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Abstract

Masked diffusion models (MDMs) offer a
promising non-autoregressive alternative for
large language modeling. Standard decoding
methods for MDMs, such as confidence-based
sampling, select tokens independently based
on individual token confidences at each dif-
fusion step. However, we observe that this
independent token selection often results in
generation orders resembling sequential autore-
gressive processes, limiting the advantages of
non-autoregressive modeling. To mitigate this
pheonomenon, we propose Reward-Weighted
Sampling (RWS), a novel decoding strategy
that leverages an external reward model to pro-
vide a principled global signal during the iter-
ative diffusion process. Specifically, at each
diffusion step, RWS evaluates the quality of
the entire intermediate sequence and scales to-
ken logits accordingly, guiding token selection
by integrating global sequence-level coherence.
This method selectively increases the confi-
dence of tokens that initially have lower scores,
thereby promoting a more non-autoregressive
generation order. Furthermore, we provide
theoretical justification showing that reward-
weighted logit scaling induces beneficial rank
reversals in token selection and consistently im-
proves expected reward. Experiments demon-
strate that RWS significantly promotes non-
autoregressive generation orders, leading to im-
provements across multiple evaluation metrics.
These results highlight the effectiveness of in-
tegrating global signals in enhancing both the
non-autoregressive properties and overall per-
formance of MDMs.

1 Introduction

Large Language Models (LLMs) have achieved re-
markable success across diverse natural language
tasks, predominantly through autoregressive mod-
els (ARMs) (Brown et al., 2020; Lewis et al., 2020),
which generate text sequentially, token by token.
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Figure 1: Representative example illustrating token se-
lection order for (a) Autoregressive (top), (b) Diffusion
LLM with confidence-based sampling (middle), and
(c) our proposed Reward-Weighted Sampling (RWS)
method (bottom). The x-axis shows token positions
within the generated sequence, and the y-axis shows
the diffusion step at which two tokens are selected.
Confidence-based sampling closely follows the sequen-
tial autoregressive pattern, while RWS promotes a dis-
tinctly non-autoregressive selection pattern.

Recently, large-scale Masked Diffusion Models
(MDMs), such as LLaDA (Nie et al., 2025), have
emerged as promising non-autoregressive alterna-
tives. Unlike ARMs, MDMs iteratively unmask
tokens in parallel, leveraging full bidirectional con-
text. This approach can mitigate cumulative er-
rors commonly seen in autoregressive generation,
where early prediction errors propagate through
subsequent tokens, often causing semantic drift
and reduced coherence in longer sequences (Ben-
gio et al., 2015; Ranzato et al., 2016).

Despite their inherent non-autoregressive po-
tential, decoding methods specifically tailored to
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MDMs are relatively under-explored. Standard de-
coding approaches for MDMs, such as confidence-
based sampling (Nie et al., 2025), rely solely on
individual token confidences at each diffusion step,
selecting tokens with the highest confidence score
to unmask. As illustrated in Figure 1, this token
selection method often produces generation orders
closely resembling sequential autoregressive de-
coding, represented by a diagonal selection pattern.
This phenomenon could be interpreted as a position
bias effect commonly observed in masked language
models (Wang and Cho, 2019; Ghazvininejad et al.,
2019), where masked tokens adjacent to already
unmasked tokens tend to receive higher confidence
scores. Consequently, the model often unmasks to-
kens in a locally sequential manner, potentially lim-
iting its ability to fully exploit global, bidirectional
context and impacting tasks that require global co-
herence or logical consistency.

To mitigate this limitation, we propose Reward-
Weighted Sampling (RWS), a novel decoding
method explicitly designed to exploit the non-
autoregressive characteristics of MDMs by intro-
ducing a global preference signal. At each diffusion
step, RWS evaluates the quality of intermediate
sequences generated by the model and computes
a global reward signal using an external reward
model. This global reward reflects the overall co-
herence and quality of the intermediate sequence,
beyond the local token-level confidences. The log-
its of individual tokens are then scaled according
to this reward, selectively boosting tokens initially
assigned lower local confidence scores, thus pro-
moting a more diversified, non-autoregressive gen-
eration order as illustrated in Figure 1.

Furthermore, we provide rigorous theoretical
analysis demonstrating how reward-weighted logit
scaling influences token selection. Specifically, we
derive precise conditions under which multiplica-
tive logit scaling induces beneficial rank reversals
in token probabilities (Theorem 1), thereby promot-
ing more flexible generation patterns. Additionally,
we prove that reward-based logit scaling guarantees
monotonically improved expected reward at each
decoding step (Theorem 2), providing theoretical
justification for the effectiveness of our method in
exploiting non-autoregressive decoding to enhance
sequence generation quality.

In summary, this paper makes the following con-
tributions:

* We introduce Reward-Weighted Sampling, a

decoding method that integrates global re-
ward signals to systematically encourage non-
autoregressive token selection.

* We provide theoretical analyses proving that
logit scaling causes principled rank reversals
in token selection and guarantees improve-
ment of expected rewards during decoding,
establishing the mathematical foundation for
enhanced non-autoregressive behavior.

* Extensive experiments across diverse tasks
demonstrate that our method consistently im-
proves generation quality compared to base-
line methods, while showing a strong correla-
tion between non-sequential generation, mea-
sured by our proposed metric, Generation Or-
der Deviation (GOD).

Our findings indicate that integrating a meaning-
ful global reward signal effectively enhances the
non-autoregressive capabilities and overall genera-
tion quality of diffusion-based language models.

2 Background: Standard Sampling for
Masked Diffusion Models

In this section, we introduce the standard decoding
methods used in MDMs, highlighting the limita-
tions we aim to address. For a detailed explanation
of the underlying MDM framework itself, we refer
readers to Appendix A.

Generating text from a pre-trained MDM, such
as generating a response rg conditioned on a
prompt pg, involves simulating the reverse diffu-
sion process in discrete steps. Let the target gen-
eration length be L’. The process starts with an
initial sequence =) = [po, [MASK], ..., [MASK]],
where the prompt py is followed by L’ mask tokens,
denoted as [MASK]. The goal is to iteratively de-
noise this sequence over 7' discrete steps (indexed
t=1T,T—1,...,1) to obtain the final sequence
20 ~ [po; 0]

The standard iterative sampling procedure at step
¢ (transitioning from state z() to z(t=1)) typically
involves three steps. Step 1 (Prediction): The
current partially masked sequence z(*) is fed into
the trained mask predictor py to obtain logits for
all masked positions. Let Zg be the sequence ob-
tained by replacing each masked position with the
most likely original token predicted from these log-
its (e.g., via argmax). Step 2 (Token Selection):
A subset of masked positions in z(*) is selected
for updating, typically the top k; positions with
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the highest confidence, ensuring gradual denoising
(e.g., approximately L'/T tokens per step). Step
3 (Update): The next state 21 is formed by
replacing the selected k; masked positions in z(*)
with their corresponding predicted tokens from .

A common strategy for Step 2, employed by
LLaDA and forming the baseline for our work, is
Confidence-Based Sampling. In this approach,
token confidence is computed from softmax proba-
bilities py(Zo | ")), the top k; tokens with highest
confidence are selected, and these tokens are un-
masked in z(*~V) while the rest remain masked for
subsequent refinement.

It is important to note that prior stud-
ies (Ghazvininejad et al., 2019; Wang and Cho,
2019) have demonstrated that in masked language
models, prediction confidence is heavily influenced
by surrounding context. Specifically, masked to-
kens directly adjacent to already unmasked to-
kens—such as prompt tokens—tend to receive
higher confidence scores due to their immediate
contextual proximity. As a result, tokens closer
to previously unmasked content are generally se-
lected first, causing a positional bias in which the
model tends to unmask tokens sequentially from
left to right, despite its inherent bidirectional archi-
tecture. This positional bias unintentionally pro-
motes autoregressive-like decoding behavior, po-
tentially limiting the model’s ability to leverage the
full bidirectional context effectively.'

3 Methodology: Reward-Weighted
Sampling (RWS)

3.1 Overview

Reward-Weighted Sampling (RWS) explicitly
guides the token selection process during MDM de-
coding by incorporating feedback from an external
reward model. To achieve this, RWS introduces a
global reward signal into the iterative decoding pro-
cess. Multiplicative scaling of logits provides an
intuitive mechanism for incorporating such global
signals, as scaling logits directly adjusts the dif-
ferences between token probabilities due to the
exponential nature of the softmax function (Hinton
etal., 2015; Holtzman et al., 2020). Specifically, in-
creasing logits amplifies probability gaps, thereby
reinforcing the selection of high-confidence tokens,
whereas decreasing logits reduces these gaps, en-
abling lower-confidence tokens to become compar-

'For a broader overview of diffusion language models and
other related works, please refer to Appendix B.
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Figure 2: Illustration of the Masked Diffusion Model
(MDM) forward (masking) and reverse (unmasking)
processes. Starting from the fully masked sequence
(z1), the reverse process progressively reveals tokens
using predicted probabilities at each diffusion step. The
highlighted section illustrates token selection between
steps o and x1: tokens with the highest prediction
confidence are unmasked first (tokens 2 and 5), while
lower-confidence tokens (token 4) remain masked.

atively more likely. Utilizing an external reward
model to guide this scaling ensures that token se-
lection adjustments meaningfully reflect the quality
of candidate sequences, thus avoiding arbitrary or
potentially harmful modifications.

3.2 Reward-Weighted Sampling Algorithm

RWS modifies the standard iterative MDM sam-
pling process described in Section 2. Starting from
the initial state z(T) = [pg, [MASK], ..., [MASK]]
(prompt pg followed by L’ mask tokens), RWS pro-
ceeds iteratively for T steps ¢ =T1,7 —1,...,1)
to produce the final sequence 2(?). Specifically, at
each diffusion step ¢ (going from masked sequence
2@ to the next state (=), RWS follows these
four steps:

Step 1: Potential Full Sequence Prediction. At
the current step ¢ with state z(*), we first generate a
full candidate sequence sequence i‘ét). Specifically,
we obtain logits L® from the mask predictor py
given the current masked sequence z(*), and then
greedily predict the most likely token (argmax)
for all currently masked positions. Let M) be
the set of indices corresponding to masked posi-

(t)

tions in z(*). Then, Z’ is formed by setting 7, =

for j € M®, and i’% = ¢®J

forj ¢ M (), This iét) represents a possible com-
pleted output given the current masked context z®.

Step 2: Reward Evaluation and Normaliza-
tion. The generated part (response 7g) within the

(t)
argmaxggen L j token

34576



M;  Mask Token I:l Selected Token
L; Logit ———

T ( \
X Predicted Token L__i  NotSelected Token

Reward-Weighted Reward-Weighted [ T Disﬁfé‘;m”

Logit Confidence

Ly :
X1

| Prompt |

My

M,

M;

M,

@ I—> Predicted Toke
Top2

po(prompt, M; ..., My)

Ly
Mask Predictor
X,

¢
@ .

E>
[ Reward-Weighted ]
Sampling llg |-|_|_H
in [n -
Xy XN XN
- / - / \ ~/

H Decoding

; : Softmax Top 1
| Prompt | Predicted Text

i1
Position-wise  ieeeeees e R
X1, 0 Xy
argmax
i2

Step 1

Figure 3: Overview of Reward-Weighted Sampling (RWS) method. At each diffusion step, the model predicts
candidate tokens based on local confidence scores. An external reward model then evaluates the global quality
of the predicted sequence, providing a reward-based signal. This signal adaptively scales logits, adjusting token
selection priorities to promote non-autoregressive generation patterns and improve overall sequence coherence.

potential full sequence ig) is extracted and de-

coded into text. This text, along with the original
prompt py, is evaluated by a external reward model
R(po,r0) to obtain a raw reward score r%)w. As
shown in Appendix C, due to significant variations
in reward statistics across different reward models,
we normalize the raw reward using pre-computed
mean i and standard deviation o i from the Nec-
tar validation set (Zhu et al., 2023), computed as
r® = (r,(fz)w — pr)/or. This normalized reward
r(®) reflects the relative quality of the potential com-
pletion compared to typical outputs.

Step 3: Reward-Weighted Logit Scaling. This
is the core step where the reward signal directly
influences token selection priorities by modifying
the original logits L(*) obtained from pg(z®) us-
ing the normalized reward (). Specifically, the
modified logits L’ (t) are calculated as:

L’(t) _ L(-t)

t
J,token J,token X SR X U<T( )) te

for all positions j and tokens. Here, sp is the re-
ward scale hyperparameter controlling the guidance
strength, o(+) is the sigmoid function, and € is a
small constant (e.g., 10~°) for numerical stability.
This scaling adjusts the original logits according
to the reward signal, influencing the likelihood of
token selection. We employ the sigmoid function
to normalize the reward into a stable range between
0 and 1. The square root is subsequently applied to
prevent excessively small scaling values for nega-
tive rewards.

Importantly, as shown in our theoretical analy-

3

sis (Section 4), larger multiplicative scaling values
increase the likelihood of rank reversals in token se-
lection, promoting more non-autoregressive gener-
ation patterns. By linking this scaling factor to the
current sequence’s reward, our method adaptively
encourages more rank reversals when the interme-
diate sequence shows promising quality (higher
reward), and fewer when the quality is poor (lower
reward). This adaptive approach ensures that the
degree of non-autoregressive behavior is dynami-
cally adjusted based on generation quality.

Step 4: Guided Token Selection. Finally, the
selection of k; tokens to unmask proceeds similarly
to the standard Confidence-Based Sampling (Sec-
tion 2), but critically, it uses the modified logits
L'® to compute confidence scores. Typically, the
confidence is derived from the softmax probabili-
ties of the argmax predictions based on L'®*). The
k; masked positions with the highest confidence
derived from the reward-adjusted logits L'(*) are
selected. The corresponding predicted tokens re-
place the mask tokens at these selected positions
to form the next state (!, Note that while the
rank order of confidence scores between each to-
ken position can change due to reward scaling, the
argmax token predictions at each position remain
the same regardless of reward scaling.

Repeating these steps for all diffusion steps,
RWS leverages external rewards to produce more
effective, non-autoregressive text generation.
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Prompt Response

t=35 | Where H is H my H mouse H pad H ? [mask] [mask] mask] [mask] i

t=4 ‘ Where H is H my H mouse H pad H ?

t=3 ‘ Where H is H my H mouse H pad H ?

t=2 ’ Where ’ is H my H mouse H pad H ? The H mouse H was H eaten

t=1 ‘WhereH is H my HmouseH pad H H The HmouseH was Heaten H H ‘ cats || - |

(a) Text Generation Process of the MDM without RWS

Prompt Response
t=5 ’ Where H is H my H mouse H pad H ?
t=4 ’ Where H is H my H mouse H pad H ?
t=3 ‘ Where H is H my H mouse H pad H ?
t=2 ’ Where H is H my H mouse H pad H ?
t=1 ‘Where H is H my HmouseH pad H ? H Your HmouseH pad H is ‘ H H laptop H . |

(b) Text Generation Process of the MDM with RWS

Figure 4: Illustration of how RWS promotes non-autoregressive token selection. Decoding proceeds from ¢ = 5
(fully masked) down to ¢ = 1 (fully unmasked). (a) Default sampling unmasks tokens sequentially, prematurely
fixing earlier tokens ("The mouse') and resulting in an incorrect, contextually mismatched output ("The mouse was
eaten by the cats."). (b) RWS enables flexible, non-sequential token selection, correctly identifying tokens based on
global context, generating a coherent output ("Your mouse pad is on the laptop.").

4 Theoretical Analysis determines which token’s maximum probability
decreases faster.

e r > 1: All gaps expand, sharpening the distribu-
tion. In this case, the smallest gap (the closest
competing token) determines which token’s max-

4.1 Setup and Notation imum probability approaches 1 more slowly.

Thus, a reversal in token selection occurs if (a) the

currently highest-ranked token vector has a larger

total gap sum or (b) a smaller nearest-competitor
gap compared to the alternative. The theorem be-
exp(rz;) low formalizes this concept.

This section provides a theoretical analysis illustrat-
ing how scaling logits multiplicatively can change
which token is most likely.

Let a, b € R? be two logit vectors obtained at some
decoding step.? For any vector = € R? and scaling
factor r > 0, define the scaled softmax distribution:

g; (r) =

d N
Zj 1 exp(rz;) 4.3 Theoretical Conditions for Rank Reversal

Let p? = g7 (1) denote the original softmax prob- ~ Write the gaps of a and b relative to their top indices
abilities, and write P*(r) = max; ¢ (r). Through-  t4,1p as
out, we assume:
C=ay, —ap, AL =by, by (k#taty).
max p¢ > maxpl. (1)
‘ ’ Define the total and minimal gaps
4.2 Intuition: Why Scaling Can Change

Token Selecti Yo = Af 0o = min A},

oken Selection a Z , a i];élgi 5
Scaling logits by a factor r uniformly shrinks or k#ta )
expands all logit gaps Ap = lnax — li: Yy = Z Az, dp = min AZ.

e r < 1: All gaps shrink, flattening the proba- k#ty g

bility distribution. Here, the total sum of gaps
’In practice, a and b could come from two different masked Theorem 1 (Rank Reversal Condltlons)‘ Under
positions within the same MDM step (§2). Eq. (1), exactly one of the following holds:
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Reward Model | GOD (1) |[RWS Win (%) Draw (%) Default Win (%) 1 59.1

None (Default) | 1.426 | - B

Skywork 2.607 60.2 3.8
LlamaOB 2.621 60.9 4.4
Intern 2.599 58.7 3.6
Eurus 2.658 58.7 3.6
GRM 2.621 55.8 4.0
QRM 2.394 60.2 33

= 60.0
- S
L
36.0 é’ 40.0 37.1
34.7 K=
37.8 =
37.8 § 20.0
40.2 = 18
36.4 0.0 : | —

Table 1: Generation Order Deviation (GOD) and win-rate comparison
between Reward-Weighted Sampling (RWS) and the confidence-based
baseline (Default) across different automated reward models. Higher GOD

values indicate improved non-autoregressive behavior.

(a) If £, < X, there exists a unique * € (0, 1)
such that P%(r*) = P°(r*) and P%(r) <
PP(r) forall 0 < r < r*.

(b) If 54 > Oy, there exists a unique r1 > 1 such
that P*(r") = PP(r") and P%(r) < P%(r)
forall v > rt.

(c) Otherwise P%(r) > P’(r) for every r > 0;
no reversal occurs.

Proof. See Appendix D for the detailed proof. [J

Theorem 2 (Reward-Monotonic Guidance). Let
po(x) o< exp Lyg(x) be the base decoder and
pr(x) o< po(x) eB@) its reward-scaled variant
with any r > 0. Then

Ep [R] > Epy[R], 3)
with strict inequality if Vary, [R] > 0.

Proof. The full proof is provided in Appendix E.
O

Corollary 1 (Per-step Improvement in RWS). At
diffusion step t of the reverse process, let py(- |
£ (1)) be the model distribution conditioned on the
current mask and let 7*) > 0 be the scale produced
from the (normalised) reward. Sampling the token

t
update x}(a\)zvs from p,+) guarantees

E[R(ris)] > E[R(")],
with equality only if R is constant on the support
of Pt

Proof. Given the current masked sequence z®, the
distributions py(- | z®) and p,« (- | ) corre-
spond exactly to the setting of Theorem 2. Thus,
directly applying Theorem 2, we obtain:

t
EpT(t>(.|z<t>)[R(x%\),VS)] > Epg(-|x<t>)[R(x(t))],

RWS Drlaw Deflault

Figure 5: Average win rate com-
parison across all six reward mod-
els. RWS outperforms the Default
method by a significant margin.

with strict inequality if R is not constant on the
support of p, (- | ®). Since this inequality
holds for any arbitrary masked sequence z(*), it
directly implies the stated per-step improvement of
the Reward-Weighted Sampling approach. 0

Interpretation. Theorems 1 and 2 explain why
Reward-Weighted Sampling (RWS) improves the
decoding process. Specifically, they show that scal-
ing logits based on a reward model consistently
increases the expected reward of the generated to-
kens. Additionally, these theorems identify clear
conditions under which tokens with initially lower
confidence become preferred, effectively promot-
ing a non-autoregressive generation pattern.
Figure 4 provides a concrete illustration of this
theoretical insight: under standard sampling, the
diffusion model follows a locally autoregressive
pattern, resulting in a contextually incorrect gener-
ation. In contrast, RWS induces beneficial token
selection rank reversals, producing a coherent and
globally consistent output. In short, RWS system-
atically selects better tokens by combining local
confidence with global reward signals.
Comparison with Temperature Scaling. We also
provide a detailed theoretical and empirical com-
parison between RWS and the widely used softmax
temperature scaling method in Appendix G.

S Experiments

5.1 Experimental Setup

We use LLaDA-8B-Instruct as our base diffusion
LLM across all experiments. We evaluate our
method using six publicly available reward models
from RewardBench (Lambert et al., 2024), summa-
rized in Appendix H. We conduct experiments on
three distinct benchmarks: RewardBench (Lambert
et al., 2024), MT-Bench (Zheng et al., 2023), and a
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keyword-constrained generation task designed to
test non-autoregressive capabilities.

We evaluate model performance using our pro-
posed metric, Generation Order Deviation (GOD),
which quantifies how far the actual token genera-
tion order deviates from a strictly left-to-right (au-
toregressive) decoding sequence. Formally, GOD
is defined as:

1 n
GOD = - z; la; — o4,
1=

where n is the total number of tokens in the gen-
erated sequence, o; is the position at which the
t-th token was actually decoded by the diffusion
model, and a; is the position at which the i-th to-
ken would have been decoded under strictly au-
toregressive (left-to-right) decoding. Higher GOD
indicates stronger non-autoregressive behavior; for
instance, a GOD of 2.1 implies tokens are decoded,
on average, 2.1 positions away from the standard
autoregressive order.

Additional standard metrics such as Win Rate
and Perplexity are also employed. Further details
on reward models, datasets, and general implemen-
tation details can be found in Appendix I.

5.2 Reward-Weighted vs. Standard Sampling

We first evaluate the effectiveness of RWS com-
pared to the default confidence-based sampling
method across different reward models. As shown
in Table 1 and Figure 5, RWS consistently outper-
forms the default method across all six reward mod-
els, with win rates ranging from 55.8% to 60.9%.

Notably, the consistent improvement across mul-
tiple reward models with different architectures and
training objectives demonstrates the robustness of
our approach. The average win rate of approxi-
mately 59% represents a non-trivial improvement
over baseline methods (37.1%), particularly con-
sidering that these evaluations were conducted on
the RewardBench dataset, which was specifically
designed to assess how well reward models align
with human preferences.

The results indicate that incorporating global
reward signals during the diffusion process effec-
tively guides the model toward higher-quality gen-
erations. This improvement can be attributed to
RWS’s ability to deviate from the sequential left-
to-right generation pattern inherent in standard
confidence-based sampling, instead promoting a
more flexible generation order that better utilizes

Reward Model RWS Win (%) Default Win (%)
Skywork 65.0 35.0
LlamaOB 62.5 37.5
Intern 60.6 394
Eurus 61.9 38.1
GRM 63.1 36.9
QRM 60.0 40.0

Table 2: LLM judge-based win rates comparing RWS
against the default method, averaged over two runs with
reversed answer ordering to control for position bias.

the non-autoregressive capabilities of MDMs. This
is quantitatively supported by the GOD metric as
demonstrated in Table 1, where RWS achieves sig-
nificantly higher values compared to the default
method, indicating a greater deviation from strict
left-to-right generation.

5.3 Performance on Multi-Turn Response
Tasks

To evaluate the effectiveness of RWS in more com-
plex conversational settings, we conduct experi-
ments on multi-turn dialogue prompts from MT-
Bench. For this experiment, we employ LLM-as-
a-judge evaluation methodology, following Zheng
et al. (2023) and Lin and Chen (2023). Further
details on the exact evaluation prompt and setup
are provided in Appendix J.

Table 2 presents the results of this evaluation,
comparing RWS against the default confidence-
based sampling method. To control for potential
position bias in the judging process (Zheng et al.,
2023), we conduct evaluations in two configura-
tions, one with RWS outputs presented as choice
1 and another with RWS outputs as choice 2, and
reported the averaged win rates.

The results show that RWS consistently outper-
forms the default method across all reward models,
with win rates ranging from 60.0% to 65.0%. This
consistent advantage regardless of response order
confirms that the improvements are genuine and
not artifacts of evaluation bias. The full results
for each ordering configuration are provided in Ap-
pendix K.

We further provide a qualitative example illus-
trating how RWS improves coherence in multi-
turn settings. A representative example comparing
RWS and Default Sampling across a two-turn di-
alogue is provided in Appendix L. While Default
Sampling generates repetitive and vague responses,
RWS consistently produces coherent and contextu-
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Prompt

| Anchor Keywords

Create a brief analysis of cli-
mate change using all anchor
keywords. Make sure the text
reads naturally and maintains
logical flow.

global temperatures, car-
bon emissions, international
agreements, renewable tech-
nologies

Write a short business strat-
egy description incorporating
all anchor keywords. The text

market analysis, competitive
advantage, revenue streams,
strategic partnerships

should be coherent and pro-
fessional.

Table 3: Examples from keyword-constrained genera-
tion dataset. Each input provided to the model consists
of a prompt along with specific anchor keywords that
must be incorporated within the generated response.

ally rich outputs, clearly demonstrating enhanced
cross-turn reasoning and coherence.

The multi-turn setting is particularly challeng-
ing as it requires maintaining coherence across
longer contexts and adhering to conversational
flow—aspects that benefit from non-autoregressive
generation’s ability to consider global context.
RWS’s strong performance in this setting demon-
strates its effectiveness in leveraging bidirectional
information for complex reasoning and contextual
understanding.

5.4 Performance on Keyword-Constraint
Generation Tasks

Our third experiment evaluates model performance
on a keyword-constrained generation task, specifi-
cally designed to test non-autoregressive capabil-
ities. Inspired by the CommonGen dataset (Lin
et al., 2020), which requires models to generate
coherent sentences incorporating a given set of con-
cepts, we constructed our dataset to further increase
task difficulty by requiring the incorporation of
predetermined anchor keywords into longer, con-
textually coherent responses. This setup explicitly
challenges the model’s ability to maintain global
coherence and natural fluency. Details of dataset
creation, including keyword selection criteria and
validation processes, are provided in Appendix M.
Table 3 shows representative examples from our
keyword-constrained dataset.

For evaluation, we measure keyword inclusion
rate, text perplexity, and GOD. While keyword in-
clusion directly evaluates the model’s ability to sat-
isfy task constraints, perplexity is used as a widely-
accepted metric to quantitatively assess fluency and
coherence in generated text. GOD further quanti-
fies the non-autoregressive characteristics of the
generation.

>
S

[ RWS (Ours) 12.37

B
=)

10.63 10.84  10.76 ‘

i i
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(a) Comparison of Perplexity
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Figure 6: Perplexity (top) and GOD (bottom) results on
keyword-constrained generation tasks. Lower perplex-
ity indicates better fluency, while higher GOD reflects
stronger non-autoregressive behavior.

While all methods achieved similar keyword
inclusion rates (3.6-3.7 keywords out of 4), sig-
nificant differences emerged in perplexity scores
and GOD, as shown in Figure 6. RWS consis-
tently achieves lower perplexity across all reward
model configurations, with improvements ranging
from 12% to 16% compared to the default method.
Lower perplexity indicates more fluent and natu-
ral text, suggesting that RWS produces more co-
herent outputs while still satisfying the keyword
constraints.

Additionally, RWS achieves significantly higher
GOD values (on average more than double the
GOD values of the default method), clearly demon-
strating that our method successfully promotes non-
autoregressive token selection patterns, effectively
leveraging the diffusion model’s bidirectional con-
text to improve overall generation quality.

5.5 Performance on Code Generation

To further evaluate the generalizability of RWS, we
conducted experiments on HumanEval (Chen et al.,
2021), a widely-used benchmark for code genera-
tion that requires structured reasoning and syntactic
correctness. This evaluation is particularly relevant
given recent work highlighting the promise of diffu-
sion LLMs in code generation tasks (Khanna et al.,
2025).

Table 4 presents the Pass@ 1 scores across dif-
ferent reward models. RWS consistently improves
performance over the baseline, with the best con-
figuration achieving a +6.71% absolute improve-
ment. This substantial gain demonstrates that
RWS’s ability to leverage global context through
non-autoregressive generation is particularly bene-
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Table 4: Pass@1 scores on Hu-
manEval benchmark.

Table 5: Win rates of RWS vs. Default for Table 1 across GOD quintiles.
The result demonstrates strong positive correlation between non-autoregressive

Method Pass@1 (%) behavior and performance.
Default 17.68
GOD Quintile | Eurus  GRM Intern LlamaOB QRM  Skywork

RWS (Skywork) 21.95

RWS (LlamaOB) 24.39 0-20% 36.7 46.2 33.0 433 41.1 46.7
RWS (Intern) 20.73 20-40% 48.9 56.2 494 56.0 57.8 533
RWS (Eurus) 20.73 40-60% 52.7 58.9 55.6 59.6 61.1 57.8
RWS (GRM) 19.51 60-80% 59.6 61.1 62.6 68.9 66.7 64.4
RWS (QRM) 21.95 80-100% 70.0 57.8 70.8 70.0 67.8 72.2

ficial for structured generation tasks requiring long-
range dependencies and logical consistency.

6 Analysis

6.1 Attribution of Performance Gains

A key question is whether the performance
improvements from RWS stem from the non-
autoregressive generation order itself or merely
from the reward model’s guidance. To investigate
this, we analyzed the correlation between GOD and
win rates by dividing samples into quintiles based
on their GOD scores.

As shown in Table 5, five out of six reward mod-
els exhibit a clear monotonic increase in win rate as
generation becomes more non-autoregressive. This
strong correlation demonstrates that performance
gains are systematically linked to the emergence
of non-autoregressive generation patterns. Impor-
tantly, the reward model does not select individual
tokens but rather provides a single scalar that uni-
formly scales all logits, meaning the argmax token
at each position remains unchanged. The reward’s
influence is realized precisely through enabling
more flexible, non-autoregressive decoding paths
that better utilize the MDM’s bidirectional context.

6.2 Diversity Analysis

One potential concern is whether RWS might re-
duce generation diversity by overly prioritizing im-
mediate rewards. To investigate this, we measured
lexical diversity using Distinct-1 and Distinct-2
metrics (Li et al., 2016), where higher values indi-
cate greater diversity.

Contrary to the concern, Table 6 shows that RWS
increases diversity across all configurations. We
hypothesize this improvement arises because RWS
evaluates global sequence quality at each step, re-
ducing local biases and enabling more varied gen-
eration paths while maintaining coherence.

Table 6: Diversity metrics comparing RWS with De-
fault sampling. Higher values indicate greater lexical
diversity, demonstrating that RWS enhances generation
variety while maintaining coherence.

Method Distinct-1 (1)  Distinct-2 (1)
Default 0.1885 0.571
RWS (Skywork) 0.195 0.583
RWS (LlamaOB) 0.199 0.599
RWS (Intern) 0.194 0.579
RWS (Eurus) 0.193 0.580
RWS (GRM) 0.196 0.585
RWS (QRM) 0.198 0.594

6.3 Computational Considerations

While RWS demonstrates consistent performance
improvements, it introduces computational over-
head from reward model inference at each diffusion
step. Our detailed analysis reveals that this over-
head can be flexibly managed through frequency
ablation, allowing practitioners to balance perfor-
mance gains with computational constraints. For
comprehensive analysis, we refer readers to Ap-
pendix N and O.

7 Conclusion

We introduced Reward-Weighted Sampling (RWS),
a novel decoding approach that leverages exter-
nal reward signals to effectively exploit the non-
autoregressive nature of MDMs. Our theoretical
analysis demonstrated how reward-based logit scal-
ing can cause beneficial probability rank reversals,
fundamentally altering generation order. Empirical
evaluations across diverse benchmarks showed that
RWS consistently outperforms standard decoding
methods, highlighting its ability to enhance gener-
ation quality and coherence. Future research may
explore adaptive reward scaling, computational ef-
ficiency improvements, and extensions to multi-
modal generation contexts. We hope our work in-
spires further exploration into leveraging reward
guidance to fully unlock the potential of diffusion-
based language models.
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Limitations

Although Reward-Weighted Sampling (RWS)
consistently demonstrates improvements in non-
autoregressive generation quality, it introduces ad-
ditional computational overhead compared to stan-
dard confidence-based sampling, as quantitatively
analyzed in Appendix N. Specifically, inference
time increases by approximately 21-33%, which
could impact scalability or real-time applications.
Additionally, the performance of RWS inherently
depends on the quality and characteristics of the
external reward models used. In cases where re-
ward models exhibit biases or misalignment with
human preferences, the effectiveness and reliability
of RWS could be compromised. Future research
should aim to reduce computational overhead and
explore robust techniques to select and calibrate
reward models effectively.

Ethical Considerations

Our proposed Reward-Weighted Sampling (RWS)
relies on external reward models to guide gen-
eration, which could inadvertently propagate bi-
ases or subtle misalignments present in those mod-
els. Therefore, careful selection and evaluation
of reward models are recommended when apply-
ing RWS in practice. Future studies might also
explore practical methods for monitoring and re-
ducing potential biases in reward-guided text gener-
ation systems. For example, simple debiasing mea-
sures—such as auditing reward models for group
fairness or applying lightweight post-decoding fil-
ters—could be incorporated to further mitigate un-
intended bias (Bu et al., 2025; Allam, 2024).
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A Masked Diffusion Model Framework

Masked Diffusion Models (MDMs) represent a dis-
tinct approach to generative language modeling
compared to Autoregressive Models (ARMs). Un-
like ARMs, MDMs operate on the entire sequence
in a non-autoregressive manner, modeling the data
distribution p(xg) through a forward masking pro-
cess and a learned reverse unmasking process (Nie
et al., 2025; Ou et al., 2025).

The forward process, denoted q(x¢|x¢—1), grad-
ually corrupts an original clean sequence rg =
(23, ..., xk) of length L over a discrete time hori-
zont € 0,1,...,T. Specifically, at step ¢, each
token z}) in the original sequence is independently
replaced by a special mask token, M, with proba-
bility ¢/T", or remains unchanged with probability
1 —t/T. This transition probability is defined as:

N EY ifa] = M
q(xt ‘x 0) - 1 t P j
— 7, ifxy =x
As t increases from 0 to 7', the sequence x; be-
comes progressively more masked, until 7 con-
sists entirely of mask tokens M.

The reverse process aims to reverse this corrup-
tion, generating the clean sequence g starting from
the fully masked sequence z. This is achieved
by learning a parameterized model, often called a
mask predictor py, which approximates the condi-
tional probability p(zo|z;). Typically, py is imple-
mented using a non-causal Transformer architec-
ture (Nie et al., 2025). This model takes the masked
sequence z; at any time ¢ as input and predicts the
original tokens z( for all masked positions.

The mask predictor py is trained by optimizing
an objective derived from the diffusion framework.
During training, a time ¢ is sampled uniformly
from 1, ..., T, the corresponding masked sequence
x¢ is generated via the forward process, and the
model py is trained to predict the original tokens x.
The training loss is typically a cross-entropy loss
computed only on the masked positions j where
x] = M.

B Related Work

Diffusion Language Models Diffusion models,
initially developed for continuous domains like
image generation (Ho et al., 2020; Dhariwal and
Nichol, 2021), have recently extended successfully
to text. Early diffusion language models (Li et al.,
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2022) introduced continuous embedding-based dif-
fusion processes, enabling controllable genera-
tion. Subsequently, discrete diffusion approaches
(Austin et al., 2021; Lou et al., 2024) emerged,
significantly improving text quality. Recent large-
scale models like LLaDA (Nie et al., 2025) demon-
strated competitive performance against autoregres-
sive models, underscoring the potential of diffusion-
based architectures for efficient and flexible text
generation.

Non-Autoregressive Generation Methods
Non-autoregressive (NAR) generation methods, de-
signed to overcome sequential decoding bottle-
necks, gained popularity with the introduction of
parallel generation techniques like Mask-Predict
(Ghazvininejad et al., 2019). Iterative refinement
approaches, such as the Levenshtein Transformer
(Gu et al., 2019), further enhanced quality and
flexibility by iteratively inserting and deleting to-
kens. These methods established a strong foun-
dation for leveraging iterative masked-decoding
strategies, paving the way for diffusion models to
exploit non-autoregressive properties effectively.

Reward-Weighted Decoding Strategies Re-
cent works integrate external reward signals di-
rectly into the decoding process to improve text
alignment and quality. Plug-and-play decoding
(Dathathri et al., 2020; Yang and Klein, 2021) uti-
lizes auxiliary classifiers to steer autoregressive
generation toward desired attributes but faces is-
sues with coherent shifts and error accumulation.
Alternatively, reinforcement learning from human
feedback (Ouyang et al., 2022) optimizes model
parameters using preference-based rewards, though
computationally expensive. Direct Preference Op-
timization (Rafailov et al., 2023) achieves simi-
lar goals without RL, fine-tuning models directly
with supervised preference signals. Our Reward-
Weighted Sampling method extends these ideas to
masked diffusion models, incorporating external
reward feedback iteratively during decoding pro-
cess.

C Reward Normalization Statistics

Table 7 provides the mean (u ) and standard devi-
ation (o) values used for normalizing raw reward
scores obtained from each reward model. These
statistics were computed from the Nectar validation
set (Zhu et al., 2023) and are essential for standard-
izing reward scales across diverse reward models.

Table 7: Statistics of reward models used for normaliza-
tion.

Reward Model Mean Std
Skywork -4.95 11.18
LlamaOB -3.57 2.69
Intern 0.95 1.32
Eurus 95475 1697.11
GRM -2.99 3.84
QRM 0.78 0.14

D Detailed Proof
D.1 Illustrative Example

Now, we analyze a concrete example to illustrate
the theorem. Consider the vectors:

a=[1.1,0.6,0.3]
b=[1.0,0.4,0.4]

First, we compute the gap statistics:

Y, =13, 5,=05
Y, =12, & =06

Since %, > 3, no flip is expected for » < 1.
However, because J, < dp, a flip is expected for
r> 1.

We verify this at specific values:

For r = 1:

P%(1) ~ 0.486, P°(1) ~ 0.477

Thus, P%(1) > P®(1) as expected.
For r = 2:

P%(2) ~ 0.835, P’(2) ~ 0.847

Here, P%(2) < P%(2 ) conﬁrmlng aflip for r > 1.
Solving P%(r) = P’(r) numerically gives r ~
1.73.
We’ll now prove the theorem step by step with
detailed explanations.

D.2 Step 1: Alternative Formulation

First, we’ll transform the problem to make it more
tractable. Since shifting all logits by a constant
doesn’t change the softmax probabilities, we can
assume without loss of generality that a;, = by, =
0 (i.e., the highest logit in each vector is 0).

Now, let’s define:

=3 e @)

ktq
— Z e*TAZ (5)

k£t
g(r) = Fo(r) — Fp(r) (6)
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With this notation, the maximum probabilities
can be written as:

o
1
broy
P =1 ®)

Observe that P%(r) > PP(r) if and only if
F,(r) < Fy(r), which is equivalent to g(r) < 0.
So:

sign(P*(r) — P*(r)) = —sign(g(r)) (9

This gives us a simpler function g(r) whose sign
tells us which vector has the higher maximum prob-
ability.

D.3 Step 2: Behavior for Small r

We want to understand how ¢(r) behaves as r ap-
proaches 0. For small values of r, we can use the
Taylor series expansion of the exponential function:

1
A a1l —rA+ 57‘2A2 +0(r%) (10)
Applying this to our functions Fy(r) and Fj(r):

Fo(r)~ > (1—rAf

k#tq
For(Ag) + 0(7«3))
=(d-1)-r> A}
k#tq
1 a
+ 57“2 Z (AR)? +0(r°)
k#ta
=(d—1) = 1%, + O(r?) an
Similarly:
Fy(r)y=(d—1)—r%,+O(r*) (12
Therefore:
9(r) = Fa(r) — Fy(r)
~((d—1)—1r3,)
—((d=1) = r%y) + 0(r?)
=7(5y — Zq) + O(r?) (13)
This tells us that for small positive 7:
sign(g(r)) ~ sign(3p — ) (14)

Soif ¥, < X, then g(r) > 0 for small 7, which
means P%(r) < PP(r). But we know that at r = 1,
we have P?(1) > P®(1) (our initial assumption),
which means ¢g(1) < 0.

Since g(r) is continuous (as it’s a difference of
sums of continuous functions), if g(r) > 0 for
small  and ¢g(1) < 0, then by the Intermediate
Value Theorem, there must exist some 7* € (0, 1)
where g(r*) = 0, which means P%(r*) = Pb(r*).

Moreover, since g(r) > 0 for small positive r,
we have P%(r) < P’(r) forall 0 < r < r*.

D.4 Step 3: Behavior for Large r

For large values of r, the exponential terms with the
smallest exponents will dominate the sums. Let’s
analyze this behavior:

Fo(r)=)_ e (15)
k#tq
_ e—rzsa 1+ Z e—r(AZ—éa)
k#ta,A%>8,
(16)

As r — o0, all the terms in the sum approach
0, except for the terms where Af = §,. Let’s say
there are C,, such terms. Then:

F.(r)~C,- e asr — 0o a7
Similarly:
Ey(r) ~Cyp - e "% asr — oo (18)
Therefore:
g(r) = Fo(r) — Fp(r) (19)
~Cye e — Oy e asr — 00
(20)

If 6, > &y, then as r — oo, the term C - e~ "%

dominates, and:

g(r) ~—=Cp - e <0 asr— oo 2D
This means that for sufficiently large r, we have
g(r) < 0, which implies P%(r) > P°(r).
But if , < Jp, then as r — oo, the term C,, -
e~ dominates, and:

g(r) ~Cy-e >0 asr—oo (22
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So if §, < dp, then for sufficiently large r, we
have g(r) > 0, which implies P?(r) < Pb(r).

Now, we know that at » = 1, we have
P?(1) > P’(1) (our initial assumption), which
means ¢g(1) < 0.

If 84 > dp, then for sufficiently large r, we have
g(r) < 0,s0 P*(r) > P’(r). There’s no flip for
large r.

But if , < Jp, then for sufficiently large r, we
have g(r) > 0, so P%(r) < P’(r). Since g(1) < 0
and g(r) > 0 for large r, by the Intermediate Value
Theorem, there must exist some T > 1 where
g(rT) = 0, which means P%(rt) = Pb(rT).

D.5 Step 4: Uniqueness and Exclusivity of the
Cases

We need to show that the scenarios described in
the theorem are mutually exclusive and that the
crossing points 7* and 1 are unique.

First, note that P%(r) and P®(r) are both strictly
monotonic functions of r. Specifically, as r in-
creases, the maximum probabilities also increase
(the distributions become more concentrated on the
highest logits).

Since P?(r) and P®(r) are both strictly increas-
ing functions of r, their difference P%(r) — P(r)
can change sign at most once as 7 increases from 0
to co. This means that the function g(r) can also
change sign at most once.

So if g(r) changes from positive to negative as r
increases (which happens when >, < X3), then it
cannot change back to positive. Similarly, if g(r)
changes from negative to positive (which happens
when §, < dp), then it cannot change back to nega-
tive.

This means that the two scenarios (low-7 flip and
high-r flip) are mutually exclusive.

Moreover, if neither gap condition holds (i.e., if
Y4 > Yy and 0, > 0p), then g(r) cannot change
sign. Since ¢g(1) < O (our initial assumption), this
means ¢g(r) < O for all » > 0, which implies
P%(r) > P°(r) for all » > 0. This is the "no flip"
scenario.

E Proof of Theorem 2

Here we restate and provide a detailed proof of
Theorem 2 from the main text.

Theorem 3 (Reward-Monotonic Guidance). Let
po(x) o< exp Lyg(x) be the base decoder and
pr(x) o po(x) €@ jts reward-scaled variant

with any v > 0. Then

Ep. [R] > Ep,[R], (23)

with strict inequality if Var, [R] > 0.

Proof. Define the log-partition function as:

A(r) =log Z, = 1ogz oLo(@)+rR(x)

Using standard exponential-family calculus, we
have:

A'l(r) = p(z) R(z) = E,, [R],

and the second derivative is:
A"(r) = Var,, [R] > 0.

Since A”(r) > 0, the function A’(r) is non-
decreasing with respect to r. Integrating A” from
0 to r, we obtain:

A(r) = A(0) + /O A7 (s) ds

=E,, [R] +r Vary, [R].
This directly implies the desired result:
Ep, [R] = Ep, [R] + 1 Vary, [R] > Ep,[R],
with strict inequality whenever Var, [R] > 0. [

F Comparison with Softmax
Temperature Scaling

Reward-Weighted Sampling (RWS) leverages
global feedback from an external reward model
to adaptively scale logits at each diffusion step. A
related but distinct technique is softmax tempera-
ture scaling, which uniformly scales logits using a
fixed temperature parameter across the entire de-
coding process. Here, we highlight both theoretical
and empirical differences between RWS and fixed
temperature scaling.

The primary theoretical distinction is adaptivity.
Temperature scaling applies a constant scaling fac-
tor, irrespective of intermediate sequence quality or
global coherence signals, potentially causing overly
aggressive token selections or negligible impact. In
contrast, RWS dynamically adjusts scaling based
on global reward evaluations, ensuring that logits
are adjusted meaningfully according to generation
quality.
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Empirically, we conducted a comparative exper-
iment using the keyword-constrained generation
task (Section 5.4) with the same hyperparameter
search space {0.01,0.1,1,2,4, 8,16, 32} for tem-
perature scaling. Perplexity scores obtained were
consistently higher (worse) than those achieved
by RWS across all reward models. Specifically,
temperature scaling resulted in perplexities rang-
ing from 11.03 to 14.76, all worse than the worst-
performing RWS configuration (10.84). Interest-
ingly, Generation Order Deviation (GOD) values
for temperature scaling ranged from 0.79 to 2.31,
overlapping substantially with RWS’s performance
range. This demonstrates that while temperature
scaling can similarly induce non-autoregressive be-
havior, it does so at the significant expense of gen-
eration quality.

In summary, adaptive reward-based scaling em-
ployed by RWS provides substantial qualitative im-
provements over simple, fixed temperature scaling,
demonstrating the critical importance of incorpo-
rating meaningful global reward signals into the
decoding process (see Appendix G for all detailed
results).

G Full Results of Softmax Temperature
Scaling

We provide detailed results comparing different
softmax temperature scaling values on the keyword-
constrained generation task (Section 5.4). Table 8
summarizes perplexity and Generation Order De-
viation (GOD) values across all tested temperature
hyperparameters.

Temperature Perplexity (]) GOD (1)

0.01 13.57 0.91
0.1 13.52 0.95
1.0 14.76 0.80
2.0 11.72 1.56
4.0 11.13 2.04
8.0 11.13 2.26
16.0 11.03 2.31
32.0 11.58 1.88

Table 8: Perplexity and Generation Order Deviation
(GOD) of softmax temperature scaling on the keyword-
constrained generation task. While higher temperature
scaling values increase non-autoregressive characteris-
tics (higher GOD), they consistently degrade fluency
(higher perplexity) compared to Reward-Weighted Sam-
pling (RWS).

Name Model Size Base
Skywork Skywork-Reward-Llama-3.1 8B LLaMA-3.1
LlamaOB  Llama-3-OffsetBias-RM 8B LLaMA-3
Intern InternLM2-Reward 7B InternLM
Eurus Eurus-RM 7B LLaMA-2
GRM GRM-Llama3.2 3B LLaMA-3.2
QRM QRM-Llama3.1 8B LLaMA-3.1

Table 9: Characteristics of reward models used for eval-
uation and guidance

H Details of Reward Models

Table 9 summarizes the reward models used for
both guidance and evaluation throughout our ex-
periments. The models are selected from Reward-
Bench (Lambert et al., 2024) and vary in size, base
architecture, and training methodologies.

I Detailed Experimental Setup

Diffusion LLM. We use LLaDA-8B-Instruct as
our base Masked Diffusion Model (MDM) for all
experiments. This non-autoregressive model em-
ploys a diffusion-based architecture that iteratively
unmasks tokens, as described in Appendix A.

Reward Models. We select six publicly available
reward models (Liu et al., 2024; Park et al., 2024,
Cai et al., 2024; Yuan et al., 2024; Dorka, 2024,
Yang et al., 2024) of varying sizes and architectures
(see Table 9) from RewardBench (Lambert et al.,
2024).3 We choose models balancing performance
and computational feasibility given our resources.
Each reward model was previously trained to pre-
dict human preferences across diverse text genera-
tion tasks, and their outputs are normalized using
pre-computed statistics shown in Table 7.

Datasets. We evaluate our approach on three

benchmarks:

1. RewardBench (Lambert et al., 2024): compre-
hensive evaluation of helpfulness, harmlessness,
and honesty.

2. MT-Bench (Zheng et al., 2023): multi-turn
instruction-following across diverse domains.

3. Keyword-Constrained Generation Task:
specifically designed for this study, requiring
incorporation of specific keywords while
maintaining coherence, testing flexible token
selection (dataset construction detailed in
Appendix M).

3https://huggingface.co/spaces/allenai/
reward-bench
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Additional Metrics. We also employ additional

standard metrics alongside GOD:

* Win Rate: Proportion of prompts where a
method’s output is rated higher by reward models
or LLM judges.

* Perplexity: Standard measure of text fluency
and coherence, particularly relevant in keyword-
constrained tasks.

General Implementation Details. Unless other-

wise specified, general experimental settings are:

* Diffusion steps: 128

* Block size: 32 tokens

¢ Maximum output length: 256 tokens

* Optimal reward scales individually se-
lected per reward model from the set
{0.01,0.1,1.0,2.0,4.0,8.0,16.0,32.0} us-
ing the RewardBench validation set.

¢ Hardware: NVIDIA A100 GPUs (40GB VRAM)
Reward signals were normalized using statistics

summarized in Table 7.

J LLM-as-a-judge Evaluation Details

For multi-turn dialogue evaluations using MT-
Bench, we employ GPT-4.1 (OpenAl API) as a
judge model to determine which of two provided
responses is of higher quality. The exact prompt
used for the evaluation is presented in Figure 7.

System Prompt:

You are a strict evaluator. Decide which an-
swer (1 or 2) is higher quality.

If answer 1 is better, respond with 1.
If answer 2 is better, respond with 2.

Respond ONLY with one character: 1 or 2.

User Prompt:
Answer 1:

[First model-generated response here]

Answer 2:

[Second model-generated response here]

Figure 7: Exact prompt template used for GPT-4.1 judge
evaluations. The model compares two responses and
selects the higher-quality response.

For each comparison, GPT-4.1 returns either "1"
or "2" directly indicating the preferred response.

K Detailed LLM Judge Results

Table 10 presents detailed results of the LLM-as-a-
judge evaluations, showing win rates separately for
each ordering configuration.

L Qualitative Multi-turn Examples

In this section, we present qualitative examples con-
trasting Reward-Weighted Sampling (RWS) and
Default Sampling methods in multi-turn dialogue
settings.

Brief Comparison Figure 8 provides a concise
comparison highlighting the key differences in co-
herence and detail between the two methods across
a two-turn dialogue scenario.

Detailed Comparison (Full Version) For a more
comprehensive illustration, Figure 10 shows the
complete dialogue interactions, clearly demonstrat-
ing how RWS effectively maintains coherence and
context across multiple turns compared to Default
Sampling.

M Dataset Procedure

To construct the keyword-constrained generation
dataset used in our experiments, we adopted a sys-
tematic procedure to ensure topic diversity, task
relevance, and quality:

Step 1: Topic Selection. We selected 10 repre-

sentative topics across various domains to ensure

comprehensive coverage of real-world scenarios

and broad generalization. The selected topics were:
1. Science

Technology

Economy

Health

Sports

Environment

Politics

Education

Culture

Entertainment

SO RXTNN A WD

p—

Step 2: Prompt and Keyword Generation. Us-
ing the GPT-4.1 API, we generated an initial pool
of 100 keyword-constrained prompts, equally dis-
tributed across the 10 selected topics (10 prompts
per topic). Each prompt was designed to incor-
porate specific anchor keywords naturally within
coherent and contextually appropriate responses.
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RWS first (%) RWS second (%)

Reward Model
RWS Win Default Win RWS Win Default Win

Skywork 65.0 35.0 65.0 35.0
LlamaOB 62.5 37.5 62.5 37.5
Intern 61.25 38.75 60.0 40.0
Eurus 65.0 35.0 58.75 41.25
GRM 65.0 35.0 61.25 38.75
QRM 60.0 40.0 60.0 40.0

Table 10: Full LLM judge-based evaluation results for each response ordering configuration.

Step 3: Quality Control and Expert Validation. Method Avg. Inference Additional GPU
The generated dataset underwent rigorous review Time (s) Memory (MiB)
by three PhD students. They independently eval- Default 20.197 -
uated each prompt based on difficulty and overall RWS (Skywork) 26.288 14,812
. prompt bas Hicuity RWS (LlamaOB) 26.046 14,812
quality. Prompts identified with issues such as du- RWS (Intern) 26.560 14,502
plication, overly simplistic difficulty, grammatical RWS (Eurus) 26.950 14,078
N . RWS (GRM) 24.597 6,542
errors, ambiguity, or poor contextual quality were RWS (QRM) 26.330 14812

flagged for removal.

Step 4: Refinement and Final Selection. Based
on expert validation, 15 prompts were excluded due
to quality concerns. Subsequently, an additional set
of prompts was generated using GPT-4.1, maintain-
ing the same distribution across topics. After this
iterative refinement, we finalized a dataset consist-
ing of 100 keyword-constrained prompts, equally
distributed among the 10 selected topics.

This structured methodology ensured the dataset
was both diverse and representative, suitable for
effectively evaluating the non-autoregressive gen-
eration capabilities of our model.

N Computational Overhead Analysis

To evaluate the additional computational overhead
introduced by our proposed Reward-Weighted Sam-
pling (RWS) method compared to the standard
confidence-based sampling baseline, we conducted
experiments measuring inference time and GPU
memory usage.

Experiments were performed on a single
NVIDIA A100 GPU (40GB VRAM) with batch
size 1, using the keyword-constrained generation
dataset (Experiment 3). We measured the average
inference time per sample across 200 prompts ran-
domly selected from this dataset. GPU memory us-
age was recorded using PyTorch’s built-in memory
monitoring functions, with additional GPU mem-
ory usage primarily attributed to the use of reward
models.

Results are summarized in Table 11. We ob-

Table 11: Computational overhead comparison between
confidence-based sampling and Reward-Weighted Sam-
pling (RWS).

served an inference time increase ranging from
approximately 21% to 33% with RWS compared to
the baseline method, varying by the specific reward
model used. GPU memory overhead due to reward
models varied significantly, showing an increase
ranging from approximately 6.5 GiB to 14.8 GiB
depending on the reward model.

These results indicate that RWS introduces a
manageable computational overhead, maintaining
practicality for real-world applications while sig-
nificantly enhancing generation quality.

O Computational Efficiency and
Flexibility

While RWS incurs additional computational over-
head from reward model inference (21-33% in-
creased inference time as detailed in Appendix N),
this cost can be flexibly managed through fre-
quency ablation.

As shown in Table 12, reducing reward guidance
frequency provides a smooth trade-off between
non-autoregressive strength (GOD) and computa-
tional cost. This flexibility allows practitioners to
balance performance and efficiency according to
their specific requirements. Moreover, compared
to alternative approaches like DPO or RLHF that
require extensive retraining, RWS provides a prac-
tical inference-time solution for incorporating re-
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Turn Default Sampling (Baseline)

Reward-Weighted Sampling (Ours)

Prompt 1 Explain what’s base rate fallacy and list five specific examples of how politicians use it for
campaigns.

Answer 1 - Defines base rate fallacy adequately but |- Clearly defines base rate fallacy:
provides repetitive examples: "Overestimating or underestimating base
"Highlighting candidate’s past | rates of events.”
successes to suggest future success.” |- Provides diverse examples:
(Repeated) 1. "Highlighting negative instances
"Using candidate’s past failures to selectively.”
suggest future failures.” (Repeated) 2. "Exaggerating own policy successes."
- Includes logically inconsistent exam-|3. "Presenting misleading statistics.”
ple:  "Highlighting opponent’s past |4. "Ignoring evidence selectively.”
successes."” 5. "Creating false biases favoring own

policies.”
Prompt 2 Provide a detailed plan for an election campaign using the first example.
Answer 2 - Repetitive, vague steps without actionable |- Coherent and actionable strategies clearly

details:

"Emphasize the
successes repeatedly.”
- Lacks concrete strategies.

candidate’s

aligned with the example:

past | 1. "Highlight opponent’s negative past
events through media/social media.”
2. "Downplay own positive records
selectively.”
3. "Use emotional appeals in negative
campaigns.”
4. "Leverage media to amplify opponent’s
negatives."”
5. "Conduct targeted social media
outreach.”

Figure 8: Comparison of multi-turn responses between Default Sampling (Baseline) and Reward-Weighted Sampling
(Ours). Our method produces clearer definitions, diverse examples, and coherent follow-up plans, showcasing the
effectiveness of reward guidance in improving logical consistency and practical applicability. Full responses are

provided in Figure 10.

Avg. Inference

Method Avg. GOD

Time
Default 0.95 20.20s
RWS (every step) 2.22 26.13s (+29.4%)
RWS (every 2 steps) 1.56 23.66s (+17.1%)
RWS (every 4 steps) 1.19 21.98s (+8.8%)

Table 12: Trade-off between non-autoregressive behav-
ior and computational cost via frequency ablation.

ward signals into diffusion LLMs.

P Artifact and Data Usage

License for Artifacts. All reward models and
datasets employed in this research, including Re-
wardBench (Lambert et al., 2024) and MT-Bench
(Zheng et al., 2023), are publicly available under
permissive licenses for research purposes. Specifi-
cally, RewardBench is released under an MIT Li-
cense, and MT-Bench is provided under Apache
2.0 License.

Artifact Use Consistent with Intended Use.
The artifacts used, including publicly available re-
ward models from RewardBench, are employed
strictly in alignment with their intended research-
oriented use as clearly specified in their original
publications. No derivative artifacts were created
or distributed beyond the research context, comply-
ing with the original access conditions.

Personally Identifying Information and Offen-
sive Content. The datasets and prompts utilized
in our experiments (RewardBench, MT-Bench, and
keyword-constrained generation tasks) were re-
viewed to ensure they do not contain personally
identifying information or offensive content. All
prompts underwent careful expert validation and
refinement (Appendix M), explicitly removing any
content that could uniquely identify individuals or
be considered offensive.

Documentation of Artifacts. Comprehensive
documentation for each artifact (RewardBench and
MT-Bench) is provided by their original authors,
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Turn Default Sampling (Baseline) Reward-Weighted Sampling (Ours)

Prompt 1 Explain what’s base rate fallacy and list five specific examples of how politicians use
it for campaigns.

Answer 1 The base rate fallacy is a cognitive bias|The base rate fallacy is a cognitive bias

that occurs when an individual judges

the probability of an event based on the

frequency of similar event, rather than the
actual probability of the event occurring

Five examples of how politicians use the

base rate fallacy for campaigns are:

1. Highlighting to the the success of a
candidate’s past policies to suggest
that they current policy will be be
successful.

2. Using the candidate’s past failures to
win promises to suggest that they are

3. Emphasizing the candidate’s  past
successes to suggest that they will
continue to be successful in future
endeavors.

4. Using the candidate’s past failures to
suggest that they will be fail in future
future endeavors.

5. Highlighting the opposing candidate’s
past successes to suggest that they will
be successful in the future.

not capable of keeping future promises.

where people overestimate the base rate of
an event or underestimate the base rate
of another event. Five examples of how
politicians use the base rate fallacy for
campaigns are:

1. Highlighting negative instances:
Politicians may use the base rate
fallacy by highlighting negative
instances of their opponents while
ignoring the positive instances of

their own policies.

2. Exaggerating successes: Politicians may
use the base base rate fallacy by
exaggerating the successes of their own
policies while downplaying the failures
of their opponents’ policies.

3. Misleading statistics: Politicians may
use the base rate fallacy by presenting
misleading statistics or statistics
that are manipulated to support their
argument.

4. Ignoring the evidence: Politicians may
use the base base base rate fallacy
by ignoring the evidence against their’
policies while focusing on positive
evidence.

5. False bias: Politicians may use the
base base base base rate fallacy by
creating a false bias in favor of their
own policies while ignoring the evidence
against their policies.

Figure 9: Complete responses to Prompt 1 from both Default Sampling and Reward-Weighted Sampling methods,
as referenced in Figure 8.

clearly detailing domains, languages, and linguistic
phenomena covered. Our custom-created keyword-
constrained generation dataset includes clear docu-
mentation on domains, representative topics, and
the validation process, as described in Appendix M.

Q Use of AI Assistants

We used ChatGPT to help refine manuscript word-
ing, improve clarity, and assist with LaTeX format-
ting. All research, experiments, and analyses are
solely the authors’ work.
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Turn Default Sampling (Baseline) Reward-Weighted Sampling (Ours)
Prompt 2 Provide a detailed plan for an election campaign using the first example.
Answer 2 1. Develop a well and campaign| A detailed plan for an election campaign

message that emphasizes the candidate’s
past successes and how they will continue
to be successful in the future. 2. Create
a campaign website that highlights the
candidate’s past successes and how they
will continue to be successful in the
future. 3. Launch a media campaign that
emphasizes the candidate’s past successes
and how they will continue to be successful
in the future. 4. Hold rallies and
rallies that emphasize the candidate’s past
successes and how they will continue to be
successful in the future. 5. Organize and
events that emphasize the candidate’s past
successes and how they will continue to
be successful in the future. 6. Launch
a fundraising campaign that emphasizes
the candidate’s past successes and how
they will continue to be successful in
the future. 7. Create a website that
emphasizes the candidate’s past successes
successes and how they will continue to be
successful in the future. 8. Launch a media
campaign that emphasizes the candidate’s
past successes and how they will continue
to be successful in the
Hold public events that emphasize the
candidate’s past successes and how they
will continue to be successful in the
future. 10. Promote the campaign by
launching a social media campaign that

future. 9.

emphasizes the candidate’s past successes.

campaign using the first example of the
base rate fallacy could include:

Highlighting negative instances of the
opponent: The campaign team could
highlight negative instances instances
of the opponent’s policies, such as past

N

failures, missteps, or mis mistakes.
This could be done through media
coverage, social media, and public
events.

2. Ignoring positive instances of the

candidate’s policies: The campaign team
could ignore positive instances of the
candidate’s policies, such as past
successes or positive outcomes. This
could be done by not mentioning them in
the campaign materials or by downplaying
their significance.

3. Using emotional appeals: The campaign
team could use emotional appeals to
highlight the negative instances of the
opponent’s policies. This could be done
by using stories or statistics that
highlight the negative impact of the
opponent’s policies.

4. Using media coverage: The campaign team
could use media coverage to highlight
the negative instances of the opponent’s
policies. This could be done by reaching
out to media outlets and providing
them with negative instances of the
opponent’s policies.

5. Using social media: The campaign team
could use social media to highlight the
negative instances of the opponent’s
policies. This could be done by creating
posts.

Figure 10: Complete responses to Prompt 2 from both Default Sampling and Reward-Weighted Sampling methods,
as referenced in Figure 8.
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