Towards Event Extraction with Massive Types: LLM-based Collaborative
Annotation and Partitioning Extraction

Wenxuan Liu, Zixuan Li*, Long Bai, Yuxin Zuo,
Daozhu Xu, Xiaolong Jin*, Jiafeng Guo, Xueqi Cheng
Key Laboratory of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences
State Key Laboratory of Al Safety
School of Computer Science and Technology, University of Chinese Academy of Sciences
{liuwenxuan2024z, lizixuan, jinxiaolongl}@ict.ac.cn

Abstract

Developing a general-purpose system that can
extract events with massive types is a long-
standing target in Event Extraction (EE). In
doing so, the basic challenge comes from the
absence of an efficient and effective annota-
tion framework to construct the correspond-
ing datasets. In this paper, we propose an
LLM-based collaborative annotation frame-
work. Through collaboration among multiple
LLMs and a subsequent voting process, it re-
fines annotations of triggers from distant super-
vision and then carries out argument annota-
tion. Finally, we create EEMT, the largest EE
dataset to date, featuring over 200,000 samples,
3,465 event types, and 6,297 role types. Evalu-
ation on the human-annotated test set demon-
strates that the proposed framework achieves
the F1 scores of 90.1% and 85.3% for event
detection and argument extraction, strongly val-
idating its effectiveness. Besides, to alleviate
the excessively long prompts caused by mas-
sive types, we propose an LLM-based Parti-
tioning method for EE called LLM-PEE. It first
recalls candidate event types and then splits
them into multiple partitions for LLMs to ex-
tract. After fine-tuning on the EEMT training
set, the distilled LLM-PEE with 7B parameters
outperforms state-of-the-art methods by 5.4%
and 6.1% in event detection and argument ex-
traction. Besides, it also surpasses mainstream
LLMs by 12.9% on the unseen datasets, which
strongly demonstrates the event diversity of the
EEMT dataset and the generalization capabili-
ties of the LLM-PEE method.

1 Introduction

Event Extraction (EE) aims to identify structural
event information from text, which contains two
subtasks (Zhan et al., 2023), i.e., Event Detection
(ED) and Event Argument Extraction (EAE). The
former detects the trigger words of events (event
triggers) and their corresponding types, while the

* Corresponding authors.

5 8
5 P
g = @ Human Annotation AGLEN
2 § O Distant Supervision (2023)
10| | DED+EAE
AED
RAMS Maven-arg
2021) . (2024)
102 ACE2005 .
(2005) W‘I‘Z‘OEZVS““ Rich ERE
= 2’ m @
ECommodity-EE H LSEE
(2017)
o (2023) .
EFBWiki
CASIE (2018)
m (2020)
PHEE
H (2022
102 100 108 105 DataSize

Figure 1: Statistics on the existing EE datasets.

latter extracts arguments and their roles based on
the given trigger and its event type. EE has demon-
strated its value across a variety of domains, in-
cluding finance (Lee et al., 2021), biomedical (Sun
et al., 2022) and Cyber-security (Satyapanich et al.,
2020). Each of these domains has its own spe-
cific event types, which jointly form a large event
schema containing massive types. It leads re-
searchers (Spaulding et al., 2023) to pursue a
general-purpose event system with massive types
in different domains.

In doing so, the basic challenge is the lack of an
effective and efficient annotation framework to con-
struct datasets. As illustrated in Figure 1, existing
datasets can be divided into two types: human-
annotation and distant supervision. The former is
generally effective but inefficient. Consequently,
the obtained datasets are often limited in both event
type and scale. The latter (Chen et al., 2017; Zhan
et al., 2023) automatically annotate triggers and ar-
guments if they have been annotated in the knowl-
edge bases (e.g., Propbank (Kingsbury and Palmer,
2002)), offering a more efficient alternative. How-
ever, taking the largest dataset, GLEN (Zhan et al.,

34377

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 34377-34399
November 4-9, 2025 ©2025 Association for Computational Linguistics

2023), for example, it often suffers from noise in
three aspects: 1) Unreasonable Trigger Anno-
tation: Some predicates in knowledge bases are
not considered as events in the view of EE, lead-
ing to the incorrect annotation of irrelevant words
as triggers. For example, the adverb “voluntar-
ily” is wrongly annotated as a trigger in GLEN;
2) Coarse-Grained Type Annotation: Due to the
hierarchical structure of event types, a predicate
often has types with multiple granularities. Previ-
ous works (e.g, GLEN) struggle to assign precise
fine-grained types to these predicates; 3) Missing
Argument Annotation: Unlike triggers, where
candidate triggers are relatively limited, the number
of potential arguments is much larger and cannot
be fully enumerated by existing knowledge bases.
Thus, distant supervision-based annotation often
misses argument annotations when the arguments
are not included in the knowledge bases.

In this paper, we propose an LLM-based collabo-
rative annotation framework. To improve efficiency
and avoid excessively long prompts when directly
handling massive event types, we leverage LLMs to
perform annotations based on distant supervision,
rather than starting from scratch. Based on the dis-
tant supervision results, it first performs event trig-
ger filtering by removing irrelevant triggers. This is
followed by event type refinement, which assigns
more fine-grained event types for triggers based on
context. Finally, it identifies arguments and their
roles in each event and refines the original annota-
tion with human annotation rules. After each step,
multiple LLMs collaborate to generate annotations,
and then a voting phase is used to unify the annota-
tion preferences across annotating LLMs. Finally,
we obtain a new dataset EEMT, with over 200,000
annotated samples, covering 3,465 event types and
6,297 argument role types, which is the largest EE
dataset regarding event type and scale to date. Be-
sides, we create a human-annotated test set for
unbiased evaluation. The annotation framework
achieves F1 scores of 90.1% and 85.3% for event
detection and argument extraction on the human-
annotated test set, strongly validating the effective-
ness of the annotation framework and the quality
of the EEMT dataset.

Additionally, in some situations, there is a need
to train custom open-source smaller LLMs and di-
rectly apply them for EE with massive event types
from scratch. To alleviate the prompt length limita-
tion, we further propose a partitioned event extrac-
tion method called LLM-PEE. The method begins

by recalling the top-k most possible event types,
then divides them into several partitions, which
are assembled into prompts for the LLMs to con-
duct event extraction. After fine-tuning on the
EEMT training set, we obtain a distilled LLM-
PEE with 7B parameters. It outperforms state-
of-the-art methods by 5.4% and 6.1% in event
detection and argument extraction on the human-
annotated test set. Furthermore, it surpasses main-
stream LLMs (e.g., DeepSeek-V3-671B) by 12.9%
on unseen datasets in the zero-shot setting, strongly
demonstrating the event diversity of the EEMT and
the generalization capabilities of the LLM-PEE
method.

Our contributions can be summarized as follows:

* We propose an LLM-based collaborative anno-
tation framework for EE with massive types.
Based on the framework, we construct the
EEMT dataset, which is the largest EE dataset
to date regarding coverage and scale. Besides,
we create a human-annotated test set for unbi-
ased evaluation.

* We propose an LLM-based Partitioning Ex-
traction method, called LLM-PEE, which
alleviates the prompt length problem when
directly apply LLMs to handling massive
schemas from scratch.

e Distilled on the constructed EEMT dataset,
LLM-PEE (7B) achieves significant improve-
ments in both supervised and zero-shot set-
tings compared to the state-of-the-art meth-
ods.

2 Related Work

Event Extraction Dataset. In human annotated
datasets, ACE 2005 (Walker, 2005) is the most
used dataset, including 33 event types and 22 roles.
Followed by this, Rich ERE (Song et al., 2015) is
proposed to further enhance the scale of the EE
dataset. MAVEN-arg(Wang et al., 2023b) is con-
structed based on MAVEN(Wang et al., 2020), the
current largest EAE dataset annotated by human ex-
perts with 162 event types and 612 roles. However,
due to the high cost of annotating events, human an-
notators can not further extend the schema and data
scale. For datasets from distant supervision-based
methods, LSEE (Chen et al., 2017) is constructed
from FrameNet (Fillmore and Baker, 2009) and
WikiPedia (Milne, 2008) to automatically annotate

34378

- -, 1 .. theywere negotiating ... Daytonsuccessfully. | | .. theywere negotiating ... Dayton suecessfuby- ... they were negotiating ... Dayton successfully. Annotation
H ! n v Y v v ! Results |1
H L Propbank Negotiate.01 Succeed.01 i Propbank Negotiate.01 Succeed-01 - Propbank Negotiate.01 b 4 H
I i H
! — v ! — v [— : H
i1 WikiEvent Parley __Negotiation Success | ! i MWikiEvent Parley ~_ Negotiation Suceess i WikiEvent Parley Negotiation . H
Sentence H !
! Fiveyearsago | LLMPrompt 155 pescription LLMPrompt a5k Description LLMPrompt ta5k pescription | Sentence
! they were ! | Your goalis to determine which Propbank event Your goal is to determine whether the given trigger Your goal is to identify and annotation the arguments ! Five years
y ey o annotations are reasonable... matches any of the listed event types ... related to a specific event type in the given text... ! ago they 1
! negotiatin H '
! w“gh € Guideline Guideline Guideline | were !
H il ic at 1. Understanding Event Annotations 1. Event Type Analysis 1. Understand Event Type and Argument Roles H negotiating
' N : ‘Zse"'c a : 2. Event Annotation Analysis 2. Trigger Evaluation 2. Exact Match with Roles ! with |
| bayton ! 3 3 3. [. H
1 successfully Example H '\DMOSEV'C at
! Example Sentence: This groups have higher rates of crime.) Eamele i Dayton !
Propbank Sentence: Generosity is voluntarily giving Possible Event Type: Sentence: They create a market for themselves . 1 successfully. !
; : Creati H
e money of your own free will. A. State Crime(Crime perpetrated by a sovereign state) EventlypesCieation) N
) e T et et ot ko Definition: Process when something comes into being
H ! Propbank Annotations: voluntarily(volunteer.01) - Crime(Unlawful act forbidden by criminal law) Schema: Creator, Thing created, Materials used
. ! | Output: None iopelofien Output: {“creator ”: [“ They "] ...
[= Outout: B. Crime
H Input Input
H Input Sentence: They were negotiating with Milosevic at... Sentence: Five years ago they were negotiating with Event
E WikiData Sentence: Five years ago they were negotiating... Possible Event Type: Milosevic at Dayton to stop the war. !
: Propbank i jati iate.01), A. Parley(Diplomatic Meeting Held between Enemies) Event Type: Parley | Trigger:
: war(war.01) 8. Negotiation(Dialogue between Two or More People) Definition: Diplomatic meeting held between enemies ! negotiating |
: ' C. None of them Schema: Negotiator, ozhexpam, Location ! Type: Parley |
H ! i Arguments: |
| WIKIDATA | (LLMs) (LtV) (LLMs) ; Argum :
B ' T) | Negotiator: |
H (Voting) (Voting) (T offset Alignment and Voting) i They H
O | 1) — ¥ 1) i Other party: |
e (T, H " . '
J ums A Lums % [«] §57 |Negotiator: They, .., Loc: at Dayton ! Milosevic,
i Loc: Dayton !
Negotiate-01 v v v m Negotiator: They, ..., Loc: H '
1. Event Negotiate-01 Parley Parley |
) Succeed-01 x x X | H
Trigger Pre- , Other party: | :
annotation 2. Event Trigger Filtering 3. Event Type Refinement 4. Event Argument Annotation

Figure 2: Overview of the proposed LLM-based collaborative annotation framework for EE with massive types.

events. GLEN (Zhan et al., 2023) is the largest
ED dataset, including 3465 types and 200,000 sam-
ples, using Propbank and Wikidata event nodes
to conduct distant supervision. Besides, some
datasets (Tong et al., 2022; Han et al., 2022) focus
on document-level or single-instance event extrac-
tion, which is different from our setting. And our
work focuses on trigger-based EE with multiple
instances at the sentence level.

Event Extraction Method. EE methods can be
divided into two kinds: classification-based and
generation-based ones. Classification-based meth-
ods (Zhang and Ji, 2021; Zhan et al., 2023) tend to
formulate EE as a token classification or a sequen-
tial labeling task. Generation-based methods (Du
and Cardie, 2020; Liu et al., 2020; Hsu et al., 2022)
aim to generate the text containing a structured
event, while these methods require manual schema-
specific templates, which are difficult to adapt to
massive types. Nowadays, due to the strong gen-
eration abilities of LLMs, they have been widely
used in EE, like InstructUIE (Wang et al., 2023a),
KnowCoder (Li et al., 2024), AlignXIE (Zuo et al.,
2024). Besides, some ICL (In-context-Learning)
IE works (Wang et al., 2022; Li et al., 2023b) focus
on few-shot or zero-shot settings.

3 LLM-based Collaborative Annotation

3.1 Annotation Framework

Given that LLMs demonstrate strong capabilities
in understanding natural language, we incorporate
them into the EE annotation process. To improve

efficiency, we use LLMs to perform annotation
based on trigger annotations from distant supervi-
sion, rather than starting from scratch. By collabo-
rating across multiple LLMs using offset alignment
and voting, we achieve consistent and precise an-
notations. Specifically, as shown in Figure 2, the
proposed annotation framework consists of four
steps: (1) Event trigger pre-annotation annotates
the triggers and their potential types based on dis-
tant supervised methods; (2) Event trigger filtering
filters the unreasonable event triggers via LLMs;
(3) Event type refinement maps the trigger to more
fine-grained event types via LLMs; (4) Event ar-
gument annotation further annotates the arguments
via LLMs. The detailed prompts and voting strate-
gies are listed in Appendix D.2 and D.3.

Event Trigger Pre-annotation. Due to the mas-
sive types in the schema, directly using LLLMs to an-
notate events is inefficient, as it requires including
extensive guidelines in the prompt of LLMs. To im-
prove the efficiency of the annotation process and
mitigate the missing of events, we perform event
trigger pre-annotation using distant supervision to
annotate events as much as possible. We follow
the event definitions used GLEN and DWD Over-
lay (Spaulding et al., 2023), both of which include
certain generic concept types. Specifically, follow-
ing GLEN, we take the distant supervision-based
methods based on Propbank (Fillmore and Baker,
2009) and Wikidata (Vrandeci¢ and Krotzsch,
2014), which serve as a general-purpose seman-
tic labeling system comprising over 15,000 event

34379

types. A sentence is first processed by annotating
words as triggers if they are included in the Prop-
bank predicate annotations. Then, the event type
(referred to as roleset in Propbank) of each trig-
ger is mapped to Wikidata QNode types via DWD
Overlay (Spaulding et al., 2023). After this step,
we obtain the initial annotations of event triggers
and their corresponding candidate event types.

Event Trigger Filtering. The event annotation
rules in semantic knowledge bases, such as Prop-
bank, differs from the event definitions in main-
stream EE datasets (Walker, 2005). For example,
some adverbs or adjectives are treated as event
triggers in Propbank, which leads to the issue of
unreasonable trigger annotation. Thus, this step
leverages LLMs to filter out invalid triggers. By
observing these differences in event definition and
describing them as guidelines, we instruct LLMs to
evaluate the validity of event annotations. To help
the LLMs better comprehend the task, carefully
written examples are also included in the prompt.
Due to potential biases in the filtering process pro-
vided by different LLMs, a voting strategy is ap-
plied to obtain the final results. Specifically, we ag-
gregate the valid events identified by each LLM. An
event is considered valid if the majority of LLMs
support it. If there is a tie during the voting, we
will instruct each LLM to re-annotate the case until
the majority of LLMs support the result.

Event Type Refinement. In the original GLEN
annotation, 60% of triggers have more than one
event type. Distantly supervised methods cannot
assign more fine-grained types to these triggers, as
this requires more accurate event definitions and
a deeper semantic understanding of the sentence.
Therefore, this step uses LLMs to refine the event
types to a more fine-grained level automatically.
We formalize the event type refinement task as
a multiple-choice question for the LLMs. Specifi-
cally, this step takes the candidate event types from
event trigger and their corresponding descriptions
as input. It instructs the LLMs to select the event
types most accurately aligned with the event trig-
gers and the sentence. Additionally, we include
a “None of them” option for cases where none of
the candidate types align with the event trigger.
Each LLM performs this task independently, and
the final fine-grained event type is determined by
selecting the candidate with the highest number of
votes from different LLMs. If there is a tie during
the voting, each LLM is instructed to re-annotate

the case. However, since the most probable fine-
grained types typically converge within one or two
candidates, such ties are generally resolved within
two rounds of iterative voting.

Event Argument Annotation. After the fine-
grained event type is selected, we need to annotate
the event arguments based on the event type and
its corresponding schemas. As mentioned above,
distant supervised methods often fail to conduct
argument annotations when the relevant arguments
are absent from the knowledge bases. Thus, we
adopt LLMs to annotate arguments and their roles.
However, annotating event arguments introduces
two additional challenges for LLMs: 1) Roles Un-
derstanding: Event argument annotation requires
LLMs to comprehensively understand the complex
event schema, including event types and role defi-
nitions. Additionally, LLMs must be capable of an-
alyzing syntactic structures within sentence spans
and mapping each span to a specific role. 2) Bias
in Span Offset: LLMs exhibit inherent bias in
span offset when dealing with different styles of
text. Different LLLMs are more likely to give out
different offsets in argument annotation.

Considering the additional challenges, we de-
velop a set of guidelines for analyzing logical rela-
tionships in sentences and assigning roles accord-
ingly. Then, LLMs are adopted to identify logi-
cal relationships within sentences, and map text
spans to their corresponding roles. Additionally,
we include examples of manual annotations in the
prompts to help the LLM better understand the
roles of events. To eliminate bias in span offset
across different LLMs, we instruct the LLMs to
refine and update the original annotation results,
especially in span offset, using the rules derived
from human observations. We refer to this pro-
cess as Offset Alignment, which ensures greater
consistency in the annotations generated by differ-
ent LLMs. Following this alignment, we employ
a voting strategy to determine the final argument
annotations. For each argument in the annotated
event, if a specific argument-role pair appears in
more than half of LLMs’ annotation results, it is
deemed valid. If the LLMs generate completely
different annotations for certain roles, we employ
GPT-40 to annotate the case given the original an-
notation from each LLM. The details of voting
strategies are listed in Appendix D.3.

34380

Data Source Event Typess Argument Types Cases Event Mentions Argument Mentions Domain
ACE 2005 33 22 3,869 4,090 9,683 General
CASIE 5 26 5,166 3,027 6,135 Cybersecurity
PHEE 2 16 4,827 5,019 7,129 Biochem
Commodity EE 18 19 3,949 3,949 8,123 Commodity
GLEN 3,465 208,454 185,047 - General
Maven-arg 162 612 4,480 98,591 290,613 General
EEMT 3,465 6,297 208,454 170,849 465,856 General

Table 1: A comparison of the EEMT dataset statistics with other datasets.

3.2 The Constructed EEMT Dataset

Dataset Construction. As some datasets already
pre-annotate event triggers, we reuse the GLEN
to construct a more comprehensive dataset. Con-
sidering that GLEN does not contain schema with
role types, we use the original event schema from
DWD Opverlay, which contains 6,297 different role
types. Specifically, we employ three mainstream
LLMs for collaborative annotation: Deepseek-
V3 (DeepSeek-Al et al., 2024), Qwen-Plus (Team,
2024b), and GPT-40-mini (OpenAl et al., 2024).

We follow the splits of GLEN for the training,
valid, and test sets. Additionally, we select 1,500
samples from the test set and create a human-
annotated test set, with the help of three graduate
students specializing in NLP. The LLM-annotated
test set will reflect the relative performance of mod-
els on large-scale data, both currently and over a
recent period. The human-annotated test set will
serve as a no-bias test set independent of the an-
notation LLLM and be used to evaluate both the
annotation quality and extraction methods. More
discussion and details are provided in Appendix A
and D.

The statistics of the EEMT dataset and exist-
ing datasets are shown in Table 1. Compared to
commonly used datasets, EEMT surpasses them in
the size of event types, role types, and data scale.
Particularly, EEMT contains 10 times more event
and role types than the largest human-annotated
EE dataset, MAVEN-arg. Compared to GLEN, we
filter out nearly 7.64% of the unreasonable event
triggers, refine the coarse-grained type annotation
(which accounts for 61.3% in the original GLEN)
into fine-grained ones, and annotate the arguments
along with their roles. More statistics are in Ap-
pendix E.

Quality Assessment. To evaluate the effective-
ness of the proposed annotation framework, we
assess the annotation quality of each of the three

IThe statistics are from IEPILE.

Deepseek-V3' Qwen-Plus’ GPT-40-minif CA
ETF 92.1 91.4 91.6 93.2
ETR 95.8 94.9 94.2 96.2
EAA 84.7 83.5 84.2 85.3

Table 2: Results between different single-LL.Ms and col-
laborative annotation framework(denoted as CA). ETF,
ETR, EAA indicate Event Trigger Filtering, Event Type
Refinement, and Event Argument Annotation, respec-
tively. T indicates that we apply the offset alignment in
EAA. We calculate the F1 score for each step.

LLM-based steps on the human-annotated test set.
The results are in the last column of Table 2. The
F1 scores for all steps surpass 85%, with the event
type refinement achieving an impressive F1 score
of 96.2%. These results strongly validate the high
consistency between our collaborative annotation
framework and human annotations. Additionally,
we evaluate the results annotated by a single LLM.
By leveraging collaborative annotation, the F1
score improves at each step, further mitigating the
biases inherent in the single LLM and enhancing
the quality of the annotations.

4 LLM-based Partitioning Extraction

Considering many applications involve training
open-source smaller LLMs, there is a need to equip
the small-parameter LLMs with the capabilities to
handle massive event types from scratch. And the
LLM-based EE methods require placing all event
schemas in single prompt, which leads to an ex-
cessive prompt. To alleviate the prompt length
limitation, we propose an LLM-based partitioning
extraction method for EE, called LLM-PEE. As
shown in Figure 3, LLM-PEE consists of three
key components: similarity-based type recall, type-
partitioning prompting, and LLM-based event ex-
traction. In the similarity-based type recall step,
we reduce the number of candidate event types that
may appear in a sentence to a small subset using a
similarity-based model. Next, the type-partitioning
prompt divides the subset into several partitions us-

34381

| Sentence: President Clinton met with Israeliand | Event
1 Palestinian peace negotiators today. i Type Set

e Similarity-based Event Type Recall

Candldate Event Types

Event Type Partltlonlng Prompting

1’ Type Partmon 1 Type Pamtlon 2 Type Partltlon 3

El El

> LLM-based Event Extraction

! Event Detection Event Argument Extraction
i Predicted Types: i i Agent:
i Predicted Trigger: i iTime:

Figure 3: Overview of the proposed LLM-based Parti-
tioning Extraction Method.

ing three different strategies, thus further reducing
the prompt length of each partition. Finally, based
on the partitioning prompts, LLMs extract event
triggers and their corresponding arguments.

Similarity-based Event Type Recalling. Given
a sentence s = s1, ..., S;, ..., S and a set of candi-
date event types {e1, ..., €, ..., €y, }, the similarity-
based event type recalling step identifies the poten-
tial event types described by the sentence based on
the similarity between the sentence and the event
types. Following CDEAR (Zhan et al., 2023), we
employ ColBERT (Khattab and Zaharia, 2020) as
the encoder of sentence and event types. Based
on the embeddings from encoders, we calculate
the similarities and get k candidate event types for
each sentence. More details are in Appendix B.1.

Event Type Partitioning Prompting. Existing
LLM-based EE methods (Guo et al., 2023; Zhu
et al., 2024) typically adopt prompting learn-
ing (Liu et al., 2023b). Their prompts generally
contain three parts, i.e., event schema, task descrip-
tion, and the input sentence. Although the number
of event types is reduced to k after the event type
recalling, the prompt describing the event schema
information remains long, particularly for some
open-source LLMs with relatively short context
lengths. Moreover, some studies (Liu et al., 2023a)
have shown that as the prompt length increases,
the difficulty of understanding the prompt also in-
creases. Motivated by this, the event type parti-
tioning prompting step splits the event types into
smaller partitions to mitigate this issue. To deter-

mine which event types within a partition enhance
LLM performance, we design three partitioning
strategies based on the confidence scores obtained
in the similarity-based event type recall step: 1)
Random: The k event Types are evenly divided
into N parts randomly; 2) Average: The k event
types are evenly divided into N parts, ensuring that
the sum of the confidences for event types in each
part is as equal as possible, which aims to ensure
that the extraction difficulty is balanced across dif-
ferent partitions. 3) Level: Sort the k event types
based on their confidences, and then evenly divide
them into N parts. This strategy ensures different
partitions have varying difficulty levels. We ana-
lyze different partition strategies in Appendix C.2.

LLM-based EE. With the prompt as input, we
use LLMs to conduct extraction. Specifically, we
conduct the two-stage extraction process following
KnowCoder (Li et al., 2024). For the ED task, with
the partitioning prompts as input, we generate the
triggers and corresponding event types. For the
EAE task, with the golden event types and triggers
in the single sentence as input, LLMs predict poten-
tial arguments and their corresponding roles. The
details of the extraction prompt, including schema,
instruction and completion, are in Appendix F.

5 Experiment

5.1 Experiment Setting

Metrics. Following GLEN (Zhan et al., 2023)
and KnowCoder (Li et al., 2024), we use Trigger
Identification (TI) and Classification (TC) F1 to
evaluate ED. For the EAE, we use Argument Iden-
tification (AI) and Classification (AC) F1.

Baselines. For the ED task, following GLEN, we
use four classification-based methods(denoted as
C.B. Method), including DMBERT (Wang et al.,
2019), token-level classification and span-level
classification, and CDEAR (Zhan et al., 2023). For
the EAE task, we use two classification methods,
CRF-Tagging and Tag-Prime (Hsu et al., 2023), as
well as a generative method, Bart-Gen (Li et al.,
2021) (denoted as G.B. Method). For LLM-based
methods, we compare with three 7B-level ones, in-
cluding InstructUIE (Wang et al., 2023a), IEPILE
(Gui et al., 2024), and KnowCoder (Li et al., 2024).
All of them are fine-tuned on EEMT. We also eval-
uate the LLLMs used to annotating events, Qwen-
Plus, GPT-40-mini and DeepSeek-V 3. For fairness,
we evaluate the three LLMs with same similarity-

34382

TI (LLM-Annotated)

TC (LLM-Annotated)

TI (Human-Annotated)

TC (Human-Annotated)

Method
P R F1 P R F1 P R Fl P R F1

CA 100.0 100.0 100.0 100.0 100.0 100.0 92.1 94.3 93.2 89.8 90.5 90.1

C.B. Method
DMBERT 50.7 74.2 60.2 322 473 383 498 740 59.5 31.7 47.0 37.9
Token-Level 55.5 73.3 63.1 355 49.2 412 560 73.1 63.4 359 48.6 41.3
Span-Level 53.2 74.7 62.1 335 50.2 40.5 53,6 735 62.0 62.0 49.2 39.5
CDEAR 60.0 78.2 67.9 45.1 55.2 49.7 612 777 68.5 463 545 50.1

G.B. Method
Qwen-Plus 52.1 76.1 61.8 42.4 69.7 52.7 515 755 61.2 42.0 68.6 52.1
GPT-40-mini 50.3 78.7 61.4 43.6 68.2 53.2 49.8 787 61.0 426 672 52.1
Deepseek-V3 49.7 81.2 61.7 43.9 72.1 546 49.6 80.5 61.4 43.0 717 53.8
InstructUIE 72.9 72.3 72.6 535 55.5 545 735 744 73.9 539 549 54.4
IEPILE 74.6 71.9 73.2 56.0 54.3 55.1 748 723 73.5 552 535 54.3
KnowCoder 74.5 72.3 73.4 57.2 574 572 741 737 73.9 56.0 564 56.2
LLM-PEE 76.1 72.9 74.5 61.9 59.9 60.9 769 724 74.6 60.7 579 59.3
LLM-PEE w/o. e.t.r 74.4 47.6 58.1 56.3 43.5 49.1 737 47.1 57.4 554 429 48.4
LLM-PEE w/o. tp.p 74.5 72.7 73.6 57.3 57.2 572 73.6 737 73.6 55.9 557 55.8

Table 3: Performance (in percentage) for ED both on the LLM-annotated and human-annotated test sets of EEMT.
We apply the similarity-based event type recalling (denoted as e.t.r) for all generation based models. t.p.p indicates

the event type partitioning prompting.

Al (LLM-Annotated)

AC (LLM-Annotated)

Al (Human-Annotated)

AC (Human-Annotated)

Method
P R F1 P R Fl1 P R F1 P R Fl1

CA 100.0 100.0 100.0 100.0 100.0 100.0 90.1 89.5 89.8 86.4 842 85.3

C.B. Method
CRF-Tagging 25.8 24.9 253 244 23.6 240 248 247 24.7 23.8 232 23.5
Tag-Prime 29.1 25.6 27.3 27.8 23.4 254 28.8 25.1 26.8 274 228 24.9

G.B. Method
Qwen-Plus 69.4 68.1 68.8 65.8 64.5 65.1 674 669 67.1 63.0 61.7 62.3
GPT-40-mini 70.4 67.9 69.1 66.0 65.0 655 679 669 67.4 63.7 61.2 62.4
Deepseek-V3 71.9 68.5 70.2 66.4 65.2 65.8 68.0 68.7 68.3 64.1 622 63.1
Bart-Gen 38.0 37.2 37.6 35.0 354 352 36.8 36.5 36.6 33.6 349 342
InstructUIE 65.8 64.7 65.2 60.1 59.1 59.6 640 63.6 63.8 59.1 57.6 58.3
IEPILE 66.8 66.5 66.7 62.1 59.7 609 66.8 64.2 65.5 62.1 59.7 60.9
KnowCoder 72.1 68.2 70.1 65.1 62.4 63.7 68.7 67.6 68.2 63.8 60.2 61.9
LLM-PEE 74.7 73.3 73.9 69.9 67.6 68.7 729 70.1 71.5 66.9 64.8 65.8

Table 4: Performance (in percentage) for EAE both on the LLM-annotated and human-annotated test sets of EEMT.

based event type recalling in ED and remove the
offset alignment in EAE. Besides, we evaluate
other mainstream LLMs in Appendix C.4.

Benchmark. For supervised evaluation, we eval-
uate the methods both on the LLM-based testset
and human-annotated testset. We evaluate methods
on ACE 2005 (Walker, 2005) under the zero-shot
setting to evaluate the generalization capabilities.

Implement Details. We utilize LLaMA2-7B-
Base (Touvron et al., 2023) as the backbone.
Specifically, we use LoRA (Hu et al., 2021) and
set the LoRA rank to 8. The maximum sequence
length is set to 2048, and the batch size is set to 256.
Training is conducted for 4 epochs. We employ
greedy search and a maximum output length of
500, using vllm (Kwon et al., 2023). We recall the
top 15 similar event types in the similarity-based
event type recalling stage and divide them into two
partitions with the level strategy.

5.2 Experiment Results

We conduct the supervised and zero-shot evaluation
and provide more detailed analysis in Appendix C.

5.2.1 Supervised Evaluation

The results of the supervised evaluation are listed
in Tables 3 and 4. We conduct a comprehensive
analysis from the next four perspectives.

Analyses on the Annotation Framework. The
collaborative annotation framework (denoted as
CA) is presented in the first row of Tables 3 and
4. First, the collaborative annotation framework
achieves an F1 score of 85% even on the human-
annotated test set, demonstrating the high consis-
tency between our collaborative annotation frame-
work and human annotations. Furthermore, our
collaborative annotation framework outperforms
the direct extraction performance of any single an-
notation model, thereby validating the rationality

34383

and efficacy of the design underlying our method.
Specifically, in the ED task, there is a significant
performance gap (90.1 v.s.56.2) between the col-
laborative annotation framework and individual an-
notation models. This disparity arises because dis-
tant supervision is incorporated as auxiliary in-
formation during the annotation process, whereas
directly performing event detection using individ-
ual LLMs remains highly challenging. In the EAE
task, the performance of a single LLM significantly
declines due to the absence of a collaborative mech-
anism and offset alignment. This observation aligns
with the results reported in Table 2, further rein-
forcing the advantages of our method that mitigates
bias and enhances the consistency of dataset styles.

Analyses on ED. Table 3 presents the results of
ED on the proposed EEMT dataset. Firstly, the
relative performance of different models on the
LLM-annotated test sets remains consistent with
that on the human-annotated test sets, validating the
reasonableness of LLM-annotated test set. Com-
pared with the KnowCoder (the generation method
based on LLM), LLM-PEE outperforms 1.7% on
TI and 5.4% on TC, respectively. These results
demonstrate the effectiveness of our partitioned ex-
traction framework in addressing event detection
with massive types. In comparison with CDEAR
(designed for ED with massive types), LLM-PEE
integrates prompting learning into the framework,
effectively unleashing the potential of LLMs in
event detection. Besides, without fine-tuning on the
dataset, mainstream LLMs tend to over-generate
events, which leads to high recall but low precision.
LLM-PEE demonstrates superior event prediction
accuracy, leading to a higher F1 score compared to
the mainstream LLMs (e.g., DeepSeek-V3-671B).
Additionally, the relatively low performance on
TC highlights the inherent difficulty of accurately
identifying event types from a large-scale schema,
which remains a challenge for our dataset.

Analyses on EAE. Table 4 presents the results
of EAE on the proposed EEMT dataset. Compared
to KnowCoder, LLM-PEE achieves improvements
of 3.9% in Al and 6.2% in AC, respectively. In
LLM-PEE, the schema representations of ED and
EAE are consistent. We guess that this consis-
tency enables the ED task to facilitate the EAE
task, thereby deepening the model’s understanding
of event types and roles and contributing to higher
performance on both tasks. In comparison with the
mainstream LLMs, after fine-tuning on the dataset,

the argument extraction performance of LLM-PEE
(trained on LLaMA2-7B) surpasses that of the orig-
inal annotation LLMs. This improvement can be
attributed to the high-quality dataset after the offset
alignment and collaborative annotation. Addition-
ally, classification-based methods often face chal-
lenges in accurately identifying the boundaries of
arguments, particularly for continuous spans (e.g.,
multi-token arguments) in roles such as “purpose”,
which result in lower performance in both Al and
AC. That suggests generation-based methods might
be more suitable for the complex EAE task.

Ablation Analysis. To verify the effectiveness
of LLM-PEE, we conduct ablation experiments by
removing its two key modules: similarity-based
event type recalling (denoted as LLM-PEE w/o
e.t.r) and event type partitioning prompting (de-
noted as LLM-PEE w/o t.p.p). The results are
presented in the bottom two rows of Table 3. Since
the EAE task needs to specify event types and trig-
gers in advance, we focus our ablation analysis
solely on the ED task. LLM-PEE w/o e.t.r exhibits
a significant drop of 18.3% in TC. It suggests that,
without recalling the most similar event types, the
model struggles to accurately distinguish the cor-
rect event type from the event set, particularly for
unseen event types. Furthermore, LLM-PEE w/o
t.p.p shows a performance decline of 5.1% in TC,
further validating the effectiveness of the partition-
ing strategies in our framework. More detailed
results of the partitioning strategies are provided in
Appendix C.2. Additionally, to verify the effective-
ness of LLM-PEE in other EE datasets, we conduct
an additional supervised experiment on ACE 2005.
The results are listed in Appendix C.6.

5.2.2 Zero-Shot Evaluation

Method TI TC Al AC

Qwen-Plus 207 147 351 254
GPT-40-mini 20.0 13.7 35.1 25.6
Deepseek-V3 20.5 15.6 349 270

LLM-PEE 223 132 388 305

Table 5: Performance (in percentage) for ED and EAE
tasks on ACE 2005.

To ensure that the constructed EEMT data does
not rely solely on LLM-induced patterns and can
exhibit generalization, we evaluate the distilled
LLM-PEE on ACE 2005, an unseen dataset that
contains event types derived from EEMT. The re-

34384

sults are listed in Table 5. LLM-PEE outperforms
other LLMs in TI, Al, and AC. In T and AI, LLM-
PEE demonstrates superior consistency in identi-
fying the spans of trigger and argument. This im-
provement can be attributed to the high quality of
the EEMT dataset, which significantly mitigates
biases in span offsets. And the 12.9% improve-
ments in AC can be attributed to the capabilities
in understanding new event schemas rather than
simply capturing the patterns present in the anno-
tating LLLMs. Though LLM-PEE exhibits slightly
lower performance in TC compared to other meth-
ods, this is because it predicts more fine-grained
event types than those in the original ACE 2005
schema. The results convincingly demonstrate the
event diversity of the EEMT dataset and the gen-
eralization capabilities of the LLM-PEE method.

Supervised Zero-shot

TC AC TC AC

LLM-PEE w.GLEN 603 52.0 21.1 125
LLM-PEE wEEMT 747 583 231 13.7

Model

Table 6: Performance comparison of LLM-PEE under
supervised and zero-shot settings.

5.2.3 Comparison with original GLEN

Since we use the GLEN as the original annotation
corpus, we further validate whether the quality of
the dataset has been improved by training LLM-
PEE with two different corpus. Considering that
the GLEN only includes event annotations for the
ED task, we report the ED performance includes
both supervised and zero-shot settings, and the re-
sults are summarized in Table 6. These results
indicate that LLM-PEE trained on EEMT outper-
form when trained on GLEN. We attribute this to
the role of event trigger filtering and event type re-
finement, which lead to predicting more reasonable
triggers and classifying them into the correct event
types. The same issue also affects zero-shot evalu-
ation on unseen event types. Besides, we conduct a
case study in Appendix C.5 to further illustrate that
training with EEMT can predict more fine-grained
event types than GLEN.

6 Conclusion

In this paper, we proposed a novel LLM-based col-
laborative annotation framework. It refines trigger
annotations from distant supervision and then per-
forms argument annotation through collaboration

among multiple LLMs. We created the new EEMT
dataset based on the annotation framework, which
is the largest EE dataset in terms of event types and
data scale. To further adapt smaller LLMs for EE
with massive types, we introduced a Partitioning
EE method for LLMs called LLM-PEE. The results
in both supervised and zero-shot settings demon-
strated that distilled LLM-PEE with 7B parameters
outperformed other baselines and even surpasses
mainstream LLMs, which shows its effectiveness.

Limitations

We summarize the limitations of this work and look
at them as areas for future improvement.

» Hierarchical level of event extraction. We
believe that an important factor restricting our
model is that the event hierarchy is not suffi-
ciently distinguished. We will explore how to
improve the understanding of the hierarchical
level of events by better event definition or
positive and negative sample strategy.

* End-to-End event extraction. The proposed
LLM-PEE method still divides the event ex-
traction into two sub-tasks ED and EAE, we
try to proceed directly with end-to-end event
extraction based on LLMs.

* Document level event extraction. The pro-
posed EEMT dataset is only annotated on the
sentence-level instance. The difficulties of
document-level annotation lies in the to en-
able the LLMs to fully associate the document
with massive event types. The common an-
notation framework splits the document into
several sentences, and we are trying to an-
notate large-scale events in documents from
document-self.

7 Acknowledgments

This work is partially funded by the Strategic Pri-
ority Research Program of the CAS under Grants
No. XDB0680102, National Key Research and
Development Program of China under Grants
No. 2024YFC3308200, National Natural Science
Foundation of China under grants 62306299 and
62441229, the Lenovo-CAS Joint Lab Youth Sci-
entist Project and the project under Grants No.
JCKY?2022130C039. We thank anonymous review-
ers for their insightful comments and suggestions.

34385

References
Al@Meta. 2024. Llama 3 model card.

Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and
Jun Zhao. 2017. Automatically labeled data genera-
tion for large scale event extraction. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 409—419, Vancouver, Canada. Association for
Computational Linguistics.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, and Bochao Wu et. al. 2024. Deepseek-v3
technical report. Preprint, arXiv:2412.19437.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Xinya Du and Claire Cardie. 2020. Event extraction
by answering (almost) natural questions. In Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics.

Charles J Fillmore and Collin Baker. 2009. A frames
approach to semantic analysis.

Google. 2024. Gemini 2.0 flash. https://gemini.
google.com. Accessed: 12/2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
and Abhinav Pandey et.al. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Yucan Guo, Zixuan Li, Xiaolong Jin, Yantao Liu, Yu-
tao Zeng, Wenxuan Liu, Xiang Li, Pan Yang, Long
Bai, Jiafeng Guo, et al. 2023. Retrieval-augmented
code generation for universal information extraction.
arXiv preprint arXiv:2311.02962.

Cuiyun Han, Jinchuan Zhang, Xinyu Li, Guojin Xu,
Weihua Peng, and Zengfeng Zeng. 2022. Duee-fin:
A large-scale dataset for document-level event ex-
traction. In Natural Language Processing and Chi-
nese Computing: 11th CCF International Confer-
ence, NLPCC 2022, Guilin, China, September 24-25,
2022, Proceedings, Part I, page 172—-183, Berlin, Hei-
delberg. Springer-Verlag.

I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,
Scott Miller, Prem Natarajan, Kai-Wei Chang, and
Nanyun Peng. 2022. Degree: A data-efficient
generation-based event extraction model. Preprint,
arXiv:2108.12724.

I-Hung Hsu, Kuan-Hao Huang, Shuning Zhang, Wenxin
Cheng, Premkumar Natarajan, Kai-Wei Chang, and
Nanyun Peng. 2023. Tagprime: A unified frame-
work for relational structure extraction. Preprint,
arXiv:2205.12585.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research

and development in Information Retrieval, pages 39—
48.

Paul R Kingsbury and Martha Palmer. 2002. From
treebank to propbank. In LREC, pages 1989-1993.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Meisin Lee, Lay-Ki Soon, and Eu-Gene Siew. 2021.
Effective use of graph convolution network and con-
textual sub-tree forcommodity news event extraction.
arXiv preprint arXiv:2109.12781.

Minzhi Li, Taiwei Shi, Caleb Ziems, Min-Yen Kan,
Nancy Chen, Zhengyuan Liu, and Diyi Yang. 2023a.
Coannotating: Uncertainty-guided work allocation
between human and large language models for data
annotation. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan-
bin Wu, Xuanjing Huang, and Xipeng Qiu. 2023b.
Codeie: Large code generation models are better
few-shot information extractors. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
15339-15353. Association for Computational Lin-
guistics.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level
event argument extraction by conditional generation.
Preprint, arXiv:2104.05919.

Zixuan Li, Yutao Zeng, Yuxin Zuo, Weicheng Ren,
Wenxuan Liu, Miao Su, Yucan Guo, Yantao Liu, Xi-
ang Li, Zhilei Hu, et al. 2024. Knowcoder: Coding
structured knowledge into 1lms for universal informa-
tion extraction. arXiv preprint arXiv:2403.07969.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1641-1651, Online. Association
for Computational Linguistics.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin
Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. 2023a. Lost in the middle: How
language models use long contexts. Preprint,
arXiv:2307.03172.

34386

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.18653/v1/P17-1038
https://doi.org/10.18653/v1/P17-1038
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://gemini.google.com
https://gemini.google.com
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1007/978-3-031-17120-8_14
https://doi.org/10.1007/978-3-031-17120-8_14
https://doi.org/10.1007/978-3-031-17120-8_14
https://arxiv.org/abs/2108.12724
https://arxiv.org/abs/2108.12724
https://arxiv.org/abs/2205.12585
https://arxiv.org/abs/2205.12585
https://doi.org/10.18653/v1/2023.emnlp-main.92
https://doi.org/10.18653/v1/2023.emnlp-main.92
https://doi.org/10.18653/v1/2023.emnlp-main.92
https://doi.org/10.18653/v1/2023.acl-long.855
https://doi.org/10.18653/v1/2023.acl-long.855
https://arxiv.org/abs/2104.05919
https://arxiv.org/abs/2104.05919
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023b. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

David et al Milne. 2008. Learning to link with
wikipedia. In Proceedings of the 17th ACM con-
ference on Information and knowledge management,

pages 509-518.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
and Adam Perelman et. al. 2024. Gpt-4o system card.
Preprint, arXiv:2410.21276.

Taneeya Satyapanich, Francis Ferraro, and Tim Finin.
2020. Casie: Extracting cybersecurity event infor-
mation from text. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages

8749-8757.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light
to rich ERE: Annotation of entities, relations, and
events. In Proceedings of the 3rd Workshop on
EVENTS: Definition, Detection, Coreference, and
Representation, pages 89-98, Denver, Colorado. As-
sociation for Computational Linguistics.

Elizabeth Spaulding, Kathryn Conger, Anatole Gersh-
man, Rosario Uceda-Sosa, Susan Windisch Brown,
James Pustejovsky, Peter Anick, and Martha Palmer.
2023. The DARPA Wikidata overlay: Wikidata as
an ontology for natural language processing. In Pro-
ceedings of the 19th Joint ACL-1SO Workshop on In-
teroperable Semantics (ISA-19), pages 1-10, Nancy,
France. Association for Computational Linguistics.

Zhaoyue Sun, Jiazheng Li, Gabriele Pergola, Byron C.
Wallace, Bino John, Nigel Greene, Joseph Kim,
and Yulan He. 2022. Phee: A dataset for phar-
macovigilance event extraction from text. Preprint,
arXiv:2210.12560.

Qwen Team. 2024a. Qwen2.5: A party of foundation
models.

Qwen Team. 2024b. Qwen?2.5 technical report. arXiv
preprint arXiv:2412.15115.

Meihan Tong, Bin Xu, Shuai Wang, Meihuan Han,
Yixin Cao, Jiangqi Zhu, Siyu Chen, Lei Hou, and
Juanzi Li. 2022. Docee: A large-scale and fine-
grained benchmark for document-level event extrac-
tion. 2022 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,

Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Denny Vrandeci¢ and Markus Krotzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78-85.

C. et al Walker. 2005. ACE 2005 Multilingual Training
Corpus. LDC corpora. Linguistic Data Consortium.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze
Chen, Yuansen Zhang, Rui Zheng, Junjie Ye,
Qi Zhang, Tao Gui, et al. 2023a. Instructuie: Multi-
task instruction tuning for unified information extrac-
tion. arXiv preprint arXiv:2304.08085.

Xiaozhi Wang, Xu Han, Zhiyuan Liu, Maosong Sun,
and Peng Li. 2019. Adversarial training for weakly
supervised event detection. In Proceedings of the
2019 Conference of the North.

Xiaozhi Wang, Hao Peng, Yong Guan, Kaisheng Zeng,
Jianhui Chen, Lei Hou, Xu Han, Yankai Lin, Zhiyuan
Liu, Ruobing Xie, Jie Zhou, and Juanzi Li. 2023b.
Maven-arg: Completing the puzzle of all-in-one
event understanding dataset with event argument an-
notation. Preprint, arXiv:2311.09105.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang,
Rong Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai
Lin, and Jie Zhou. 2020. Maven: A massive
general domain event detection dataset. Preprint,
arXiv:2004.13590.

Xingyao Wang, Sha Li, and Heng Ji. 2022. Code4struct:
Code generation for few-shot event structure predic-
tion.

Ying Zeng, Yansong Feng, Rong Ma, Zheng Wang, Rui
Yan, Chongde Shi, and Dongyan Zhao. 2017. Scale
up event extraction learning via automatic training
data generation. CoRR, abs/1712.03665.

Qiusi Zhan, Sha Li, Kathryn Conger, Martha Palmer,
Heng Ji, and Jiawei Han. 2023. Glen: General-
purpose event detection for thousands of types.

Kechi Zhang, Huangzhao Zhang, Ge Li, Jia Li, Zhuo
Li, and Zhi Jin. 2023. Toolcoder: Teach code gen-
eration models to use api search tools. Preprint,
arXiv:2305.04032.

34387

https://arxiv.org/abs/2410.21276
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://aclanthology.org/2023.isa-1.1
https://aclanthology.org/2023.isa-1.1
https://arxiv.org/abs/2210.12560
https://arxiv.org/abs/2210.12560
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://books.google.com/books?id=SbjjuQEACAAJ
https://books.google.com/books?id=SbjjuQEACAAJ
https://doi.org/10.18653/v1/n19-1105
https://doi.org/10.18653/v1/n19-1105
https://arxiv.org/abs/2311.09105
https://arxiv.org/abs/2311.09105
https://arxiv.org/abs/2311.09105
https://arxiv.org/abs/2004.13590
https://arxiv.org/abs/2004.13590
https://arxiv.org/abs/1712.03665
https://arxiv.org/abs/1712.03665
https://arxiv.org/abs/1712.03665
https://arxiv.org/abs/2305.04032
https://arxiv.org/abs/2305.04032

Zixuan Zhang and Heng Ji. 2021. Abstract meaning
representation guided graph encoding and decoding
for joint information extraction. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Mengna Zhu, Kaisheng Zeng, JibingWu JibingWu, Li-
hua Liu, Hongbin Huang, Lei Hou, and Juanzi Li.
2024. LCA4EE: LLMs as good corrector for event
extraction. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 12028-12038,
Bangkok, Thailand. Association for Computational
Linguistics.

Yuxin Zuo, Wenxuan Jiang, Wenxuan Liu, Zixuan Li,
Long Bai, Hanbin Wang, Yutao Zeng, Xiaolong Jin,
Jiafeng Guo, and Xueqi Cheng. 2024. Alignxie: Im-
proving multilingual information extraction by cross-
lingual alignment. arXiv preprint arXiv:2411.04794.

A Discussion

A.1 The reasonableness of Annotation
Framework

Similar to other LLM-annotating methods and their
datasets (Li et al., 2023a; Zhang et al., 2023), the
annotation framework is independent of certain an-
notating LLMs, more powerful LLMs can replace
the original annotating LLMs. Considering the
effectiveness and cost, we select the Qwen-Plus,
DeepSeek-V3 and Gpt-40-mini as our annotating
LLMs here. As the improvements of LLMs, we
believe that it can lead to a dataset with higher
quality under the proposed annotation frameworks.
With this dataset, we can produce more powerful
models.

A.2 The reasonableness of EEMT

The reasonableness of EEMT is listed here through
three major parts of the datasets.

LLM-annotated Training Set Considering
many practical applications involve training
smaller models, domain-specific systems, or
fine-tuned architectures. Thus, they rely on the
annotated datasets. Moreover, existing models
can be further improved by finetuning on the
annotated datasets. As shown in Tables 3 and 4,
the 7B-parameters model LLM-PEE finetuned on
the training set outperforms larger, closed-source
LLMs (e.g., GPT-4) by 5.5 points in ED and
2.7 points in EAE. In Table 5, the LLM-PEE
achieves up to 12.9% improvement compared to
larger LLMs (DeepSeek) in the zero-shot setting.
Regarding there may be noisy annotations in the

training dataset, this is a common phenomenon
of the model-generated datasets in IE and other
domains. For example, some studies in RE and
EE rely on Distant Supervision (Chen et al., 2017;
Zeng et al., 2017), which develops their models
based on noisy datasets. Similarly, recent studies
in LLM-based data synthesis also utilize LLM-
generated data to train open-source models (Li
et al., 2023a; Zhang et al., 2023). These studies
demonstrate that LLM-annotated training data are
both valuable and practically useful, although they
are noisy. Therefore, the LLM-annotated training
set provides large-scale, low-cost event annotations
that enable the development of practical EE
systems.

LLM-annotated Valid and Test Set The mean-
ingfulness of LLM-annotated valid and test sets lie
in its ability to reflect the relative performance of
models, both currently and over a recent period,
on large-scale data. From the experimental results
in Tables 3 and 4, the results show that the rela-
tive performance of different models on the LLM-
annotated test sets remains consistent with that on
the human-annotated test sets, despite the presence
of noise in the former one. Besides, the statistic
in Appendix E shows that the LLM-annotated test
set expands the coverage compared to the human-
annotated one.

If more powerful LLMs emerge, we can ob-
serve inconsistent performance between the human-
annotated test set and LLM-annotated test set (i.e.,
higher performance on the former but lower on
the latter). In such a case, the LLM-annotated test
set fails to reflect the relative performance of these
emerging LLMs in real-world scenarios. Therefore,
it would be necessary to update the LLM-annotated
test set to ensure its results are consistent with the
human-annotated test sets.

Human-annotated Test Set Human-annotated
test set serves as the ground truth for evaluating the
performance of all the existing or future EE meth-
ods, and assessing the quality of LLM-annotated
test sets. We conduct all experiments on both the
human-annotated and LLM-annotated test sets.
When more powerful LLMs emerge, improve-
ments in LLM capabilities can be detected through
performance on the human-annotated test set. It
can also serve as an indicator to measure whether
the emerging LLMs are more powerful in the EE
tasks. However, as illustrated earlier, the human-
annotated test sets are limited in the data scale,

34388

https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2024.findings-acl.715
https://doi.org/10.18653/v1/2024.findings-acl.715

which requires more specialized annotators to con-
duct the annotation.

B LLM-based Partitioning Extraction

B.1 Similarity-based Event Type Recalling

ColBERT consists of a BERT (Devlin, 2018) layer,
a convolution layer and an L2 normalization layer.
In this paper, we use CoIBERT(-) to denote the en-
coder. Specifically, the embedding list of all tokens
in a sentence s, hs = [hj, h3,...], is calculated as
follows:

hs = ColBERT([CLS][SENTIs1, S2, ...[SEP]), (1)

where [SENT] is a special token indicating the
object being encoded is a sentence.

For an event type e, the corresponding embed-
ding list of all tokens in the event type name,
he = [h§, hS, ...], is calculated as follows:

he = ColBERT([CLSI[EVENTI|T;[SEP]), (2)

where [EVENT] is a special token indicating the
object being encoded is an event type.

Then, the similarity score between sentence
s and event type e is computed as the sum of
the maximum similarity between the token em-
beddings in sentence and event type: p(s.) =
3., maxp, (¢, h?).

A similar margin loss to CDEAR is adopted for
training, which ensures that the best candidate is
scored higher than all negative samples.

1
L= Z D max{0, (7 = max pie) + Pe-))}-)

Based on the similarity score, we can get k can-
didate event types for each sentence.

C Experiment

C.1 Bias Analysis

Due to the dual use of both annotating and extrac-
tion stages, we analyze the potential biases from
each stage.

C.1.1 Annotation Stage

To assess whether our annotation framework intro-
duces significant pattern biases, we evaluated the
annotation performance on a human-annotated test
set. The F1 scores of the proposed LLM-based
collaborative annotation on this test set are pre-
sented in Tables 3 and 4 (denoted as CA in the first

line), reaching 90.1 in ED and 85.3 in EAE. These
results validate the high consistency between our
collaborative annotation framework and human an-
notations, confirming that our annotation approach
does not introduce substantial annotation biases.

Furthermore, the results in Table 2 demonstrate
that our collaborative annotation framework main-
tains high consistency with human annotations
across all annotation steps. Specifically, we evalu-
ated the F1 scores for each step—Event Type Fil-
tering (ETF), Event Type Refinement (ETR), and
Event Argument Annotation (EAE), which reached
93.2, 96.2, and 85.3, respectively, all exceeding
85%. This further substantiates the robustness of
our method in mitigating annotation biases at each
stage of the process.

C.1.2 Extraction Stage

To examine whether our annotation framework af-
fects the generalization ability of the trained model,
we trained our model using the automatically an-
notated training set and evaluated its performance
on both LLM-annotated and human-annotated test
sets. The results, presented in Tables 3 and 4
, indicate that the performance gap between the
LLM-annotated and human-annotated test sets is
minimal (e.g., for TC, 60.9 in LLM-annotation vs.
59.3 in human-annotation; for AC, 68.7 in LLM-
annotation vs. 65.8 in human-annotation). These
findings suggest that our method does not introduce
any significant bias.

To further evaluate the generalization capabil-
ities of our model and ensure it is not overly re-
liant on biases present in the training data, we con-
ducted evaluations on an unseen dataset with no
biases from the training data. The results in Ta-
ble 5 indicate that our model significantly outper-
forms other annotation LLMs, such as Deepseek-
V3, by an average of 12.9% in TI, Al, and AC.
This demonstrates that our model has developed
a deeper understanding of unseen event schemas
beyond merely capturing the patterns present in the
annotation LLMs, underscoring its strong general-
ization ability in handling complex event extraction
tasks.

C.2 Influence of partitioning strategy

We conduct the experiment on ED to figure out
the influence of the partitioning strategy in Table 7.
Our strategy outperforms IEPLIE?, because we in-

YIEPILE method builds a hard negative dictionary, how-
ever, this method leads to train-test inconsistency in our

34389

corporate the information of the sentence when
recalling the similar event types and ensures con-
sistency between the training and testing phases.
Besides, it demonstrates that the Level strategy
significantly enhances the precision of event extrac-
tion. We hypothesize that sorting samples in de-
scending order of confidence enables the grouping
of the most challenging-to-distinguish event types
into the same partition. This approach facilitates
the model’s ability to learn fine-grained distinctions
between different event types, including their cor-
responding triggers and classifications. Notably,
the inclusion of naturally occurring challenging
negative samples within these partitions allows the
model to better grasp the nuanced boundaries be-
tween similar or ambiguous event categories.

Partitioning strategy TI TC

IEPILE 737 582
Random 743 585
Average 747 58.7
Level 752 593

Table 7: Results with different partitioning strategy.

C.3 Generalization on various backbones

We further evaluate the generalization ability of
LLM-PEE across a range of backbones, includ-
ing different sizes of LLaMA (Al@Meta, 2024)
and Qwen (Team, 2024a). As shown in Ta-
ble 8, under the supervised setting, smaller LLMs
(0.5B/1.5B/3B) achieve performance relatively
close to that of the larger 7B model. This suggests
that with sufficient labeled data, compact models
are able to capture task-specific patterns effectively,
narrowing the gap with larger backbones. In con-
trast, under the zero-shot setting, the performance
disparity between small and large models becomes
much more evident. For instance, the AC score
drops from 30.9 with Qwen2.5-7B to 21.1 with
Qwen2.5-0.5B, while TC decreases from 14.9 to
12.6. This indicates that smaller models, despite
being competitive in supervised scenarios, exhibit
substantially weaker generalization ability when
explicit task-specific supervision is absent.

C.4 Evaluation on Mainstream LLMs

To further evaluate how the mainstream LLMs per-
form on our dataset, we conduct an extra evaluation

dataset. We built the hard negative dictionary and employed
hard negative sampling during the training phase, and during
testing, the ranked samples were randomly allocated to simu-
late the effect of the IEPLIE method as closely as possible.

Supervised Zero-shot

TC AC TC AC

Model

LLM-PEE w.Qwen2.5-0.5B 56.1 61.8 12.6 21.1
LLM-PEE w.LLaMA3.1-1.5B 569 63.6 125 26.5
LLM-PEE w.Qwen2.5-3B 57.1 641 124 272
LLM-PEE w.Qwen2.5-7B 59.9 675 149 309

Table 8: Performance of LLM-PEE with various back-
bones.

Model TI TC Al AC

LLama-3.1-405B 59.6 519 65.1 60.2
Gemini-2.0-flash ~ 60.5 53.1 674 629
Qwen-Turbo 583 497 649 593
Qwen-Plus 61.3 528 67.0 623
Qwen-Max 613 534 675 624
GPT-40-mini 60.1 52.1 674 625
GPT-40 60.6 52.7 67.7 627
Deepseek-V3 61.4 538 683 63.1

Table 9: Results on different mainstream LLMs.

on our human annotation benchmark. We use the
LLAMA3.1-405B-instruct (Grattafiori et al., 2024),
Gemini-2.0-flash (Google, 2024), GPT-40, Qwen-
Max to conduct further evaluation. The results are
listed in 9.

The results suggests that without training, the
mainstream LL.Ms exhibit almost the same anno-
tation and extraction capabilities, which is still a
challenging task for mainstream LLMs. Consider-
ing the effectiveness and efficiency, we employ the
Qwen-Plus, GPT-40-mini and DeepSeek-V3 as the
final annotation LLMs.

C.5 Case Study

We further analyze whether more fine-grained
event type can be predicted based on the EEMT,
we randomly selected a subset of examples from
the test set for verification. As shown in Table 10,
we observed that compared to the original GLEN
dataset, when trained on the EEMT, the model pre-
dictions shifted from “Assessment” to “Risk As-
sessment” and from “Occupation” to “Military oc-
cupation”, which better aligns the sentence. Upon
analyzing the training data, we find that the key is
the increase in the number of corresponding events
in the train set, the number of “Risk assesement”
increases from 0 to 5, and the number of “Military
occupation” increases from 1 to 4, which results in
more accurate fine-grained event predictions.

34390

Context

‘ Predictions

In the most recent Third Assessment Report (2001), IPCC wrote there is new and stronger evidence
that most of the warming observed over the last 50 years is attributable to human activities.

GLEN: Assessment
EEMT: Risk Assessment

The occupying armies existing in german territory will end soon.

GLEN: Occupation
EEMT: Military Occupation

Table 10: Comparison of the prediction results across different datasets.

Model TI TC Al AC
IEPILE 729 724 699 682
KnowCoder 73.1 723 709 68.6
LLM-PEE 733 726 71.3 692

Table 11: Results under the supervised evaluation in
ACE 2005.

C.6 Supervised Evaluation on other dataset

Considering the generality of LLM-PEE on other
datasets, we apply LLM-PEE on the supervised
setting in the dataset ACE 2005 in Table 11. Com-
pared to other fine-tuned methods, LLM-PEE
achieves state-of-the-art performance. However,
the margin of advantage is narrower than when ap-
plied to the EEMT dataset, which contains a signifi-
cantly larger number of event types. This reduction
in relative performance can be attributed to the core
design philosophy of our model, which primarily
focuses on addressing the challenges posed by long
prompts resulting from massive event types. When
applied to datasets with fewer event types, such
as ACE 2005, the inherent advantages of LLM-
PEE are somewhat diminished, as the problem it
was specifically designed to tackle becomes less
pronounced.

D Annotation Details

D.1 Annotation Setting

We use the DeepSeek-V3 (DeepSeek-Al et al.,
2024), Qwen-Plus (Team, 2024b) and GPT-40-mini
as the annotation LLMs on web-based API services,
costing approximately $500. In terms of licensing
for using LLMs to conduct annotation, GPT-40-
mini is governed by the OpenAl Proprietary Li-
cense >, DeepSeek-V3 * follows the MIT License,
and Qwen-Plus is governed by the Qwen License °.
All three licenses permit the use of these LLMs

as annotation tools for the development of non-

3https://openai.com/policies/row-terms-of-use
“https://deepseeklicense.github.io

commercial datasets. Considering the accuracy of
the annotation and the divergence of the answers,
we set the temperature to 0.5. Besides, we set an
answer detection mechanism, if the obtained result
can not be correctly parsed, the model is required to
annotate the events again. Following GLEN (Zhan
et al., 2023), the annotation corpus are AMR Anno-
tation Release 3.0 ® and OntoNotes Release 5.0 7
from LDC (Linguistic Data Consortium), each of
which has specific licenses for access and usage.

D.2 Prompts Examples

We introduce the prompts we used in the Col-
laborative annotation framework including Event
Triggers Filtering, Event Type Refinement and
Event Argument Annotation (two-stage) in Ta-
ble 13, 14, 15 and 16.

D.3 Voting Strategies Details

After different stages, we employ different vot-
ing strategies. Considering that we employ ma-
jority voting, an odd number of annotating LL.Ms
is needed. In this paper, we take three LLMs as
an example, and it can be easily adapted to more
annnotating LLMs.

For voting after Event Trigger Filtering, each
LLM independently judges the validity of each trig-
ger. For example, in a three-LLM voting scenario,
if there are more than two LLMs that consider the
event to be reasonable, it will consider the event to
be reasonable.

For voting after Event Type Refinement, we tally
and vote on the most potential event type identified
by each LLM, selecting the event with the highest
number of votes as the corresponding fine-level
event. In cases where a tie occurs (e.g., LLM1:
A, LLM2: B, LLM3: C), we apply a repeated
voting procedure until one type secures a majority
(e.g., LLM1: A, LLM2: B, LLM3: B). We set
the maximum number of voting rounds at five to
prevent excessive iterations. However, in practice,
ambiguous potential events were typically limited

Shitps://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwehttps://catalog.ldc.upenn.edu/LDC2020T02

%20LICENSE%20AGREEMENT

"https://catalog.ldc.upenn.edu/LDC2013T19

34391

Data Source Cases Event Mentions Argument Mentions

Train 187,468 158,005 430,629
Dev 10,359 6,465 18,459
Test 10,627 6,379 16,768
Human Annotation 1,500 973 2,546

Table 12: The detailed statistics of EEMT.

to two or three, with most reaching a definitive
outcome within two voting rounds.

For voting after Event Argument Annotation,
since each role corresponds to a list of arguments,
we first count the length of the argument list from
different annotations, (e.g., LLM1: [A, B], LLM2:
[A, C], LLM3: [C, D]) and set 2 as the true length
of the argument list for this role because most of
the annotations support that there are 2 arguments
corresponding to this role. Then, we check each ar-
gument in the annotations (e.g., A, B, C, D). Since
A and C receive more than half of the votes, we
consider A and C as valid arguments and discard B
and D. In extreme cases, if the length of argument
list after voting does not match the true length of
the argument list (e.g., LLM1: [A, B], LLM2: [A,
C], and LLM3: [A, D]), the voting result is [A],
and the length of argument list is 1, which does not
match the true length of the argument list 2. We as-
sume this case as a hard case, and we provide three
LLMs’ annotations to GPT-40 for re-annotation
using the prompt in Table 14. However, this situa-
tion occurs infrequently (less than 5% of instances),
and most roles are not annotated by 3 different ar-
guments in a single instance. Therefore, we do
not overly rely on GPT-40. The offset alignment
prompt with multiple input are listed in Table 17.

E Dataset Statistics

E.1 The split of dataset

We introduce the spilt of our dataset in this section.
For the train/dev/test set, we follow GLEN’s 90/5/5
setting, besides, to further improve the quality of
our dataset. We manually annotate 1,500 cases as
the human annotation set.

E.2 Arguments Distribution

Furthermore, we analyze the distribution of argu-
ment in Figure 4 and categorize the role types into
five broad classes: “agent”, “entity”, “location”,
“purpose”, and “others”. Agent, location, and entity
are the three most frequently occurring argument
roles, aligning with real-world distributions. This

alignment facilitates knowledge sharing of simi-

m Agent
N Location
= Purpose
= Entity
s Other

Other

Entity

Agent
Purpose

Location

Figure 4: The argument distribution in our dataset.

lar roles across different event schemas, thereby
reinforcing the validity of our dataset construction.

F Prompt for Training

We present examples of training prompts for both
EAE and ED task, including instruction and com-
pletion in figure 5 and 6.

More specifically, we employ the same Python
class style prompt with KnowCoder (Li et al.,
2024), which includes the schema and instruction.
Besides, we use the same output representation as
the object of a certain class of event type. Fol-
lowing the KnowCoder, we adopt class comments
to provide clear definitions of concepts, which in-
cludes the event definition and several samples
from the training set. However, while the Know-
Coder uses different schema representation for ED
and EAE tasks, we use the same representation,
which could better facilitate the model understand-
ing about a certain event type.

34392

PROMPT FOR EVENT TRIGGER FILTERING.
Identify Reasonable Propbank Event Annotations in a Sentence

Task Overview: Your goal is to determine which **Propbank event annotations** are reasonable
for the given sentence. If an annotation aligns with the context and semantics of the sentence, it is
considered reasonable. Output the reasonable annotations in the specified format. If no reasonable
annotations are found, output “None of them.”

Guidelines:

1. **Understanding Event Annotations**: Each Propbank event annotation consists of two parts: the
event trigger ** (outside the parentheses) and the **Propbank event type (inside the parentheses).
The trigger word is the specific word in the sentence that activates the event, while the Propbank
event type defines the semantic category of the event. For example, in ‘robbery(rob.01)‘, "robbery" is
the trigger, and ‘rob.01° is the Propbank event type. Ensure you understand both components when
evaluating the reasonableness of the annotation.

2. **Event Annotation Analysis**: Review the definitions and usage patterns of the Propbank event
annotations provided. Understand their semantic boundaries and structural characteristics.

3. **Sentence Context Evaluation®**: Assess whether the sentence provides sufficient context to support
each Propbank event annotation. Consider whether the verb or action described in the sentence matches
the annotation’s definition.

4. **Reasonableness Assessment**: Check if the Propbank event annotation is used appropriately in
the given context and whether it matches the event definition in a clear and complete manner.

5. **Adverb/Adjective Trigger Exclusion**: Be aware that some adverbs, adjectives, or partial
verbs may be annotated as triggers by Propbank, leading to the generation of events. However, these
annotations may not align with how humans typically define events. Such cases should be considered
unreasonable and excluded from the final output.

Output Format:
Adhere to the specified format for clarity and consistency. Follow the **Example Output Format** to
provide the **Reasonable Annotations** and **Reasoning**.

Example

Input: **Sentence™*: Generosity is voluntarily giving money on your own free will.

Propbank Annotations: ‘voluntarily(volunteer.01)*

Output:

Reasonable Annotations: None

Reasoning:

The event ‘voluntarily(volunteer.01)* is not reasonable because "voluntarily" is an adverb describing the
manner in which the action of giving occurs. It does not represent an event or action itself but rather
modifies the act of generosity.

Input

Sentence: Five years ago they were negotiating with Milosevic at Dayton to stop the war.
Propbank Annotations: ‘negotiating(negotiate-01)°, ‘war(war-01)°

Output

Table 13: Prompt for Event Trigger Filtering.

34393

PROMPT FOR EVENT TYPE REFINEMENT.
Identify the Event Type Based on the Trigger Word

Task Overview: Your goal is to determine whether the given trigger matches any of the listed event
types. If a match is found, output the serial number of the corresponding event type. If no match is
found, output the last option.

Guidelines:

1. **Event Type Analysis:** Thoroughly review the definitions of all listed event types to grasp their
semantic boundaries and structural characteristics.

2. **Trigger Evaluation:** Assess whether the trigger word aligns with the semantic and contextual
requirements of any event type. If the trigger does not align with any event type, output the last option.
3. **Contextual Validation:** Analyze the sentence in which the trigger word appears to ensure the
match is precise and meaningful.

4. **Context Reasonableness Analysis:** Check if the trigger word is used appropriately in the given
sentence and whether it matches the event definition in a clear and complete manner.

5. **Annotation Accuracy Evaluation:** Assess whether the annotation of the trigger word is reasonable
based on the event definition and sentence.

6. **Output Format:** Adhere to the specified format for clarity and consistency. Follow the Example
Output Format to provide the Event Type and Reasoning.

Example

Input: **Event Types**: A. state_crime: crime perpetrated by a sovereign state
B. war_crime: serious violation of the laws of war

C. crime: unlawful act forbidden and punishable by criminal law

D. corporate_crime: crimes committed either by a corporation or its representatives
E. environmental_crime: illegal act which directly harms the environment

F. ethnic_cleansing: systematic removal of a certain ethnic or religious group

G. alcohol-related_crime: criminal activities that involve alcohol use

H. cybercrime: any crime that involves a computer and a network

I. criminal_case: investigation case under criminal law

J. None of them.

Trigger: crime

Sentence: this is not because their race or culture is wrong or bad in any way, it ’s simply a fact
that certain groups have higher rates of crime.

Output: **Event Type**: C

Reasoning: The trigger word "crime" aligns with the core semantics of the crime event type (Event
Type C). The context discusses crime in general terms without specifying a sovereign state (state_crime),
war-related violations (war_crime), or any specific subtype such as corporate, environmental, or
cybercrime. Thus, it best fits the generic "crime" definition.

Input **Event Types**:

A. negotiation: dialogue between two or more people or parties intended to reach a beneficial outcome
B. parley: type of diplomatic meeting held between enemies

C. None of them.

Trigger: crime

Sentence: Five years ago they were negotiating with Milosevic at Dayton to stop the war.

Output

Table 14: Prompt for Event Type Refinement.

34394

PROMPT FOR EVENT ARGUMENT ANNOTATION.
Annotating the Event Arguments based on the Schema.

Task Overview: Your goal is to identify and annotation the arguments related to a specific event type
in the given text. Each event type has specific roles (arguments), and you are required to annotation the
arguments according to the provided event type and its corresponding argument roles. Do not introduce
new roles or categories that are not part of the given event type and argument roles.

Guidelines:

1. **Understand Event Type and Argument Roles:** Before starting the annotation process, make sure
you understand the provided event type and the roles (arguments) associated with it. Do not assume
new roles or make connections outside the given structure. Only use the roles provided in the event type
definition.

2. **Exact Match with Roles:** Each argument should align directly with one of the provided roles. For
example: - If the event type is **Attack Event**, the roles are **Agent**, **Target**, **Location**,
Time, **Cause**, and **Method**. You must only annotate arguments that fall under these
categories. Do not annotate anything as **Purpose** or any role not explicitly listed.

3. **Contextual Accuracy:** Ensure that the arguments labeled in the text match the defined roles and
are appropriate for the context. The roles should be matched based on both the meaning and the context
of the text.

4. **Multiple Entities per Role:** Some roles may correspond to multiple entities. For example,
Agent could involve more than one person or entity (e.g., ‘[’A’, ’B’]). In such cases, include all
relevant entities under the role.

5. **Qutput Format:** Provide the annotated arguments in the following JSON format. Ensure that the
roles and arguments strictly correspond to those defined for the given event type.

Example

Example Input:

Bvent Type: creation

**BEvent Description: ** process during which something comes into being and gains its characteristics
Trigger: create

Argument Roles: agent_creator, result_thing_created, material_materials_used, location
**Sentence: ** they create a market for themselves .

Example Output:

“‘json {

"agent_creator": ["drug pushers"],

"result_thing_created": ["market"],

"material_materials_used": [],

"location": [],

}

el

json

Input

Event Type: parley

BEvent Description: type of diplomatic meeting held between enemies

Trigger: negotiating

Argument Roles: Negotiator, Other party, Location

**Sentence: ** Five years ago they were negotiating with Milosevic at Dayton to stop the war.

Table 15: Prompt for Event Argument Annotation.

34395

PROMPT FOR EVENT OFFSET ALIGNMENT.

Refining the Annotation with the Rules

Task Overview: You will be provided with an initial event argument extraction result. Your task is to
analyze this result according to the given annotation rules. Based on the rules, you will need to ensure
the arguments are correctly selected or re-generate the correct extraction if necessary. The final output
should be a **single JSON** string containing the event arguments, formatted according to the rules.

Rules for Evaluation and Modification:

1. **Logical Consistency:** - Ensure that each argument logically participates in the event. For
example, the **Agent** typically refers to the entity executing the trigger, while the **Entity** refers
to the recipient or affected party of the trigger.

2. **Accuracy of Extraction:** - Arguments must be extracted concisely and clearly. If a role is
extracted as "A and B," it should be represented as ‘["A", "B"]‘ rather than a combined form. - Avoid
redundancy or unnecessary details. - The arguments must be extracted from the context.

3. **Conciseness:** - Arguments should be represented as single words or phrases. If the extraction
includes a sentence, reduce it to the smallest meaningful segment (e.g., remove unnecessary words like
"that").

4. **Avoid Redundant or Overlapping Arguments:** - Check for any overlapping or redundant
arguments. If an overlap exists, determine whether it is logical or whether one of the arguments should
be removed or merged.

5. *¥*Argument Selection:** - Use the provided **Input** to determine which argument is the most
accurate or appropriate for each role. - In cases where the input is not fully accurate, modify or
re-generate the argument extraction to match the correct role.

6. **Final Output Format:** - Provide the final output in **JSON format**, with each event role and
its arguments clearly defined. Do not include the event type or trigger word.

Example:

Example Input:

Bvent Type:

- **BEvent Type:** Attack

- **Event Definition:** action to injure another organism

Bvent Trigger: attacked

BEvent Roles Definition:

- **Roles:** Agent, Location, Time, Target

Sentence: John and Sarah attacked the enemy base at night.

Input:

{ "Agent": ["John and Sarah"], "Target": ["the enemy base"], "Time": ["at night"], "Location": ["the
enemy base"] }

Example Output:

{ "Agent": ["John", "Sarah"], "Target": ["enemy base"], "Time": ["night"], "Location": [] }

Input

Bvent Type:

- **BEvent Type:** parley

- **BEvent Definition:** type of diplomatic meeting held between enemies

Event Trigger: negotiating

Event Roles Definition:

- **Roles:** Negotiator, Other party, Location

**Sentence: ** Five years ago they were negotiating with Milosevic at Dayton to stop the war.
Input: {

{ "Negotiator": ["They"], "Other party": ["Milosevic"], "Location": ["at Dayton"], }

Output

Table 16: Prompt for Event Offset Alignment.

34396

PROMPT FOR EVENT OFFSET ALIGNMENT WITH MULTIPLE INPUT.

Task Overview: You will be provided with three initial event argument extraction results, named
Inputl **, **Input2, and **Input3**. Your task is to analyze and combine these results according
to the given annotation rules. Based on the rules, you will need to choose the most appropriate argument
for each role or re-generate the correct extraction if necessary. The final output should be a **single
JSON** string containing the event arguments, formatted according to the rules.

Rules for Evaluation and Modification:

1. **Logical Consistency:** - Ensure that each argument logically participates in the event. For
example, the **Agent** typically refers to the entity executing the trigger, while the **Entity** refers
to the recipient or affected party of the trigger.

2. **Accuracy of Extraction:** - Arguments must be extracted concisely and clearly. If a role is
extracted as "A and B," it should be represented as ‘["A", "B"]‘ rather than a combined form. - Avoid
redundancy or unnecessary details.

3. **Conciseness:** - Arguments should be represented as single words or phrases. If the extraction
includes a sentence, reduce it to the smallest meaningful segment (e.g., remove unnecessary words like
"that").

4. **Avoid Redundant or Overlapping Arguments:** - Check for any overlapping or redundant
arguments. If an overlap exists, determine whether it is logical or whether one of the arguments should
be removed or merged.

5. **Argument Selection:** - Compare **Inputl **, **Input2**, and **Input3** to determine which
argument is the most accurate or appropriate for each role. If there is disagreement, use the rules to
guide which argument should be selected. - In cases where none of the inputs is fully accurate, combine
or re-generate the most accurate argument extraction.

6. **Final Output Format:** - Provide the final output in **JSON format**, with each event role and
its arguments clearly defined. Do not include the event type or trigger word.

Input Format: You will be given: - **Inputl, Input2, Input3:** Three JSON objects containing the
initial event argument extractions. - **Event Roles Definition:** A list of roles defined for the event
(e.g., Agent, Target, Location, etc.). - **Context:** The original text from which the arguments are
extracted.

Output Format: A **single JSON object™* with the final, modified extraction, including the most
accurate and logically consistent arguments for each role.

Example:

Input:

BEvent Roles Definition: - **Roles:** Agent, Location, Time, Target

Context: "John and Sarah attacked the enemy base at night."

*Inputl:** “‘json "Agent": ["John"], "Location": ["enemy base"], "Time": ["at night"], "Target": []
**Input2:*¥* “‘json "Agent": ["John", "Sarah"], "Location": ["enemy base"], "Time": ["night"], >
Input3: “‘json "Agent": ["John and Sarah"], "Location": ["enemy base"], "Time": ["night"],
?? FEQutput:** “‘json "Agent": ["John", "Sarah"], "Location": ["enemy base"], "Time": ["night"],
"Target": [] ™

**Explanation: **

-The Agent role was chosen as ["John", "Sarah"] since both individuals participated in the action.
-The Location and Time were correctly extracted as "enemy base" and "night," respectively. -The Target
role remains empty as no direct target is mentioned in the context.

999

Table 17: Prompt for Event Offset Alignment with multiple input.

34397

instruction

[

class Event:

The base class for all events.
wan
def __init__(self, trigger: str, arg_names, *args):
self.trigger = trigger
self.arguments = {}
for arg_name, arg_values in zip(arg_names, args):
self.arguments[arg_name] = arg_values

VWO UEWN

class Writing(Event):
Description: activity of composing a text, narrating through writing
Examples: written, writer, Write, writes, Writers, writ, writings
def __init__(self, trigger: str, arg_names, *args):
arg_names = ["writer", "thing_written", "benefactive", "location"]
super().__init__(trigger = trigger, arg_names = arg_names, *args)
class Web_writing(Event):
Description: online writing

Examples: written, writer, Write
wan

def __init__(self, trigger: str, arg_names, *args):
arg_names = ["writer", "thing_written", "benefactive", "location"]
super().__init__(trigger = trigger, arg_names = arg_names, *args)

class Script(Event):
Description: style of handwritten language
Examples: script, scripting, scripted, scripts
wun
def __init__(self, trigger: str, arg_names, *args):
arg_names = ["writer", "thing_written", "benefactive", "attribute_of_arg_l1", "location"]
super().__init__(trigger = trigger, arg_names = arg_names, *args)

class Write_off(Event):
Description: reduction in recognized value of an entity
Examples:write down, write
wun
def __init__(self, trigger: str, arg_names, *args):
arg_names = ["changer_of_monetary_value", "thing_with_value", "amount_of_change",
"old_high_value", "new_lower_value", "location"]
super().__init__(trigger = trigger, arg_names = arg_names, *args)

This is an object-oriented programming task from Dataset others: Some Event Classes are defined

above. Please instantiate all the corresponding Event Objects in the following sentence.
wun

sentence = "Who wrote the hymn ‘‘ Amazing Grace '' ?"
completion

results = [
Writing(trigger = "wrote")
55 1]

Figure 5: An example of training data in ED task.

34398

instruction

class Entity:

The base class for all entities.
wan
def __init__(self, name: str):
self.name = name
class Event:

The base class for all events.

def __init__(self, trigger: str):
self.trigger = trigger

class Departure(Event):
wun
Description: act of departing or something that has departed
Examples: Examples:Departed, departure, departs, departed, depart, departing, Departing

def __init__(self, trigger: str, arg_names, *args):

arg_names = ["entity_leaving", "departed_from", "departed_for", "location"]
super().__init__(trigger = trigger, arg_names = arg_names, *args)

wan
This is an object-oriented programming task: Some Event Classes are defined above. Please

instantiate all the corresponding Event Objects in the following sentence. It is important to note
that the triggers of the events are confirmed as follows: "departing" is the trigger of event type

"departure".
wun

sentence = "Former President Clinton drew cheers from admirers at a US Air Force base outside
Washington today before departing for his home in New York , and although Mr. Clinton is out of
office , he says he 'll still be around ."

completion
results = [

Departure(trigger = "departing",
entity_in_motion = [Entity("Former President Clinton")],
starting_point_location_vacated = [Entity("US Air Force base outside Washington")],
destination_must_also_be_a_location = [Entity("New York")])

Figure 6: An example of training data in EAE task.

34399

