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Abstract

As digital platforms redefine educational
paradigms, ensuring interactivity remains vi-
tal for effective learning. This paper explores
using Multimodal Large Language Models
(MLLMs) to automatically respond to student
questions from online lectures - a novel ques-
tion answering task of real world significance.
We introduce the EduVidQA Dataset with 5252
question-answer pairs (both synthetic and real-
world) from 296 computer science videos cov-
ering diverse topics and difficulty levels. To
understand the needs of the dataset and task
evaluation, we empirically study the qualitative
preferences of students, which we provide as an
important contribution to this line of work. Our
benchmarking experiments consist of 6 state-
of-the-art MLLMs, through which we study the
effectiveness of our synthetic data for finetun-
ing, as well as showing the challenging nature
of the task. We evaluate the models using both
text-based and qualitative metrics, thus show-
ing a nuanced perspective of the models’ per-
formance, which is paramount to future work.
This work not only sets a benchmark for this
important problem, but also opens exciting av-
enues for future research in the field of Natural
Language Processing for Education.

1 Introduction

“Tell me and I forget. Teach me and I
remember. Involve me and I learn.”
- Xunzi (English Translation), 818 AD

This enduring insight, attributed to the ancient
Chinese philosopher Xun Kuang (Xunzi), elo-
quently captures the essence of interactive learning.
Indeed, the importance of active learner participa-
tion has been extensively examined in educational
and pedagogical research (Barker, 1994; Reeves
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Figure 1: Results from the preliminary study on stu-
dent interaction with online lecture videos showing i)
frequency of use of online lecture videos to learn new
topics and ii) reasons for not asking questions in the
comments section

and Reeves, 1997; McIntyre and Wolff, 1998;
Pradono et al., 2013), particularly in the age of
web-based instruction. Influential frameworks such
as the ICAP model (Chi and Wylie, 2014) demon-
strate how deeper cognitive engagement directly
fosters more effective learning. Consequently, “ac-
tive learning” is often defined as requiring students
to engage cognitively and meaningfully with the
material (Bonwell and Eison, 1991)—to analyze,
synthesize, and evaluate rather than passively ab-
sorb information (King, 1993). One widely recog-
nized strategy for cultivating such engagement is
the encouragement of student-generated questions
during classes or lectures (Graesser and Person,
1994), underscoring the crucial role that curiosity
and interaction play in successful education.

With the ever-growing popularity of Youtube as
a content sharing platform, institutions and individ-
uals have been posting educational videos online
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Figure 2: Left: Example data point from the EduVidQA dataset. Right: Sample frames and questions from related
video datasets, TutorialVQA (Colas et al., 2019), How2QA (Li et al., 2020), HowToVQA (Yang et al., 2021) and
YTCommentQA (Yang et al., 2024b).

to democratize and distribute learning resources
throughout the world. However, a major disadvan-
tage of learning from online lectures has been the
lack of interaction with educators (Stecuła and Wol-
niak, 2022).
Motivation Study: We do an initial exploration of
this problem by conducting a survey with 52 under-
graduate (75.5%) and graduate students (24.5%)
enrolled in Science, Technology, Engineering, and
Mathematics (STEM) education programs. 56.8%
of these students were using online lecture videos
to study at least once a week, while 24.5% of the
students only used these videos before tests or ex-
ams. A majority of students (67.9%) have felt
the need to ask questions about the content while
watching educational videos, indicating a strong
interest in interactive learning. However, despite
the desire to ask questions, only 17% of the stu-
dents actually asked content related questions in
the comments section. Figure 1 shows the reasons
for the students not asking questions in the com-
ments section, as well as the satisfaction with the
responses they received when asking such ques-
tions. This study highlights the need for a depend-
able, expert-level question answering system. The
granular level details of the study are discussed in
the Appendix A.
With the growing impressive capabilities of Multi-
modal Large Language Models (MLLMs) in var-
ious different tasks (Wang et al., 2024a), and the
popularity of using synthetic data for LLM finetun-
ing (Chen et al., 2024; Li et al., 2023) we explore
the following 2 research questions: RQ1: How
well can MLLMs automatically generate answers

to questions based on online lectures, asked by stu-
dents? and RQ2: Does finetuning with synthetic
data help with this task? The key contributions of
this work are the following:
C1 (Dataset): We first collect 270 real world ques-
tions from Youtube videos and answers from do-
main experts, and observe poor performance of
MLLMs on this data. To tackle this problem fur-
ther, we adopt a data-centric approach where we
create a synthetic dataset from 197 videos, inspired
by the tendencies and curiosities of students watch-
ing such videos, comprising 4982 question answer
(QA) pairs. A sample data point from our dataset
is presented in Figure 2.
C2 (Study): To understand the qualitative require-
ments of the answers to questions in the dataset,
we study the preferences among students to bet-
ter understand the needs of the dataset and model
responses. We gain novel insights about the task
through this study, which we use to make changes
to our synthetic dataset and evaluation methods.
C3 (Evaluation metrics): In order to evaluate the
long-form text generated with respect to the refer-
ence answers, we not only employ existing text-
based metrics, but also qualitative metrics inspired
by our human study (C2), which provide more nu-
anced insights on the performance of the models.
C4 (Benchmarking): We design appropriate con-
text retrieval pipelines and benchmark our dataset
across 6 state of the art MLLMs of various sizes,
and analyze our data to provide useful insights and
future directions of work on this task. We try to
answer RQ1 and RQ2, and study the challenging
nature of the task through this process.
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2 Related Work

2.1 Educational Video QA Datasets

Dataset Video Type Answer Type Avg Vid Length Reasoning Type

TutorialVQA Tutorial Open Ended 1488 secs Comprehension

How2QA Tutorial MCQ 17.45 secs Comprehension

HowToVQA Tutorial MCQ 12.1 secs Comprehension

YTCommentQA Tutorial Open Ended 524 secs Knowledge

EduVidQA Lecture Open Ended 4054 secs Evaluation

Table 1: Summary of datasets with their video types, an-
swer types, average video lengths, and reasoning types.
In the Reasoning Type column, we indicate the highest
level of reasoning according to the Bloom’s Taxonomy
(Krathwohl, 2002), required to answer the questions.
The average video length of EduVidQA represents that
of the real-world test set.

QA from educational videos has been explored
in various settings. TutorialVQA (Colas et al.,
2019) focuses on verbose, narrative instructional
videos. How2QA (Li et al., 2020) and HowToVQA
(Yang et al., 2021) leverage instructional videos,
with the latter generating synthetic QA pairs. YT-
CommentQA (Yang et al., 2024b) examines ques-
tions from YouTube comments, also on instruc-
tional videos. While automated QA has been
studied using traditional NLP (Cao et al., 2005;
Repp et al., 2008), no long-form QA datasets exist
to benchmark educational video QA tasks. Edu-
VidQA introduces a pedagogically designed QA
dataset based on lecture videos, posing unique chal-
lenges for state-of-the-art MLLMs. Table 1 and
Figure 2 compare it with prior work.

2.2 Long Text Evaluation

Traditional n-gram metrics like BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), and METEOR
(Banerjee and Lavie, 2005) have been used for sum-
marization and translation tasks but lack human
interpretability, a growing need in LLM bench-
marking practices. Model-based metrics such as
BERTScore (Zhang et al., 2019) and Entailment
Score (Ray et al., 2024) offer semantic evaluations,
while LLMs are increasingly used for reference-
based assessment (Li et al., 2024; Zhang et al.,
2024a). Token overlap methods have been ex-
plored for correctness and faithfulness evaluation
(Adlakha et al., 2023), where correctness is defined
as satisfying the user’s information need. A simi-
lar idea, corresponding to factual precision and re-
call has been explored via the LLM-based FactQA

metrics (Fernandez et al., 2024) which borrows
its general idea from Factscore (Min et al., 2023).
Qualitative metrics have also been explored in vari-
ous works based on multi-faceted answer quality
(Chen et al., 2023), human feedback and helpful-
ness (Ouyang et al., 2022), dialogue response qual-
ity(Thoppilan et al., 2022) and comprehensive man-
ual evaluation (Zhang et al., 2024b). In this work,
we use a set of pedagogically relevant qualitative
metrics, motivated by our preference study, which
gives a nuanced evaluation of our benchmarking
models.
Additionally, we discuss the related work that led
us to explore the use of synthetic data for finetuning
MLLMs in Appendix B.

3 EduVidQA Dataset

The EduVidQA dataset contains 5,252 QA pairs
from educational lecture videos, including 270
manually curated and verified pairs, with the rest
synthetically generated from course documenta-
tion. Both real and synthetic data involve domain
experts, defined as: (1) Current graduate student
(PhD/Masters), (2) Having at least 1 year of re-
search experience in the subject or a related do-
main, (3) Having teaching assistant experience in a
related course. These criteria apply to all domain
experts involved in this work.

3.1 Creation of Real-World Dataset

To analyze QA pairs from YouTube videos, we
collected 145 long videos from 7 Computer Sci-
ence and AI courses with active comment sections
and available domain experts (full course list is in
Appendix C.1.1). We then extracted relevant QA
pairs through the following process (with examples
from different stages of the process are shown and
discussed in Appendix C.1.2):
1) Regular expression-based filtering: Using
the python-youtube library, we retrieved 100
comments per video, identifying 1440 question-
containing comments via regex. These were essen-
tially comments which contained question marks.
2) Manual filtering of questions: Out of the ques-
tions filtered, many were rhetorical, off-topic, or
meta-discussions (check Appendix C.1.2). Accord-
ingly, ’useful questions’ were defined as those hav-
ing the following properties:
a) Knowledge-seeking quality: Out of the filtered
questions, many were rhetorical, off-topic, or meta-

https://pypi.org/project/python-youtube/
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discussions. We define ‘knowledge-seeking ques-
tions’ as those requiring domain expertise. Manual
filtering yielded 702 such questions.
b) Temporal grounding: Many relevant questions
included timestamps referring to specific video seg-
ments. We identified 270 timestamped questions
and manually added timestamps where missing.
The heuristics for selecting an appropriate times-
tamp are discussed in Appendix C.1.3.
3) Expert verification and QA correction: While
some questions had expert verified answers in
the comments, only 30/270 were fully answered,
76/270 had partial answers, and 164/270 had none.
Extraneous text was removed, and domain experts
manually answered, corrected, and verified all the
QA pairs, wherever required. Experts were asked
to refer to textbooks and online reference materi-
als to aid this process. However, the use of LLMs
was explicitly prohibited. This dataset serves as a
real-world benchmark for our experiments ( hereby
referred to as the ‘real-world test set’ or ’real-world
set’). A detailed visualization of this dataset cre-
ation process is given in Appendix C. We also
discuss visual dependence of the questions in Ap-
pendix C.3.3. We only manage to collect 270 QA
pairs through this process as the annotation and
manual verification is an expensive and lengthy
process. Hence, we also create a synthetic dataset
which is representative of the real-world samples,
which we keep in the test set.

3.2 Creation of Synthetic Dataset

Zero-shot experiments on the real-world test set
(Table 4) highlighted the complexity of answering
student questions, with even closed-source mod-
els like GPT-4o and Gemini 1.5 performing quite
poorly. Since real-world QA collection is costly,
we adopted a synthetic data-centric approach using
the following steps (details in Appendix C.2):
1) QA pair generation using GPT-4o: Instead of
sampling video frames and using auto-generated
video transcripts to generate QA pairs, we use the
manually annotated transcripts available from Na-
tional Programme on Technology Enhanced Learn-
ing (NPTEL) instead (See Appendix C.2.2 for jus-
tification and more details). We choose 3 courses
from reputed universities (course list in Appendix
C.2.1) matching the domains of the real-world set,
and initially generate 7530 QA pairs from 199
videos.

https://nptel.ac.in/

2) Filtering timestamp-less questions: From the
generated questions, we discard questions without
timestamps using regex (matching the pattern ob-
served in Section 3.1), leaving 6,546 QA pairs.
3) Adversarial Refinement: To ensure questions
require context from the video, we removed those
answerable without context using GPT-4o and an
entailment score threshold of 0.65 (Ray et al.,
2024), reducing the dataset to 4,982 QA pairs. A
similar approach has been shown in (Rawal et al.,
2024). This process is described in detail in Ap-
pendix C.2.4.
4) Timestamp accuracy: GPT-4o assigned times-
tamps based on the key frames in the NPTEL tran-
script pdfs, which were fairly accurate. However,
a manual check on 100 samples (using the process
described in Appendix C.1.3) found an average ab-
solute difference of 35.4s, which we consider while
deciding upon a context window for our bench-
marking experiments.
5) Bloom’s taxonomy tagging: We then auto-
tagged questions with their respective Bloom’s Tax-
onomy (Forehand, 2010) question tags (definition
and process in Appendix C.2.3) using GPT4o1-
mini (using few-shot prompting) and validated 100
samples manually, obtaining a high agreement (Co-
hen’s Kappa (Hsu and Field, 2003) = 0.83). Since
the disagreement in tags occurred between related
classes within the taxonomy, we grouped them
in the following way with question difficulty tags
as follows: easy (Knowledge, Comprehension),
medium (Application, Analysis), and hard (Syn-
thesis, Evaluation).
6) Answer editing by difficulty: Our Qualita-
tive Process (Section 4) revealed that ‘application’
and ‘analysis’ level questions (‘medium’ difficulty)
required clearer answers. Enhancements to the
dataset were made accordingly using an additional
preference study (See full process in Appendix
D.2).
Finally, we split the dataset into train (3,908 QA
pairs, 78%) and test (1,074 QA pairs, 22%), using
the latter as a synthetic test set for benchmarking.
This process is also explained in detail through
Figure 7 in Appendix C.2.

3.3 Quality Assurance and Dataset Statistics

Synthetic Data Quality Assurance: While the
real-world test set is entirely expert-verified and
curated, we ensure the synthetic data also meets
real-world quality. Following Whitehouse et al.
(2023), two graduate students evaluated 500 sam-
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Synthetic dataset Real-world test set

Total number of QA pairs 4982 270
Total number of videos 197 99
Avg. number of words per Q 37.12 22.01
Avg. number of words per A 122.71 44.57
Avg. number of words in transcripts 2971.50 10616.11
Avg. length of videos (sec) 1302.96 4054.79

Table 2: EduvidQA Dataset Statistics

pled QA pairs (10% of the entire synthetic set) on
Question Naturalness (QN) and Answer Sound-
ness (AS). QN is assessed based on: (i) Student-
like curiosity, (ii) Content relevance, (iii) Logical
validity. A binary label is assigned if all criteria
are met. AS is evaluated on: (i) Logical soundness,
(ii) Factual correctness, and a similar binary label
is annotated. Both annotators agreed on AS for
all answers. Annotator 1 found QN valid for 98%
of samples, while Annotator 2 found QN valid for
97%, with only 1% common disagreement on QN.
The common disagreement was primarily due to
the questions that were referencing the content of
the lecture at a meta level (Eg: "What is the purpose
of teaching this topic?"). The authors skimmed
through the data and found only 6 such samples
which were removed from the synthetic set. These
results indicate that the synthetic data maintains
high qualitative standards. The final data statis-
tics can be found in Table 1. We also compare
the real-world set and synthetic set in terms of dif-
ficulty tag distributions and qualitative aspects in
Appendix C.3, and visual dependence of questions
in Appendix C.4.

4 Qualitative Preference Study

Since we are concerned with providing answers
to students, we find it imperative that we take the
qualitative preferences of the students into account,
while creating our dataset, as well as evaluating the
models. We draw inspiration from previous works
(Cross and Angelo, 1988; Paul and Elder, 2013;
Puech et al., 2024) to decide the qualitative metrics
to take into consideration and define them as:
1) Clarity: Simplifies complex terms, structures
explanations logically, and avoids ambiguity.
2) Depth: Explores underlying concepts and
provides sufficient detail without overwhelming
the student.
3) Encouraging Critical Thinking (ECT):
Prompts further inquiry, discusses alternatives, and
offers open-ended suggestions.
4) Conciseness: Keeps the answer precise,
relevant, and free of unnecessary details.
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Figure 3: Results of Study 1 on the Importance of Dif-
ferent Quality Metrics.

5) Uses Pedagogical Techniques (UPT): Uses
examples and step-by-step explanations to enhance
understanding.
Depth and Conciseness were purposely chosen as
different qualities, although both depend on the
same observable features (text length, detailing,
etc) in order to clearly understand the preferences
among the students. We conduct a preliminary
study to understand the qualitative preferences of
students in our dataset’s answers.

4.1 Study Details

Setting: We provided 10 university students (7 un-
dergraduates, 3 graduates) with 5 random questions
from the synthetic dataset. Each question had two
answers—one from the dataset and one explicitly
modified. The modifications were done manually,
where answers were appended with sentences to
enhance UPT and ECT, shortened, or made more
verbose (see example data point in Appendix D.1).
Students selected their preferred answer and listed
the qualities influencing their choice, from the list
of qualities under consideration.
Results: Figure 3 shows that Clarity was pre-
ferred in over 60% of responses (10 students ×
5 questions). ECT and UPT were chosen less fre-
quently. Students preferred alternative answers for
‘medium’ difficulty questions, prompting a second
study (See Table 7 in Appendix D.2). Depth and
Conciseness were selected in 40% of responses,
with undergraduates favoring Depth and graduates
preferring Conciseness (more details in Appendix
D.1). As student expertise is not the focus here, we
do not consider these in the subsequent work.

4.2 Implications and Considerations

Leaving out Depth and Conciseness due to their
dependence on the level of expertise of the student,
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we consider the remaining 3 qualities in the rest
of this work, owing to them getting considerable
preferences among the students. We identify Clar-
ity as a metric widely preferred, being of utmost
importance, needing to be maximized in the gen-
erated answers. ECT and UPT are slightly more
complex. These qualities are more dependent on
the type of question, and the answer it warrants.
We use this information to design our evaluation
metrics appropriately in Section 5.2.

5 Benchmarking

To show the complexity of the task, we evaluate our
real-world test set and synthetic test set on various
open source and closed MLLMs, and evaluate their
performance. We take both Video Large Language
Models (Video LLMs) as well as Large Vision Lan-
guage Models (LVLMs) into consideration for our
experiments.

5.1 Baselines
Video LLMs: We use 2 state of the art open-
source Video LLMs to benchmark our dataset. The
mPLUG-Owl3 8B model (Ye et al., 2024) uses
hyper-attention blocks to semantically integrate the
frames from the video and the text query. It uses
the Siglip-400m visual encoder (Zhai et al., 2023)
and Qwen2 (Yang et al., 2024a) as the language
model. We also use the Video LlaVA-7B model
(Lin et al., 2023), which uses LanguageBind en-
coders (Zhu et al., 2023) and a Vicuna decoder.
LVLMs: For benchmarking using LVLMs, we use
both open-source and closed models. The closed
models comprise of Gemini 1.5 (Team et al., 2024)
and GPT4o (Hurst et al., 2024). We also use open
source LVLMs such as Qwen2VL-7B (Wang et al.,
2024b), which has a 675M parameter Vision Trans-
former (ViT) (Dosovitskiy, 2020) as the image en-
coder, and Qwen2 as the LLM decoder. We also
experiment on the Llava 1.5-13B model (Liu et al.,
2024b), having a ViT large based visual encoder,
and a Vicuna 13B LLM decoder (Chiang et al.,
2023). The prompts are given in Appendix E.1.

5.2 Evaluation Metrics
We evaluate our models with both text-based and
qualitative metrics that help us to get a nuanced
perspective on the performance of the models.

5.2.1 Text-based Evaluation Metrics:
For free-form text generation, the NLP community
has predominantly used n-gram based metrics. We

show results using BLEU-1 (Papineni et al., 2002),
ROUGE-L (Lin, 2004) and METEOR (Banerjee
and Lavie, 2005). We also evaluate using a seman-
tic metric, Entailment Score (ES) (Ray et al., 2024),
which checks the probability of the generated text
being entailed within the reference text. We also
use LLM-based FactQA Precision and Recall met-
rics (Fernandez et al., 2024), that give a clearer
picture of the notions of correctness and complete-
ness of the generated answers with respect to the
ground truth. However, these scores do not provide
much information about the quality of the gener-
ated text. Hence, we design a set of new metrics
based on the Qualitative Preference Study, that pro-
vide a more intuitive and interpretable evaluation
of the free-form generated text.

5.2.2 Qualitative Metrics
a) Motivation: Our Qualitative Preference Study
shows that students give a lot of importance on
the qualitative metrics explored through the study -
with Clarity being the most important aspect, fol-
lowed by UPT and then ECT. However, getting
these qualities manually annotated for all genera-
tions can be an expensive and a time-consuming
process. Hence, we introduce LLM (GPT-4o)
based methodologies to get a quantitative estimate
of these qualities with the help of Likert Scales
(Joshi et al., 2015). Before we did this, we wanted
to ground our interpretations to that of actual stu-
dents, and validate our Likert Scale.
b) Human Annotation Study:
To ensure validity of our LLM-based metrics, we
have 2 student annotators (graduates) to annotate
the quality scores according to the Likert Scale de-
fined in Table 3, for 320 data points from the test
set (50% split of real-world and synthetic). We
also experiment with another version of this scale,
with a more relaxed objective definitions (shown
in Appendix E.2.3), but we settle on this scale due
to this being easier to annotate and having a highly
positive inter-annotator Spearman’s ρ (De Winter
et al., 2016) of 0.7029 for Clarity, 0.7227 for ECT
and 0.7815 (p values were less than 1e-7 for all,
ensuring high statistical significance). We justify
the usage of Spearman’s ρ from previous works
exploring this idea (Sullivan and Artino Jr, 2013).
We also observe a relatively high Cohen’s Kappa
score of 0.6966, 0.6715 and 0.7564 for Clarity,
ECT and UPT respectively. Annotation instruc-
tions and term definitions have been discussed in
detail in Appendix E.2.2.
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Score Clarity Scale ECT Scale UPT Scale

1 >=2 jargon terms without explanation, and >=2 incoherent
transitions.

No questions, no alternatives, purely factual. Pure explanation without any example or breakdown.

2 >= 1 jargon term unexplained and at least 1 logical jump
or ambiguous phrasing.

Includes 1 suggestive or reflective phrase, but no actual
open-ended question.

1 brief example or partial list of steps, lacking clarity.

3 Mostly clear, but 1–2 minor issues: one ambiguous phrase
or slightly choppy flow.

Contains 1 open-ended question or 1 alternative
method/viewpoint.

1 complete example or full step list present, but not both.

4 All terms explained, clear flow, no ambiguity except pos-
sibly 1 unclear phrase.

>=2 open-ended prompts or multiple viewpoints briefly
compared.

>=2 teaching techniques used (e.g., example + step list),
with moderate clarity.

5 No unexplained jargon, consistent logical flow, zero ambi-
guity.

>=2 open-ended questions + explicit invitation to explore
further.

>=3 techniques (e.g., example, analogy, visual mention),
all clear and complete.

Table 3: Likert Scales for Clarity, ECT and UPT, used for both human annotations, and for prompting GPT-4o, in
order to evaluate the models qualitatively.

c) LLM Prompting and Human Agreement:
For getting the qualitative scores from the answers
in a reference-free way, we add the definition of
the objective, the Likert Scale output format, in-
context examples for each score on the scale and
finally a query prompt. The full prompts are shown
in Appendix E.2.2. We then use GPT-4o to obtain
the scores. For the scores for which both human
annotators agreed (207/320 for Clarity, 142/320 for
ECT and 196/320 for UPT), we get scores from
GPT and find the Cohen’s Kappa to be 0.7162 for
Clarity, 0.4586 for ECT and 0.8486 for UPT, show-
ing moderate to high agreement between GPT-4o
scores and human annotations. The reason the cor-
relation is moderate for ECT, is possibly because
of a higher chance of misunderstanding of nuanced
key terms such as suggestive/reflective phrase, in
spite of refined definitions provided to the anno-
tators (described in Appendix E). We also get im-
pressive Spearman’s ρ scores of 0.4071 for Clarity,
0.8709 for ECT and 0.8689 for UPT, thus justify-
ing our usage of this Likert Scale and prompting
method.
d) Evaluation Methodology:
From the Qualitative Preference Study, we can in-
fer Clarity to be a quality which is desirable in all
answers, whereas ECT and UPT are more depen-
dent on the question and its complexity. Hence, a
good model is one that produces answers with a
high average Clarity score, and one that has ECT
and UPT scores closest to the ground truth score,
assuming the answer content is factually correct.
Hence, for ECT and UPT, we use Spearman’s ρ
with respect to the ground truth scores to determine
the performance of the models.

5.3 Experimental Settings
Task setting: To perform our experiments, we
sample the reference frame from the timestamp
in case of LVLMs. In case of Video LLMs, we

sample the reference frame along with 14 frames
before and 15 frames after the reference (30 frames
in total) from a context window of 120 secs before
and after the reference time stamp. Hence, the to-
tal context size around the reference time stamp
is 4 mins. Similarly, we also feed the text tran-
script or audio (for Video Llama 2) from the 4 min
context window to the models, extracted from the
python-youtube API. This was done according to
the manual check done in Section 3.2 which found
an average absolute difference of 35.4s between the
dataset timestamps and the manual timestamps. We
consider a wider range, to cover for the worst-case
scenario where he subject matter of the question is
beyond the average absolute difference by a consid-
erable difference. Please note that the timestamp
from the question is parsed to get the frames and
transcripts from the video.
Experimental Setup: All models were run on
2 NVIDIA L40 GPUs for 10 epochs (early stop-
ping was used to account for early convergence).
We quantize all models to bfloat16, and conduct
LoRA finetuning with r = 64. We tune the learn-
ing rate to 2e-5 for Llava and 1e-5 for all other
models. We also fix the maximum token length to
256 for all models.

6 Results and Analysis

The text-based results after finetuning the baseline
models are reported in Table 4, and the qualitative
metrics of the best models are shown in Table 5.
a) Text-based analysis: For the synthetic test set,
our experiments show that finetuning a compar-
atively smaller open source model in Qwen-VL,
finetuned on data from the same distribution can
generate answers with higher FactQA-Recall com-
pared to a much larger model in Gemini. Since
the training data and test data are from the same
distribution, we observe impressive results for the
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Synthetic Test Set Real World Test Set

Model BLEU ROUGE-L METEOR Entail FQA-P FQA-R BLEU ROUGE-L METEOR Entail FQA-P FQA-R

Finetuned Video LLMs
Video LlaVA 7B 25.50 29.10 21.88 11.40 52.21 42.53 12.47 21.84 17.55 13.09 45.32 21.60
mPLUG Owl 3 8B* 33.58 32.17 23.74 20.08 62.68 50.87 18.17 31.79 19.64 17.84 57.33 29.34

Finetuned VLMs
Qwen VL 7B 25.84 28.87 27.21 18.40 67.21 64.81 18.36 33.00 19.22 18.80 60.83 25.48
Llava 13B* 32.19 22.86 32.22 20.68 61.35 51.03 17.16 20.03 31.41 18.06 61.35 27.29

Closed VLMs
GPT4o* - - - - - - 15.03 32.87 22.46 29.26 64.49 25.98
Gemini 1.5 31.07 28.62 32.55 29.77 73.29 50.98 13.98 30.76 21.25 21.13 63.27 25.15

Table 4: Benchmarking Results on the synthetic test set and real-world test set using text-based metrics. Bold figures
indicate best performance across all models for the real-world test set. * indicates best performing model across
each model category, according to FactQA-Precision (FQA-P) and FactQA-Recall (FQA-R) on the real-world test
set.

Synthetic Test Set Real World Test Set

Model Clarity Avg Clarity AD ECT Avg ECT ρ UPT Avg UPT ρ Clarity Avg Clarity AD ECT Avg ECT ρ UPT Avg UPT ρ

Closed VLMs
GPT4o - - - - - - 4.1585 0.5727 1.8869 0.1378 1.3491 0.1987

VLMs
Llava 13B (0 shot) 3.4247 1.2818 1.2310 0.3328 1.6477 0.2699 2.8834 0.7023 1.0840 0.1223 1.3435 0.1037
Llava 13B (SFT) 3.8484 0.8580 1.2432 0.3668 1.6949 0.3265 3.1901 0.3956 1.1472 0.2413 1.2944 0.2459

Video LLMs
mPLUG Owl 3 8B (0 shot) 3.4672 1.2393 1.0737 0.2750 1.1844 0.2889 3.2682 0.3175 1.0548 0.0411 1.0670 -0.0083
mPLUG Owl 3 8B (SFT) 4.3629 0.3436 1.1930 0.3841 1.4054 0.3376 3.8841 0.2983 1.3780 0.2388 1.2378 0.1958

Table 5: Qualitative benchmarking results on best performing models. AD denotes the absolute difference between
the average scores of the ground truth data and the generated data, Avg denotes average across all test samples and ρ
denotes the Spearman’s Correlation Coefficient. Average Ground-truth scores: Clarity (Real-world Avg = 3.5857;
Synthetic Avg = 4.7065), ECT (Real-world Avg = 1.1775; Synthetic Avg = 1.3243), and UPT (Real-world Avg =
1.1893; Synthetic Avg = 1.5212). Bold figures indicate the best performing model for each qualitative metric for the
synthetic and real-world sets. All Spearman’s ρ scores are statistically significant (p-value < 0.001).
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Figure 4: Improvement in scores (Finetuned metric -
Zero-shot metric) across all the metrics, averaged across
both test sets, for our best performing models

finetuned models, for the synthetic test set. In the
real-world test set, we see interesting trends on fine-
tuning smaller open source models using synthetic
data. All open source models show comparable
performance to closed models on most metrics,
even in in terms of more interpretable metrics Fac-
tQA Precision and Recall. For the real-world test
set, we see comparable metrics across all models,
but for the sake of comparing, in the case of Fac-

tQA Precision and Recall, Llava-13B outperforms
Qwen2-VL 7B possibly due to its difference in the
number of parameters. We also see a similar trend
across the Video LLMs, where mPLUG Owl 3-8B
outperforms Video LlavA-7B. Hence, we consider
Llava-13B and mPLUG-Owl 8B as our best per-
forming models for other analyses. GPT-4o is the
best performing closed-source model.
b) Qualitative Analysis: Table 5 shows the re-
sults for qualitative analysis on the best performing
models. We use the insights from Section 5.2.2 d)
to evaluate our models. It is interesting to observe
that finetuned mPLUG Owl 3 8B generates answers
with the highest Clarity, and has the lowest abso-
lute difference with respect to the synthetic test set.
The finetuned mPLUG Owl 3 8B also has higher
ECT and UPT ρ scores for the synthetic test set.
For the real-world test set, although GPT4o has the
highest average Clarity, finetuned mPLUG Owl 3
8B has the least absolute difference. Similarly, we
observe finetuned Llava-13B to have the highest
Spearman’s ρ with respect to the real-world dataset
for ECT and UPT.
c) Effects of Finetuning: Supervised finetuning
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on the synthetic data unanimously improves the
model performance. After finetuning, both open-
source models show improvement across all text-
based metrics, as shown in Figure 4. For the quali-
tative metrics, Table 5 also shows an improvement
of metrics on supervised finetuning. Although even
the best results show room for improvement, the
supervised finetuning experiments show the effi-
cacy of the synthetic training set for the task of
finetuning smaller models in the range of 7B to
13B parameters to match or even better their perfor-
mance compared to much larger closed models.

7 Conclusion and Future Work

In conclusion, let us once again revisit the RQs we
established in the Introduction, and examine our
progress. Through our extensive studies and sur-
veys, we have established a qualitative preference
among students that can be generalized to a certain
extent. Moreover, the traditional evaluation metrics
used in this line of work failed to cover the nu-
ances needed to estimate human standards of what
constitutes an adequate answer. Our qualitative
metrics, based on our human study, provide a more
aligned representation of these standards, which
is an important step towards estimating the perfor-
mance of MLLMs - a crucial resource for our re-
search objective. Through finetuning open-source
models on our synthetic data, we show that it is
possible for smaller models to provide comparable,
and sometimes even better responses compared to
larger closed models, both in terms of quantitative
and qualitative metrics. However, even the best
performing models have limitations which allows
room for improvement, and opens a new research
direction specific to this utility. Our dataset acts as
a pivotal resource for progress in this line of work.
Additionally, some preliminary results in Appendix
F provide reasonable directions on future progress
in this task - to tailor models to reason on the basis
of question objective and difficulty. Hence, through
this work, we not only move closer to providing
consistent and on-demand academic support for
diverse student communities, but also contribute to
a more inclusive learning landscape for the future.

Limitations

Data Annotation and Human Studies: Our hu-
man level evaluation studies and surveys are re-
stricted to certain demographics, due to a constraint
in the availability of subjects at the time of conduct-

ing this research. We are currently exploring the
possibilities of extending these studies to a wider
community, to capture a more diverse range of
cognitive models, and validate our results even fur-
ther. Another limitation to our work is the size and
coverage of the real-world dataset, also due to avail-
ability issues with specific domain experts, and due
to the data annotation process being an extremely
time-consuming and expensive activity. Extending
this work beyond the domain of Computer Science
remains our utmost priority. Although our annota-
tors were not sourced from a particular platform,
we compensated them on an hourly basis. Human
study subjects were volunteers. All key student
contributors have been recognized in the Acknowl-
edgments Section for their crucial role in this work.
Evaluation metrics: Our qualitative evaluation
metrics are highly dependent on the reasoning ca-
pabilities of LLMs. Although LLMs show impres-
sive capabilities in rule-based instruction-following
tasks , using an open source alternative to GPT4o
might hamper the performance and accuracy of the
metric.
Experiment Design: Our open source model se-
lection for benchmarking was restricted to smaller
models due to compute resource constraints.

Ethics Statement

1) The EduVidQA dataset is based on computer sci-
ence lectures, which might not represent a diverse
student population in terms of language proficiency,
gender, socio-economic background, or accessibil-
ity needs. Since the annotation of the QA pairs in
the real world test set is conducted by a restricted
set of domain experts, it may be possible that the
data reflects personal standards over broader per-
spectives.
2) The synthetic data generation process could in-
troduce biases from pre-trained language models
that might over-represent certain perspectives and
exclude others. Also, if finetuned MLLMs inherit
biases from pre-existing datasets, they might gen-
erate responses that are skewed towards dominant
cultures, gender stereotypes, or regional academic
preferences.
3) In the case of NPTEL content which are used for
our large synthetic data creation, the videos are dis-
tributed under the Creative Commons Attribution-
ShareAlike license which allows reuse of videos
along with appropriate credit, which we have pro-
vided by specifying the actual video links in the
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dataset, and do not redistribute the data in any way.
Also in the case of other videos used in our work,
we follow the same approach, and align with the
standard data practices followed in widely used
large scale datasets like TutorialVQA (Colas et al.,
2019).
4) While AI can enhance learning, over-reliance on
automated answers might reduce critical thinking
skills in students or replace human interaction in
learning. Works like these are meant to comple-
ment, and not replace human educators who have
dedicated their life to teaching students.
5) We acknowledge the usage of large enterprise
LLMs like ChatGPT and Le Chat, as occasional
writing and coding assistants when required. How-
ever, all novel contributions in this work, including
metric definitions, taxonomies, studies/surveys, ex-
periment design and evaluation metric design have
been conceived independent of these LLMs, based
on intuitions, experimentation and empirical obser-
vations.
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A Motivational Study Details

A.1 Related Studies

Our motivational study for this work is inspired
by several related works in this area corresponding
to the explorations of the real world problem un-
der consideration. While there are various studies
which show the adoption of online lecture videos
instead of books among Generation Z (Langreo,
2022; Burhanli and Bangir-Alpan, 2021), the lack
of interaction with instructors have been covered
as a major drawback of video-based learning (Ste-
cuła and Wolniak, 2022). A preliminary form of
our study also shows that only 3-7% of learners
ever participate in discussion forums (He et al.,
2018), underscoring that more learners do not en-
gage in visible questioning and answering. This
study also find that some students are discouraged
by the forum/comment environment itself – prior
analyses observed that many MOOCs suffer from
information overload and spam in forums, making
it hard to find relevant information - a finding that is
unanimously reinforced by our study. These works
prompted us to explore this problem further and
gain better insights into the problem.

A.2 Design Considerations

Aim: Inspired by the studies mentioned above, we
wanted to explore and provide empirical support
by quantifying 1) The demand for interaction in
lecture videos and 2) The deficiencies of current
platforms like YouTube in enabling this interaction.
We do this by designing the study to a) Collect both
behavioral and attitudinal data on video learning
b) Identify actionable gaps in current platforms c)
Justify the need for expert-aligned QA systems d)
Inform synthetic data generation and human pref-
erence evaluation.
Population Demographics: We take insights
from 52 students, of which 75.5% are undergrad-
uate students and 24.5% are graduate students,
through which we aim to capture a broad range
of learning experiences relevant to MOOC-style
lecture videos.
Question Design: We carefully design the follow-
ing list of questions for our study:
a) How often do you use Youtube MOOC videos
or other educational videos to learn new material?
b) Have you ever felt like asking a question about
the content to the educator while watching such
videos?
c) Do you end up asking content related questions

in the Youtube comment section? For example, a
clarification question based on what is being taught.
d) If you don’t tend to ask questions, what is the
reason?
e) If you receive an answer, how satisfied are you
with the response usually?
The final list of questions were finalized after an
initial pilot study on 3 graduate students with re-
search experience in Human Computer Interaction,
who were also asked to provide meta-level feed-
back on the study. This practice is also followed in
the subsequent study.

A.3 Additional Insights from the Study

As is evident from the questions, the study to draw
the motivation for working on this problem, de-
scribed in the paper, was conducted in more detail
than what is mentioned, in order to understand
student interaction patterns better and to under-
stand the satisfaction levels of students who do
ask questions. We find that a large number students
watch online lecture videos daily (28.6%), as well
as weekly (28.6%) while a large number of stu-
dents (25%) watch these videos before exams/tests.
This elaborates on the relevance of the problem
further, and the response to their satisfaction af-
ter receiving an answer, which shows 8.7% of the
students are unsatisfied, 10.7% of the students are
very unsatisfied, along with the large percentage of
students (44.6%) who do not usually ask questions,
show the urgent need for a solution to be developed
for this problem. These granular level results are
shown in Figure 5.

B Justification for Finetuning on
Synthetic Data

The major approach explored in this paper, as a
potential solution for the problem at hand, is the us-
age of synthetic data for finetuning the open source
MLLMs under consideration. Synthetic data has
become a cornerstone in training large language
and vision-language models due to its scalabil-
ity, cost-effectiveness, and potential for enhancing
model capabilities. Foundational works in NLP
and multimodal learning demonstrated that mod-
els trained on automatically generated QA pairs
or instructions can rival those trained on human-
annotated data (Yang et al., 2021). Instruction-
tuning frameworks like FLAN (Longpre et al.,
2023) and Self-Instruct (Wang et al., 2022) have
shown that LLMs can be aligned to follow di-
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How often do you use Youtube MOOC videos or other 
educational videos to learn new material?

If you receive an answer, how satisfied are you with the response 

usually?

Figure 5: Some granular level data from the Motivation Study from the Introduction

verse instructions using entirely synthetic prompt-
response pairs. Recent advances, such as Orca
(Mukherjee et al., 2023), further highlight the ben-
efit of incorporating teacher-model-generated ratio-
nales and step-by-step explanations. In the VLM
space, works like LLaVA (Liu et al., 2024b) uses
synthetic data to teach image or video understand-
ing at scale. While challenges like hallucination
and quality control remain (Liu et al., 2024a), stud-
ies show that, with proper filtering and reasoning-
focused design, synthetic datasets can significantly
improve model performance in educational, instruc-
tional, and long-form QA tasks. We believe our
highly tailored approach to generating synthetic
QA pairs provide a larger representative sample
space for the task, as well as provide valuable fu-
ture insights into the usage of synthetic data for
pedagogical applications.

C Dataset Creation Details

C.1 Real-world Data Creation Details

The real-world dataset has been created from
Youtube videos of online courses from various well-
known Computer Science courses. The comments
from these videos were taken and filtered using
careful heuristics mentioned in Section 3 of the pa-
per. The diagram of the entire annotation pipeline
is presented in Figure 6.

C.1.1 List of courses
The list of courses under consideration are as fol-
lows (Course Name/ Course Code/ Number of
Videos / University Name):
1) Machine Learning/ CS229/ 20/ Stanford Univer-
sity
2) Introduction to Computer Science/ CS50/ 13/
Harvard University
3) Introduction to Algorithms/ 6.006/ 32/ Mas-
sachusetts Institute of Technology
4) Natural Language Processing/ CS231N/ 15/
Stanford University
5) Deep Learning/ 11-785/ 24/ Carnegie Mellon
University
6) Deep Learning/ 6.S191/ 8/ Massachusetts Insti-
tute of Technology
7) Deep Learning/ DS-GA 1008/ 33/ New York
University

C.1.2 Examples of Filtering and Verification
We show examples of filtering and expert verifica-
tion for the real-world dataset in Table 6. These
are explicitly shown to make the reader understand
the various types of annotation in the filtering pro-
cess, and the design choices made for the data. The
different types of filtering shown are regular ex-
pression filtering and manual filtering.

C.1.3 Manually adding Timestamps
The process of manually adding timestamps to the
QA pairs which did not have any associated times-
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Figure 6: Real world dataset creation illustrated through examples
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Filtering Type Comment / QA Pair Annotation

Regular Expression Filtering “Can you explain why we need ReLU after every
convolution?”

Accept (contains “?”)

Regular Expression Filtering “Awesome explanation of gradient descent!” Reject (no “?”)

Manual Filtering “Why does every course use MNIST examples?
Isn’t it outdated now?”

Rhetorical

Manual Filtering “This is pretty cool, right?” Off-topic

Manual Filtering “Sir, please upload the next lecture soon?” Meta discussion

Manual Filtering “At 12:45, is the backpropagation update wrong? I
thought the derivative of tanh is different.”

Accept

Expert Verification Q: “What is cross-validation in CNN?”
Corrected: “What is cross-validation, and how can
it be used while training CNNs?”

Noisy Question Corrected

Expert Verification Q: “How is the cost function minimized using gra-
dient descent?”
A: “You add the gradient to the weights to reduce
the loss.”
Corrected A: “You subtract the gradient multiplied
by the learning rate from the weights, which gradu-
ally reduces the cost function.”

Noisy Answer Corrected

Table 6: Examples of filtering techniques and expert corrections applied to student comments/questions during
real-world dataset annotation.

tamps followed the following heuristics:
1) The experts were asked to first go the video link
and search for keywords from the question in the
official transcript available on the site.
2) Youtube provides a list of timestamps with the
exact keyword match.
3) The expert was then instructed to watch the
most suitable timestamps according to the can-
didate timestamp list, and choose the timestamp
where the content most matched the subject matter
of the question.
These heuristics were decided upon experentialy,
after small pilot annotations conducted by the au-
thors.

C.2 Synthetic Dataset Creation Details

The entire process of synthetic data creation is vi-
sualized in Figure 7. We also provide the following
additional details of the process, which aim to give
more clarity behind our data creation pipeline.

C.2.1 Course List
We choose 3 NPTEL courses to generate synthetic
questions from, keeping in mind diversity in tech-
nical difficulty and type of content, and availability
of transcripts. The following courses were chosen
as a result (Course Name/ Course Code/ Number
of Videos / University Name):
1) Introduction to Algorithms and Analysis/ noc20-
cs10/ 54/ Indian Institute of Technology, Kharagpur

2) Deep Learning - Part 1/ CS7015/ 118/ Indian
Institute of Technology, Madras
3) Computer Networks and Internet Protocol/
noc22-cs19/ 52/ Indian Institute of Technology,
Kharagpur
Of these courses, 199 videos were deemed suitable
with adequate educational content and available
pdf transcripts.

C.2.2 Advantage of using NPTEL Transcripts
for Auto QA Generation

The process of auto-generation of QA pairs from
the video is a fairly complex process in practicality.
To generate QA pairs, one would need to accurately
sample frames from the video with maximum infor-
mation and content, as well as make sure the tran-
scripts are accurate and in sync with the video. To
eliminate these problems, we choose a resource in
NPTEL transcript documents, where this work has
already been done by subject matter experts (SME)
, where the audio has been accurately transcribed,
and key frames have been manually selected, and
compiled into a single pdf file. We scrape these
pdfs from the selected courses, convert the pages
to images using online tools . Referring to the ex-
ample transcript in Figure 8, we see the presence of
transcribed text, key frames, along with associated
timestamps.

nptel.ac.in/aboutus
https://smallpdf.com/pdf-to-jpg
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Figure 7: Synthetic dataset creation illustrated through examples
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Figure 8: Example page from NPTEL transcript

C.2.3 Bloom’s Taxonomy Definitions
The Bloom’s taxonomy definitions for auto-tagging
using GPT4-o1-mini were inspired by past work
(Forehand, 2010). We define them as follows:
1) Knowledge: This initial level involves the sim-
ple recall of facts, terms, and basic concepts from
memory.
2) Comprehension: At this stage, understanding
and grasping the meaning of information is key,
including translating knowledge into one’s own
words.
3) Application: This involves using learned mate-
rial in new and concrete situations, applying rules,
methods, concepts, principles, and theories.
4) Analysis: This step is about examining and
breaking information into component parts to un-
derstand its structure and relationships.
5) Synthesis: This involves combining parts to form
a new whole or propose alternative solutions.
6) Evaluation: It involves making judgments about
the value of ideas or materials based on criteria and
standards through checking and critiquing.
While prompting the tagging model, we give the
same definitions along with some example anno-
tations which were made manually. The same in-
structions were given to the manual annotators.

C.2.4 Adversarial Refinement Process
The process of Adversarial Refinement of the gener-
ated questions is inspired by the process in (Rawal
et al., 2024). The goal was to extract questions
which are difficult to answer without context. We
follow the following process:

Easy
13.8%

Medium

60.5%

Hard

25.7%

Synthetic Set

Easy

41.1% Medium
32.0%

Hard

26.9%

Hard Test Set

Figure 9: Question difficulty distribution in the Syn-
thetic Set and the Real-World Test Set (referred to as
’hard’)

1) The QA pairs were fed to GPT-4o, without any
additional frames or transcript content.
2) The answer generated A’ were collected from
the output.
3) For each answer, we calculate the Entailment
Score(ES) (Ray et al., 2024) with respect to the
originally generated answer, with a threshold above
0.50.
4) We pick 50 QAA’ tuples from the generations,
with the ES close to the threshold value for filtering
(within 0.05).
5) We then compare the generated answer with the
original answer, to see whether the general content
of the answer matches - that is whether the original
answer context matches with the generated answer
context.
6) We perform this for threshold values of 0.5, 0.6,
0.7, 0.8 and 0.9. Since, for 0.6 about 20% of the
generated answers were capturing the context, and
for 0.7, none of the contexts were matching, we
decide to check with the threshold value of 0.65,
where also none of the contexts were not matching.
Since, we wanted to select a threshold that would
yield the maximum number of valid QA pairs, we
fixed the threshold to 0.65, and collected all the
questions.

C.3 Question Distributions
C.3.1 Distribution of Difficulty Tags
Figure 9 shows the distribution of the question diffi-
culty in the real-world set (referenced as ’Hard Test
Set’ in the figure). It shows that the real-world set
has a more uniform distribution of difficulty tags,
whereas the synthetic set has a large amount of
’medium’ difficulty questions, compared to ’easy’
and ’hard’ questions. This makes the observations
made through Study 2 (Appendix D.2) even more
significant, as a large amount of questions needed
to be edited to ensure greater quality ( as discussed
in Section 5.2.2).

34718



C.3.2 Qualitative Assessment of Questions
While using the qualitative metrics described in
Section 5.2.2, we observe the following points. The
average scores for Clarity for the real-world test
set is 3.58, and for the synthetic set is 4.70. This is
difference is perhaps because the synthetic set has
been explicitly modified to enhance clarity. This is
desired as we would want clarity to be maximized
in the answers through the supervised finetuning
set. The average scores for Encouraging Critical
Thinking (ECT) for the real-world set is 1.17 and
synthetic set is 1.32. Similarly, average Using Ped-
agogical Techniques (UPT) scores are 1.19 for the
real-world set and 1.53 for the synthetic set. These
scores being relatively close is also desired, as it
shows that the real-world set and the synthetic set
are similar when it comes to these qualities, and
training on the synthetic set can be useful.

C.3.3 Discussion on Visual Dependence
The authors intended to understand the visual de-
pendence of questions in the synthetic set and real-
world set. Manual checking revealed 44% of the
real world set contained textual queues indicating
visual dependence, such as "According to the slide",
"In the frame", and so on, and 46% of the synthetic
set showed the same. However, closer analysis of
the video content also revealed that the context of
many of these questions can also be gained from
the textual transcript of the video. Moreover, mod-
els were also sometimes able to guess the context
just from the question - a phenomenon that we
wish to explore in our future work. Hence, while
designing our experimental setups, we include both
frames and transcripts, as the purpose of this work
is not to focus on the spatio-temporal aspect of the
task, but is that of being a stepping stone towards
building utilitarian systems for students.

D Details of Human Studies

In this section, we describe some additional details
and considerations from the Qualitative Preference
Study (Section 4), along with a detailed description
and results of a study done on the Relation between
Answer Qualities and Question Difficulty.

D.1 Additional Details of Qualitative
Preference Study (from Section 4)

With regards to the Qualitative Preference Study,
we would like to show the following additional de-
tails:
Additional Observations:
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Figure 10: Results of Study 1 on the Importance of
Different Quality Metrics. Top: Shows the average pref-
erence per query for each quality for undergraduates and
graduates. Bottom: shows the Kendall’s Tau correlation
between the different quality metrics according to the
student responses.

a) Graduates prefer Conciseness, Undergrad-
uates prefer Depth: In Figure 12 (Top), we see
that there is a clear distinction between undergrad-
uates and graduates, when evaluating preferences
for Depth and Conciseness. Keep in mind, Depth
and Conciseness are essentially opposite of each
other, and we wished to see if there was a consen-
sus in either one of them, which we could then
utilize for our work. The Average Importance, cal-
culated by the preference per data point, per an-
notator, shows that graduate students give more
importance to Conciseness and undergraduate stu-
dents give more importance to Depth. This is likely
due to the difference in experience level in the sub-
ject matter along with their confidence in grasping
new concepts. This is the reason, we do not con-
sider these factors in our evaluation metrics and
answer editing process, as we intend to capture the
qualitative aspects that are universal to all students.
To this regard, one might also note the difference
in Importance with regards to Encouraging Critical
Thinking. However, since graduate students give
a high importance to the factors, and that it is a
singular quality without any inverse, we consider it
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Question Answer (Option 1) Answer (Option 2)

In the video at 04:49, the presenter
says, "nobody can come with some
input where my code is performing
worse than what I am claiming." In the
context of algorithm analysis, why is
it important to consider the worst-case
scenario, and how does it benefit the
developers and users of the algorithm?

The importance of considering the
worst-case scenario, as the instructor
states, lies in its ability to provide a
bound on the algorithm’s performance
guarantee. For developers, it offers a
conservative estimate that ensures the
algorithm will not exceed the calcu-
lated maximum time under any circum-
stances. This is crucial for real-time
systems or applications where perfor-
mance guarantees are necessary. For
users, understanding the worst-case
helps set the right expectations and in
the selection of the suitable algorithm
for a particular use-case. By prepar-
ing for the worst-case, developers can
ensure system stability and reliability,
since they can be confident that the
running time will not unpredictably ex-
ceed the worst-case estimate.

Considering the worst-case scenario
is important because it helps develop-
ers know how bad the algorithm can
get. It ensures that the algorithm won’t
take longer than expected in the worst
situation. This is helpful for users be-
cause they can understand what to ex-
pect from the algorithm. Preparing for
the worst-case makes sure the system
works okay even in tough situations.

Table 7: Example of choices given to students during the Qualitative Enhancement Study (Study 1). Students were
asked to choose their preferred version of the answer.
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Figure 11: Results of Study 2 on relation between An-
swer Qualities and Question Difficulty

to be important for our subsequent work.
b) Correlation between the Qualities: Figure 12
(Bottom) shows the correlation between the differ-
ent qualities. This is shown to confirm the validity
of our definitions of each quality with regards to
annotations. As expected, there is a strong negative
correlation between Depth and Conciseness. Also,
there is a moderate negative correlation between
Conciseness, and Encouraging Critical Thinking
and Using Pedagogical Techniques. This is also
expected, as Critical Thinking and Pedagogical
Thinking both affect the verbosity of the answer.
We provide an example of the choices given to the
students in Table 7.

D.2 Study 2: Relation between Answer
Qualities and Question Difficulty

Aim: The aim of Study 2 was to analyze
how enhancing specific qualitative features in an-
swers—identified in the Qualitative Preference
Study—impacts student preferences across differ-
ent question difficulty levels (easy, medium, hard).
This follow-up experiment was designed to em-
pirically assess whether improving qualities like
Clarity, Pedagogical Techniques, and Encouraging
Critical Thinking makes answers more appealing
to students.
Setting: We provided 20 students with three ques-
tions of varying difficulty (easy, medium, hard).
Given Clarity was the most preferred quality, we
enhanced it using GPT-4o. Since Uses Pedagogi-
cal Techniques and Encourages Critical Thinking
are weakly correlated (see Figure 11), we further
enhanced these qualities separately. Students were
given four answer options per question:
(1) Original dataset answer
(2) Clarity-enhanced answer (GPT-4o)
(3) Clarity + Pedagogical Techniques (GPT-4o)
(4) Clarity + Critical Thinking (GPT-4o)
Results: For easy questions, 35% preferred Op-
tion 3, while 40% chose the original answer (Op-
tion 1). Medium questions saw a strong prefer-
ence (65%) for the clarity-enhanced answer (Op-
tion 2). For hard questions, 35% preferred Option
2, but preferences were unclear overall for easy
and hard questions. However, as hypothesized in
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Study 1, medium-level questions benefited from
added clarity. Based on this, we enhance clarity for
all medium-level questions in our synthetic dataset.
This study, although relatively small scale, provides
a valuable resource for future research. Examples
data points from the study are given in Table 8.
Why not enhance all answers? The reason we
do not want to blindly enhance all answers using
GPT4o is because 1) The originally generated an-
swer might alreay possess these qualities to an ap-
propriate amount. 2) Not all answers require an
enhancement. For example for a question belong-
ing to the Easy category (Q: What is the return type
of len() function in python?), such enhancements
might be overkill. We wanted to preserve these
nuances in the dataset.

E Benchmarking Details

E.1 Experiment Prompts

We use the same experiment prompt across all mod-
els, during both supervised finetuning and zero-
shot experiments. We define the prompt as follows:
VLM Prompt:
SYSTEM_PROMPT = “You are an expert com-
puter science educator. You have to answer a ques-
tion that a student has asked from a video. For
context, we have provided you with the transcript
around the relevant timestamp, and the frame from
the video corresponding to the relevant timestamp.”
QUESTION_PROMPT = “Make sure the answer
has good clarity, uses pedagogical techniques and
encourages critical thinking. Use the context from
the transcript to answer the following question in
a single paragraph. ”
final_prompt = "System Prompt: " + SYS-
TEM_PROMPT + " Relevant transcript: " +
transcript_text + "Question Prompt: " + QUES-
TION_PROMPT + "Question: " + df[’question’][i]
Video LLM Prompt:
SYSTEM_PROMPT = “You are an expert com-
puter science educator. You have to answer a ques-
tion that a student has asked from a video. For
context, we have provided you with the transcript
around the relevant timestamp, and the frames from
the video corresponding to the relevant timestamp.”
QUESTION_PROMPT = “Make sure the answer
has good clarity, uses pedagogical techniques and
encourages critical thinking. Use the context from
the transcript to answer the following question in
a single paragraph. ”
final_prompt = "System Prompt: " + SYS-

TEM_PROMPT + " Relevant transcript: " +
transcript_text + "Question Prompt: " + QUES-
TION_PROMPT + "Question: " + df[’question’][i]

E.2 Evaluation Metric Details

E.2.1 FactQA metric Prompt
We take the FactQA metric prompt from the
SyllabusQA paper (Fernandez et al., 2024), and
slightly modify it for our use case.
Prompt:
Your job is to evaluate the similarity of different
answers to a single question. You will be given
a question from a specific computer science col-
lege course. You will also be given two possible
answers to that question, and will have to evaluate
the claims in one answer against the other.
Steps:
1. List all of the atomic claims made by Answer 1.
Note that an answer saying that there is no infor-
mation counts as a single claim.
2. Tell me which of those claims are supported by
Answer 2.
3. Summarize the results using the template: Score:
<num supported claims>/<num total claims> En-
sure that both numbers are integers.
Question: <question>
Answer 1: <answer_1>
Answer 2: <answer_2>

E.2.2 Qualitative Metric Details
a) Qualitative Metric Prompts:
For annotating the model outputs using GPT-4,
we use in-context example prompting. For each
prompt, we define the objective, the Likert Scale,
output format, in-context examples for each score
on the scale and finally a query prompt. We
generate a JSON object which we then parse to get
the score. Following are the prompts:
i) Clarity prompt:
SYSTEM_PROMPT = "You are a domain expert
in Computer Science. You are given a question
and an answer. Judge the answer and give an
appropriate score."
TASK_INSTRUCTION = "Task Instructions:
You are a strict grader. Judge the answer on the
following criterion: Clarity (simplifies complex
terms, logically structured, unambiguous)
Rules:
Count unexplained jargon terms -> Count tran-
sition phrases (e.g., "so", "therefore", "next") →
Detect ambiguous or compound run-on statements.
Assign a score based on the following scale:
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Question Difficulty
level

Original Answer Clarity enhanced Clarity + ECT enhanced Clarity + UPT enhanced

At 05:20, can
you explain
how the Fixed
Universe Suc-
cessor problem
differs from
the dynamic
set problems
seen in binary
search trees,
given that both
involve a set
of operations
like insert,
delete, and find
successor?

Easy The primary difference between
the Fixed Universe Successor
problem and typical dynamic
set operations in binary search
trees lies in the nature of the
universe from which elements
are drawn. In the Fixed Uni-
verse Successor problem, all el-
ements come from a pre-defined
fixed universe, which is usually
a consecutive range of integers.
This constraint means that the
universe is static and does not
change over time. In contrast,
with binary search trees, the el-
ements can come from any ar-
bitrary, potentially infinite, set
without such restrictions. This al-
lows for more flexibility but also
introduces complexity concern-
ing balancing and restructuring
the tree after insertions and dele-
tions to maintain efficient opera-
tion times. The fixed universe al-
lows for some optimizations due
to its predictability and finiteness
that are not possible in a more
general setting.

The main difference between the
Fixed Universe Successor prob-
lem and typical dynamic set op-
erations in binary search trees is
the source of elements they use.
In the Fixed Universe Successor
problem, all elements come from
a pre-defined fixed universe, usu-
ally a range of consecutive inte-
gers. This means that the uni-
verse remains static and unchang-
ing over time. On the other hand,
binary search trees can draw ele-
ments from any infinite, arbitrary
set, leading to increased flexi-
bility but also complexity when
balancing and restructuring the
tree after operations like inser-
tions and deletions to maintain
efficient performance. While
the fixed universe allows for cer-
tain optimizations due to its pre-
dictability and limited size that
are not possible in a more gen-
eral setting.

To improve the critical thinking
aspect of this answer, we can
consider alternative perspectives
and explore potential implica-
tions of using a fixed universe
versus an arbitrary set. For ex-
ample, using a fixed universe
may simplify certain operations
and allow for faster execution
times, but it also limits the range
of elements that can be consid-
ered, which might not always
be ideal depending on the prob-
lem at hand. On the other hand,
using an arbitrary set provides
greater flexibility in selecting el-
ements, but it can introduce com-
plexity in managing the tree’s
structure and performance. It
is essential to weigh these trade-
offs and choose the appropriate
approach based on the specific
requirements and constraints of
the problem being solved.

To enhance understanding, let’s
use an example. Imagine we
have a binary search tree with el-
ements ranging from 1 to 100. In
this case, the dynamic set oper-
ations can easily be performed
as the elements and their rela-
tionships are not predetermined.
However, if we restrict the range
of elements in our universe to a
fixed range, such as integers be-
tween 1 and 100, the tree’s struc-
ture becomes rigid, limiting the
ability to optimize performance
through dynamic set operations.
This is the main difference be-
tween the Fixed Universe Succes-
sor problem and typical dynamic
set operations in binary search
trees.

At 15:30, the
instructor
mentioned that
insertion in a
sorted array
has a time
complexity of
O(n). Can you
explain why
it isn’t O(log
n) since we
can locate the
position using
binary search?

Medium Although it’s true that binary
search allows us to locate the
position where the new element
should be inserted in O(log n)
time for a sorted array, the key
aspect contributing to the time
complexity here is the shifting
of elements after the insert po-
sition. When we insert the new
element, we need to shift all sub-
sequent elements one position to
the right to make space for the
new element. In the worst-case
scenario, this could mean shift-
ing all n elements if the new el-
ement is to be inserted at the be-
ginning of the array. Hence, the
overall time complexity for inser-
tion in a sorted array would be
dominated by the shifting opera-
tion, which is O(n).

Binary search allows us to locate
the position where a new element
should be inserted into a sorted
array in O(log n) time. However,
the key aspect that contributes to
the time complexity here is the
shifting of elements after the in-
sertion position. When inserting
a new element, we need to shift
all subsequent elements one posi-
tion to the right to make space for
the new element. In the worst-
case scenario, this could mean
shifting all n elements if the new
element is to be inserted at the
beginning of the array. Hence,
the overall time complexity for
insertion in a sorted array would
be dominated by the shifting op-
eration, which has a time com-
plexity of O(n).

Binary search allows us to effi-
ciently locate the position where
a new element should be inserted
into a sorted array in O(log n)
time. However, it’s crucial to rec-
ognize that the key factor con-
tributing to this time complexity
is the shifting of elements after
the insertion position. When in-
serting a new element, we must
shift all subsequent elements one
position to the right to make
space for the new element. In the
worst-case scenario, this could
involve shifting all n elements
if the new element is to be in-
serted at the beginning of the ar-
ray. Consequently, the overall
time complexity for insertion in
a sorted array would be primarily
determined by the shifting opera-
tion, which has a time complex-
ity of O(n). To improve critical
thinking skills, it’s important to
consider alternative approaches
and explore open-ended sugges-
tions, such as using a different
data structure or implementing a
custom algorithm tailored to spe-
cific insertion scenarios.

To enhance understanding, let’s
break down the process of insert-
ing an element into a sorted array
using binary search. Firstly, we
identify the position where the
new element should be inserted.
Then, we shift all subsequent ele-
ments one position to the right
to make space for the new el-
ement. In the worst-case sce-
nario, this could mean shifting
all n elements if the new element
is to be inserted at the begin-
ning of the array. The time com-
plexity of shifting elements is
O(n), which dominates the over-
all time complexity for insertion
in a sorted array. By using ex-
amples and step-by-step expla-
nations, we can understand how
binary search works and its effi-
ciency in inserting elements into
a sorted array in O(log n) time.

Q3: At
19:20, when
discussing
linked lists,
the instructor
states the time
complexity
for insert
and delete
operations is
O(1). Can
it always be
assumed that
insertions and
deletions in a
linked list are
constant time,
regardless of
the position?

Hard Insertions and deletions in a
linked list have an average time
complexity of O(1) when you are
inserting or deleting elements at
the head or directly at a known
position with a reference (e.g., af-
ter a given node). This is because
there’s no need to shift the ele-
ments like in an array; you only
update the pointers. However, if
you need to insert or delete an el-
ement at a specific position and
you do not have a reference to the
node after or before which you
want to perform the operation,
you will first have to traverse the
list to find the correct spot, which
could take O(n) time in the worst
case. Therefore, while the actual
insertion or deletion is O(1), find-
ing the position in the linked list
where the operation needs to be
performed may increase the over-
all time complexity.

Insertions and deletions in a
linked list have an average time
complexity of O(1) when done
at the head or a known posi-
tion with the help of a reference.
This is because, unlike arrays,
you only need to update pointers
without shifting elements. How-
ever, if the insertion or deletion
is done at a specific position and
there’s no reference for the target
node, traversing the list to find
the correct spot may take O(n)
time in the worst case, making
the overall complexity worse.

To improve the critical thinking
aspect of this answer, we can dis-
cuss alternative approaches and
suggest open-ended suggestions.
One approach could be using a
doubly linked list, where each
node contains both a reference
to the previous node and a refer-
ence to the next node. This al-
lows for efficient insertions and
deletions at any position with-
out the need for traversing the
entire list. Another approach
is to use a hash table or binary
search tree, which can provide
constant time access to specific
positions in the list. However,
these data structures may have
higher overhead in terms of mem-
ory usage or complexity. It’s im-
portant to consider the trade-offs
and choose the appropriate data
structure based on the specific re-
quirements and constraints of the
application.

To enhance understanding, let’s
use an example to illustrate the
concept of insertions and dele-
tions in a linked list. Imagine
we have a linked list containing
the numbers 1 through 5, with
each number pointing to the next
node in the list. Now, let’s say
we want to insert a new node
at index 3. With the help of a
reference, we can easily insert
the new node at index 3 without
affecting the other nodes in the
list. However, if we don’t have
a reference and need to find the
correct position to insert the new
node, we would need to traverse
the entire linked list, which could
take O(n) time in the worst case,
making the overall complexity
worse. Therefore, it’s important
to use references when inserting
or deleting nodes at specific po-
sitions in a linked list to avoid
worst-case scenarios and main-
tain efficient time complexity.

Table 8: Examples of answer enhancements for varying difficulty levels, using clarity, explanation-through-
contextual-thinking (ECT), and understanding pedagogical technique (UPT) strategies. Students were asked to
choose their preferred version of the answer.
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1 = >=2 jargon terms without explanation, and
>=2 incoherent transitions.
2 = >= 1 jargon term unexplained and at least 1
logical jump or ambiguous phrasing.
3 = Mostly clear, but 1–2 minor issues: one
ambiguous phrase or slightly choppy flow.
4 = All terms explained, clear flow, no ambiguity
except possibly 1 unclear phrase.
5 = No unexplained jargon, consistent logical flow,
zero ambiguity."
OUTPUT_FORMAT = Output Format: Return
**only** the JSON object below—no extra text.
{ "explanation": <explanation>, "overall": <1-5>
}
examples = ”’ Here are some examples: Example
1: Input: [Q]: Explain what a Binary Search
Tree (BST) is and why it is useful? Answer: BSTs
optimise O(log n) retrieval; apex node bifurcates
sub-trees ergo bigger left subchild contrarily
right. Output: { "explanation": "Two jargon terms
(O(logn), apex), two incoherent jumps (“ergo”,

“contrarily”): fails both thresholds.", "overall": 1 }
Example 2: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful? Answer:
A BST has nodes and children. Therefore, data is
stored efficiently. Output: { "explanation": "One
unexplained term (nodes), one logical jump (why
does it imply efficiency?)", "overall": 2 }
Example 3: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful? Answer:
A BST is a tree where each left child holds a
smaller value than its parent, and the right child
a larger value. This rule lets us skip half the
tree each step, making searches fast. Output: {
"explanation": "Mostly clear, but phrase “skip
half the tree” is mildly ambiguous about how.",
"overall": 3 }
Example 4: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful? Answer:
A Binary Search Tree (BST) is an ordered tree:
every node’s left subtree contains only smaller
keys, the right subtree only larger keys. Following
this rule top-down lets you discard half the
remaining elements each comparison. Output: {
"explanation": "All terms defined; flow is clear;
one sentence is long but unambiguous.", "overall":
4 }
Example 5: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful? Answer:
A Binary Search Tree (BST) is a sorted tree
structure. For each node: left<parent<right.
Starting at the root you compare the target key:

if it is smaller, move left; if larger, move right.
Repeating this till you reach a leaf takes at most
log n steps. No jargon remains unexplained, and
each step follows directly from the previous one.
Output: { "explanation": "Zero jargon, crisp
stepwise flow, no ambiguity.", "overall": 5 }
QUERY_PROMPT = "Given the following
question and answers, assign the appropriate score
and give the explanation as shown in the examples.
Output the dictionary format as described above.
Do not include any other text. "
final_prompt = SYSTEM_PROMPT +
TASK_INSTRUCTION + OUTPUT_FORMAT
+ examples + QUERY_PROMPT + "[Q]: " +
df[’question’][i] + "Answer: " + df[’generated’][i]
+ " Output: "
ii) ECT Prompt:
SYSTEM_PROMPT = "You are a domain expert
in Computer Science. You are given a question
and an answer. Judge the answer and give an
appropriate score."
TASK_INSTRUCTION = Task Instructions:
You are a strict grader. Judge the answer on
the following criterion: Encouraging Critical
Thinking (Prompts learners to reflect, explore
alternatives, or ask new questions.)
Rules:
Detect open-ended question marks ("why",
"how", "what if"), alternatives (“another way”,

“alternatively”, “one approach is. . . ”), and explo-
ration prompts (“you may explore”, “consider
trying. . . ”).
Assign a score based on the following scale:
1 = No questions, no alternatives, purely factual.
2 = Includes 1 suggestive or reflective phrase, but
no actual open-ended question.
3 = Contains 1 open-ended question or 1 alterna-
tive method/viewpoint.
4 = >=2 open-ended prompts or multiple view-
points briefly compared.
5 = >=2 open-ended questions + explicit invitation
to explore further.

OUTPUT_FORMAT = Output Format: Re-
turn **only** the JSON object below—no extra
text.
{ "explanation": <explanation>, "overall": <1-5>
}
examples = ”’ Here are some examples: Example
1: Input: [Q]: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful? Answer:
BSTs are efficient search structures used in
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programming. Output: { "explanation": "Purely
factual; no questions or alternatives.", "overall": 1
}
Example 2: Input: Explain what a Binary Search
Tree (BST) is and why it is useful? Answer: BSTs
are efficient; it is worth thinking about their
balance. Output: { "explanation": "Reflective
phrase “worth thinking” but no open-ended
question.", "overall": 2 }
Example 3: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful? Answer:
How would search time change if the tree became
unbalanced? Output: { "explanation": "One open-
ended question prompts reflection.", "overall": 3 }
Example 4: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful? Answer:
What happens if the tree degenerates into a
list—and can you think of another structure that
avoids this? Compare that with self-balancing
trees such as AVL. Output: { "explanation": "Two
prompts: a “what happens” question plus an
alternative to explore.", "overall": 4 }
Example 5: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful? Answer:
Why might a hash table outperform a BST for large
data sets? After trying a BST yourself, consider
experimenting with AVL or Red-Black trees and
evaluate which conditions favour each structure.
Output: { "explanation": ">=2 open questions and
an explicit invitation to explore further.", "overall":
5 }"
QUERY_PROMPT = "Given the following
question and answers, assign the appropriate score
and give the explanation as shown in the examples.
Output the dictionary format as described above.
Do not include any other text. "
final_prompt = SYSTEM_PROMPT +
TASK_INSTRUCTION + OUTPUT_FORMAT
+ examples + QUERY_PROMPT + "[Q]: " +
df[’question’][i] + "Answer: " + df[’generated’][i]
+ " Output: "
iii) UPT Prompt:
SYSTEM_PROMPT = "You are a domain expert
in Computer Science. You are given a question
and an answer. Judge the answer and give an
appropriate score."
TASK_INSTRUCTION = Task Instructions:
You are a strict grader. Judge the answer on the
following criterion: Using Pedagogical Techniques
(Employs examples, analogies, or step-by-step
explanations to aid understanding)
Rules:

Search for example phrases (“for example”,
“e.g.”), analogies (“like”, “similar to”), step
phrases (“Step 1”, “First,” “Then”).
Assign a score based on the following scale:
1 = Pure explanation without any example or
breakdown.
2 = 1 brief example or partial list of steps, lacking
clarity.
3 = 1 complete example or full step list present,
but not both.
4 = >=2 teaching techniques used (e.g., example +
step list), with moderate clarity.
5 = >=3 techniques (e.g., example, analogy, visual
mention), all clear and complete.

OUTPUT_FORMAT = Output Format: Re-
turn **only** the JSON object below—no extra
text.
{ "explanation": <explanation>, "overall": <1-5>
}
examples = ”’ Here are some examples: Example
1: Input: [Q]: Explain what a Binary Search
Tree (BST) is and why it is useful? Answer:
BSTs let you perform searches in O(log n) time.
Output: { "explanation": "No example, no steps,
no analogy.", "overall": 1 }
Example 2: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful? Answer:
BSTs let you search, e.g., finding a student ID
quickly. Output: { "explanation": "One brief
example only.", "overall": 2 }
Example 3: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful? Answer:
Step 1: Start at root. Step 2: Compare key. Step 3:
Move left or right until found. Output: { "expla-
nation": "Full step list but no example/analogy.",
"overall": 3 }
Example 4: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful? Answer:
Imagine a phone book sorted alphabetically
(analogy). Step 1. . . Step 3. . . Finally, for example,
you can locate roll-number 73 in 7 comparisons.
Output: { "explanation": "Two devices (analogy +
steps) with good clarity.", "overall": 4 }
Example 5: Input: [Q]: Explain what a Binary
Search Tree (BST) is and why it is useful?
Answer: “Think of a BST like a decision fork in a
20-questions game (analogy). Example: searching
42 follows arrows in the diagram below. Steps:
1 Start at 50, 2 go left. . . Visual mention: ’See
diagram’. Output: { "explanation": "Analogy +
example + step list (+ visual cue) three devices,
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all complete.", "overall": 5 }"
QUERY_PROMPT = "Given the following
question and answers, assign the appropriate score
and give the explanation as shown in the examples.
Output the dictionary format as described above.
Do not include any other text. "
final_prompt = SYSTEM_PROMPT +
TASK_INSTRUCTION + OUTPUT_FORMAT
+ examples + QUERY_PROMPT + "[Q]: " +
df[’question’][i] + "Answer: " + df[’generated’][i]
+ " Output: "
b) Instructions for Human Annotators:
We essentially provide the same information to
the annotators, as we provide in the prompts -
the Likert Scale, Examples and some guidelines.
Additionally, we define a pipeline to help them
annotate the questions accurately.
Annotation Pipeline:
1. Read the entire answer once without scoring.
2. Highlight jargon (domain-specific terms). Mark
whether each is explained in-line.
3. Highlight transitions and check logical flow.
4. Mark question marks and phrases signalling
reflection or alternatives.
5. Tag teaching devices (examples, analogies, step
lists, visual references).
6. Apply the decision tables provided to pick
scores. Edge-case rule: if an answer sits exactly
on the boundary, choose the lower score to stay
conservative.
7. Record the scores.
Definitions of Ambiguous Terms:
There are some terms in the definition of the
Likert Scale in Section 5.2. We formally define
them in order to avoid any confusion between the
annotators:
1. Jargon: Jargon terms are domain-specific
technical terms that may not be immediately
understandable to a general audience or novice
learners unless they are explicitly explained. If
a term is used without explanation and it is not
commonly understood outside a specific field, it
counts as unexplained jargon.
Example: In "BSTs optimize O(log n) retrieval.",
BSTs and O(log n) can be considered as jargon
terms.
2. Logical Flow: Logical flow refers to the
coherent and sequential structure of ideas, where
each sentence or step follows naturally from the
previous one. It is disrupted by abrupt transitions
or disconnected reasoning. Check if transitional
phrases like “so,” “therefore,” or “next” logically

connect to the prior statement. Count jumps or
breaks in reasoning.
Example of Poor Logical Flow: “A BST has nodes
and children. Therefore, data is stored efficiently.”
- The "therefore" does not follow logically - why
does having nodes imply efficiency?
Example of Good Logical Flow: “For each
node: left<parent<right. Starting at the root you
compare the target key...” - Each step naturally
builds on the last.
3. Suggestive Phrase: A suggestive phrase hints
at reflection or further exploration without forming
a direct open-ended question. It nudges the learner
toward deeper thought but does not demand a
specific response.
Example: “It is worth thinking about their
balance.” - Encourages reflection without asking a
direct question.
4. Reflective Phrase: A reflective phrase invites
the learner to think back on a concept or consider
implications, usually in a subtle or implicit way. It
overlaps with suggestive phrases but emphasizes
inward thought.
Example: “BSTs are efficient; it is worth thinking
about their balance.” - The phrase invites internal
consideration of balance.
5. Open-ended Question: An open-ended
question is one that cannot be answered with
a simple yes/no or fact, and instead prompts
exploration, reasoning, or analysis. It often starts
with “how,” “why,” or “what if.” Look for phrases
like: “How does. . . ?”, “Why would. . . ?”, “What
happens if. . . ?”
Example: “How would search time change if the
tree became unbalanced?” - Encourages reflection
and understanding beyond the surface.
Please note that these definitions might differ
slightly from textbook definitions of these terms.
We carefully design these, tailored to our unique
use case.

E.2.3 Alternate Method for Qualitative
Metrics

In order to truly understand the effectiveness of our
Likert Scale, we experiment with another Likert
Scale where the definitions of the scores are more
subjective. We show this Likert Scale in Figure 9.
In this case as well, we get two student annotators
to annotate according to the scale, and check the
results.
Reasons for Rejection: We observe that the an-
notations between the 2 annotators differ greatly,
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Score Clarity Scale ECT Scale UPT Scale

1 Uses jargon without explanation; ideas jump randomly;
meaning often unclear

Merely states facts; no prompts, no mention of alterna-
tives; discourages inquiry.

Pure exposition; no examples or stepwise guidance.

2 Many unexplained terms; some logical gaps; frequent
ambiguous phrasing.

Sporadic “food-for-thought” phrases, but mostly didactic;
few or no open questions.

One short example or a partial step list, but insufficient
detail or relevance.

3 Overall flow understandable though occasionally choppy;
a few unclear parts.

Provides at least one open-ended question or discusses
one alternative viewpoint.

Includes at least one concrete example and outlines main
steps, though either could be clearer.

4 Almost all terms explained in plain language; ideas build
logically from point to point; wording rarely ambiguous.

Regularly poses thoughtful questions and briefly compares
multiple perspectives or solutions.

Multiple relevant examples or a clear, complete step-by-
step breakdown; occasionally uses analogies.

5 Explains every term in learner-friendly language and
shows how concepts fit together; transitions are seam-
less; no ambiguity detected.

Integrates probing questions throughout; systematically
explores several alternatives; explicitly invites learners to
investigate further.

Combines varied, well-chosen examples, analogies, visu-
als (if applicable), and a thorough step-by-step scaffold
that anticipates learner difficulties.

Table 9: Likert Scales for Clarity, ECT and UPT, with more subjective definitions.

Clarity (old)

Clarity (new)

ECT (old)

ECT (new)

UPT (old)

UPT (new)

Figure 12: The difference in confusion matrices for subjective and more objective definitions of the qualitative
metrics. Here, old means the subjective definition scale and new means the more objective scale used in our work.

and this is rectified in the more objective version
of the Likert Scale. For clarity, the Spearman’s ρ
was 0.3654, for ECT 0.3878 and for UPT, 0.3764.
Hence, we use the more objective scale for our
study, and to design the evaluation metrics.

F Additional Analyses

F.1 Difficulty-based Analysis

Based on the categorization of question difficulty
explained in Section 3.2, we analyze the perfor-
mance of the top performing open source LVLM
Llava-13B, closed LVLM GPT4o and open source
Video LLM mPLUG-Owl on the real world test
set, on the basis of FactQA-Precision and FactQA-
Recall. The results are presented in Figure 13.
Here, we observe an interesting result: all 3 mod-
els perform better on hard questions compared to
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Figure 13: Performance of the best models from each
model category against different question difficulty lev-
els in the real world test set

medium questions, in terms of FactQA-Precision.
This means that for the medium and hard questions,
the answers are factually correct, without too much
unnecessary text, as compared to medium questions.
FactQA-Recall performance is relatively similar
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across all difficulty levels. This indicates these
models are not able to get all the facts from the
reference answer, regardless of the difficulty level.
Nevertheless, an interesting point to note is that for
hard questions, mPLUG-Owl outperforms GPT4o
across both metrics, which holds great significance
in our attempts to use synthetic data for training.

F.2 Reverse Question Answering Analysis

Model Name Entailment Score (RQA)

GPT-4o 0.2834

mPLUG Owl-0shot 0.2336

mPLUG Owl-SFT 0.1926

Llava-0shot 0.2178

Llava-SFT 0.2032

Table 10: Reverse QA analysis

Building on the research objective shown in
(Balepur et al., 2024), we use Reverse Question
Answering as a potential evaluation objective of
our models. This is some preliminary work that
is meant to give some insights into the finetuning
process, Further studies can be done to analyse the
effectiveness of this method.
Evaluation Methodology: We provide the answer
A without the question Q to GPT-4o, and ask it to
predict the question. It gives a reverse engineered
question Q’, which we compare with Q, using En-
tailment Score (ES) (Ray et al., 2024). We do this
process 5 times for each answer, and take the Q’
with the highest ES for our evaluation, in order to
understand whether the answer A truly corresponds
to the question Q.
Results: Table 10 shows the results for this study.
Out of all the best performing models from the
benchmark, we see that GPT-4o performs best. An-
other interesting observation is that on finetuning
the models, the ES goes down, possibly due to the
answers becoming more verbose, in order to incor-
porate the qualitative aspects introduced through
the synthetic set.
Implication: This study somewhat implies that
the models, whether closed-source or open-source,
possibly misunderstands the objective of the ques-
tion to a certain degree, and hence prompts further
investigation into the matter.
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