learning Rate (LR) scheduler. We experi-
mented with cosine and linear LR schedulers for
both pretraining and finetuning. The CodeSSM
performed the best with cosine scheduler in pre-
training and linear scheduler in finetuning

Warm-up. Warm-up is typically used with trans-
formers to prevent over-fitting to data seen in the
early stages of training. We first experimented with
no warm-up and a warm-up step of of 1% of total
training steps. We found that CodeSSM performed
better on MLM validation with no warm-up. Subse-
quently, we experiment with a fixed warm-up step
of 300 and surprisingly, with this small warm-up
step, the pretraining performance improved. Fur-
ther experiments are required to understand how
warm-up impacts SSM training.

Learning rate We experimented with learning
rates in proximity to what is used for transformers
on code intelligence tasks. In general, SSMs per-
formed better with lower learning rates compared
to those for transformers. We used the learning
rate of 5e~° for pretraining for all the parameters
(including SSM parameters).

Weight Decay The weight decay for SSMs is set
to 0. The weight decay for Bias and Normalization
layer is also set to 0. For the rest weight decay is
set to 0.01.

Larger batch sizes. We used gradient accumu-
lation to increase the batch size. However, with
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Table 9: Hyperparameters for CodeSSM, BertCoder, RoCoder and Zamba models

HYPERPARAMETERS

CODESSM

BERTCODER ROCODER ZAMBA

NUMBER OF LAYERS 12
HIDDEN DIMENSION 1024
POSITIONAL EMBEDDING No
PRETRAINING CONTEXT LENGTH 256

12 12 14
1024 1032 1024
YES YES No
2048 256 256

larger batch sizes, the CodeSSM model performed
worse. This could be due to less number of gradi-
ent updates with larger batch sizes and it’s possible
that larger batch sizes help with larger datasets.

Tokenizer We use the CodeT5p-220M tokenizer
(Wang et al., 2023b) from transformers library ,
which has a vocabulary size of 32100, for two rea-
sons. Since it is designed specifically for code,
the CodeT5 tokenizer does not significantly in-
crease the input context length after tokenization.
Moreover, it has been used for the CodeSearchNet
dataset, which we use for pretraining.

Weight Initialization The layers of the
CodeSSM model are initialized using the corre-
sponding layers of the BiGS model. BiGS is a 23
layer model. For CodeSSM with 12 layers, we
discard the weights of additional layers of BiGS.
We initialize the embedding layer of CodeSSM ran-
domly because its vocabulary differs from that of
BiGS. The task-specific heads are also initialized
randomly.

E Pretraining evaluation

In Table 10, we present the pretraining accuracy
of BertCoder and multiple CodeSSM variants on a
hold-out set from the CodeSearchNet dataset.

Table 10: MLM accuracy of different models, trained
with a context window of 2048, on validation set from
CSN dataset.

MODEL ACCURACY

84.230
80.022
79.180
79.640
73.324

BERTCODER
CODESSM
CODESSM-DO
CODESSM-POS
CODEF

F Theoretical basis for improvements in
performance

SSMs outperform Transformers due to two charac-
teristics of their architectural design:

¢ The initialization of A matrix Theoretically,
the initialization with HiIPPO matrix allows

7https://huggingface.co/docs/transformers/v4.
17.0/en/index

Figure 5: Magnitude Plot of Fourier Transform of SSM
kernel for 12 layers of CodeSSM

SSMs to include unlimited historical infor-
mation from a sequence. Additionally, with
bi-directionality, the CodeSSM is also able to
encode future information with no limit. Prac-
tically, the unlimited historical information (or
context) means the input length. As we show
in our paper, the pretraining length does not
limit this ability and SSMs can extrapolate to
longer lengths after pretraining.

 Transfer function of SSMs Given that SSMs
are Linear Time-Invariant (LTI) systems, we
can look at their transfer function to under-
stand how the input affects the output. We can
write this relation as:

Y = H(w) * U(w) (7

where Y represents the output, H(w) and
U(w) represents the Fourier transforms of the
SSM kernel and the input respectively. Since,
Fourier Transforms are complex,

H(w) = M6
M € [0, 0] 3
0 < [0,180]
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Figure 6: Phase Plot of Fourier Transform of SSM Ker-
nel for 12 layers of CodeSSM

We can write the self-attention equation in a
similar way,

Y = A(u) *x T(u) )

where A(u) = Softmaz(QKT/\/d) and
T(u) € [0, 1] which is some transformation
of the input.

In SSMs, a phase shift of 180 degree between
kernel and input results in forgetting some in-
formation (when added to the input through
skip connection), while unbounded magnitude
allows SSMs to weigh some important infor-
mation very strongly. On the other hand, the
transformers cannot forget any input informa-
tion even if those are not relevant for a task.

The plots of magnitude and phase of all layers of
the pretrained CodeSSM model for a kernel of
length 10 is shown in Figure 5 and Figure 6 re-
spectively. The plot shows forward kernel on the
left and backward kernel on the right.

Do note, however, that A(u) explicitly calcu-
lates relation between each pair of input tokens,
while H(w) does not. This results in a key limi-
tation of SSMs which is that they fail to encode
complex local relations. This failure can result
in slight degradation in performance on tasks re-
quiring local information with complex relations
among tokens, as evidenced by performance on
Type Inference (Table 2).

let itemStatus={intervalld:null,
status :" Uploading",
urn:"",
derivativeUrn:""};
item . formData=itemStatus ;
}s

let derivativeUrn=jobStatusl

.derivatives

.filter (derivative)
=>derivative
.outputType==="ifc ")[0]
.children[O].urn;

G Qualitative Analysis of Failure cases in
Type Inference

We investigated the failure cases of CodeSSM on
the type inference task and found that CodeSSM
often fails at predicting the type when the local
context is very complicated. For example, consider
the code line in the listing above.

Here the type of derivativeUrn is string but
CodeSSM predicted it as Output while BertCoder
predicted it correctly. In the same code however,
CodeSSM predicted the correct type for string vari-
ables when the local context was simpler. Incorrect
prediction of string type in complex contexts is also
the reason for lower Top 100 F1.

To predict the correct type, the model must look
at the location from where the value of the variable
is coming, i.e, the model should encode which to-
kens influence the value of a given token. Each
SSM kernel is a mixture of multiple wavelengths.
The influence of one token on another depends on
the frequency coefficients at a specific wavelength
(Hua et al., 2025b). Since our SSM implementa-
tion has only one kernel per SSM block, there are
only few wavelengths with high coefficients. In
Figure 5, it can be observed that the later layers
has higher coefficients for lower frequency (longer
wavelengths) and hence, focus on long range de-
pendencies. Since, type inference require both long
and short range dependency, the model fails at en-
coding sufficient information. Including multiple
kernels in SSM blocks can potentially alleviate this
issue.

H Additional Results

Here are some additional results on Type Inference
(Table 11) with Top 100 F1 and on Clone Detection
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(Table 12) with Precision and Recall.

Table 11: Results on type inference in terms of overall
F1 and top-100 F1. The best performance is in bold and
other noteworthy results are underlined.

MoODEL CONTEXT LENGTH OVERALL F1 Top 100 F1
CODEBERT 512 0.595 0.850
BERTCODER 2048 0.666 0.816
ROCODER 256 0.687 84.17
CODESSM-BASE 256 0.588 0.769
CODESSM-BASE 512 0.603 0.772
CODESSM-BASE 2048 0.615 0.792
CODESSM-pPOS 2048 0.594 0.766
CODESSM-DO 2048 0.609 0.771
CODESSM-Sc 2048 0.619 0.780
CODESSM-SC-LARGE 2048 0.637 0.800

Table 12: Results on code clone detection in terms of
Precision, Recall and F1 score. The best performance is
in bold and other noteworthy results are underlined.

MODEL CONTEXT LENGTH PRECISION RECALL F1
CODEBERT 512 0.947 0.934 0.941
BERTCODER 2048 0.928 0.958 0.942
ROCODER 256 0.934 0.944 0.938
CODESSM-BASE 256 0.888 0.929 0.908
CODESSM-BASE 512 0.949 0.942 0.946
CODESSM-BASE 2048 0.940 0.926 0.935
CODESSM-POS 2048 0.921 0.959 0.939
CODESSM-DO 2048 0.926 0.937 0.931
CODESSM-Sc 2048 0.950 0.926 0.938
CODESSM-SC-LARGE 2048 0.933 0.942 0.940
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