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Abstract

Distinguishing LLM-generated text from
human-written is a key challenge for safe and
ethical NLP, particularly in high-stake settings
such as persuasive online discourse. While
recent work focuses on detection, real-world
use cases also demand interpretable tools to
help humans understand and distinguish LLM-
generated texts. To this end, we present an
analysis framework comparing human- and
LLM-authored arguments using two easily-
interpretable feature sets: general-purpose lin-
guistic features (e.g., lexical richness, syn-
tactic complexity) and domain-specific fea-
tures related to argument quality (e.g., logical
soundness, engagement strategies). Applied to
/r/ChangeMyView arguments by humans and
three LLMs, our method reveals clear patterns:
LLM-generated counter-arguments show lower
type-token and lemma-token ratios but higher
emotional intensity — particularly in anticipa-
tion and trust. They more closely resemble
textbook-quality arguments — cogent, justified,
explicitly respectful toward others, and posi-
tive in tone. Moreover, counter-arguments gen-
erated by LLMs converge more closely with
the original post’s style and quality than those
written by humans. Finally, we demonstrate
that these differences enable a lightweight, in-
terpretable, and highly effective classifier for
detecting LLM-generated comments in CMV.

1 Introduction

What makes LLM-generated text distinct? Un-
covering the characteristics of LLM-generated lan-
guage is emerging as a key challenge in NLP re-
search. Detecting such content has become increas-
ingly difficult, as models now generate text that
closely resembles human writing (Doughman et al.,
2025). At the same time, the fluency of LLM-
generated text amplifies the potential for misuse in
online public discourse (Tang et al., 2024).

¢: *These authors contributed equally to this work.

/€ ChangeMyView: Atheists in Western nations aren’t currently A
being persecuted or oppressed in any meaningful way
There was a time, long ago, when atheists were persecuted in North
America and Europe, but I don't really think it's a big deal any more.
People just want to cash in on the victim complex nowadays, and
atheists are the worst for this. I can't think of a single area of society
\_where atheists would face social disadvantage [...] ) J

o | {;‘3

Va - In some states it is illegal "\ //I understand where you're N\
[ to hold public office and be an \ coming from, but it's important |
Athiest. And to your second to recognize that

point, I don't know about the discrimination against atheists
other states, but here in AR still exists in many parts of the
you have to publicly world. In some countries,
acknowledge your belief in atheists face legal

God to hold a liquor license at repercussions, social ostracism,

| your place of business. My | and even violence for their lack |
\\\atheist co-worker [...] / \\\ofbeliefin a higher [...] %

Figure 1: Discussion example from /#/ChangeMyView
subReddit. Top: a post titled “CMV: Atheists in Western
nations aren’t currently being persecuted or oppressed
in any meaningful way”. Below, left: human-written
comment. Below, right: LLM-generated comment.

In this work, we contribute to this pressing area
of research while focusing on a specific domain:
persuasion in online discussions. Recent develop-
ments in this regard are alarming, including unau-
thorized and unethical experiments involving LLM-
driven bots in /7/ChangeMyView (CMV)! — an on-
line platform for opinion exchange — as well as the
growing persuasive power of these tools on top-
ics of critical societal relevance (Goldstein et al.,
2024; Bai et al., 2023; Potter et al., 2024). Consider
the example in Figure 1: a CMV user posts their
view (top panel, the original post, henceforth OP,
claims that Atheists are not oppressed in Western
countries), challenging the community to persuade
them otherwise. On the left, a real user presents a
counter-argument; on the right, an LLM-generated
response without revealing its source. Both com-
ments are fluent and provide solid reasoning. How-
ever, only one reflects a real human’s lived experi-

"www. reddit.com/r/changemyview/comments/
1k8b2hj/meta_unauthorized_experiment_on_cmv_
involving
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ences and genuine thoughts — the qualities that the
CMV users expect when inviting others to share
their individual perspectives (Jhaver et al., 2017).
This ability of LLMs to engage fluently in spaces
designed for authentic human exchange poses a
challenge to the norms and expectations of online
communities.

Such cases, like the example above, underscore
the urgency of understanding the traits and impacts
of LLM-generated text and developing effective de-
tection methods. Therefore, unlike previous work
focused on detection of generated content (Wang
et al., 2024; Koike et al., 2024, inter alia), we take
a fundamental methodological step towards un-
derstanding the key differences between LLM-
generated and human-written argumentative
texts. We draw on an established dataset of real-
world conversations from CMYV (Tan et al., 2016)
augmented with LLM-generated responses (Don-
mez and Falenska, 2025). The data includes OPs,
human-written comments, and parallel to these re-
sponses outputs from three LLMs: GPT-3.5-turbo,
LLAMA2-7B, and MISTRAL-7B (Figure 1, bottom
panel, right). We enrich this data by extracting two
types of features for all posts and (human-written
and model-generated) comments: a) linguistic, e.g.,
textual complexity, syntactic structures, use of emo-
tions (301 features), and b) argument quality, e.g.,
whether the argument is sound or rhetorically im-
pactful (27 features drawn from both argumentation
and social science theory on discussion quality).

The enriched dataset enables two types of com-
parisons. First, we compare human- vs. LLM-
authored comments to address RQ1: What lin-
guistic and argument quality features characterize
LLM-generated arguments, and how do they differ
from human-written ones? Second, we compare
original posts with the comments they receive
(from humans or LLMs) to address RQ2: To what
extent do LLMs align with the style and quality
of the original posts, and do they follow different
convergence patterns??

We find that, in our experimental setup, Al ar-
gues differently. Concretely, LLM-generated argu-
mentative comments follow substantially distinct
distributions from the human-written ones (§4.1),
both in terms of the linguistic features (e.g., lexi-

2We borrow the term convergence from sociolinguistics
literature, where it refers to behavioral strategies in which a
speaker modifies their communication to become more similar
to the communication styles of others (see the Communication

Accommodation Theory (Giles and Ogay, 2013) used, for
example, in Gasiorek and Vincze (2016)).

cal richness and emotion) and the argument qual-
ity ones (e.g., cogency, degree of justification for
the claim, presence of a concrete proposal, respect
shown to the interlocutor). Furthermore, parallel ar-
guments generated by LLMs are highly correlated
with one another, but show much weaker correla-
tion with those written by humans (§4.2). Regard-
ing the stylistic convergence, LLM-generated com-
ments converge more strongly to the style and qual-
ity of the original posts than human-written ones
(§4.3). Observing these apparent differences raises
the question (RQ3): Can these differences between
human and LLM texts be used to effectively de-
tect Al-generated content? Our classification ex-
periments demonstrate that linguistic and/or argu-
ment quality features distinguish LLM responses
to CMYV posts from human-written ones with over
98% accuracy (§5.2). Furthermore, despite its sim-
plicity, our interpretable, feature-based method gen-
eralizes well to other domains and performs compa-
rably to more computationally intensive detection
models.

The contributions of our work® are twofold.
First, we draw a comprehensive picture of the dis-
tinct linguistic properties of LLM-generated argu-
ments, taking a vital step towards a deeper under-
standing of LLM-generated argumentative texts
within a context of substantial societal relevance.
Second, we demonstrate that these properties are ef-
fective at detecting LLM-generated arguments with
a simple, lightweight, and interpretable method that
can be smoothly deployed in online applications.

2 Related Work

2.1 Assessment of LLM-Generated Texts

Much of the literature investigating LLM-generated
texts is focused on the detection of it. Several
works have proposed benchmarks for domains rang-
ing from scientific texts, over creative writing, to
news articles (Wang et al., 2024; Koike et al., 2024;
Li et al., 2024b; Abdalla et al., 2023; He et al.,
2024; Li et al., 2024a; Dugan et al., 2022; Pu et al.,
2023, inter alia). However, these approaches de-
pend mostly on computationally intensive methods
— like pretrained representations or LLM inference
— that are not only impractical in low-resource set-
tings but also lack interpretable features.

On the analysis of LLM-generated texts, prior
studies identified differences from human writing

30ur code and data are available on GitHub.
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(Seals and Shalin, 2023; Sandler et al., 2025, in-
ter alia). For instance, Mufioz-Ortiz et al. (2024)
find that humans exhibit more variance in sen-
tence length, vocabulary, and syntax, while LLMs
use more pronouns, numbers, symbols, and aux-
iliaries. Similarly, Reinhart et al. (2025) find that
instruction-tuned LLMs produce more noun-heavy
and information-dense text. However, such stud-
ies typically focus on lexical, morphosyntactic, or
rhetorical features — rarely exceeding 100 features
— and overlook domain-specific aspects like argu-
ment quality. Our work addresses this gap by lever-
aging over 300 linguistic and domain-specific fea-
tures for a more comprehensive analysis.

2.2 Computational Argumentation

While prior research has used CMV as a benchmark
dataset, the focus has largely been on generation
techniques and evaluating output quality along one
or a few dimensions (Alshomary et al., 2021; Al-
shomary and Wachsmuth, 2023; Lin et al., 2023).
For instance, Hua and Wang (2019) manually com-
pare human and machine arguments in CMV, but
only over 30 samples and 3 argumentation styles.
To our knowledge, we are the first to provide a
large-scale, fine-grained analysis of the differences
between human- and LLM-authored arguments.

Interest in these differences has also grown in
computational social science, driven by concerns
about LLMs’ influence on public discourse (Palmer
and Spirling, 2023; Salvi et al., 2024; Tessler
et al., 2024). Palmer and Spirling (2023) studied
preferences for arguments (not counter-arguments)
by humans and LLMs across topic-stance pairs
(e.g., abortion restrictions), finding that LLMs were
sometimes preferred — but only for certain topics
and when their origin was hidden. LLM arguments
were also simpler and more positive in tone. While
closely related, their work is limited in scale (30
LLM- and 25 human-authored arguments per 9 top-
ics) and in feature depth. In contrast, our approach
uses hundreds of linguistic and domain-specific
features, providing a more comprehensive basis for
social science research.

3 Methods

In this section, we describe the methodological
steps taken to analyze the differences between
human-written and LLM-generated arguments.

3.1 Data

CMV The subreddit CMV follows a structured
format: users submit an original post (OP) stating
a point of view with supporting arguments, and
others respond with comments that challenge it
(see example in Figure 1). These responses form a
tree-like structure, allowing replies to both the OP
and other comments.

We use the publicly available CMV corpus from
Tan et al. (2016), a well-established dataset that pre-
dates the rise of LLMs and has been used in multi-
ple studies (Hidey et al., 2017; Falenska et al., 2024,
inter alia). We merge the training and held-out sets
and remove entries with missing or deleted text,
missing parent posts/comments, or texts too short
to form meaningful arguments (<10 characters).
To focus on discussions where LLM influence is
particularly concerning, we then filter sociopoliti-
cal posts using the Reddit-trained classifier from
Monti et al. (2022), which yields 13, 498 posts.

Regarding the comments, we take only first-level
(direct) comments, excluding replies within longer
discussion threads. To enable pairwise compar-
isons, for each post, we select the most and the
least up-voted comments* — CMV1 to ensure high-
quality arguments and CMV| to disentangle the
quality effects (collectively referred to as C).

LLM We use the LLM-generated comments
to Tan et al.’s (2016) CMV posts from Dénmez
and Falenska (2025). The data includes responses
from an instruction-tuned model (MISTRAL-7B),
an open-access chat model (LLAMA2-7B), and
an API-access chat model (GPT-3.5-turbo).
For each OP, the dataset includes one counter-
argument per model, which were obtained by
prompting the models with the OP appended with
You have one chance to change my view.

Answer: (decoded via nucleus
temp=.9, top_p=.6, max_len=600).

sampling;

In summary, the dataset contains 13,498 orig-
inal posts (OPs; original arguments), human-
written counter-argument comments — CM V1 and
CMV/| (13,498 each), together as C* (26, 996) —
and LLM-generated counter-argument comments
(13, 498 per model, combined as Cchy.

*CMV includes A annotations marking when a comment
changed a user’s view, often used to indicate persuasiveness
(e.g., Monti et al., 2022, inter alia). Due to their sparse and
uneven distribution, we rely on community votes instead.
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3.2 Features

We extract two types of features — domain-specific
argument quality metrics and general-purpose lin-
guistic features — from all posts and comments in
our dataset.

Argument Quality Features These domain-
specific features — referred to as argument quality
for brevity — fall into two categories: argument
quality as understood in the NLP community (e.g.,
logical structure, rhetorical effectiveness), and de-
liberative quality from the social sciences (e.g.,
presence of concrete proposals, interactivity, re-
spect, empathy, emotional expression, and story-
telling). These two perspectives offer complemen-
tary, partially overlapping answers to a central ques-
tion: Is this comment a good argument?

To obtain these metrics, we use publicly avail-
able argument quality adapters from Falk and
Lapesa (2023), trained on established argument
quality datasets. Each adapter specializes in scor-
ing a particular quality dimension. Some dimen-
sions capture broad notions like quality or impact,
while others reflect the finer distinctions outlined
above, based on the original dataset annotations
(detailed in §B.1.1, Table 6).

Using these models, we score each text in our
data. We then scale all scores to the range of [0, 1]
for comparability.

Linguistic Features While argument quality met-
rics capture domain-relevant dimensions, they of-
fer a limited view of the full linguistic footprint
of a text. Therefore, we expand this feature set by
extracting 301 linguistic features using the open-
source library elfen (Maurer, 2025). These fea-
tures are from the areas surface (e.g. number of
tokens), lexical richness (e.g. type-token ratio),
readability (e.g. Gunning Fog index), psycholin-
guistics (e.g. concreteness), information theory
(e.g. entropy), emotion (e.g. anger intensity), se-
mantics (e.g. polysemy), named entities, parts-of-
speech, morphology, and syntactic dependencies
(detailed in §B.1.2).

Each feature dependent on token counts (e.g.,
number of named entities) is normalized by the
total number of tokens of the instance, and we scale
all features to the range of [0, 1] for comparability.

3.3 Maetrics

We use standard statistical metrics in our analyses:
Wasserstein-1 distance (W S) to measure differ-

Dimension wSs D | Dimension wSs D
reference 0.35 0.35 | overall 020 -0.20
impact 0.31 -0.31 | justificationt+ 0.19 -0.19
interactivity ™ 0.28 -0.28 | reasonableness 0.18 -0.18
effectiveness 0.24 -0.24 | emotion™ 0.18 0.18
respecte*Plict 0.23  -0.23 | cogency 0.18 -0.18
respectmplicit 0.21  0.21 | QforJustification 0.13  0.13
quality 0.20 -0.20 | proposal 0.12 -0.12
justification™ ™  0.10 -0.10

Table 1: Wasserstein distances (WS) and mean differ-
ences (D) between the human and LLM comments in
aggregate and descending order for argument quality
features of W S(CH,C¥) > 0.1. For the remaining fea-
tures, see Appendix Table 9.

ences between empirical distributions per argument
quality dimension and linguistic feature, difference
of means (D) to compare the central tendencies of
CH and C* across each argument quality dimen-
sion and linguistic feature, and pairwise Pearson’s
r correlation coefficient to measure the feature cor-
relations between pairs of texts. We refer to §B.2.1
for the formulas.

4 Key Characteristics of LLM-generated
Arguments

We now turn to our primary objective: to uncover
the key argumentative and linguistic characteristics
of LLM-generated texts. Two answer our first two
research questions, we perform two comparison
analyses: (1) distributional differences between the
human-written and LLM-generated parallel com-
ments and the correlations between the two (RQ1),
and (2) style and quality convergence of comments
(by humans or LL.Ms) to the linguistic style or the
argument quality properties of the OPs (RQ2).

4.1 Distributional Differences

To identify and discuss particularly pronounced
differences between LLM and human counter-
arguments, we apply a threshold of WS > 0.1.
We set this threshold empirically to focus on the
top-n most distinct features.

Argument Quality Features Table 1 presents
the most prominent argument quality features. We
observe particularly substantial distributional dif-
ferences (WS > 0.2) between C¥ and C’ for
dimensions such as references to other discourse
participants, impact of an argument given its con-
text, positive interactivity with others’ arguments,
rhetorical effectiveness, and explicit and implicit
respect toward other groups. To make these W .S
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Figure 2: Example distributions from the top argument quality and linguistic features with the largest W S between
the human-written and LLM-generated argument comments to CMV OPs. CMV stands for C¥ .

Feaure wSs D

Type token ratio (TTR) 020 020
Lemma token ratio (LTR)  0.19  0.19

Avg. intensity anticipation 0.13 -0.12
POS variability 0.12  0.12
Herdan’s C 0.11  0.11
Avg. intensity trust 0.11 -0.10

Table 2: Wasserstein distances (WS) and mean differ-
ences (D) between the human and LLM comments in
aggregate and descending order for linguistic features
of VVS(CH7 CL) > 0.1 (= .05 in Appendix Table 14).

values more interpretable, we visualize the distri-
butions for the two most prominent features — ref-
erence and impact — in Figure 2a. As the plots
show, human arguments (in blue) differ substan-
tially from LLM-generated ones, while the LLMs
produce notably similar patterns across models (cf.
Appendix Table 11; plots for WS € [0.1,0.2] in
Figure 7).

Regarding the differences in mean distributions,
a positive D shows that human-written arguments
score higher on average for a given dimension, and
the negative D indicates the opposite. Accordingly,
we find that LLM arguments contain fewer refer-
ences to other discourse participants (0.35), display
less implicit respect (0.2) and less negative emotion
(0.17), and do not request a justification as often,
1.e., humans display a higher inquisitive behavior
(0.13) while, at the same time, providing less so-
phisticated levels of justification than LLMs. For
the remaining dimensions, we observe the oppo-
site: LLM arguments, among others, score higher
in impact and effectiveness and show more positive
interaction with others.

Linguistic Features Table 2 presents the most
prominent linguistic features. The most pro-
nounced differences between C'* and C are in the

type token ratio (TTR) and the lemma token ratio
(LTR), with 0.20 and 0.19. This is followed by the
average emotion intensity for anticipation (0.13),
POS variability (the relative number of unique POS
tags per token, 0.12), Herdan’s C (a measure of
lexical richness, 0.11), and the average emotion
intensity for trust (0.11).

Looking at D, LLM arguments contain more
emotion-related features, meaning that LLMs tend
to use more tokens that are associated with a higher
emotion intensity, as exemplified in the second
panel of Figure 2b. For the TTR (Figure 2b, left),
humans tend to write arguments with a greater lex-
ical richness (more unique lexical items relative to
the number of tokens) and show a higher variance.
While all LLMs tend to behave very similarly, the
distributional tendencies of arguments from GPT-
3.5-turbo are closer to human-written arguments in
terms of their TTR than the other LLMs (also see
Appendix Tables 12 and 13).

4.2 Correlations between Parallel Arguments

To gain more insights into the correlations between
parallel argument comments authored by LLMs
and humans, we now report findings separately for
the three LLMs. Additionally, to account for the
variability among human-written comments, we
present results separately for CMV?T and CM V.

Argument Quality Features Figure 3a presents
Pearson’s correlation scores for argument quality
features. At a first glance, we observe high correla-
tion between the LLM arguments (left three bars,
avg. r = 0.51), among which there is a stronger
correlation between the GPT-3.5-turbo and the
MISTRAL-7B-instruct arguments, then LLAMA2-
7B and MISTRAL-7B-instruct (with also more vari-
ation), and finally GPT-3.5-turbo and LLAMA2-7B.
Looking at LLM—CMYV pairs (right six bars), we
see that the parallel human and LLM arguments are
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Figure 3: Pearson’s r per comparison pair for argument quality features: (a) between pairs of counter-arguments, (b)
between the original post arguments and counter-arguments (see Appendix Table 6 for all quality features).

less correlated, with a slightly higher correlation
between LLMs and CM V1 than CMV | (0.25 and
0.2 on average).

As per individual features, we observe a con-
sistent ranking patterns across comparisons, €.g.,
implicit respect is the top-correlated dimension in
all cases except for GPT-CMV .

Linguistic features Given the high number of
linguistic features, we aggregate results per feature
area in Figure 5a (cf. Figure 11). We find that all
LLMs show consistently higher correlations with
each other than with CMV? or CMV, especially
in emotion, named entities, and psycholinguistics
with no major differences between the individual
LLMs. We verify that these tendencies hold for
individual features by calculating Spearman’s p
between each pair of comparisons’ feature corre-
lations (Table 15 in §B.3.1). We find high rank
correlations p € (0.84,0.98), indicating high con-
sistency across comparisons.

Interpretation and Answer to RQ1 Our results
partly align with Palmer and Spirling (2023). First,
LLM comments express more positive emotions
(e.g., anticipation and trust), while human com-
ments display more negative emotions. Although
the expression of negative emotions is less common
in LLM outputs, since such content is often avoided
by the models, as evidenced by our findings, it
plays a vital role in authentic human interaction,
especially in the context of socially and politically
charged topics. Similarly, we verify that human
comments show greater creativity, as reflected in
metrics like TTR, lemma-token ratio, and Herdan’s
C.; while, unlike their findings, we see no evidence
that LLM-generated texts are less complex. When
it comes to argument quality, LLMs excel at repli-

They've been saying this since the 30s. Keynes predicted that
[ ] as technology increased and our material needs would be met.,
we would only need to work 15 hours a week, instead we are
working longer hours than ever. There's no reason to think this
will change anytime soon, if it hasn't in the last 80 years.

=0.58 0.23 fi

ttr=0.81 avg_:

0.91

While it is true that automation is changing the landscape of
the job market, it doesn't necessarily mean that human beings
will become completely pointless in the future. Automation
has the potential to create new job opportunities in industries
that we can't even imagine yet. Just think about the jobs that
exist today that didn't exist 20 years ago, such as social media
manager or app [...]

S

ttr=0.49 avg_ =0.75 0.99 fi 0.06

Figure 4: Example parallel texts from a CMV user and
GPT-3.5-turbo with feature values. Underlined blue text
indicates a hyperlink included in the text (cf. Appendix
Figure 8).

cating textbook indicators of high quality — such as
cogency, justification, and overall impact — likely
reflecting classifier-aligned optimization. This sup-
ports Salvi et al. (2024)’s findings that LL.Ms use
more analytical reasoning markers than humans.
However, whether these arguments are actually per-
ceived as more persuasive or impactful by humans
remains an open question, beyond the scope of this
paper. At the same time, humans continue to dis-
play greater creativity and capacity for interactive
discourse — asking questions and referencing oth-
ers in the conversation — traits that are distinctly
human.

These tendencies are illustrated in Figure 4 with
a parallel pair of counter-arguments: The human-
written argument is shorter yet more lexically rich,
as evidenced by its high TTR, and references to
other discourse participants (Keynes, they). In con-
trast, GPT-3.5 produces a more formulaic argument,
repeating terms such as automation, leading to a
lower TTR, and uses words connoted with antici-
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Figure 5: Aggregated Pearson’s r for each pair of linguistic features per feature area, for the areas with the largest
differences: (a) between pairs of counter-arguments, and (b) between original posts and their counter-arguments.

pation such as potential or opportunities. Lastly,
the GPT-3.5 argument scores higher on impact, in-
dicating greater perceived persuasiveness.

4.3 Style and Quality Convergence

Ananthasubramaniam et al. (2023) show that Red-
dit users often adapt their linguistic style to that of
their interlocutors. This naturally raises the ques-
tion: Do LLMs exhibit similar convergence pat-
terns? To explore this, we turn to RQ2 and examine
whether comments — authored by either humans or
LLMs — align with the linguistic style or argument
quality of the OPs. To measure the convergence,
we use the same method described in §4.2, this
time comparing each OP with the corresponding
comment, whether written by a human (CMV? or
CMV]) or generated by a particular LLM.

Argument Quality Features Figure 3b demon-
strates that the LLM arguments are much more
correlated with the OP than the human arguments
(CMVt and CMVJ), with OP-CMV| as the least
correlated pair. For individual dimensions, the cor-
relations for empathy is consistently weak across
all comparisons (0.16 on avg.). The correlations
for implicit and explicit respect toward others and
clarity are the highest across comparisons — strong
for the OP-LLM (0.72, 0.72, 0.69, resp.) and
moderate for OP-Human (0.51, 0.47, 0.44, resp.).
The remaining dimensions also behave consistently
across pairs with the Pearson’s  being the largest to

smallest for OP-LLM, OP-CMV1 and OP-CM V.

Lastly, we observe a cluster around the moderate
to strong association between the OP-LLM pairs
and weak for the OP—Human pairs.

Features A P R F1

Argument Quality .9808 9846 .9834 .9840
Linguistic 9885 .9927 9881 .9904
All Features 9927 9952 9927 .9939

Table 3: Performance of logistic regression over fea-
tures averaged across 5 folds cross validation based on
argument quality, linguistic, and both sets of features.

Linguistic Features Figure 5b shows that, for
most feature areas, Pearson’s r is in the weak
(0.0 < r < 0.3) to moderate range (0.3 < r < 0.5)
across comparison pairs. The correlations are high-
est for OP-LLM comparisons for emotion, named
entity, and psycholinguistics features. Specifically,
LLM arguments show higher correlations with OP
than human arguments across feature areas. The
highest correlations for OP-CMV comparisons, in
contrast, can be found in lexical richness, depen-
dency, and POS features (cf. Appendix Figure 12).
Examination of the individual features reveals that
human argumentative comments align with OPs
particularly well for uncommon words and con-
structions. These tendencies hold for individual
features — we find high Spearman’s rank correla-
tions (p € (0.76,0.95)) between feature correla-
tions for each pair (cf. Table 16 in §B.3.1).

Interpretation and Answer to RQ2 Overall,
LLM-generated comments exhibit stronger conver-
gence with OPs, particularly in the use of named
entities, emotion-associated words, and psycholin-
guistic features. Interestingly, these are precisely
the areas where we observe the highest inter-model
correlations (cf. §4.2). In contrast, human-written
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Figure 6: t-SNE projections of linguistic features, ar-
gument quality dimensions, and both of them concate-
nated.

comments show less linguistic convergence to the
OPs overall but tend to align more in their use of
uncommon vocabulary and syntactic constructions.

The observed patterns suggest that LLMs may
rely on default, model-internal strategies for align-
ment, leading them to converge with the OPs and,
thus, with one another. In contrast, human con-
vergence appears more influenced by individual
preference and/or community or group norms. The
consistent use of uncommon words and syntac-
tic structures likely reflects forum-specific stylistic
conventions (Danescu-Niculescu-Mizil et al., 2013;
Nguyen and P. Rosé, 2011), rather than direct adap-
tation to individual posts.

5 Linear Classification over Features

So far, we have shown that LLMs differ from hu-
mans in both linguistic style and several dimen-
sions of argument quality. This raises a natural
question: Can they be used to successfully recog-
nize generated content (RQ3)?

To get an intuition about the data distribution and
select an appropriate method, we first projected the
features into two-dimensional latent spaces using
t-SNE. As displayed in Figure 6, the resulting vi-
sualizations revealed well-structured clusters, with
clear separation boundaries between the human-
and LLM-authored texts in the embedding space,
suggesting that the linguistic and argument quality
features of these texts capture meaningful distinc-
tions among the underlying categories.

5.1 Method

To answer RQ3, we train and evaluate a linear clas-
sifier with interpretable features introduced in §3.2,
choosing linear classification since the projections
suggested clear separation.

Logistic Regression We use a simple logistic re-
gression classifier to distinguish the two types of

Domain A P R F1
CMV®* 0.879 0.809 0961 0.878
Yelp® 0.791 0.875 0.667 0.757
ELI5® 0.844 0.815 0.847 0.831
WP* 0.940 0.907 0.965 0.935
Avg. 0.809 0.761 0.900 0.811

Table 4: Classification results for Testbed 3 (fixed do-
main & arbitrary model) from MAGE. Argumentative
texts are marked with ¢ and the Reddit data with e. Avg.
reports the average across all datasets in MAGE (cf. Ap-
pendix Table 33).

parallel texts (CH and CL; details in §C.1.1). We
represent each argument comment by a vector of its
argument quality metrics, linguistic features, and
the concatenation of both. This allows for inspec-
tion of the most predictive features via the regres-
sion coefficients, making the classifier’s outputs
interpretable.

Evaluation We evaluate the classifier via strati-
fied k-fold cross validation on balanced CMV data
(80% train and 20% test at each iteration; 5 folds,
stratified for class). For metrics, we follow the com-
mon practice and use Precision (P), Recall (R), F;
(F1), and Accuracy (A) scores.

5.2 Results

The results in Table 3 demonstrate almost perfect
classification performance (cf. Appendix Tables 17
to 19). This is true for using only the argument
quality scores, only the linguistic features, or both,
while the overall performance is better when both
sets of features are used. For the argument quality
metrics, the most salient features in distinguishing
between the two are quality, clarity, positive inter-
activity, cogency, and negative interactivity. The
most salient linguistic features are Maas’ TTR (a
log-normalized formulation of TTR), the number
of hapax dislegomena (tokens occurring exactly
twice in the text), the number of nominal subjects,
types, and pronouns (cf. Appendix Figure 18 and
Table 21).

5.3 Generalizability

To test the generalizability of our findings beyond
our prompt settings, the social media domain, or
text type (e.g., argumentative vs. informative), we
evaluate our method on an external benchmark.’
>Here, we only use linguistic features given the limited

applicability of argument quality dimensions to other domains.
For results including argument quality dimensions on applica-
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Method Ren Ror Rawg AUROC
FastText 0.894 0.739 0.817 0.89
GLTR 0.373 0.889 0.631 0.80
Longformer 0.898 0.972 0.935 0.99
DetectGPT 0.869 0.341 0.605 0.57
LogReg+Features 0.753 0.900 0.827 0.83

Table 5: Comparison of linguistic feature-based logis-
tic regression to methods reported in Li et al. (2024a).
Following the original papers’ evaluation scheme, we
report the human and LLM recall and the average of the
two (Rou, Row, and Rg,g) as well as AUROC. Best
per metric bolded, second-best underlined.

Benchmark MAGE (Li et al., 2024a) is a bench-
mark suite for detecting LLM-generated text,
where each instance pairs a human-written passage
with continuations generated by 27 models (listed
in §C.4.2). These continuations are prompted with
the first 30 words of the human-written text, using
data from diverse online sources (see Appendix Ta-
ble 25), including CMV. It includes eight testbeds
(see Appendix Table 26). We focus on Testbed 3
(fixed domain & arbitrary models), which aligns
most closely with our setup, and report additional
results in the Appendix (§C.4.3 and §C.4.4). We
train a logistic regression classifier on linguistic fea-
tures extracted from MAGE data (same procedure
in Section 5.1) and evaluate using their metrics —
AUROC (higher is better), recalls for human (Rq#)
and LLM (R ), and average (Rq.4) — as well as
P, R, Fy, and A.

5.3.1 Results

Table 4 shows classification results for opinion
(CMV, Yelp; ¢) and Reddit (CMV, ELI5, WP; e)
subsets. Overall performance is lower than on our
CMV dataset (avg. F; = 0.81; Yelp lowest at 0.76,
WP highest at 0.94, CMV at 0.88). Compared to
Li et al. (2024a) (on their evaluation scheme; see
Table 5), our simple logistic regression over linguis-
tic features performs comparably to more complex,
resource-intensive detection methods.

Performance differences — especially for CMV
— may stem from prompt design. In MAGE, LLM-
generated texts continue from the beginning section
of parallel human counter-arguments rather than
being conditioned on the OP. This shared opening
likely results in stronger stylistic alignment, mak-
ing the parallel texts harder to distinguish.

ble subsets of the benchmark, see §C.5

6 Conclusions and Discussion

As LLM-generated content increasingly populates
online discourse, understanding how it differs from
human-written texts is critical, particularly in per-
suasive contexts with potential influence on opinion
shaping.

Analyzing distributional differences between hu-
man and LLM arguments in persuasive discourse,
we find substantial differences both in style and
argument quality: LLM arguments show higher
emotional positivity, stronger convergence with
original posts (especially in named entities and
psycholinguistic features), and greater alignment
with argument quality markers. In contrast, human
arguments display more negative emotion, greater
lexical and syntactic creativity, and stronger use of
interactive discourse.

Moreover, we show that linguistic and argu-
ment quality features enable nearly 99% accurate
detection of LLLM-generated comments to CMV
posts. Our approach thus offers a practical safe-
guard against unethical uses of LLMs in online dis-
cussions.® Furthermore, tests on an external bench-
mark show that our lightweight’ and interpretable
method performs comparably to computationally
intensive detectors in generalized detection sce-
narios, highlighting the viability of low-resource,
transparent detection methods.

These results prompt important questions for fu-
ture research: Under what conditions are LLM-
generated texts harder to detect? How do the
prompt design and task objective influence de-
tectability? How do the convergence patterns of
humans and LLMs align with social theories of
communication, such as communication accommo-
dation theory (Giles, 1973)? Our framework pro-
vides a straightforward and interpretable approach
to assess such questions, thereby facilitating future
investigations into the nuances of LLM-generated
content.

7 Limitations

Due to data availability, the present work only con-
siders English arguments. While the general ap-

The dire need for this type of work is underscored by
recent incidents of unauthorized attempts to inject LLM-
generated content in online forums; notably, the CMV com-
munity was shaken by such a case only recently.

"Given training data ready with extracted features, the
classifier can be trained in a few minutes. Both training and in-
ference, including feature extraction, can be run on consumer-
grade hardware (in our case, an Apple M4 Macbook Pro).
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proach of analysis and classification in principle
could be applied directly to arguments in other lan-
guages, the availability of tools for languages other
than English may be limited. Furthermore, the
feature-specific findings may be language depen-
dent.

In a similar vein, we assess a single, albeit
popular, text domain in detail. While our results
suggest that the distinction between human- and
LLM-authored texts based on interpretable features
largely generalizes, the specific features that differ-
entiate the two may vary across domains.

Our analysis and experiment setup is based on a
single prompt formulation. Given that the effects of
prompt variation on free-form generation are even
less understood than in classification tasks, factors
such as prompt variations and decoding strategies
could influence the variability of LLM-generated
arguments and potentially alter how different they
are from human arguments in their linguistic and
argumentation-specific makeup.

Finally, our approach involves automatically ex-
tracted features for argument quality dimensions
and relies on psycholinguistic norms and emotion
lexicons for certain linguistic features. These sig-
nals are noisy proxies, and how well they map to
human judgments of argument or deliberative qual-
ities of texts is an open question. Nonetheless, the
distributional differences between human-written
and LL.M-generated arguments on these features
allow for meaningful comparisons that shed light
on stylistic and qualitative tendencies, offering in-
sights into how LLMs approximate (or diverge
from) human argumentative behavior.

8 Ethical Considerations

While our work advances understanding of the fea-
tures and quality of LLM-generated texts, it raises
several important ethical considerations.

First, LLM-generated arguments in response to
social media posts have the potential to reproduce
or amplify societal biases. To mitigate this risk, all
experiments were conducted offfine, ensuring that
no unsuspecting social media users were exposed
to machine-generated “opinions.” We strongly dis-
courage any deployment of LLMs in online envi-
ronments that violates community norms or lacks
informed consent.

Second, insights from our findings raise poten-
tial dual-use concerns. On one hand, they could be
misused by malicious actors to develop tools that

manipulate or steer public discourse. It is therefore
essential not only to highlight these risks but also to
support community efforts to identify, mitigate, and
safeguard against such misuse. On the other hand,
understanding the linguistic properties of generated
arguments has constructive applications beyond de-
tecting malicious content. These insights can help
guide generation toward more appropriate content
(Ziegenbein et al., 2024) — for example, by suggest-
ing reformulations of user arguments to match a
desired stylistic profile. Additionally, classifiers
based on fully interpretable linguistic features can
serve as effective educational tools, helping the
public recognize LL.M-generated content.

Finally, all human-authored texts used in our
analyses were drawn from publicly available
datasets and handled in accordance with estab-
lished ethical research standards. No identifiable or
private user data was used. Nonetheless, ongoing
reflection on issues of consent, data provenance,
and user agency remains vital when working with
human discourse.
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A Data

We provide additional details of the CMV forum
and the LLM-generated counter-arguments in this
section.

A.1 CMYV Forum

The subreddit CMV functions similarly to other
Reddit forums. Users initiate discussions by post-
ing a viewpoint in the title and elaborating on it in
the body text, which may include external links to
websites, images, or other resources. The platform
is designed for opinion exchange: once a post is
live, any Reddit user can engage with it by voting
or commenting (a Reddit account is required to do
s0). Users can also reply to comments, forming a
tree-structured discussion. A distinctive feature of
CMV is the ability for the original poster to award
a A flag to comments that successfully changed
their view.

As with other Reddit communities, CMV en-
forces a set of rules, outlined at www. reddit.com/
r/changemyview/wiki/rules. Notably, one rule
prohibits unauthorized bot activity. However,
this rule was recently violated when researchers
conducted an unauthorized experiment by post-
ing LLM-generated comments, as reported in
www.reddit.com/r/changemyview/comments/
1k8b2hj/meta_unauthorized_experiment_on_
cmv_involving. Incidents like this highlight the
urgent need to better understand the characteristics
of LLM-generated arguments and their potential
influence on public opinion, as well as the
importance of developing interpretable tools to
detect such content.

Note that, due to the nature of online discourse,
the CMV dataset may contain offensive content.
However, this content was not created by us, nor do
we employ any methods that endorse or promote
such material.

A.2 LLM Data

To generate counter-arguments to CMV posts, we
use three widely studied LLMs: GPT-3.5-turbo,
LLAMA2-7B, and MISTRAL-7B-instruct. These
models were chosen for their differing accessibility,
diverse training paradigms, and relatively low com-
putational cost. While many other LLM families
exist, these three are among the most researched,
allowing for deeper analysis of their behavior and
patterns.

No prompt engineering or optimization were em-

ployed in this study. For LLAMA2-7B and M1s-
TRAL-7B-instruct, we use the HuggingFace text
generation pipeline at https://huggingface.co/
docs/text-generation-inference, and we ac-
cess GPT-3.5-turbo via OpenAl text completion
API at https://platform.openai.com/docs/
guides/gpt (accessed between Dec. 8 - 19. 2024).

B Feature Analysis

This section provides additional details and results
for our distribution and correlation analyses.

B.1 Features

In the following, we provide details about the fea-
tures used in our work. §B.1.1 lays out and de-
scribes argument quality and deliberative quality
dimensions, and §B.1.2 describes which linguistic
features are used.

B.1.1 Argument Quality

We use argument quality assessments from adapter
models developed by Falk and Lapesa (2023). Ta-
ble 6 gives an overview of the dimensions and their
sources, Table 7 of the label categories for multi-
class adapters. Notation mapping used in figures
and captions is described in Table 8.

B.1.2 Linguistic Features

We extract linguistic features using elfen at
https://elfen.readthedocs.io/en/latest/.
In the following, we lay out which features from
the package we use in this work.

Surface-Level Features provide information
about high-level surface characteristics of the text
such as length (in different measurement levels).
As such, they measure surface-level complexity of
texts.

We extract the sequence length in characters,
both with and without whitespace, number of to-
kens, sentences, types, lemmas, long words (over
six characters), the number of tokens per sentence,
characters per sentence, and average word length.

Readability Indices measure the reading com-
plexity of the text, giving information on how chal-
lenging/fitting a text would be for different reader
experience levels.

We extract the Gunning fog index, ARI, Flesch
reading ease, and Flesch-Kincaid grade level (Kin-
caid et al., 1975), the CLI (Coleman and Liau,
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Dimension | Description Corpus
Overall General argument quality GAQ
Cogency Acceptable and sufficient premises to draw a conclusion GAQ
Reasonableness Contribution to resolving issues; accepted by a universal audience | GAQ
Effectiveness Persuasiveness, rhetorical or emotional appeal GAQ
Quality | General argument quality IBM-Rank-30k
Clarity | Ease of interpreting the argument | Swanson
Justification Rationality, providing reasons, reflection Europolis
Respect Empathy or respect toward groups (e.g., immigrants) Europolis
Storytelling Personal experience or subjective event description Europolis
Interactivity Respect toward or reference to other participants’ arguments Europolis
Common Good Consideration of community interests or utilitarian values Europolis
PosEmotion Contains positive emotions THF/BK
Proposal Statement about what or how something should be done THF/BK
Narration Subjective or personal experience description THF/BK
Reference Reference to another discourse participant THF/BK
Argument Provides reasons or evidence for/against a claim THF/BK
NegEmotion Contains negative emotions THF/BK
Empathy Speaker adopts another’s perspective or emotional state THF/BK
Q. for Justification | Requests reasons for a statement or action THF/BK
Impact | User engagement (e.g., likes or recommendations) | Kialo

Table 6: Argument quality dimensions and their respective score ranges in models from Falk and Lapesa (2023).
Justification, respect, interactivity and common good are multi-class, whereas the remaining dimensions are binary.
For the binary dimensions, we use the score from node that corresponds to label 1. For the multi-class ones, see
Table 7.

Dimension | Labels

Interactivity No reference, Neutral reference, Positive reference to others*, Negative reference*
Respect Disrespectful, Implicit respect*, Explicit respect*

Common Good No reference, Own country*, Common good*

Justification No justification, Inferior justification*, Qualified justification*, Sophisticated*
Impact Not impactful, Medium impactful, Impactful*

Table 7: Label categories for multi-class adapters. The ones used in this paper are marked with a *.

Notations | Descriptions

reference ™ Positive reference to mentioned groups
reference Negative reference to mentioned groups
respect!™mplicit Implicit respect for mentioned groups
respect®Plicit Explicit respect for mentioned groups
commonGood™ion! Reference to common good for one’s own country
commonGood"*ers#! Reference to common good
justification™ Inferior justification

justification T Qualified justification

justification ™ T+ Sophisticated justification

impact Impactful

Table 8: Notation mapping to the argument quality features used in Figures and Tables throughout the paper.
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1975), LIX (Bjornsson, 1968), and RIX (Ander-
son, 1981), the number of syllables in a text, the
number of words with only one syllable, and the
number of words with more than two syllables.

Psycholinguistic Norm Features measure indi-
vidual words’ cognitive, social, and sensorimotor
grounding. As such, they provide information on
whether and to what extent words in the text evoke
associations in different dimensions of lived expe-
riences.

We use the packages’ provided psycholinguis-
tic norms (concreteness (Brysbaert et al., 2014),
iconicity (Winter et al., 2024), sensorimotor(Lynott
et al., 2020), age-of-acquisition (Kuperman et al.,
2012), prevalence (Brysbaert et al., 2019), and so-
cialness (Diveica et al., 2023)). Per norm, we ex-
tract the average rating of all tokens from the item
in the norm lexicon, their average standard devi-
ation in the ratings, the number of tokens with a
high rating, a low rating, and the number of tokens
with a particularly high standard deviation.

Part-of-Speech Features provide information
on the grammatical categories of words in the text
instances. As such, they allow us to measure, for
example, whether text instances are particularly
noun-heavy.

We extract the number of tokens with a given
POS tag, the number of lexical tokens (nouns,
verbs, adjectives, and adverbs), and the POS vari-
ability (number of different POS tags relative to the
number of tokens).

Lexical Richness Measures measure the lexical
complexity of texts, i.e. how many different tokens
are used. The more lexically rich a text is, the more
variable and, in some sense, creative the word usage
in a given text is.

We extract the type-token ratio (TTR) (TEM-
PLIN, 1957), RTTR (Guiraud, 1954), CTTR (Car-
roll, 1964), Herdan’s C (Herdan, 1964), Summer’s
TTR, Maas’ TTR (Mass, 1972), Yule’s K (Yule,
1944), Herdan’s V,,, (Herdan, 1955), Simpson’s D
(Simpson, 1949), MSTTR (Richards and Malvern,
1997), MATTR (Covington and and, 2010), MLTD
(McCarthy and Jarvis, 2010), the number of ha-
pax (dis)legomena, Sichel’s S (and, 1975), and the
lexical density.

Morphological Features provide morphosyntac-
tic information about the texts and as such can be
reflective of certain styles. We extract the number

of tokens with a given morphological feature for
all available morpho-syntactic features.

Information-Theoretic Features measure text
complexity from an information-theoretic perspec-
tive. We extract the compressibility and the average
token entropy.

Dependency Features provide information
about the syntactic dependency structure of texts.
As such, they allow us to measure differences in
how texts are structured. We extract the number
of dependency relation types, the number of noun
chunks in the text, the dependency tree width,
the tree depth, the tree branching factor, and the
ramification factor.

Semantic Features present in the package mea-
sure hedges (whether an author expresses uncer-
tainty), and polysemy as a proxy for lexical ambi-
guity. We extract the average size of the synsets,
the number of tokens with a large synset, and the
number of tokens with a small synset for nouns,
adjectives, and verbs, and the number of hedges.

Named Entity Features provide information
about the usage of entities (people, organizations,
etc.) in texts and thus serve as a proxy to assess
when texts may refer to world knowledge and to
what extent. We extract the number of named enti-
ties overall and per entity type.

Emotion and Sentiment Features measure emo-
tion and sentiment associations of individual words.
As such, they serve as a proxy for emotion-laden
language. Note that this is not equivalent to the
overall emotion or sentiment of a given text.

We use the standard emotion/sentiment lexicons
as the package: The NRC-VAD lexicon (Moham-
mad, 2018a) for valence, arousal, and dominance,
the NRC emotion intensity lexicon (Mohammad,
2018b) for the emotion intensity, and the NRC
word-emotion association lexicon (Mohammad and
Turney, 2010, 2013) for sentiment. We extract the
average rating, the number of tokens with a high
rating, and the number of tokens with a low rating.
For sentiment, we extract the number of positive
and negative sentiments, and the sentiment score.

B.2 Methods

B.2.1 Maetrics

Wasserstein Distance (IWS) We use the
Wasserstein-1 distance — SciPy implementation,
documented at https://docs.scipy.org/doc/
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scipy/reference/generated/scipy.stats.
wasserstein_distance.html — to measure
differences between empirical distributions per
argument quality dimension and linguistic feature.

Given sets of a given feature for human-written
(CHy with samples X; and LLM-generated com-
ments (CL) with samples Y; for ¢ = 1 to N, the
Wasserstein-1 distance is defined as

1 n
ws(cf,ct) == [1Xe =Yl ()
=0

Difference of Means (D) To compare the central
tendencies of CH and C across each argument
quality dimension and linguistic feature, we com-
pute the difference between their means as in

D, e = py — pr, 2)

where p g stands for the mean of the human and
w1, of the LLM comments.

Pearson’s r We measure the pairwise Pear-
son’s correlation coefficient (Pearson’s r) —
SciPy implementation, documented in https:
//docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.pearsonr.html — for
a pair of text sources (r¢,c; where i # j) per
argument quality dimension and linguistic feature
as

> i1 (Cir. — Ci) (Cjp — Cy)

r= .
¢Z@4@%—42V¢Zﬁﬂ@%—cw2
B - 3)
where C; and C); refer to the means of C; and C},
respectively, and Cjy, is the k-th instance in C;.

Spearman’s p We measure Spearman’s
rank correlation coefficient p — SciPy
implementation, documented in  https:

//docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.spearmanr.html -
for two feature rankings (per comparison pair, cf.
§B) A and B as

63 df

n(n?—1)’

p=1- 4)

where d; is the difference in ranks of each feature
and n is the total number of features.

B.3 Results

In this subsection, we present more detailed analy-
sis results.

B.3.1 Distributional Differences

Table 9 shows the Wasserstein distances and the
difference of means for all argument quality dimen-
sions for human-written (only the most and least up-
voted) and model-generated comments. Table 10,
in contrast, shows the Wasserstein distances and the
difference of means for all argument quality dimen-
sions for all first-level (direct reply to OP) human-
written comments and model-generated comments.
The consistent W.S and D confirm marked differ-
ences between model-generated and human-written
comments, even if the latter is sub-sampled.

Interpretation and Answer to RQ1 In addition
to the examples shown in Figure 4, we illustrate the
tendencies for the argument quality feature reason-
ableness in Figure 8. The figure presents three texts
with distinctly different reasonableness scores. The
first text makes a sweeping claim that “all jobs will
become obsolete,” the second expresses a personal
perspective while carefully hedging its argument,
and the third resorts to sarcasm. These differences
are reflected in the scores: the second text achieves
the highest score, followed by the first text, while
the sarcastic comment ranks lowest.

B.3.2 Verification of Rankings

We verify whether the ranks of features in our com-
ment source pair correlation analyses are compara-
ble by calculating Spearman’s p per combination
of pairs. Intuitively, this gives us an idea of whether
a given feature is at a similar rank, so whether, for
example, a drop in correlation comparing one pair
of comment sources to another in aggregate ten-
dentially holds for individual features, too. This is
indeed the case, as Table 15 and 16 show, given the
high correlations for all combinations of pairs.

B.3.3 Correlation Analysis Including Delta
Comments

In the following, we present results for our corre-
lation analyses. We take all posts and comments
with exactly one delta to retain parallelism between
comments.

We present the correlation ranges for pairs of
comment sources for argument quality features in
Figure 13. While features of CMVA correlates
better with LLM-generated comments than CMV?
or CMV| across features, they overall do not show
drastic differences from them. As for the linguistic
features in Figure 14, while CMVA has tenden-
tially higher correlations to LLM-generated com-
ments than CMV1{ or CM V| across feature areas,
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Figure 7: Example distributions from the top argument quality dimensions features with WS in range of (0.1,0.2)
between the human-written and LLM-generated comments.

The automation issue really depends on how well government
can actually operate in the best interests of the people, and/or
the richest are sufficiently superrational to recognize their
imediate self-interests work against their ultimate best
interests, and bind themselves to a common economic good.
Indeed, it is very likely that all jobs will eventually become
obsolete. Once machines are capable of doing everything that
a human being is capable of doing, and doing it better and
more efficiently, then there isn't a [...]

bl 0.55

0.89 interactivity*=0.06

I don't know enough about Title II and its implications to say
if that is the correct vehicle for enforcing net neutrality, but I
think it's undeniable that net neutrality is in the best interests
of free markets and innovation. From an American,
free-market perspective, the government's role is not to
interfere in the markets, but rather to establish the framework
in which free market competition may take place. I accept that
the free market is best for allocating resources, but [...]

bl 0.71 i 0.99

interactivity*=0.22

[ ) { All T know is in 200 years my world end J
- 0.16 i 0.12 interactivity*=0.06

Figure 8: Example parallel texts from three CMV users
with feature values.

similar to argument quality features, they overall
do not show drastic differences from them.

Now, we present the correlation ranges for pairs
of comment sources with the OP for argument qual-
ity features in Figure 15. CMVA features show
similar patterns to that of CMV1 with a slightly
higher correlations to OP features. As for the
linguistic features in Figure 16, pairs involving
CMVA behave very similarly to other human com-
ments, especially CMVT.

Overall, we do not find drastic differences be-
tween CMV A and other human comment sets rela-
tive to LLM-generated comments and the OP.

C C(lassification Analysis

This section contains additional details for the clas-
sification analysis on the methods used, the evalua-
tion, and visualization, as well as additional results.

§C.2 presents the full results of the classification
experiments reported in §5.3.1, and §C.3 presents
additional experiments including all human com-
ments instead of select samples. §C.4 gives more
details on the MAGE benchmark, and provides our
results compared to other methods, and our full
results per test-bench.

C.1 Details on the Methods
C.1.1 Logistic Regression

We use a simple logistic regression classifier
— scikit-learn implementation, documented
at https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.

LogisticRegression.html — to distinguish the
two types of parallel texts (human-written and
LLM-generated). We represent each argument
by a vector of its argument quality dimensions,
linguistic features, and the concatenation of both.

Evaluation To evaluate the classifier, we per-
form stratified k-fold cross validation® on our CMV
dataset.

Visualization To visualize the high-dimensional
data distribution, we perform t-distributed stochas-
tic neighbor embedding (t-SNE) analyses. We use
two components, a random state of 42, a perplex-
ity of 5, and a maximum number of iterations of
1, 000.

We represent each argument by a vector of its
argument quality dimensions, linguistic features,
and the concatenation of both. This allows us to
inspect the separation between human-written and
LLM-generated arguments in the argument quality
dimension, the linguistic, and a joint feature space.

8https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.
StratifiedKFold.html
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Figure 10: Pearson’s r per comparison pair for argument
quality features between pairs of human-written original
posts (OP) and counter-argument comments (Model or
Human).

To gain intuitive insights into the data, we first
visualize the high-dimensional features extracted
from the data points from each set (human-written
and LLM-generated arguments) by performing a
t-SNE analysis.

Figure 6 reveals that the clusters form from each
set occupy almost a perfect non-overlapping em-
bedding space. This is true when using only the lin-
guistic features, only the argument quality scores,
and both. Inspired by this, we fit a logistic regres-
sion model on these features, the results of which
we discuss in the following.

C.2 Full Classification Results

In the following, we present the full results of our
in-domain classification experiments. As described
in §5.3.1, we have three settings: (a) argument
quality dimensions, (b) linguistic features, and (c)
all features.

Argument Quality Dimensions Table 17 shows
the results for the classification of LLM-generated
arguments using logistic regression on argument
quality dimensions across 5 folds, and on aver-
age. We find almost perfect performance (> 0.98)
across folds and metrics.

Linguistic Features Table 18 shows the results
for the classification of LLM-generated arguments
using logistic regression on linguistic features
across 5 folds, and on average. We find almost
perfect performance (> 0.98) across folds and met-
rics.

All Features Table 19 shows the results for the
classification of LLM-generated arguments using
logistic regression on all features (argument qual-
ity and linguistic features concatenated) across 5
folds, and on average. We find almost perfect per-
formance (> 0.99) across folds and metrics.

Regression Coefficients Figure 18 shows the co-
efficients of logistic regression for argument quality
dimensions, revealing differences between quality
and clarity in effect magnitude compared to other
dimensions. Table 20 presents the coefficients per
fold and on average for argument quality dimen-
sions, showing that there are drastic differences in
effect magnitude.

In comparison, linguistic features behave much
more similarly to one another, as shown in Table
21. While some features, in particular Maas’ TTR,
have a higher effect magnitude than other features,
the differences are much lower than for argument
quality dimensions.

Sanity Check We perform a keyword search us-
ing Language Model, LLM, Language Assistant,
Al Assistant (case-independent) to observe the fre-
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Figure 14: Aggregated Pearson’s r for each pair of linguistic features per feature area, for the areas with the largest
differences between pairs of counter-arguments with an addition of A comment comparisons.

quency of LLMs’ revealing their identity in gen-
erated arguments. Out of 13.498 cases (for each
model), the model explicitly mentions that it’s an
LLM in 0.03%, 0.02%, 0.02% of the cases for
GPT-3.5-turbo, LLAMA2-7B and MISTRAL-7B-

instruct. However, since we do not use the raw
—e— OP-Model

@

o o texts but the features, revealing LLMs’ own identity
- —o— OP-Human . .
0.6 —e— OP-CMVA should now have an effect in the classifier perfor-
- 5 - mance. Meanwhile, this cannot be concluded for
‘g 0.4 ° the majority of the prior work classifying human
. o
£ vs. LLM texts.
¢
02| | C.3 Additional Classification Experiments
© ° To understand trends and results better, we con-
0.0 .. . . .
F & 5 < - duct three additional classification experiments: (a)
5 2 § 2 = 2 Classifying most up-voted (CMV?) vs. all other
1 - (@] (@] . .
o) z E a o ;f human comments, (b) classifying least up-voted
(e) o o ) (e)

(CMV)) vs. all other human comments, and (c)
classifying LLM-generated comments vs. all hu-

Figure 15: Pearson’s r per comparison pair for argument .
man comments (instead of CMV?1 + CMV| only

quality features between pairs of human-written original i
posts (OP) and counter-argument comments (Model or ~ aS 111 §5.3.1).

Human) with an addition of A comment comparisons.
CMYV? vs. other human comments. As shown

in Table 22, the classification of CM VT vs. other
human comments performs significantly worse
than LLM-generated vs. human comments. While
this is true across metrics, with a drop of > 0.07 for
A, and a drop of > 0.2 for P compared to Table 18,
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Figure 16: Aggregated Pearson’s r for each pair of linguistic features per feature area, for the areas with the largest
differences between original posts and their counter-arguments with an addition of A comment comparisons.
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Figure 17: t-SNE projections of linguistic features, argument quality dimensions, and both of them concatenated.
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Dimension wSs D

reference 0.35 0.35
impact 0.31 -0.31
interactivity 0.28 -0.28
effectiveness 0.24 -0.24
respect&plicit 023 -0.23
respectimplicit 021 0.21
quality 0.20 -0.20
overall 0.20 -0.20
justification™t 0.19 -0.19
reasonableness 0.18 -0.18
emotion ™ 0.18 0.18
cogency 0.18 -0.18
QforJustification 0.13 0.13
proposal 0.12 -0.12
justification™ 0.10 -0.10
interactivity 0.07 -0.07
justification™ 0.07 0.07
clarity 0.06 -0.06
argumentative 0.05 0.01
commonGood™ionadl 0,04 0.04
narration 0.04 -0.02
storytelling 0.03 -0.02
commonGood“"¥ersal 0,02 -0.02
emotion™ 0.02 -0.01
empathy 0.00 0.00

Table 9: Wasserstein distances (I/.S) and mean differ-
ences (D) between the human-written (CH; only includ-
ing C1 and C|) and model-generated comments (C%) in
aggregate and descending order for all argument quality
features.

this is in particular prevalent for R and F'1, both of
which show performance below 0.01. Overall, we
take this as evidence of a significantly harder task
than LLM-generated vs. human classification.

CMV] vs other human comments. As shown in
Table 23, the classification of CMV | vs. other hu-
man comments performs significantly worse than
LLM-generated vs. human comments. While this
is true across metrics, with a drop of > 0.07 for A,
and a drop of > 0.35 for P compared to Table 18,
this is in particular prevalent for R and F'1, both of
which show performance below 0.01. Overall, we
take this as evidence of a significantly harder task
than LLM-generated vs. human classification.

LLM-generated comments vs. all human com-
ments. To ensure the generalization of our clas-
sification results in §5.3.1 in settings where the
number of human comments is much higher than
the number of LLM-generated comments, and the
choice of human comments is less well-informed,

Dimension wSs D

reference 0.35 0.35
impact 0.32 -0.32
interactivity ™ 027 -0.27
effectiveness 0.24 -0.24
respecte*plicit 022 -0.22
respect!mPlicit 0.20 0.20
quality 020 -0.20
overall 0.20 -0.20
justification™* 0.18 -0.18
cogency 0.18 -0.18
reasonableness 0.18 -0.18
emotion™ 0.17 0.17
QforJustification 0.13 0.13
proposal 0.12 -0.12
justification ™ 0.09 -0.09
interactivity — 0.07 -0.07
justification™ 0.07 0.07
argumentative 0.05 0.02
clarity 0.05 -0.05
narration 0.04 -0.01
commonGood™ional 003 0.03
storytelling 0.03 -0.02
commonGood el 002 -0.02
emotion™ 0.02 -0.00
empathy 0.00 0.00

Table 10: Wasserstein distances (IWS) and mean dif-
ferences (D) between all direct the human-written and
model-generated comments in aggregate and descend-
ing order for all argument quality features.

Dimension GPT-LLaMA GPT-Mistral LLaMA-Mistral
reference 0.16 0.24 0.08
emotion™ 0.07 0.06 0.01
story 0.06 0.08 0.02
interactivity ~ 0.06 0.07 0.01
proposal 0.06 0.05 0.01
interactivity * 0.05 0.08 0.04
justification®++ 0.05 0.05 0.00
emotion™ 0.05 0.04 0.02
argumentative 0.03 0.08 0.05
respecteXplicit 0.03 0.06 0.03
justification™ 0.03 0.04 0.01
quality 0.03 0.03 0.01
narration 0.02 0.05 0.03
cogency 0.02 0.03 0.01
overall 0.02 0.03 0.01
impact 0.02 0.03 0.01
justification™™ 0.02 0.02 0.01
clarity 0.02 0.02 0.00
respectimplicit 0.01 0.05 0.04
reasonableness 0.01 0.02 0.01
QforJustification 0.01 0.02 0.00
effectiveness 0.01 0.01 0.01
cgoodUmiversal 0.01 0.01 0.00
cgoodnational 0.00 0.01 0.00
empathy 0.00 0.00 0.00

Table 11: Wasserstein distances (W.S) between model-
generated comments per LLM pair in descending order
for all argument quality features.

34618



Feature GPT-LLaMA  GPT-Mistral LLaMA-Mistral Mappin g Comparison P

Type token ratio 0.13 0.14 0.01 GPT. LLaMA - LLaMA. Mistral  0.98
Lemma token ratio 0.13 0.14 0.01 ’ K :
Avg. intensity anticipation 0.01 0.01 0.01 M,M-M,M GPT, LLaMA - GPT, Mistral 0.98
POS variability 0.03 0.03 0.01 GPT, Mistral - LLaMA, Mistral 0.98
Herdan’s ¢ 0.08 0.08 0.01
Avg. intensity trust 0.01 0.01 0.01 LLaMA, Com.' - Mistral, Com+ 0.90
GPT, Com.! - LLaMA, Com.} 0.86
Table 12: Wasserstein distances (I7.S) between model- M.H-M.H GPT, Com.* - Mistral, Com.* 0.84
generated comments per LLM pair in aggregate for a T LLaMA, Com.! - Mistral, Com."  0.93
distance threshold > 0.1. GPT, Com." - Mistral, Com." 0.90
GPT, Com.” - LLaMA, Com.” 0.88
Feature Com. - GPT Com. -LLaMA Com. - Mistral Table 15: Feature Spearman rank-correlations between
Type token ratio 020 020 0.20 comparisons. M, M - M, M refers to Model, Model -
Lemma token ratio 0.19 0.19 0.19 .
Ave. intensity anticipation 0.13 0.13 0.13 Model, Model comparisons, M, H - M, H to Model, Hu-
POS variability 0.12 0.12 0.12 man - Model, Human comparisons. Com." is the most
Herdan’s C 0.11 0.11 0.11
Avg intensity trust 0.11 0.11 0.11 upvoted comment, Com.! the least upvoted comment.
Table 13: Wasserstein distances (W.S) between CH and
Cl in aggregate for a distance threshold > 0.1. Com. is Mapping Comparison P
referring to human-written comments (CHH. OP,H-OP,H OP, Com.” - OP, Com.* 0.95

OP, GPT - OP, Mistral 091
OP,M-0OP M OP, LLaMA - OP, Mistral 0.84

features ws D OP,GPT - OP,LLaMA  0.76

ttr 0.20 0.20

lemma_token_ratio 0.19 0.19 Table 16: Feature Spearman rank-correlations between
avg_intensity_anticipation 0.13 -0.12 comparisons. OP, M - OP, M refers to OP, Model - OP,
pos_variability 0.12 012 Model comparisons, OP, H - OP, H to OP, Human -
herdan_c 011 0.1 OP, Human comparisons. Com." is the most upvoted
avg_intensity_trust 0.11 -0.10

e T L comment, Com.* the least upvoted comment.
avg_intensity_surprise 0.10 -0.10

avg_intensity_joy 0.09 -0.05

avg_intensity_anger 0.09 -0.07

n_high_ intensity_trust 0.09 -0.09 nfod A P R Fl
n_high_Head_sensorimotor 0.08 -0.08 1 9804 9855 9818 .9837

sichel s 0.08  0.08 2 9814 9844 9846 .9845
avg_intensity_sadness 0.08 -0.07 3 0800 .9844 9822 9833
n_controversial_Gustatory_sensorimotor 0.07 -0.07 4 9800 9831 .9836 .9833
avg_intensity_fear 0.07 -0.03

n_controversial_Olfactory_sensorimotor 0.07 -0.07 3 9820 9854 9346 .9850
n_low_intensity_joy 0.07 -0.07 Avg. 9808 .9846 9834 .984

cttr 0.07 -0.04

giroud_index 0.07 -0.04 Table 17: 5-fold evaluation of the logistic regression
e 0.07 -0.04 models’ performance on prediction of human-written
aveaoa 0.07-0.07 and LLM-generated arguments based on argument qual-
n_low_iconicity 0.06 -0.06 .

n_positive_sentiment 0.06 -0.06 1ty scores.

n_controversial_Interoceptive_sensorimotor 0.06 -0.06

n_high_valence 0.06 -0.06

n_controversial_Auditory_sensorimotor 0.06 -0.06 n-fold A P R 1
lexical_density 0.06 -0.06 1 9881 .9927 9875 .9901
n_low_concreteness 0.06 -0.05 2 9879 9915 9883 .9899
n_controversial_iconicity 0.06 -0.04 3 9901 .9948 9886 9917
oL e o o o
ave_dominance 005 -0.05 5 9876 .9924 9869 .9897
n_high_dominance 0.05 -0.05 Avg. 9885 .9927 9881 .9904
avg_sd_aoa 0.05 -0.05

o Table 18: 5-fold cross-validation performance for the
Table 14: Wasserstein distances (W.S) between between logistic regression model (LLM vs. Human) using only
CH and C in aggregate for a distance threshold > 0.05. linguistic features.
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n-fold A P R F1

1 9928 9953 9927 .9940
2 9923 9942 9930 .9936
3 9935 .9964 .9927 9946
4 9921 9943 9925 9934
5 9929 9957 9925 9941
Avg. 9927 9952 9927 .9939

Table 19: 5-fold evaluation of the logistic regression
models’ performance on prediction of human-written
and LLM-generated arguments based on argument qual-
ity scores and linguistic features.

we run the same experiment on LLM-generated vs.
all human comments.

As Table 24 shows, the performance not only
does not drop compared to the results in Table 18,
but the LLM-specific signal gets even clearer when
contrasted with more human comments.

C4 MAGE

This subsection provides details on the MAGE
benchmark and presents our results in comparison
to other methods and in detail per testbench.

We train a logistic regression classifier on fea-
tures extracted from MAGE data and evaluate using
their metrics — Area Under the Receiver Operating
Characteristic curve (AUROC) (higher is better),
recall for human (Rq#), LLM (Ror), and average
(Ravg) —as well as P, R, Fy, and A.

C.4.1 Datasets

Table 25 gives an overview of the datasets in
MAGE, including details about the size, source,
and domain. Table 26 gives an overview of the
eight testbeds in MAGE.

C4.2 LLMs

The LLM texts from MAGE are generated using
the models listed in Table 27 (see Li et al. (2024a)
for further details).

C.4.3 Results (Comparison)

We compare the results for different generated con-
tent detection methods reported by Li et al. (2024a)
with the results of a simple logistic regression
trained on linguistic features.

Table 28 and 29 reveal that our simple approach
not only outperforms humans and ChatGPT but
also shows performance on par with computation-
ally much more expensive methods in fixed-domain
fixed-model detection scenarios.

This trend holds for other in-distribution sce-
narios, as Table 30 shows. Using linguistic fea-
tures with a simple logistic regression for machine-
generated content detection is surprisingly robust,
showing much less performance degradation than
other methods.

Overall, given the simplicity and interoperability
of our approach, it is a viable alternative to some
other methods, in particular in scenarios with lim-
ited resources or where interpretability is vital.

C.4.4 Results (Ours, detailed)

In the following, we present the full results per
testbed of our method using logistic regression with
linguistic features.

Testbed 1: Fixed-Domain & Model-specific
As shown in Table 31, our approach generally
performs well (over 0.8 for most domains for
most metrics) with some variation across domains.
Given the particularly low Rr for ELI5 (0.625)
and Yelp (0.557), they appear to be more challeng-
ing domains.

Testbed 2: Arbitrary-domains & Model-specific
As Table 32 shows, there are marked differences
between models. Text from open-weight/-source
models appears to be significantly easier to de-
tect with linguistic features than the closed Ope-
nAl models, as evidenced by the systematically
lower Row in particular for text-davinci-002
and text-davinci-0@3. There is no apparent pa-
rameter scale effect within model families.

Testbed 3: Fixed-domain & Arbitrary-models
As Table 33 shows, the trends are generally the
same as in testbed 1. While the performance is gen-
erally lower across metrics and domains, dropping
by around 10%, Yelp stays the most challenging
domain.

Testbed S: Unseen Models We present the re-
sults for the detection of unseen models per model
in Table 34. Given information during training
about general markers of LLM-generated text, lin-
guistic features are useful across models, with a
R across models over 0.66. The most marked
difference can be found between the closed OpenAl
models and open-weight/-source models. While
the latter show a 21 consistently over 0.8, the for-
mers’ is consistently lower. Again, we do not find
systematic parameter scale effects within model
families.
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1 2 3 4 5 Avg

quality 14.83 14.53 1391 1427 14.68 14.45
clarity -4.62 -440 -420 -457 -420 -440
cogency 154 144 179 126 142 149
effectiveness 16.12 15.62 16.15 16.19 1542 1590
reasonableness -3.80 -3.73 -386 -392 -339 -3.74
overall 395 4,01 410 405 386 399
impact 1.38 1.66 154 146 1.53 1.51
argumentative -8.78 -8.62 -8.54 -8.57 -8.42 -8.58
emotion™ -0.89 -095 -096 -0.95 -091 -0.93
emotion™ -3.12  -321 -3.09 -290 -3.19 -3.10
narration -0.29 -0.17 -0.15 -0.67 -0.58 -0.37
QforJustification -4.11 -4.02 -4.19 -385 -3.72 -3.98
empathy -0.14 -0.50 -0.54 -0.25 -0.21 -0.33
proposal -0.13 -042 -0.02 -0.13 -0.44 -0.23
reference -220 -230 -221 -225 -2.19 -2.23
justification™ -2.18 -2.16 -228 -223 -222 -222
justification™™ 1.63 1.58 1.46  1.57 1.33 1.51
justification™++ -0.23 -021 -0.37 -0.10 -0.09 -0.20

commonGood"ional 060 081 0.33 066 033 0.56
commonGood!iversal 183 178 178 1.77 1.88 1.81

respectmPlicit 033 -033 -036 -024 -0.32 -0.32
respecte*Plicit 197 18 189 207 197 195
story 075 061 066 077 078 0.71
interactivity ~ -195 -190 -1.55 -1.67 -181 -1.78
interactivity ™ 432 441 471 458 434 447

Table 20: Logistic regression coefficients for each of the 5 folds and on average for the 15 most predictive argument
quality dimensions, showing the relative saliency of features in predicting Human vs. LLM-authored counter-
argument comments.
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Feature Mean Coeff. Std.
maas_index 5.0708 0.5674
n_hapax_dislegomena -3.8671 0.2416
n_dependency_nsubj -3.5075 0.3399
n_types -3.3919 0.3822
n_pron -3.0315  0.2529
n_lemmas -2.6867 0.3884
n_sentences 2.1243  0.1780
ttr -2.1208  0.3868
n_PUNCT_PunctType_Comm 2.0851 0.0858
n_dependency_punct -2.0215 0.1446
summer_index 1.9347 0.4260
n_monosyllables -1.8784 0.1326
n_polysyllables 1.8221 0.1305
n_low_age of acquisition rating 1.8138 0.2083
n_dependency_dep -1.6811  0.1625

Table 21: Logistic regression mean coefficient and stan-
dard deviation across 5 folds for the 15 most predictive
linguistic features, showing the relative saliency of fea-
tures in predicting Human vs. LLM-authored counter-
argument comments.

n-fold A P R F1
1 09148 0.8462 0.0041 0.0081
2 09147 0.7273 0.0030 0.0059
3 0.9147 0.8889 0.0030 0.0059
4 0.9147 0.7500 0.0033 0.0066
5 0.9147 0.7500 0.0022 0.0044
Avg. 09147 0.7925 0.0031 0.0062

Table 22: 5-fold cross validation of the logistic regres-
sion models’ performance on prediction of CMV7? vs.
other human comments using linguistic features.

n-fold A P R F1
1 09145 0.5294 0.0033 0.0066
2 09146 0.6429 0.0033 0.0066
3 09147 0.6923 0.0033 0.0066
4 09146 0.6000 0.0033 0.0066
5 09147 0.6429 0.0033 0.0066
Avg. 09146 0.6215 0.0033 0.0066

Table 23: 5-fold cross validation of the logistic regres-
sion models’ performance on prediction of CMV] vs.
other human comments using linguistic features.

n-fold A P R F1
1 0.9999 0.9996 1.0000 0.9998
2 0.9999 0.9998 1.0000 0.9999
3 0.9999 0.9996 0.9998 0.9997
4 0.9998 0.9996 0.9994 0.9995
5 0.9999 0.9998 0.9998 0.9998
Avg. 09999 0.9997 0.9998 0.9997

Table 24: 5-fold cross validation of the logistic re-
gression models’ performance on prediction of LLM-
generated vs. all human comments using linguistic fea-
tures.

Dataset Size Domain Source

CMV 804 Opinion statement Tan et al. (2016)

Yelp 1000 | Opinion statement Zhang et al. (2015)
XSum 1000 | News articles Narayan et al. (2018)
TLDR 777 News articles TLDR_news9

ELI5 1000 | QA Answers Fan et al. (2019)

WP 1000 | Stories Fan et al. (2018)
ROCStories| 1000 | Stories Mostafazadeh et al. (2016)
HellaSwag | 1000 | Commonsense Zellers et al. (2019)
SQuAD 1000 | Wikipedia Rajpurkar et al. (2016)
SciXGen 1000 | Scientific writing Chen et al. (2021)

Table 25: Datasets in MAGE, among which CMV and
Yelp have an inherently argumentative nature. Also,
CMV, ELI5, and WP (WritingPrompts) are all sub-
communities in Reddit.

Testbed Description

Fixed domain & fixed model

Arbitrary domains & fixed model

Fixed domain & arbitrary models

Arbitrary domains & arbitrary models (known set)
Unseen models (out-of-distribution)

Unseen domains (out-of-distribution)

Unseen domains & models (out-of-distribution)
Robustness to paraphrase attacks

0NN AW =

Table 26: Overview of the eight test-beds in MAGE
used to evaluate detection performance across varying
levels of domain and model familiarity from Li et al.
(2024a).

Testbed 6: Unseen Domains We present the
results for the detection of LLM-generated con-
tent in unseen domains in Table 35. While all do-
mains except for Yelp and Sci Gen show robust
performance for R, there are marked differences
between them. CMV and WP retain particularly
high performance, indicating useful information
on LLM-specific writing styles in these domains
being present in other domains, too.

C.5 Results (Linguistic Features, Argument
Quality, All)

We test the same three settings as in Section 5.3.1:
Training a logistic regression on (a) linguistic fea-
tures, (b) argument quality dimensions, and (c)
both. Given that argument quality dimensions are
only fully applicable to argumentative domains,
we only run this experiment on CMV and Yelp on
testbed 1 and 3 of MAGE.

The results for testbed 1 are presented in Ta-
ble 36. While the classifier based on the argument
quality dimensions is systematically lower than the
one based on linguistic features for both domains
and across metrics, the information of both appears
to be complementary, as the best performance is
obtained using both. While the tendencies are less
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Model Family

Variants

OpenAl GPT (Brown et al., 2020)
LLaMA (Touvron et al., 2023)
GLM (Zeng et al., 2023)
FLAN-TS (Chung et al., 2022)
OPT (Zhang et al., 2022)
BigScience (Sanh et al., 2022)
EleutherAlI (Wang, 2021)

text-davinci-002, text-davinci-003, gpt-3.5-turbo

6B, 13B, 30B, 65B

GLM-130B

small, base, large, xI, xxl

125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, iml-1.3B, iml-30B
TO-3B, TO-11B, BLOOM-7B1

GPT-J-6B, GPT-NeoX-20B

Table 27: Overview of LLM families and their variants in MAGE.

Detector  Rem Re Ruvg E Usage of AI Assistants
ChatGPT  96.98%  12.03%  54.51% In this work, GitHub Copilot'” was used as a
Human 61.02% 47.98% 54.50% . . ..

code completion/suggestion tool. Additionally, Al-
Ours 96.13% 79.70 % 87.92%

Table 28: Detection performance of ChatGPT and hu-
mans reported in Li et al. (2024a) compared to our
approach.

Methods Human/Machine R, AUROC
FastText 94.72% 1 94.36%  94.54% 0.98
GLTR 90.96% / 83.94%  87.45% 0.94
Longformer 97.30%/9591% 96.60% 0.99
DetectGPT  91.68% /81.06% 86.37% 0.92
Ours 96.13% /79.70 % 87.92% 0.88

Table 29: (Testbed 1) White-box detection performance.
“Human/Machine” denotes Ro# and Rqw, respectively,
reported in Li et al. (2024a) compared to our approach.

clear, these trends are reflected in testbed 3 (Ta-
ble 37).

D Implementation Details and Used
Resources

D.1 Implementation Details &
Reproducibility

We link our GitHub repository for the implementa-
tion details and reproducibility. Package versions
can be found in requirements.txt.

D.2 Resources

LLM inference was performed

HuggingFace text generation
pipeline at www . huggingface.co/docs/
text-generation-inference and the infer-
ence was run on in-house NVIDIA RTX A6000
GPUs. API-access GPT-3.5-turbo inference was
run via OpenAl text completion API at https:
//platform.openai.com/docs/guides/gpt
(accessed between Dec. 8 - 19. 2024).

Open-code
using  the

assisted writing tools like Grammarly'! have been
used for spelling checks and grammar corrections.

10ht’cps: //github.com/features/copilot
"https://app.grammarly.com/
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Settings Methods Rem Rer Ru.g  AUROC

FastText (Joulin et al., 2017) 88.96% 77.08% 83.02% 0.89
GLTR (Gehrmann et al., 2019) 75.61% 79.56% 77.58% 0.84
Longformer (Beltagy et al., 2020)  95.25% 96.94% 96.10% 0.99
DetectGPT* (Mitchell et al., 2023) 48.67% 75.95% 62.31% 0.60

Testbed 2: In-distribution Detection
Arbitrary-domains & Model-specific

Ours 98.92% 69.23% 84.08 % 0.84
FastText (Joulin et al., 2017) 89.43% 7391% 81.67% 0.89
GLTR (Gehrmann et al., 2019) 37.25% 88.90% 63.08% 0.80

Testbed 3: In-distribution Detection

Fixed-domain & Arbitrary—models Longformer (Beltagy etal., 2020) 89.78% 97.24% 93.51% 0.99

DetectGPT* (Mitchell et al., 2023) 86.92% 34.05% 60.48% 0.57

Ours 75.30% 90.04% 82.67% 0.83
FastText (Joulin et al., 2017) 86.34% 71.26% 78.80% 0.83
GLTR (Gehrmann et al., 2019) 12.42% 98.42%  55.42% 0.74

Testbed 4: In-distribution Detection

Arbitrary-domains & Arbitrary-models Longformer (Beltagy et al., 2020)  82.80% 98.27% 90.53% 0.99

DetectGPT* (Mitchell et al., 2023) 86.92% 34.05% 60.48% 0.57
Ours 61.62% 89.73% 75.67% 0.76

FastText (Joulin et al., 2017) 83.12% 54.09% 68.61% 0.74
GLTR (Gehrmann et al., 2019) 2577% 89.21% 57.49% 0.65
Testbed 5: Out-of-distribution Detection — Unseen Models ~ Longformer (Beltagy et al., 2020)  83.31% 89.90% 86.61% 0.95
DetectGPT* (Mitchell et al., 2023) 48.67% 75.95% 62.31% 0.60

Ours 75.81% 88.51% 82.16% 0.82
FastText (Joulin et al., 2017) 5429% 72.79% 63.54% 0.72
GLTR (Gehrmann et al., 2019) 15.84% 97.12% 56.48% 0.72

Testbed 6: Out-of-distribution Detection — Unseen Domains Longformer (Beltagy et al., 2020)  38.05% 98.75% 68.40% 0.93
DetectGPT* (Mitchell et al., 2023) 86.92% 34.05% 60.48% 0.57

Ours 94.79% 67.38% 81.09% 0.81

Table 30: (Testbeds 2—-6) Detection performance of different methods. Out-of-distribution settings evaluate detection
on texts from unseen domains or texts generated by previously unseen LLMs. * denotes unsupervised detection
reported in Li et al. (2024a).

Domain Ren Ror Rgwg AUROC
CMV 0.979 0.870 0.925 0.925
ELI5 0.993 0.625 0.809 0.809
HellaSWAG 0.987 0.887 0.937 0.937
ROCT 0.728 0.846 0.787 0.787
Sci Gen 0.984 0.845 00915 0.915
SQuAD 0.995 0.728 0.861 0.861
TLDR 0975 0.837 0.906 0.906
WP 0.993 0.936 0.965 0.965
Yelp 0.998 0.557 0.778 0.778
XSUM 0.980 0.839 0.909 0.909
Avg. 0.961 0.797 0.879 0.879

Table 31: MAGE results: Testbed 1
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Model Rcr Ror Rgwg AUROC
gpt-3.5-turbo 0.765 0.663 0.714 0.714
text-davinci-002  0.766 0.742 0.754 0.754
text-davinci-003  0.770 0.666 0.718 0.718
GLM130B 0.757 0924 0.841 0.841
t0 3b 0.759 0.891 0.825 0.825
t0 11b 0.757 0.893 0.825 0.825
flan t5 base 0.762 0.827 0.795 0.795
flan t5 x1 0.761 0.800 0.781 0.781
flan t5 xx1 0.758 0.903 0.831 0.831
gptj 0.753 0.988 0.871 0.871
gpt neox 0.753 0.992 0.873 0.873
bloom 7b 0.753 0.986 0.870 0.870
flan t5 small 0.760 0.846 0.803 0.803
flan t5 large 0.762 0.809 0.786 0.786
opt 125m 0.756 0912 0.834 0.834
opt 350m 0.755 0911 0.833 0.833
opt 1.3b 0.755 0.962 0.858 0.858
optiml max 1.3b 0.756 0.933 0.845 0.845
opt 2.7b 0.754 0973 0.864 0.864
opt 6.7b 0.754 0955 0.855 0.855
opt 13b 0.754 0973 0.864 0.864
opt 30b 0.753 0.979 0.866 0.866
opt iml 30b 0.754 0.962 0.858 0.858
LLaMA 7B 0.758 0.883 0.821 0.821
LLaMA 13B 0.759 0.878 0.819 0.819
LLaMA 30B 0.761 0.833 0.797 0.797
LLaMA 65B 0.761 0.810 0.785 0.785
Avg. 0.758 0.885 0.822 0.822

Model Rcn Ror Rgyy AUROC
gpt-3.5-turbo 0.981 0.569 0.775 0.775
text-davinci-002  0.980 0.198 0.589 0.589
text-davinci-003  0.985 0.269 0.627 0.627
GLM130B 0.994 0.709 0.852 0.852
t0 3b 0.983 0.561 0.772 0.772
t0 11b 0.984 0.608 0.796 0.796
flan t5 small 0.979 0.605 0.792 0.792
flan t5 base 0.978 0.425 0.702 0.702
flan t5 x1 0.981 0453 0.717 0.717
flan t5 xxl 0.989 0.679 0.834 0.834
bloom 7b 0.998 0.939 0.969 0.969
flan t5 large 0.981 0.397 0.689 0.689
aptj 0.998 0.962 0.980 0.980
gpt neox 0.998 0.941 0.970 0.97
opt 125m 0.994 0.790 0.892 0.892
opt 350m 0.995 0.826 0911 0.911
opt 2.7b 0.997 0.896 0.946 0.946
opt 1.3b 0.995 0.850 0.923 0.923
optiml max 1.3b 0.991 0.770 0.881 0.881
opt 6.7b 0.995 0.840 0.918 0.918
opt 13b 0.998 0.907 0.952 0.952
opt 30b 0.998 0.900 0.949 0.949
opt iml 30b 0.995 0.848 0.922 0.922
LLaMA 7B 0.989 0.743 0.866 0.866
LLaMA 13B 0.984 0.715 0.850 0.850
LLaMA 30B 0.985 0.642 0.813 0.813
LLaMA 65B 0.983 0.648 0.816 0.816
Avg. 0.989 0.692 0.841 0.841
Table 32: MAGE results: Testbed 2
Domain Ren Ror Rgwg AUROC
CMV 0.807 0961 0.884 0.884
ELI5 0.842 0.847 0.845 0.845
HellaSWAG 0.786 0.972 0.879 0.879
ROCT 0.280 0.933 0.606 0.606
Sci Gen 0.745 0.939 0.842 0.842
SQuAD 0.900 0.825 0.862 0.862
TLDR 0.631 0.949 0.790 0.790
WP 0919 0.965 0.942 0.942
Yelp 0.909 0.667 0.788 0.788
XSUM 0.712 0.946 0.829 0.829
Avg. 0.753 0.900 0.827 0.827

Table 33: MAGE results: Testbed 3

Table 34: MAGE results: Testbed 5

Domain Ron Ror Rayy AUROC
CMV 0.967 0.857 00912 0912
ELI5 0.981 0.653 0.817 0.817
HellaSWAG 0.982 0.723 0.852 0.852
ROCT 0.637 0.609 0.623 0.623
Sci Gen 0.995 0.536 0.766 0.766
SQuAD 0.989 0.692 0.841 0.841
TLDR 0.960 0.740 0.850 0.850
WP 0.991 0.883 0.937 0.937
Yelp 0.994 0.365 0.679 0.679
XSUM 0.984 0.679 0.831 0.831
Avg. 0.948 0.674 0.811 0.811

Table 35: MAGE results: Testbed 6

Domain Features Ren Rer Rawy AUROC
Argument Quality 0.975 0.484 0.729 0.729
CMV Linguistic 0979 0.870 0.925 0.925
All 0.980 0.893 0.937 0.937
Argument Quality 0.999 0.070 0.534 0.534
Yelp Linguistic 0.998 0.557 0.778 0.778
All Features 0.998 0.580 0.789 0.789

Table 36: Testbed 1: Comparison feature sets for cmv,
yelp
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Domain  Features Ren Rer Rawg AUROC
Argument Quality 0.376 0.958 0.667 0.667
CMV Linguistic 0.807 0.961 0.884 0.884
All 0.855 0.966 00911 0911
Argument Quality 0.833 0.429 0.631 0.631
Yelp Linguistic 0.998 0.557 0.778 0.778
All 0912 0.707 0.810 0.810
Table 37: Testbed 3: Comparison feature sets for CMV,
Yelp
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