* STARQA: A Question Answering Dataset for Complex Analytical
Reasoning over Structured Databases

Mounica Maddela', Lingjue Xie', Daniel Preotiuc-Pietro', Mausam?*
'Bloomberg
2Yardi School of Artificial Intelligence, Indian Institute of Technology, Delhi

{mmaddela3,1xie91,dperotiucpie}@bloomberg.net, mausam@cse.iitd.ac.in

Abstract

Semantic parsing methods for converting text
to SQL queries enable question answering over
structured data and can greatly benefit ana-
lysts who routinely perform complex analyt-
ics on vast data stored in specialized relational
databases. Although several benchmarks mea-
sure the abilities of text to SQL, the com-
plexity of their questions is inherently lim-
ited by the level of expressiveness in query
languages and none focus explicitly on ques-
tions involving complex analytical reasoning
which require operations such as calculations
over aggregate analytics, time series analysis
or scenario understanding. In this paper, we
introduce STARQA, the first public human-
created dataset of complex analytical reason-
ing questions and answers on three specialized-
domain databases. In addition to generat-
ing SQL directly using LLMs, we evaluate a
novel approach (TEXT2SQLCODE) that de-
composes the task into a combination of SQL
and Python: SQL is responsible for data fetch-
ing, and Python more naturally performs rea-
soning. Our results demonstrate that identify-
ing and combining the abilities of SQL and
Python is beneficial compared to using SQL
alone, yet the dataset still remains quite chal-
lenging for the existing state-of-the-art LLMs.

1 Introduction

Text to SQL semantic parsing approaches enable
intuitive and efficient human interaction with struc-
tured databases through natural language queries.
They alleviate the need for the user to fully com-
prehend the underlying DB schema or the query
language used to answer their question. Large lan-
guage models (LLMs) exhibit very good perfor-
mance in this task in constrained settings, measured
by over 90% execution match accuracies on pop-
ular data sets such as Spider (Yu et al., 2018) and
WikiSQL (Zhong et al., 2017).

*Most of the work was done when the author was on a
sabbatical at Bloomberg.

An important user base for these methods can
be analysts whose goals are to perform analyses
involving complex analytics that require reason-
ing over large, proprietary datasets, in order to
obtain quantitative insights that can drive data-
driven decision making. Examples include eco-
nomic analysts deciding on a country’s policies,
financial analysts making investment decisions, op-
erations researchers that improve business opera-
tions or data-driven sports analysts making match
or acquisition strategies. It is estimated that about
52% of professional developers regularly use SQL,
and over one-third must run very complex queries
efficiently (StackOverflow, 2023; PremAl, 2024).
However, almost all of the 36 benchmark datasets,
surveyed in Liu et al. (2024), contain less than two
select clauses (suggesting lack of nested queries
and complex set operations) and less than one math-
ematical, scalar or aggregation function per query.

In response, we introduce a novel dataset
STARQA — Structured Data Analytics &
Reasoning Question Answering. It contains 362
realistic complex analytics and reasoning questions
and answers over publicly available databases
from three domains — movies (IMDb), sports (ES),
and E-commerce (OL). Each question requires
one or more types of reasoning, such as math
operations, time-series analysis, nested queries,
calculations over aggregate analytics, temporal
reasoning, and scenario understanding. Table 1
illustrates examples of questions in STARQA and
their categories.

The types of reasoning in STARQA raise a ques-
tion about whether SQL syntax alone is the best
choice for obtaining the correct answer. Cases that
require operations such nested loops, complex con-
ditional logic or data manipulation can lead to very
complex SQL syntax and long queries, which can
be cumbersome for a model to generate.

We propose TEXT2SQLCODE as a potential so-
lution to decompose the task in multiple steps that

34487

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 34487-34499
November 4-9, 2025 ©2025 Association for Computational Linguistics

interweave SQL for efficient data operations over
databases and Python code for operations that are
too burdensome to achieve using SQL, such as
performing analytics, data wrangling and compu-
tations. A challenge of this solution approach is
its multi-step nature that can lead to compound-
ing errors. Thus, we explore its hybrid variants,
where we apply TEXT2SQLCODE only on the sub-
set of difficult reasoning questions as automatically
identified through the Text2SQL parser’s outputs.
We extensively benchmark recent open-weight
and commercial LLMs, including reasoning mod-
els, on STARQA. Results show that STARQA is
challenging for all methods and models tested,
with the median performance (across six LLMs)
of a standalone Text2SQL model reaching only
36.5% execution accuracy. However, our best per-
forming hybrid approaches (HYBRIDg;, 41 and Hy-
BRID,,,,,i#;) achieve improved performance on this
task and significantly outperform Text2SQL, with
median performance of 45.4% and 44.5% respec-
tively. We also find that most of our questions
cannot be solved by existing LLMs with access
to web search tools — reinforcing the unique po-
tential of large-scale, rich and potentially private
proprietary structured data. Finally, our analyses
highlight the nature of the errors and suggest di-
rections for future research in building stronger
reasoning systems over structured databases. We
release STARQA publicly and freely for research.

2 Related Work

Semantic parsing techniques convert natural lan-
guage inputs into formal representations, such as
A-calculus for robotics (Williams et al., 2018), SQL
for structured databases (Katsogiannis-Meimarakis
and Koutrika, 2023), SPARQL for KBs (Patidar
et al., 2024), Cypher for graph data (Ozsoy et al.,
2025), and other low-resource languages for spe-
cific applications (Dutta et al., 2024). While our
dataset is specific to SQL, our methods and obser-
vations could be more generally applicable.

The latest Text2SQL systems obtain nearly 90%
performance on popular benchmarks that study
constrained settings of the task such as WikiSQL?
and Spider.?> Various benchmarks highlight chal-
lenges in specific domains such as finance (Sen
et al., 2020), accounting (Kumar et al., 2024) and
science (Zhang et al., 2023). Other works study

1https://zenodo.org/recordsﬂ7157169

2https://github.com/salesforce/WikiSQL
3https://yale-1ily.github.io/spider

generic notions of complexity such as variety in
SQL dialects and interaction with real-world en-
terprise databases (Lei et al., 2024), complex and
large database schemas (Li and Jagadish, 2014; Sen
et al., 2020), issues with entity linking (Wang et al.,
2022), and use of external knowledge (Li et al.,
2021). After surveying 36 benchmark datasets for
Text2SQL, Liu et al. (2024) identify reasoning as a
key underexplored aspect of the task. STARQA is
developed to bridge this gap.

Most related, Archer (Zheng et al., 2024) con-
tains questions on arithmetic, commonsense, and
counterfactual reasoning; however, they can all
be solved by the basic SQL language and do not
require any procedural extensions or scripting lan-
guages. This limits the overall complexity of the
questions — they do not require string manipula-
tions, complex cell processing, or statistical func-
tions — some of the features of STARQA. SPIDER
2.0 (Lei et al., 2024), on the other hand, combines
many levels of complexity in its questions on real-
world enterprise databases and is best suited for de-
veloping a complete agentic workflow with multi-
ple components. However, it is not an ideal dataset
for evaluating analytical reasoning abilities and is
not annotated with nature of reasoning required.

The main LLM-based approach for Text2SQL
systems (Shi et al., 2024) includes building schema
and entity linkers (Wang et al., 2025b) whose out-
puts, along with retrieved exemplars (Gurawa and
Dharmik, 2025), are input to an LLM for SQL
generation. CoT prompting (Tai et al., 2023), self-
consistency over multiple generations (Sun et al.,
2023), self-correction (Pourreza and Rafiei, 2023),
and iterative repair (Sawhney et al., 2025) are also
used to improve generation quality.

Our proposed solution is influenced by the rapid
progress in code generation systems (Zan et al.,
2023), and investigates whether SQL and Python
can be effectively combined. To the best of our
knowledge, there is limited exploration of this syn-
ergy in literature. TPTU (Ruan et al., 2023) studies
this but with somewhat artificial prompts where,
often a simple mathematical operation (e.g., log
or factorial) is applied over a statistic outputted by
an SQL query. Another work (Sui et al., 2023) as-
sesses Text2Python as an alternative to Text2SQL,
but finds that former performs worse, primarily be-
cause of high generation length requirements. It
does not explore their combination.

Our approach is also related to table-augmented
generation (Biswal et al., 2024) where SQL results

34488

https://zenodo.org/records/17157169
https://github.com/salesforce/WikiSQL
https://yale-lily.github.io/spider

are provided in context, for LLMs to generate a
final answer. This succeeds only when SQL outputs
are short, and processing post-SQL is limited. It
does not study combinations with other languages.

3 The STARQA Dataset

We create a new dataset to study complex analytical
reasoning question answering over SQL databases.
The dataset is built to contain questions that require
one or more of the categories described in Table 1.
The STARQA dataset consists of the following: (1)
questions, (2) their answers, (3) categories required
to answer a question, and (4) reference code used to
obtain the gold answer. The code is only presented
as a reference to verify the answer and is not used
in any experiments in this paper.

3.1 Databases

To create STARQA, we use three complex and
large databases from the movies, sports, and E-
commerce domains. We use only three DBs so that
data creation is invested primarily on creating a di-
verse set of questions with depth in reasoning and
analytics, which is the goal of this dataset. This
can be achieved only if the annotators understand
the data, the domain and DB organization deeply
enough to ask and answer interesting questions,
limiting the number of databases we can scale to.
As constructed, we expect STARQA to be useful
primarily for development and evaluation, not for
training.

IMDb. This database” is provided by IMDb and con-
tains historical information about over 10 million
movie titles, including TV series, their crews, bio-
graphical information about crew members, movie
ratings on IMDb and number of votes. In total, the
IMDb database has 7 tables, with a table having up
to 9 columns and a total of 11 million rows.

ES. This database>® consists of soccer (football)
statistics from the top-flight leagues of 11 Euro-
pean countries between 2008 and 2016. In total,
the database includes information on over 25,000
matches, 10,000 players, their attributes, match
events, line-ups, formations and betting odds. In
total, the database has 16 tables, with tables having
up to 115 columns and 26,000 rows.

4https://developer.imdb.com/non—commercial—datasets/
5https://www.kaggle.com/datasets/hugomathien/soccer
6https://www.kaggle.com/datasets/jie112004/soccer

OL. This database’ consists of 100k orders from
the Olist - online store in Brazil, from 2016 to
2018. It provides a multi-dimensional view of or-
ders, including information on order status, price,
payment, freight performance, customer location,
product attributes, and customer reviews. In total,
the database has 9 tables, with tables having up to
9 columns and 112,000 rows.

3.2 Dataset Creation

STARQA is manually created in its entirety by the
authors of the paper, who all have training and
experience in programming and NLP, intermediate
or higher knowledge of SQL, advanced knowledge
of Python, obtained advanced knowledge of the
databases and their structure, and have a personal
interest in the domains represented in the dataset.

Our aim is to build a dataset of questions that are
both realistic, akin to those that an analyst work-
ing with these databases may ask, and that cover
as many of the complex analytical reasoning cate-
gories described in Table 1 as possible.

We first start by selecting, for each database, the
categories of questions that would be natural to the
domain and the underlying database structure. Af-
ter all questions were written, these were reviewed
by the other authors and edited until they satisfied
the following criteria: correctness (the question-
answer pair is syntactically and semantically cor-
rect), credibility (if the question is one an analyst
might ask), specificity (lack of ambiguity in the
information that is requested) and clarity of the
expected output and its format.

We construct the STARQA dataset to facilitate
exact automatic evaluation of the performance of
systems. Each question clearly states the expected
returned fields, and the precision of the numbers
in case a fraction or percentage is expected. The
answer to each question is formatted in a canonical
format represented by a list of tuples, with each
item in the list representing a correct answer to the
question. Each question can have no answer, one
unique answer tuple or more. Each tuple may have
one or more constituents — no specific order for
them is imposed within a tuple, and set-match is
used for evaluation. We also aim to limit ambi-
guities in question formulation wherever possible,
such that no model is penalized for picking differ-
ent interpretations e.g., we replace Find the actor
with Find the actor, male or female. While these

7https://www.kaggle.com/datasets/olistbr/
brazilian-ecommerce

34489

https://developer.imdb.com/non-commercial-datasets/
https://www.kaggle.com/datasets/hugomathien/soccer
https://www.kaggle.com/datasets/jiezi2004/soccer
https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce
https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce

Category

Example

Stat./Math. Operations

Analytics over Non-entries
in Database

Nested Queries

String Manipulation
Calculations over Aggre-
gate Analytics

Complex Columns
Temporal Reasoning
Complex Filtering

Unit Conversions
Scenario Understanding
Time Series Analysis

Commonsense Knowledge

Is there a statistically significant correlation (use Spearman’s) between a movie’s runtime and its average rating?
What is the most common uncased prefix (first 3 characters) across all movie titles released in the 1990s, removing
any preceding articles (a, an, the)?

Find the actor/actress with the most appearances in movies that are in the top 10% by rating every decade.
Which movie title has the highest number of distinct characters (ignoring case and spaces)?

Percentage (no decimals) for a team to win the league if they are 3 points or more ahead of all the other teams at
the end of January

Identify the most popular co-occurring genre pairs among TV series

Print the number of directors that got an 9.0 rating for their debut in 1980s.

Which director has directed movies in at least ten different languages and has an average movie rating above 8.5?
How many years would it take to watch every movie in the database?

Which teams that won the league would not have won it if a win would have been only 2 points.

Teams in the English Premier League that lost four matches in a row after winning four in a row.

The longest number of months either team name was undefeated in the Old Firm between 2008-2016?

16
55
18

Table 1: Reasoning categories in STARQA, along with an example and number of questions that exhibit this category.
A question may have multiple categories. Output formatting instructions in the questions are omitted for brevity.

requirements may make the question appear less
natural, they maximize the ability to accurately
benchmark the abilities of a model in answering
the questions correctly.

The goal of STARQA is to measure analytical
reasoning abilities. A common challenge in other
Text2SQL datasets that include reasoning ques-
tions (Lei et al., 2024; Zheng et al., 2024) is entity
linking in a new database and adapting the model
to the new database schema. We consider these
as orthogonal challenges to our goal. In order for
them to have a limited impact in our dataset, we
normalize the mentions of specific entities (e.g.,
actors, league or team names) to a common and
unambiguous name.

The answers to all the questions were obtained
through executing a combination of SQL and
Python code written by the dataset creators that
is released with the dataset. The authors spent, af-
ter data collection and data preparation, on average
between 15 to 30 minutes writing the answer to a
single question.

3.3 Dataset Statistics

Overall, the STARQA dataset consists of 362 data
points, with 100 questions on IMDb, 162 questions
on ES, and 100 questions from Olist. Out of these,
55 questions have a single numerical answer, 8
questions have a null answer, and most questions
(299) have tuples as an answer. The average num-
ber of tuples in an answer is 2.35 (up to 66) and the
average number of constituents in a tuple is 2.43
(up to 8). The distribution over the types of analyti-
cal reasoning categories and example questions are
presented in Table 1.

4~

Text2SQL

) El
question EHEHE
=2 L=
DB schema
+
4
Decomposer

DB: fetch sum of pts per league....
DB: fetch sum of pts until Dec..

Python: compute league winner
Python: compute top 3until Dec

Python: find table 1\ table2
4
Text2Python

Python: return list of teams
Figure 1: The architecture of TEXT2SQLCODE ;144

answer

4 The TEXT2SQLCODE Approach

We propose TEXT2SQLCODE, which combines
the use of text to SQL semantic parser (Text2SQL)
and a Python code generator (Text2Python) for an-
swering the analytical reasoning questions. The un-
derlying insight is that such questions can typically
be split into data fetching and processing or compu-
tation steps. SQL is required for data fetching, as
the data is provided in relational databases. If the
required analytical reasoning is complex, a proce-
dural language (such as Python) may be needed due
to the limited expressiveness of the SQL language
in performing some operations. Consequently, a
split may be desirable, where data fetching, and per-
haps simple processing, is conducted in SQL and
complex processing (if needed) is done in Python.

We operationalize this by designing a three-
step workflow (Figure 1): (1) a decom-
poser, (2) a Text2SQL model, and (3) a
Text2Python model. We implemented two vari-
ants of the workflow: TEXT2SQLCODE,;,,,;+; and

34490

TEXT2SQLCODE;p41c. TEXT2SQLCODE, ;¢4
uses separate LLM calls for each step with specific
prompts and output formats. The LLM outputs
for each step are post-processed for the next step.
In contrast, TEXT2SQLCODE;;,4i¢ uses a single
prompt to perform decomposition and generates
a complete Python function wrapped around the
SQL query. We note that the idea of question de-
composition has been explored within Text2SQL
(Pourreza and Rafiei, 2023; Wang et al., 2025a),
though not in combination with Python.
Decomposer: The goal here is to decompose the
user question into a series of steps, along with an-
notation on whether they are Text2SQL steps or
Text2Python steps. We provide the DB schema
— tables, column types and descriptions, primary
and foreign keys, sample rows per table — in the
prompt. We also provide a handful of positive and
negative exemplars (from another domain, for a fair
comparison with other approaches).

We provide these additional guidelines in the
prompt: (1) Multiple Text2SQL steps should not
be dependent on each other, and should be inde-
pendently executable; (2) Python may be omitted
for simpler questions; (3) Each step should be in
natural language and should be prefixed with ei-
ther “Text2SQL: " or “Python: ". We then ask the
LLM to perform chain of thought and provide its
final output. In Figure 1, the two types of steps
(SQL and Python) in the decomposition are shown
in two separate boxes.

Text2SQL: We generate an SQL query for each
Text2SQL step identified by the decomposer. For
the TEXT2SQLCODE,,,,,;+; approach, a separate
Text2SQL call is made for each identified step. We
provide the database schema and the specific text of
the step. The generated queries are then executed
to fetch data into a dataframe. If the query fails,
we reprompt the LLLM for corrections, up to three
times. For the TEXT2SQLCODE;,4;c, the LLM
directly generates SQL queries that are embedded
within the final Python function, creating a single-
pass solution.

Text2Python: This step handles the complex
analytical reasoning that goes beyond reasoning
abilities. In the TEXT2SQLCODE,,,;; approach,
this step is executed after all the necessary
data has been fetched from the Text2SQL calls.
We construct a prompt with the original user
question, the decomposition, and the shape of each
dataframe generated via the SQL calls from the
previous step. The shape includes the names of

columns and a few sample rows of data (similar
to Maamari and Mhedhbi (2024)). We prompt the
model to generate a single Python function with a
specific signature:

compute_result(listOfDFs:
List[DataFrame]) -> List[Tuplel.

We then run the generated Python code on the
full dataframes retrieved in the Text2SQL step(s).
TEXT2SQLCODE ;4 also implements a similar
Python function with the DB path as the input:
compute_result(db_path) -> List[Tuple].

This function also contains the embedded SQL
queries. For both cases, if the code runs success-
fully, we output the result, else, we reprompt the
LLM for correction (maximum of three times).

We note this framework can be extended by using
retrieval when the DB is too large for the schema to
fit in the prompt or by using an explicit entity link-
ing step. We eschew these in our experiments for
simplicity, as they are not required for STARQA.

4.1 A Text2SQL-Text2SQLCode Hybrid

Our early experiments indicated that LLMs cannot
assess well for which questions to use the decompo-
sition and invoke Python. We thus propose a hybrid
approach where we only run TEXT2SQLCODE
when Text2SQL can not reliably provide a re-
sult. We approximate this by using self-consistency
(Arora et al., 2023) over three runs as a proxy for
question difficulty: if two of the three runs provide
the same answer, that answer is taken as the predic-
tion; otherwise, the TEXT2SQLCODE is invoked
and its answer is taken as the prediction. This sys-
tem should be able to gain meaningfully from the
strengths of both Text2SQL and TEXT2SQLCODE
on more complex questions. We implement two
hybrid variants HYBRID,,,,;¢; and HYBRID gy, g1¢
corresponding to TEXT2SQLCODE,,,;;; and
TEXT2SQLCODE ;5,4 respectively.

5 Experimental Setup

5.1 System Details

As baselines, we use the standalone Text2SQL com-
ponent as described in Section 4, using the same
experimental and task setup. Additionally, we also
implement a self-consistency (Wang et al., 2023)
approach (KText2SQL + SC) where we output
the majority of K answers, or one at random if
there is no majority. For our experiments, we use
K = {3,5}. We test all approaches on a vari-
ety of current state-of-the-art LLMs including both

34491

open- and closed-sourced models, including rea-

soning models. We use the following closed-source

(API) models: Claude 3.7, GPT 4.1, GPT ol, GPT

03-mini with their latest versions as of 14 Septem-

ber 2025, and the following open-weight models:

DeepSeekV3.1 and Qwen2.5. Out of these, GPT

ol and GPT 03-mini are reasoning models. We use

the default temperature for all the models.

Prompts: We construct one prompt for each

database. The prompts are formatted to contain

the following information:

* A description of the task;

* The database schema, including table names, col-
umn names, data types and column definitions;

» Data samples for each table, such that the LLM
is familiar with data types and formats;

* A list of all possible values for all fields contain-
ing categorical data and their description;

* We instruct that the output should be a list of
tuples without any additional names or descrip-
tions, and should not output any additional in-
formation, even if relevant. These instructions
are added to ensure that the output can be auto-
evaluated, as LLMs have a tendency to output
additional information.

The above metadata is provided in order for the
model to obtain as much grounding in the data
schema and values as possible. All prompt tem-
plates from our experiments are in the supplemen-
tary material.

5.2 Evaluation Metrics

We test all our approaches on accuracy of execution
by running the generated code and comparing the
outputs with the reference answer. The output for-
mat (list of tuples) is consistent across all questions
and is provided as instructions in the prompt. A
manual inspection of the output of the model shows
this format is widely respected by all models. The
execution match metric is insensitive to the order in
which the tuples are provided, or the order in which
a tuple is constructed. Given these considerations,
we are confident that the execution accuracy is an
accurate representation of system performance.

5.3 Additional Comparisons

Knowledge: The LLMs’ parametric knowledge
may contain information about the questions and
answers present in STARQA, especially if these
questions are about information available online.
As an additional comparison point to understand
the complexity of the STARQA, we test the ability

of the models to answer these questions directly
from their parametric knowledge, by providing ex-
plicit instructions in the prompt to the model to not
use SQL or code.

LLMs using Search: We aim to show the perfor-
mance of state-of-the-art LLM-based agents that
can use reasoning, search and other tools in answer-
ing questions. These systems can access informa-
tion and statistics available on websites, or identify
articles related to similar questions available on-
line, in order to provide answers to the STARQA
questions. Albeit, this is not a comparable method
to other approaches studied in the paper, as it has
access to additional information, we test this in or-
der to understand the value differential that exists
in structured data sources. As an exponent of such
system, we use Gemini Pro 2.5 (Gemini-2.5-Pro-
Preview-05-06) on the week of May 12th, as this
tops the Chatbot Arena Leaderboard.® Given the
model does not always adhere to the output format,
we additionally process the outputs manually for
all questions to obtain its performance score.
Archer Dataset: To demonstrate the generaliz-
ability of our TEXT2SQLCODE approaches, we
also include results on the English validation set of
the Archer dataset (AR) (Zheng et al., 2024), an
existing text to SQL dataset. This dataset contains
104 questions from 2 databases.

6 Results

Table 2 reports the performance of all six LLMs
tested on the STARQA and Archer datasets using
execution accuracy, each score is an average of
three runs.

Overall performance on STARQA is moder-
ate. The best result obtained on the overall dataset
is 48.3%. This highlights that the STARQA rep-
resents a challenging dataset for current state-of-
the-art LLMs, especially because there are no chal-
lenges regarding entity linking and adapting to a
new DB schema present like in other datasets (Lei
et al., 2024; Zheng et al., 2024). The best perform-
ing model overall is GPT 03-mini, but the gaps be-
tween models (Claude 3.7, GPT 4.1, GPT ol, GPT
03-mini) are narrow, within 4% overall. Results on
the three sections of the dataset show other models
performing best (GPT 4.1 for IMDb, GPT-03-mini
for ES, and GPT-o1 for OL), with no clear pattern of
what the superior model is. Interestingly, despite
reasoning models claiming better performance on

8https://lmarena.ai/

34492

https://lmarena.ai/

Model Method STARQA IMDB ES OL Calls | AR
Knowledge 49 1.3 8.8 23 1 2.6
Cl;‘;de Text2SQL 357 293 434 297 1 | 295
Text2SQLCode singie 39.9 507 348 373 1 | 320
Text2SQLCode uiti 44.0 453 488 350 28 | 362
3Text2SQL + SC 37.8 303 461 320 3 | 301
5Text2SQL + SC 38.9 360 452 317 5 | 292
Hybridsingre 425 417 469 365 34 | 320
Hybrid e 442 423 508 353 41 | 324
Oracle.ingre 515 573 525 440 - | 484
Oracle,uiti 52.7 54.7 564 447 - 458
Knowledge 6.6 0.0 134 23 1 6.1
(flT Text2SQL 372 430 405 260 1 | 282
Text2SQLCode singie 404 577 323 363 1 | 304
Text2SQLCode uiti 409 530 368 353 29 |413
3Text2SQL + SC 405 477 432 290 3 | 289
5Text2SQL + SC 39.7 444 437 284 5 | 295
Hybridsingre 46.4 60.0 447 357 32 | 327
Hybrid e 4.6 550 455 327 41 | 407
Oraclesingre 538 657 512 460 - | 385
Oraclemuri 53.1 627 521 453 - | 462
Knowledge 116 17 245 07 1 55
GOPIT Text2SQL 39.1 413 432 303 1 | 247
Text2SQLCode singie 480 590 479 380 1 | 349
Text2SQLCode uiti 438 503 463 333 26 | 327
3Text2SQL + SC 418 443 461 322 3 | 250
5Text2SQL + SC 415 434 464 317 5 | 253
Hybridsingre 482 500 527 385 33 | 362
Hybrid e 457 493 492 363 38 | 346
Oracleingre 56.8 66.1 578 457 - | 38.1
Oraclemuiti 52.8 600 545 430 - | 369
Knowledge 35 3.0 5.1 1.5 1 58
Ogifni Text2SQL 438 473 500 303 1 |269
Text2SQLCode singre 459 599 440 350 1 | 340
Text2SQLCode uiei 44.1 510 467 330 26 | 365
3Text2SQL + SC 452 483 521 310 3 |279
5Text2SQL + SC 46.0 508 519 317 5 |292
Hybrid,ingre 483 540 535 343 32 | 327
Hybrid e 4715 530 537 320 37 | 356
Oracle.ingre 559 660 574 433 - | 378
Oracleuiti 52.8 58.3 56.8 40.7 - 40.1
Knowledge 3.1 1.3 4.5 2.7 1 19
Dcf,%slcck Text2SQL 299 300 342 227 1 | 269
Text2SQLCodeingic 287 493 181 253 1 | 253
Text2SQLCode it 436 525 444 333 2381 | 362
3TextSQL + SC 322 330 372 233 3 | 289
5Text2SQL + SC 326 324 369 257 5 | 282
Hybridsingie 373 490 362 273 35 | 263
Hybrid,uie: 444 53.6 451 340 441 | 346
Oracle.ingre 425 590 389 317 - | 362
Oracle,nuiii 517 615 519 417 - | 413
Knowledge 0.71 0.3 0.6 1.3 1 0
Qwen
oS Text2SQL 114 133 117 90 1 | 128
Text2SQLCodeingic 12.1 133 97 147 1 | 131
Text2SQLCode it 157 220 119 157 3 | 133
3Text2SQL + SC 122 147 119 103 3 | 141
5Text2SQL + SC 122 142 122 102 5 | 138
Hybridsingie 16.7 193 132 197 37 | 141
Hybrid,uiei 18.3 240 136 203 52 | 144
Oracleingre 20.6 230 1901 207 - | 237
Oracle it 24.0 30.7 212 220 - 18.6
gfamz'f‘s' Search 312 40 654 30

Table 2: Execution accuracy (average over three runs)
and the average #LLLM calls for 6 LLMs with zero-shot
prompting on the STARQA dataset, its three underlying
databases, and the Archer (AR) dataset. Here, Oracle
refers to combining the best output of TextSQL and
Text2SQLCode post-hoc. Underline represents the best
overall result for that dataset, and bold shows the best
result for model-dataset pair. The Calls column refers to
the average number of LLM calls used by each method.

coding tasks such as this, the two reasoning models
tested (GPT ol and GPT 03-mini) do not perform
substantially better overall on STARQA than non-
reasoning models.

Overall, a clear pattern is that the closed-source
models outperform open-source models we tested.
This is especially evident when using Text2SQL
alone. In this setup, the GPT 03-mini model per-

forms substantially better (+4.7% overall) than any
other model.

TEXT2SQLCODE performs better than
Text2SQL alone. For all the models, the perfor-
mance of the TEXT2SQLCODE methods (both sin-
gle and multi-step versions) are higher than the
Text2SQL method alone, with the overall accuracy
improvements ranging up to 14.5% on STARQA
for DeepSeek and 13.1% on Archer for GPT-4.1.
Overall, these results highlight that decomposing
the task into SQL and Python code execution is a
promising direction to improve the performance of
the model. We see consistent improvements not
only on our own dataset but also on Archer, which
demonstrates the generalizability of our approach.
We highlight that each TEXT2SQLCODE,,4;;; run
requires multiple LLM calls, between 2 and 3, de-
pending on whether Python code is generated.

Self-consistency for Text2SQL improves per-
formance. Self-consistency over three Text2SQL
executions improves performance of the system, in
line with past work. Performance improvements
are on average 2.1% and range between 0.8% and
3.3% percent. However, we do not always see im-
provements between three and five executions. In
fact, self-consistency with five executions shows
performance degradation on STARQA for GPT-o1
and GPT-4.1. This shows that simply increasing the
number of executions is not enough to improve the
overall performance. Note that the improvements
come at a cost trade-off, as three or five LLM calls
are necessary. Performance of self-consistency,
even with Text2SQL alone, is, in many cases, com-
parable to using TEXT2SQLCODE and comes at a
similar number of LLM calls.

Different TEXT2SQL CODE approaches per-
form well on different domains. Hybrid
methods are best for overall accuracy on the
STARQA and ES, but performance on other do-
mains and Archer is mixed. For 3 of 6 models,
TEXT2SQLCODE ;4 is the most accurate on
IMDb, while TEXT2SQLCODE,,,,,;+; 1S most accu-
rate on Archer for 4 out of 6 models. These ex-
perimental results show that the TEXT2SQLCODE
decomposition should be deployed selectively on
questions. An additional indicator is the Ora-
cle method performance, which takes post-hoc
the best prediction from the Text2SQL and the
TEXT2SQLCODE methods. This achieves better
performance than any of the two systems by sub-
stantial margins from 3%-9%. These suggest that,
while the model can produce the correct answer, it

34493

is hindered by its ability to estimate confidence in
its predictions. We study this further in the next
section.

Methods not using structured data do not per-
form well on STARQA. We conduct two experi-
ments where the structured database is not used,
in order to measure the value this data brings to
the task. As expected, using the model’s internal
knowledge to answer the questions leads to a low
overall performance below 10%, with the excep-
tion of GPT ol at 11.6%. Even if the questions are
what analysts would ask and thus could be present
in the original data used to train the model, usually
simple additional constraints (e.g., time range filter-
ing) is enough to incapacitate the model to produce
the right answer.

Next, we check the results of the Gemini Pro 2.5
system. The system heavily relies on live searches
over the web (usually more than 10 for our ques-
tions) to retrieve relevant articles and perform rea-
soning using the retrieved data in order to find the
correct answer. Given that the questions in the
EuroSoccer dataset are realistic records that peo-
ple interested in this sport may ask themselves, as
well as summary statistics (e.g., league tables) be-
ing readily available online, the performance of the
system on the EuroSoccer section is good and bet-
ter than all models that use structured data (65.4%).
Still, there are still substantial gaps in performance,
especially on specific categories such as time se-
ries analysis. On the other hand, on the IMDb and
Olist sections of the dataset, the performance is
very low. This is caused by the nature and difficulty
of the questions, which do not ask for well-known
records, and because the size of the search space
is much vaster than for EuroSoccer, which is only
dealing with 11 leagues for 8 seasons.

Both these experiments highlight both the value
that is stored in the structured data and that the
dataset itself is a challenging dataset in general.
Due to the type of the questions and the fine-
grained data they require, we expect that this
dataset could also represent a valuable general
benchmark of LLMs both when using or not us-
ing the structured data for grounding.

6.1 Analysis on Use of Python Code

We further investigate the question routing per-
formance of TEXT2SQLCODE and HYBRID, as
results indicated that HYBRID performs substan-
tially better likely because of more judicious use of
Python. Recall that TEXT2SQLCODE has the abil-

Model Method Pct Questions w/ Python execution
Ful ot incorvec

Claude TEXT2SQLCODE ,uiti 85.2 -4.8 +2.5
3.7 HYBRID,nuiti 34.2 -18.8 +9.7
GPT TEXT2SQLCODE nuiti 87.6 -4.7 +2.5
4.1 HYBRIDmuiti 38.0 -17.7 +9.4
GPT TEXT2SQLCODE nuiti 532 -84 +4.1
ol HYBRID it 23.0 -13.2 +6.5
GPT TEXT2SQLCODE ,uiti 549 94 +5.7
03-mini HYBRID,muiti 19.6 -12.9 +7.8
DeepSeek TEXT2SQLCODEuiti 79.3 -3.6 +1.6
V3.l HYBRIDmuiti 412 -23.1 +10.1
Qwen TEXT2SQLCODE 1, uiti 97.8 -3.0 +0.3
2.5 HYBRID 14 68.5 -39.2 +4.6

Table 3: Post-hoc analysis showing the percentage of
questions routed to the Python executor for three sets:
full data, the subset where Text2SQL answer is correct
and incorrect, respectively. For latter two, we report the
relative value w.r.t. the full set value.

ity to not use Python if it does not deem it necessary.
We measure if this is indeed used for the more diffi-
cult questions or it is overused for easier questions,
leading to potential loss of performance due to is-
sues in decomposition. To understand this, Table
3 (column — ‘Full’) reports the percentage of ques-
tions that use Python in TEXT2SQLCODE, ;1.
Interestingly, we find that all non-reasoning mod-
els use Python for 80% or more questions, hinting
at its overuse, given the Text2SQL performance is
mostly in the 30-40% range.

We then compute the same value, but for the two
subsets of questions that Text2SQL gets correct or
not. While the model can not know this at test time,
an ideal model would be aware of its Text2SQL ca-
pabilities, and only invoke Python for questions
that Text2SQL can not get right. We find that
in TEXT2SQLCODE there is only < 9% relative
change in either direction for the two subsets, mean-
ing that TEXT2SQLCODE’s routing of questions to
Python is almost oblivious of the actual accuracy of
Text2SQL on the question. This result holds across
all six LLMs tested. These results substantiate why
in several cases TEXT2SQLCODE underperforms
Text2SQL (see Table 2), as TEXT2SQLCODE is
a pipeline and errors can compound more than for
Text2SQL, which needs to output a single SQL
statement. This is perhaps expected, given that
LLMs are generally not well calibrated (Arora
et al., 2023; Stengel-Eskin and Van Durme, 2023;
Liu et al., 2025).

The HYBRID system, on the other hand, uses
Text2SQL system’s own consistency as its proxy
for difficulty. The same experiment performed on
HYBRID shows that there is a up to 39% relative
deviation in routing percentage on the two subsets,

34494

leading the system to gain from the complementary
strengths of the two systems.

6.2 Error Analysis

Text2SQL vs TEXT2SQLCODE: Our ap-
proaches excel in questions requiring: (1) Ad-
vanced string manipulation and regular expressions,
(2) Conditional aggregation using derived cate-
gories, (3) A clear split between database access
(SQL) and logic-heavy processing (Python), and
(4) Large-scale joins and filtering in SQL, com-
bined with dynamic grouping, per-row aggregation,
and in-memory calculations in Python. We present
two examples below.

Example 1: For each genre with at least 100,000
known movies, compute the percentage of movies
rated above 8.0 and rated below 5.0.

This highlights the limits of pure Text2SQL with
semi-structured data (e.g., comma-separated genres
in IMDB). SQLite lacks native string-splitting, forc-
ing fragile workarounds. All GPT-4.1 Text2SQL
runs failed with runtime errors. TEXT2SQLCODE
approaches succeeded by using SQL for bulk re-
trieval and Python for splitting and aggregation
— leveraging each language’s strengths for robust,
correct results.

Example 2: Find the TV shows where the ab-
solute rating difference between the first and last
episode is the highest. Each season of the TV show
can be considered as a separate show.

This example shows the efficiency of
TEXT2SQLCODE for complex per-group
logic. This question caused pure Text2SQL runs
with GPT-03-mini to stall for 20+ minutes due to
SQL inefficiencies. Our methods split the work:
SQL fetched episode data, while Python grouped
seasons, found boundary episodes, and computed
differences. This division leveraged each lan-
guage’s strengths, produced the correct output, and
completed in under three minutes—demonstrating
how decomposition scales and performs better
than SQL alone.

TEXT2SQLCODE Errors: We manually inspect
the errors made by TEXT2SQLCODE,,,,;+; and
TEXT2SQLCODE;y,4ic systems. We find that the
majority of errors are logical mistakes in imple-
menting code/SQL for the user question. Examples
include missing clauses (question asks for movies,
and query forgets to filter on titletype=movie),
inaccurate null processing (question requires aggre-
gation per season, and code considers null season
as a separate season), and missed steps (question

requires a final count and answer outputs a list, or
question requires a final aggregate, whereas answer
outputs it per season). Another error type occurs
due to inaccurate decomposition — for example, the
question asks for a player’s name, but the model
misses retaining this information in its Text2SQL
prompt. So, the code lacks name data, and can
at best output player IDs, leading to execution er-
rors. Other less frequent errors include answers
with additional information, or in wrong format/u-
nits, and Text2SQL prompts dependent on each
other. In most cases, we find that broadly the solu-
tion contains some of the correct elements of the
query, but includes subtle errors, loses context or
performs reasoning errors which ultimately lead to
an incorrect answer.
We present additional analysis in Appendix B.

7 Conclusions

We introduce STARQA, the first public human-
created dataset for QA over structured data aimed at
measuring the abilities of models to perform com-
plex analytical reasoning. In dataset construction,
we focused on several specific categories of reason-
ing such as statistical operations and analysis, time-
series analysis, complex conditional logic, multi-
criteria filtering, using commonsense knowledge
and performing scenario understanding. Through
our experiments, we demonstrated that this dataset
is challenging for current state-of-the-art LLMs,
with the best performance reaching up to 48.3%.
We experimented with generating SQL code alone,
and also proposed to decompose the solution into
using SQL and Python code, where the code can be
simpler and more expressive and showed that the
latter approach produces generally better results,
especially when invoked only if necessary.

Future work can further explore improving the
performance of models on this data set by leverag-
ing the idea of task decomposition and potentially
combining this into agentic workflows, that can
plan, examine and correct their mistakes and invoke
other tools. The STARQA itself could be extended
to include even more types of analytical reasoning
and cover more domains, in order to enable study
and methods for cross-domain training.

Limitations

Our dataset and methods are evaluated on three un-
derlying databases that we consider expose several
challenges related to complex analytical reasoning.

34495

We acknowledge these do not represent the entire
complexity of all databases, although we consider
our dataset as a solid first step to explore other data
bases. Further, we limit our study to queries and
dataset in English, hence we did not test the gen-
eralizability to other languages and multi-lingual
models, and leave this to future work. Our prompts
for testing LLMs are constructed with best prompt-
ing strategies from the literature, however there is
more scope to perform prompt optimization and
tuning in order to achieve the best results. All of our
experiments are relevant for SQL databases, but, in
principle, the ideas herein should be equally suited
to complex reasoning questions on data sources
such as a knowledge graph or a semi-structured
table.

Acknowledgements

We acknowledge Ella Hoffman-Coyle, and Shuyi
Wang for their early discussions on the project. We
also thank Danna Zheng for sharing their evalu-
ation code with us. Most of the work was done
when Mausam was on a full-time sabbatical at
Bloomberg. For the remaining work, Mausam ac-
knowledges support from IBM and Verisk grants
to IIT Delhi.

References

Daman Arora, Himanshu Singh, and Mausam. 2023.
Have LLMs advanced enough? a challenging problem
solving benchmark for large language models. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 7527—
7543, Singapore. Association for Computational Lin-
guistics.

Asim Biswal, Liana Patel, Siddarth Jha, Amog Kam-
setty, Shu Liu, Joseph E. Gonzalez, Carlos Guestrin,
and Matei Zaharia. 2024. Text2sql is not enough:
Unifying AI and databases with TAG. CoRR,
abs/2408.14717.

Avik Dutta, Mukul Singh, Gust Verbruggen, Sumit Gul-
wani, and Vu Le. 2024. RAR: retrieval-augmented re-
trieval for code generation in low resource languages.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2024, Miami, FL, USA, November 12-16, 2024, pages
21506-21515. Association for Computational Lin-
guistics.

Prakhar Gurawa and Anjali Dharmik. 2025. Balanc-
ing content size in rag-text2sql system. Preprint,
arXiv:2502.15723.

George Katsogiannis-Meimarakis and Georgia Koutrika.
2023. A survey on deep learning approaches for text-
to-sql. VLDB J., 32(4):905-936.

Rahul Kumar, Amar Raja Dibbu, Shrutendra Harsola,
Vignesh Subrahmaniam, and Ashutosh Modi. 2024.
BookSQL: A large scale text-to-SQL dataset for ac-
counting domain. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
497-516, Mexico City, Mexico. Association for Com-
putational Linguistics.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng
Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, and 1
others. 2024. Spider 2.0: Evaluating language models
on real-world enterprise text-to-sql workflows. arXiv
preprint arXiv:2411.07763.

Alexander Hanbo Li, Patrick Ng, Peng Xu, Henghui
Zhu, Zhiguo Wang, and Bing Xiang. 2021. Dual
reader-parser on hybrid textual and tabular evidence
for open domain question answering. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4078-4088, Online.
Association for Computational Linguistics.

Fei Li and H. V. Jagadish. 2014. Constructing an interac-
tive natural language interface for relational databases.
Proceedings of the VLDB Endowment, 8(1):73-84.

Terrance Liu, Shuyi Wang, Daniel Preotiuc-Pietro, Yash
Chandarana, and Chirag Gupta. 2025. Calibrating
IIms for text-to-sql parsing by leveraging sub-clause
frequencies. Preprint, arXiv:2505.23804.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi
Jiang, Yuyu Luo, Yuxin Zhang, Ju Fan, Guoliang Li,
and Nan Tang. 2024. A survey of NL2SQL with large
language models: Where are we, and where are we
going? CoRR, abs/2408.051009.

Karime Maamari and Amine Mhedhbi. 2024. End-to-
end text-to-sql generation within an analytics insight
engine. CoRR, abs/2406.12104.

Makbule Gulcin Ozsoy, Leila Messallem, Jon Besga,
and Gianandrea Minneci. 2025. Text2Cypher: Bridg-
ing natural language and graph databases. In Proceed-
ings of the Workshop on Generative Al and Knowl-
edge Graphs (GenAIK), pages 100-108, Abu Dhabi,
UAE. International Committee on Computational Lin-
guistics.

Mayur Patidar, Riya Sawhney, Avinash Kumar Singh,
Biswajit Chatterjee, Mausam, and Indrajit Bhat-
tacharya. 2024. Few-shot transfer learning for knowl-
edge base question answering: Fusing supervised
models with in-context learning. In Proceedings of
the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages

34496

https://doi.org/10.18653/v1/2023.emnlp-main.468
https://doi.org/10.18653/v1/2023.emnlp-main.468
https://arxiv.org/abs/2502.15723
https://arxiv.org/abs/2502.15723
https://doi.org/10.18653/v1/2024.naacl-long.28
https://doi.org/10.18653/v1/2024.naacl-long.28
https://doi.org/10.18653/v1/2021.acl-long.315
https://doi.org/10.18653/v1/2021.acl-long.315
https://doi.org/10.18653/v1/2021.acl-long.315
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.14778/2735461.2735468
https://arxiv.org/abs/2505.23804
https://arxiv.org/abs/2505.23804
https://arxiv.org/abs/2505.23804
https://doi.org/10.48550/ARXIV.2406.12104
https://doi.org/10.48550/ARXIV.2406.12104
https://doi.org/10.48550/ARXIV.2406.12104
https://aclanthology.org/2025.genaik-1.11/
https://aclanthology.org/2025.genaik-1.11/

9147-9165. Association for Computational Linguis-
tics.

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: decomposed in-context learning of text-
to-sql with self-correction. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurlIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

PremAI 2024. State of text2sql 2024. https://
blog.premai.io/state-of-text2sql-2024/. Ac-
cessed: 2025-05-19.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu Mao,
Xingyu Zeng, and Rui Zhao. 2023. TPTU: task plan-
ning and tool usage of large language model-based Al
agents. CoRR, abs/2308.03427.

Riya Sawhney, Samrat Yadav, Indrajit Bhattacharya, and
Mausam. 2025. Iterative repair with weak verifiers
for few-shot transfer in KBQA with unanswerabil-
ity. In Findings of the Association for Computational
Linguistics, ACL 2025, Vienna, Austria, July 27 - Au-
gust 1, 2025, pages 24578-24596. Association for
Computational Linguistics.

Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Oz-
can, Vasilis Efthymiou, Ayushi Dalmia, Greg Stager,
Ashish Mittal, Diptikalyan Saha, and Karthik Sankara-
narayanan. 2020. ATHENA++: Natural language
querying for complex nested sql queries. Proc. VLDB
Endow., 13(11):2747-2759.

Liang Shi, Zhengju Tang, and Zhi Yang. 2024. A survey
on employing large language models for text-to-sql
tasks. CoRR, abs/2407.15186.

StackOverflow. 2023. StackOverflow developer sur-
vey 2023. https://survey.stackoverflow.co/
2023/. Accessed: 2025-05-19.

Elias Stengel-Eskin and Benjamin Van Durme. 2023.
Calibrated interpretation: Confidence estimation in
semantic parsing. Transactions of the Association for
Computational Linguistics, 11:1213-1231.

Guanghu Sui, Zhishuai Li, Ziyue Li, Sun Yang, Jingqing
Ruan, Hangyu Mao, and Rui Zhao. 2023. Re-
boost large language model-based text-to-sql, text-to-
python, and text-to-function - with real applications
in traffic domain. CoRR, abs/2310.18752.

Ruoxi Sun, Sercan O. Arik, Hootan Nakhost, Hanjun
Dai, Rajarishi Sinha, Pengcheng Yin, and Tomas Pfis-
ter. 2023. Sql-palm: Improved large language model
adaptation for text-to-sql. CoRR, abs/2306.00739.

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. 2023. Exploring chain of thought
style prompting for text-to-SQL. In Proceedings of
the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 5376-5393, Singapore.
Association for Computational Linguistics.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2025a. MAC-
SQL: A multi-agent collaborative framework for text-
to-SQL. In Proceedings of the 31st International
Conference on Computational Linguistics, pages 540—
557, Abu Dhabi, UAE. Association for Computational
Linguistics.

Jun Wang, Patrick Ng, Alexander Hanbo Li, Jiarong
Jiang, Zhiguo Wang, Bing Xiang, Ramesh Nallap-
ati, and Sudipta Sengupta. 2022. Improving text-to-
SQL semantic parsing with fine-grained query under-
standing. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing:
Industry Track, pages 306-312, Abu Dhabi, UAE.
Association for Computational Linguistics.

Tianshu Wang, Xiaoyang Chen, Hongyu Lin, Xianpei
Han, Le Sun, Hao Wang, and Zhenyu Zeng. 2025b.
Dbcopilot: Natural language querying over massive
databases via schema routing. In Proceedings 28th In-
ternational Conference on Extending Database Tech-
nology, EDBT 2025, Barcelona, Spain, March 25-28,
2025, pages 707-721. OpenProceedings.org.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency im-
proves chain of thought reasoning in language models.
In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Edward C. Williams, Nakul Gopalan, Mina Rhee, and
Stefanie Tellex. 2018. Learning to parse natural lan-
guage to grounded reward functions with weak su-
pervision. In 2018 IEEE International Conference
on Robotics and Automation, ICRA 2018, Brisbane,
Australia, May 21-25, 2018, pages 1-7. IEEE.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 3911-3921.
Association for Computational Linguistics.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,
Bingchao Wu, Bei Guan, Wang Yongji, and Jian-
Guang Lou. 2023. Large language models meet
NL2Code: A survey. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7443—
7464, Toronto, Canada. Association for Computa-
tional Linguistics.

Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis,
Catherine Kosten, Georgia Koutrika, and Kurt
Stockinger. 2023. Sciencebenchmark: A complex
real-world benchmark for evaluating natural language
to SQL systems. CoRR, abs/2306.04743.

34497

https://blog.premai.io/state-of-text2sql-2024/
https://blog.premai.io/state-of-text2sql-2024/
https://doi.org/10.48550/arXiv.2308.03427
https://doi.org/10.48550/arXiv.2308.03427
https://doi.org/10.48550/arXiv.2308.03427
https://aclanthology.org/2025.findings-acl.1262/
https://aclanthology.org/2025.findings-acl.1262/
https://aclanthology.org/2025.findings-acl.1262/
https://doi.org/10.48550/ARXIV.2407.15186
https://doi.org/10.48550/ARXIV.2407.15186
https://doi.org/10.48550/ARXIV.2407.15186
https://survey.stackoverflow.co/2023/
https://survey.stackoverflow.co/2023/
https://doi.org/10.1162/tacl_a_00598
https://doi.org/10.1162/tacl_a_00598
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://doi.org/10.18653/v1/2023.emnlp-main.327
https://aclanthology.org/2025.coling-main.36/
https://aclanthology.org/2025.coling-main.36/
https://aclanthology.org/2025.coling-main.36/
https://doi.org/10.18653/v1/2022.emnlp-industry.31
https://doi.org/10.18653/v1/2022.emnlp-industry.31
https://doi.org/10.18653/v1/2022.emnlp-industry.31
https://doi.org/10.18653/v1/2023.acl-long.411
https://doi.org/10.18653/v1/2023.acl-long.411
https://doi.org/10.48550/ARXIV.2306.04743
https://doi.org/10.48550/ARXIV.2306.04743
https://doi.org/10.48550/ARXIV.2306.04743

Danna Zheng, Mirella Lapata, and Jeff Pan. 2024.
Archer: A human-labeled text-to-SQL dataset with
arithmetic, commonsense and hypothetical reasoning.
In Proceedings of the 18th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 94—111,
St. Julian’s, Malta. Association for Computational
Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR,
abs/1709.00103.

34498

https://aclanthology.org/2024.eacl-long.6/
https://aclanthology.org/2024.eacl-long.6/

A STARQA Categorization Results

Model Method Stats Non-entries in DB Nested Joins Strings Agg Analytics Complex Column Temporal Reasoning Complex Filtering Time Series Scenario Common sense
Tex2SQL 29 15.1 382 410 279 257 20.7 389 239 41 17.2
Cg‘;dc Text2SQLCode 416 184 35.1 478 295 23 220 413 36.8 356 14.9
443 16.1 413 475 371 35.0 379 40.8 356 36.6 187
433 16.7 41.6 46.1 287 27 403 474 344 43.1 124
438 14.4 435 44.4 320 254 436 46.4 35.6 38.5 16.1
‘ Tex2SQL 293 19.6 346 393 36.1 142 26.1 349 36.4 417 124
Gl Tex2SQLCodesngre 359 247 356 526 362 365 25 37.0 46.1 379 2.4
Text2SQLCodenuii 386 213 377 444 39.2 244 311 40.9 335 36.7 1.2
Hybridyingre 349 253 418 49.1 412 28.1 333 429 56.6 56.9 18.7
Hybrid,p i 344 24 423 47.6 40.9 203 337 437 44.9 50.0 13.7
Ger Tex2SQL 340 156 35.0 23 355 158 217 444 475 394 236
o Tex2SQLCodesingre 49.1 242 45.0 65.1 40.1 38.0 383 49.8 504 427 26.1
Tex2SQLCodeuie; 45.0 17.9 354 50.9 344 3238 18.7 0238 346 320 310
Hybridaingic 447 19.0 449 56.0 43.0 27.8 30.9 522 58.0 426 324
Hybrid, i 435 19.0 419 48.2 41.0 25.0 26.7 46.3 54.5 40.8 310
Tex2SQL 396 17.3 353 46.1 346 36.2 331 482 50.7 306 26.1
Ufi—fm Text2SQLCodesingre 43.6 27.6 41.0 55.7 37.0 383 317 50.5 55.6 26.9 26.1
Text2SQLCodemurei 42.1 24 348 50.3 345 305 247 51.0 443 320 249
Hybriduingre 419 20.1 384 48.6 328 38.0 374 55.8 557 302 29.8
Hybrid, i 42.1 19.0 377 48.0 336 46.4 34.6 56.0 51.2 29.7 310
Tex2SQL 262 155 246 373 212 25 223 316 28 250 8.7
Def,%s]”k Text2SQLCode ingre 302 27.0 25 473 205 153 214 269 243 27 9.9
Tex2SQLCodenuie; 45.6 19.0 39.6 46.6 36.0 47.8 357 40.5 40.7 36.9 16.8
Hybriduingte 359 27.0 312 472 26.0 380 26.8 39.9 311 27.3 1.2
Hybriduiei 454 20.7 39.2 455 35.0 40.3 29.8 434 40.0 42.6 14.9

Table 4: Execution accuracy (average over three runs) over different reasoning categories of STARQA.

Table 4 shows our approaches consistently outperform Text2SQL on questions involving statistical
operations, non-entries in DB, string operations, nested joins, and complex filtering. While a few models
show a slight degradation for other categories, our models generally perform better. This analysis is
suggestive due to the small number of questions in some categories.

B Additional Error Analysis

Text2SQL: Syntactic Error Diversity and Debuggability: Models varied significantly in the types
and consistency of their SQL-related errors. Some, like Qwen-2.5 and DeepSeek-v3.1, produced a
broad range of failure modes—including unsupported functions, misused columns, and unstable output
formatting—indicating weaker alignment with the SQL dialect and greater fragility. In contrast, models
like GPT-03-mini and GPT-o1 generated more uniform and predictable errors, making them easier to
debug and more reliable in execution. Models with lower error diversity tended to exhibit stronger
syntactic control and were better suited for integration in systems that rely on stable SQL generation.
Text2SQL-SC: Self-Consistency and Majority-Voting Behavior: Models also differed in how con-
sistently they generated predictions across multiple runs. GPT-03-mini, GPT-01, and GPT-4.1 produced
highly stable outputs, with correct predictions aligning across runs—making them well-suited for majority-
voting strategies. In contrast, Qwen-2.5 repeatedly generated the same incorrect outputs, preventing
fallback mechanisms (like Text2SQLCode) from activating and leading to consistently poor results. This
shows that self-consistency only adds value when the underlying predictions are reliable.

While HYBRID approaches often enhance the robustness of TEXT2SQLCODE, they are not universally
better. Problems arise when a model: (1) consistently produces incorrect SQL predictions, causing self-
consistency voting to lock in bad outputs, and (2) fails again during Python execution, making recovery
impossible even if fallback is triggered.

This was the case with Qwen-2.5, which combined high runtime failure, poor prediction diversity, and
low correctness—rendering hybridization ineffective. In contrast, GPT-03-mini and GPT-01 demonstrate
how hybridization can succeed: their SQL outputs are both reliable and diverse, enabling fallback to
Python when necessary and ensuring correctness when it is not.

34499

