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Abstract

Authorship representation (AR) learning,
which models an author’s unique writing style,
has demonstrated strong performance in au-
thorship attribution tasks. However, prior re-
search has primarily focused on monolingual
settings—mostly in English—Ileaving the po-
tential benefits of multilingual AR models un-
derexplored. We introduce a novel method for
multilingual AR learning that incorporates two
key innovations: probabilistic content masking,
which encourages the model to focus on stylis-
tically indicative words rather than content-
specific words, and language-aware batching,
which improves contrastive learning by reduc-
ing cross-lingual interference. Our model is
trained on over 4.5 million authors across 36
languages and 13 domains. It consistently out-
performs monolingual baselines in 21 out of
22 non-English languages, achieving an aver-
age Recall@8 improvement of 4.85%, with a
maximum gain of 15.91% in a single language.
Furthermore, it exhibits stronger cross-lingual
and cross-domain generalization compared to
a monolingual model trained solely on English.
Our analysis confirms the effectiveness of both
proposed techniques, highlighting their critical
roles in the model’s improved performance.

1 Introduction

Authorship representation (AR) models (Zhu and
Jurgens, 2021; Rivera-Soto et al., 2021; Wang et al.,
2023) capture an author’s distinctive writing style
by encoding documents written by the same author
as nearby vectors in the embedding space. Initially
developed for authorship attribution, AR models
have since proven useful for a wide range of ap-
plications, including machine-generated text de-
tection (Rivera-Soto et al., 2024), text style trans-
fer (Horvitz et al., 2024; Liu et al., 2024), stylistic
similarity measurement (Alshomary et al., 2024),
authorship obfuscation (Bao and Carpuat, 2024;
Fisher et al., 2024), and personalized text genera-
tion (Neelakanteswara et al., 2024).

Despite this growing versatility, most prior work
on AR has focused exclusively on English, limiting
the generalizability of AR models across languages.
As NLP systems are increasingly deployed globally,
multilingual support has become critical. Yet devel-
oping effective AR models for other languages re-
mains difficult due to two central challenges: data
scarcity and topic dependence.

The lack of large, diverse author-labeled datasets
poses a major challenge for AR modeling in non-
English languages. While English corpora used
in Rivera-Soto et al. (2021) include up to 1.1 mil-
lion authors spanning three domains, most existing
non-English datasets contain only a few hundred
authors from a single domain (Stamatatos et al.,
2015a; Avram, 2023; Gabrovsek et al., 2023; Nitu
and Dascalu, 2024; De Langhe et al., 2024; Misini
et al., 2024; Hossain et al., 2025), limiting the fea-
sibility of accurate AR modeling beyond English.

Moreover, AR models often conflate stylistic sig-
nals with topic-related features (Sawatphol et al.,
2022; Wegmann et al., 2022), which weakens their
ability to generalize across domains. While some
recent methods have attempted to reduce topic bias,
they often depend on language-specific tools such
as semantic representations (Hu et al., 2024b) or
syntactic parsers (Wang et al., 2023). However,
these tools are rarely available for non-English lan-
guages, severely hindering the adaptation of exist-
ing AR approaches in multilingual settings.

To address these challenges, we pose the follow-
ing research questions: Can multilingual training
with a single shared model improve authorship rep-
resentations in low-resource languages? What mod-
eling strategies are effective for reducing topic bias
and isolating language-agnostic stylistic features in
multilingual AR models?

In this paper, we propose a novel multilingual
authorship representation method that enables joint
training of a single embedding model across multi-
ple languages. We introduce two innovative tech-
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niques to improve the model’s robustness to topic
shifts and enhance stability during multilingual
contrastive learning, without requiring language-
specific resources. The first technique, probabilis-
tic content masking, encourages the model to fo-
cus on stylistic cues rather than topic-based ones.
To achieve this, we identify frequently occurring
tokens as function words—words more likely to
signal stylistic choices—and mask the remaining
content tokens randomly. The second technique,
language-aware batching, groups same-language
examples into contrastive batches, thereby provid-
ing a more informative contrastive objective and
greater training efficiency.

Our multilingual authorship representation mod-
els are trained on texts from 36 languages spanning
19 language families and 17 distinct script systems,
covering over 4.5 million authors. Our experiments
show that these multilingual models consistently
outperform monolingual models, particularly in
languages with less author-labeled data. In 21
out of 22 non-English languages, our multilingual
model achieves higher Recall@8 than its mono-
lingual counterpart, with an average improvement
of 4.85%. Languages with limited author-labeled
data benefit the most: Recall@8 in Kazakh and
Georgian improves by over 15%. Moreover, we
demonstrate that multilingual training improves au-
thorship attribution performance even in languages
and domains not seen during training.

This paper makes four key contributions: (1) We
propose a novel multilingual AR learning method
that enables training a single model across multiple
languages without relying on language-specific re-
sources. (2) We demonstrate that multilingual train-
ing consistently outperforms monolingual base-
lines, even in unseen languages and domains. (3)
We conduct a detailed ablation study that highlights
the effectiveness of our proposed techniques in im-
proving model performance. (4) We release the
code! and model” used in our experiments.

2 Related Work

Recent studies (Barlas and Stamatatos, 2020; Fa-
bien et al., 2020) have shown that Pre-trained Lan-
guage Models (PLMs) (Devlin et al., 2019; Liu
et al., 2019) surpass traditional feature-based meth-
ods in authorship attribution. AR learning (Boen-

"https://github.com/junghwanjkim/multilingual_aa
“https://huggingface.co/Blablablab/multilingual-style-
representation

ninghoff et al., 2019; Zhu and Jurgens, 2021;
Rivera-Soto et al., 2021), in particular, has emerged
as a promising PLM-based approach, offering
strong scalability to virtually unlimited numbers
of authors. AR methods use contrastive learning
frameworks (van den Oord et al., 2019; Khosla
et al., 2020) to learn an embedding space that cap-
tures writing styles. In this work, we investigate
the multilingual generalization of AR learning.

AR beyond English. While the majority of exist-
ing research on AR has focused on English datasets,
there is a growing interest in extending AR meth-
ods to languages beyond English. Earlier work in
this direction primarily addresses individual low-
resource languages, typically with datasets with
at most a few hundred authors. To overcome
data scarcity, these studies either fine-tune the
monolingual PLMs for the target language (Avram,
2023; Gabrovsek et al., 2023; De Langhe et al.,
2024; Hossain et al., 2025) or incorporate language-
specific syntactic or morphological features (Nitu
and Dascalu, 2024; Misini et al., 2024). However,
the potential benefits of jointly training AR mod-
els across multiple languages remain unexplored,
and the cross-lingual transfer capabilities of such
models are largely unknown. We fill this gap by
proposing a multilingual framework, demonstrat-
ing that training AR models jointly on multiple
languages leads to better authorship attribution ac-
curacy across diverse linguistic contexts.

Multilingual Semantic Representation. Our
motivation stems from the success of multilin-
gual semantic representation learning (Artetxe and
Schwenk, 2019; Conneau et al., 2020), which has
shown strong cross-lingual transfer capability. In
this approach, fine-tuning a model on a source
language improves performance on a target lan-
guage (Fujinuma et al., 2022; Philippy et al., 2023;
Chirkova and Nikoulina, 2024). However, it re-
mains unclear whether AR models, which focus on
capturing stylistic features of authorship rather than
semantics, can enjoy similar cross-lingual transfer.
This work provides evidence that AR models can in-
deed enjoy cross-lingual transfer from multilingual
training, which is surprising given the syntactic and
grammatical diversity across languages.

3 Proposed Method

We propose a multilingual AR method that trains a
single model across multiple languages without re-
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lying on language-specific resources. Our approach
builds on supervised contrastive learning (§3.1)
and addresses shortcut issues in multilingual AR
settings (§3.2) through two key techniques. First,
Probabilistic Content Masking (PCM) mitigates
topic dependence by selectively masking content
words (§3.3). Second, Language-Aware Batching
(LAB) improves training efficiency and stability by
promoting language-consistent batches, thereby re-
ducing cross-lingual easy negatives and yielding
stronger contrastive signals (§3.4).

3.1 Supervised Contrastive Learning

Our method adopts a supervised contrastive learn-
ing framework (Khosla et al., 2020), commonly
used in recent state-of-the-art AR models (e.g.,
Rivera-Soto et al., 2021; Sawatphol et al., 2022).
This framework promotes similarity between docu-
ment pairs from the same author relative to similar-
ity between pairs written by different authors.

Concretely, we train an AR model that maps
input text x to a vector representation z. Given a
set of N randomly sampled authors, we select two
documents per author to form a document batch
B = {2,z };e;n). The contrastive loss for this
batch is defined as

exp (ziC . z%_k/7'>
S e exp (252 /7))
1=0,1
ey
where z! denotes the representation of input 22,
and the dot product - denotes cosine similarity. The
temperature parameter 7 controls the sharpness of
the softmax distribution. In each summand, z¥

is treated as the anchor and .CEil_k as the positive
sample, and all a:é for j # i serve as negatives.

3.2 Shortcut Learning in AR

Contrastive learning models are prone to shortcut
learning (Robinson et al., 2021; Xue et al., 2023),
where they rely on easily accessible signals that are
only spuriously correlated with the target task. In
multilingual AR, two prominent shortcuts are topic
dependence and cross-lingual easy negatives.

Topic Dependence. AR models may overfit to
superficial topic shortcuts rather than capturing
genuine stylistic features, impairing their ability
to generalize across domains with different topic
distributions (Mikros and Argiri, 2007). This issue
arises because authors tend to write about recurring

themes, which introduces topic biases into their
documents (Altakrori et al., 2021).

Existing solutions follow two main strategies:
(1) controlling for topic using semantic informa-
tion, and (2) removing topic-related words from
the input. The first strategy modifies training objec-
tives (Sawatphol et al., 2022; Hu et al., 2024b) or
batch construction (Wegmann et al., 2022; Fincke
and Boschee, 2024), typically relying on topic mod-
els or semantic embeddings. The second strat-
egy removes topic-related words using part-of-
speech taggers (Wang et al., 2023) or topic mod-
els (Man and Huu Nguyen, 2024). However, both
approaches rely on language-specific tools, limiting
their use in low-resource languages—a constraint
we explicitly aim to eliminate.

Cross-Lingual Easy Negatives. In multilingual
AR settings, models can easily detect language mis-
match between documents and assign low similar-
ity to such cross-lingual pairs. When negative pairs
come from different languages, their already low
similarity leads to weak contrastive signals. Be-
cause their similarity to the anchor is already low,
these examples yield negligible gradient updates
and offer little training signal. This weak super-
vision not only slows convergence but can also
cause numerical instability when the denominator
in Equation 1 approaches zero.

3.3 Probabilistic Content Masking (PCM)

PCM reduces topic dependence in AR learning
by randomly masking tokens that are less indica-
tive of writing style. During training, PCM ran-
domly masks content words—those that carry
meaning—thereby encouraging the model to fo-
cus on function words, which express grammatical
structure. Because authors tend to use function
words more consistently than content words across
documents (Argamon and Levitan, 2005; Keste-
mont, 2014), this shift in focus promotes the learn-
ing of stylistic, rather than topical, patterns.

To identify content words without relying on
language-specific tools, we adopt an approximate
strategy based on subword token frequency. While
conventional approaches use predefined stopword
lists or part-of-speech taggers to distinguish con-
tent from function words (Zhu and Jurgens, 2021;
Wang et al., 2023), such tools are often unavailable
or unreliable for low-resource languages. More-
over, while multilingual neural taggers exist, these
introduce substantial computational overhead, mak-
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ing them prohibitively expensive for training with
large corpora like those used here. Instead, we treat
high-frequency subword tokens from the training
corpus as function tokens, eliminating dependence
on external tools. This frequency-based approach
is lightweight and adapts naturally to the token dis-
tribution of each domain, which is particularly ef-
fective when prevalent function words differ across
languages and domains. In English, a few meth-
ods have used word-frequency heuristics to always
remove content words as a preprocessing step for
authorship attribution (Stamatatos, 2017; Markov
etal., 2018).

Randomness in PCM plays a key role in both
regularizing training and preserving stylistic cues
in content tokens. By varying the masked tokens
across training steps, PCM exposes the model to
different views of the same input, effectively serv-
ing as data augmentation. In addition, random
masking allows some content tokens to remain un-
masked, enabling the model to capture consistent
lexical choices that may reflect an author’s stylis-
tic signature. Together, these effects enhance the
model’s ability to learn effective ARs.

3.4 Language-Aware Batching (LAB)

LAB mitigates the cross-lingual easy negative prob-
lem that arises in multilingual AR settings. Un-
like standard batching based on random shuffling—
which mixes documents regardless of language—
LAB constructs batches by shuffling training data
within each language, ensuring that each batch con-
tains documents in the same language. The order
of languages is also permuted each epoch to re-
duce potential training bias. This batching strategy
improves both efficiency and stability by ensur-
ing greater language consistency within batches,
thereby reducing low-signal cross-lingual negatives
and facilitating more effective contrastive learning.

4 Experimental Setup

We evaluate the effectiveness and generalizability
of our multilingual AR model, which is jointly
trained across multiple languages, in two settings.
First, we compare its performance to monolin-
gual models trained on the corresponding target
language to assess the effectiveness of multilin-
gual training (§5.1). Next, to evaluate cross-lingual
and cross-domain generalization, we compare our
model to a monolingual English model on lan-
guages and domains unseen during training by ei-

ther model (§5.2).

Dataset. Our dataset comprises over 6.2M au-
thors across 59 languages and 17 diverse domains,
including online forums (Reddit), product reviews
(Amazon), novels (BookCorpus), and academic
articles (PubMed). Appendix Table A10 pro-
vides the descriptions of these domains in our
dataset. All non-English documents are sourced
from four Wikipedia domains—articles, user pages,
talk pages, and user talk pages’—which collec-
tively represent a broad range of discourse types.
The languages span 20 language families and 19
distinct script systems. Appendix Tables A11 and
A12 show the language family and the script sys-
tem for each language.

The seen subset, used for training, includes 35
languages and 10 domains. In Section 5.1, the
comparison between our multilingual model and
monolingual baselines focuses on the 22 seen lan-
guages that contain a sufficient number of authors
to support effective monolingual AR training. The
remaining 24 languages and 7 domains constitute
the unseen subset, which is reserved for evaluating
cross-lingual and cross-domain generalization in
Section 5.2. The seen data is split into training,
validation, and test sets using an 85/5/10 split; the
unseen data is split into validation and test sets with
a33.3/66.7 ratio. Models are trained on the training
set, hyperparameters are tuned on the validation set,
and results are reported on the test set. Appendix
Tables A13, A14, and A15 present the dataset statis-
tics for English domains, multilingual seen lan-
guages, and unseen languages, respectively.

Each author is associated with exactly two docu-
ments written in the same language. During train-
ing, these two documents form a positive con-
trastive pair. For evaluation, one document is used
as a query (an author to be found) and their other
document is denoted as the candidate.

Metrics. Following the standard practice in the
literature (Rivera-Soto et al., 2021; Sawatphol et al.,
2022; Man and Huu Nguyen, 2024; Fincke and
Boschee, 2024), we evaluate AR models using an
authorship attribution task and report Recall@8
(R@8) and Mean Reciprocal Rank (MRR). For
each query document, all candidate documents are
ranked by cosine similarity in the AR embedding
space. R@8 measures the portion of queries for

3User pages are for interpersonal discussion, notices, test-

ing, and personal content. Talk and user talk pages are for
discussion of article and user page improvements, respectively.
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which the correct author appears among the top
8 candidates, while MRR averages the reciprocal
rank of the correct candidates over all queries.*

Training Details. Our multilingual AR model is
fine-tuned from XLM-RoBERTa-large® (Conneau
et al., 2020), a multilingual Transformer pretrained
on 100 languages.® We train our AR model for 5
epochs with a learning rate of 1le-4, batch size of
1,024, and a masking rate of 0.2. The learning rate
and batch size are chosen based on our preliminary
experiments, while the masking rate is determined
via hyperparameter search, discussed later in Sec-
tion 6.1. We use the AdamW optimizer (Loshchilov
and Hutter, 2019) and the WSD learning rate sched-
ule (Hu et al., 2024a). The temperature parameter
in the contrastive loss is set to 7 = 0.1. We select
the best checkpoint based on validation loss and
use it as our final model. All models are imple-
mented with PyTorch-Lightning and the Hugging-
face Transformer library.

Baselines. For comparison, we train monolingual
AR models for each target language. Each model is
fine-tuned from XLM-RoBERTa-large—the same
base model used for our multilingual model—using
only data from the corresponding language. Due
to the smaller size of each monolingual dataset,
we train for more epochs (ranging from 20 to 50)
until convergence and select the best checkpoint
based on validation loss. We refer to these models
as monolingual XLM-RoBERTa models. When the
target language is English, we refer to the model as
the English-only XLM-RoBERTa model. Addition-
ally, for 8 languages with well-established mono-
lingual BERT-like models (Appendix Table Al),
we fine-tune those using the same training setup
and refer to the resulting models as monolingual
BERT models. When unspecified, the base model
defaults to the XLM-RoBERTa-large model.

We also evaluate against a state-of-the-art mul-
tilingual AR method, mStyleDistance (Qiu et al.,
2025), but only show these results in Appendix Ta-
bles A5 and A6 for visual clarity when plotting, as

“These definitions differ slightly from the standard ones,
but remain valid in our setting since each query has exactly
one corresponding candidate.

Shttps://huggingface.co/Facebook Al/xIm-roberta-large

We also train and evaluate Llama3.2-1B
(https://huggingface.co/meta-llama/Llama-3.2-1B); however,
due to its more limited language coverage, it underperforms
compared to XLM-RoBERTa-large on low-resource lan-
guages. As a result, we report its results in the appendix.
Additional training details for Llama model can be found in
Appendix A.1.
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Figure 1: Multilingual training provides consistent
gains across languages. A single multilingual model
trained across multiple languages outperforms 21 out of
22 monolingual models, each trained on its respective
language. Languages with less data show greater gain.
For all plots, error bars show 95% confidence intervals.

it performs poorly in our setup.

S Experimental Results

This section presents the performance of our multi-
lingual models across languages and domains, fol-
lowing the evaluation setup described in Section 4.

5.1 Effectiveness across Languages

Multilingual training consistently improves author-
ship attribution across languages. Incorporating
training data from multiple languages enables the
model to outperform monolingual models trained
solely on language-specific data. Our multilingual
model outperforms monolingual baselines on all
evaluated languages except Japanese, with an aver-
age R@8 improvement of 4.85% across languages
(Figure 1). This result indicates that our multilin-
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Figure 2: Multilingual training yields greater gains
for low-resource languages. There is a strong negative
correlation between the number of training authors and
the R@8 improvement from multilingual training.

gual model captures stylistic features that transfer
across languages—a notable finding given the di-
versity of 22 evaluated languages, which span 15
language families and 11 script systems.

Low-resource languages benefit more substan-
tially from multilingual training. For example,
R@8 improves by over 15% for languages with
less data, such as Kazakh and Georgian. To investi-
gate this trend, we plot R@8 gains from multilin-
gual training against the number of authors in each
language dataset (Figure 2). The results reveal a
clear negative correlation: as the number of authors
decreases, the benefits of multilingual training in-
crease. This pattern demonstrates that multilingual
training enables cross-lingual transfer, effectively
redistributing representation capacity from high-
resource to low-resource languages, and making
this approach particularly effective for underrepre-
sented languages.

Our multilingual model even outperforms mono-
lingual BERT models’ fine-tuned from language-
specific base models. These monolingual BERT
models serve as stronger baselines than monolin-
gual XLM-RoBERTa models, as their tokenizers
and pretraining corpora are tailored to the target
language. Nonetheless, our multilingual model
surpasses them in 6 out of 8 evaluated languages—
excluding only French and Polish—despite lack-
ing any language-specific tokenization (Table AS5).
This further highlights the effectiveness of our mul-
tilingual approach.

" Appendix Table Al lists the monolingual base models
that we used to train monolingual BERT AR models.

60 HEE Multilingual (ours) . .
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Figure 3: The multilingual model exhibits stronger
cross-lingual and cross-domain generalization than
its English-only counterpart. Multilingual training
improves R@8 on unseen English domains, seen lan-
guages, and unseen languages, while incurring only a
minimal drop in the seen English domain.

5.2 Cross-Lingual and Cross-Domain
Generalization

Multilingual training substantially improves gen-
eralization to unseen languages. Our multilin-
gual model outperforms its English-only counter-
part by 9.17% in R@8, a relative improvement of
30.52% (Figure 3). Notably, these gains extend
to Armenian—a language with no shared script
with the languages seen in training—and Telugu—
a language with no shared language family in our
training data (Table A18). These results show that
multilingual training enables generalization well
across scripts and language families.

Multilingual training also enhances generaliza-
tion to unseen English domains. Our model
achieves a 3.02% gain in R@8 over the English-
only model, indicating that exposure to diverse lan-
guages encourages the learning of stylistic features
that are domain-agnostic. This, in turn, improves
robustness to novel domains, making our multi-
lingual models more suitable for general-purpose
writing style representation.

The multilingual model performs strongly on
seen languages, consistent with the improvements
observed for individual languages in Section 5.2.
Our model outperforms the English-only baseline
on these languages, increasing R@8 from 43.96%
to 56.01%, a relative improvement of 27.41%.

These gains come at a minimal cost on English
seen domains, where the multilingual model lags
behind the English-only baseline by only 1% in
R@8. This minor decline, combined with the sub-

34872



14+ ‘ ‘ ‘ ‘ ;
0 20 40 60 80 100
Masking Rate (%)

Figure 4: Hyperparameter search identifies 20% as
the optimal masking rate. We search using a 10%
random subset of the training data and report R@8 on
the validation set for seen English domains.

stantial improvements in cross-lingual and cross-
domain settings, supports the hypothesis that multi-
lingual training promotes the acquisition of univer-
sal stylistic representations in authorship modeling.
As generalization outweighs in-domain accuracy
in general-purpose authorship modeling, the mul-
tilingual model provides a more suitable solution
than the English-only model.

6 Performance and Ablation Analyses

This section presents five additional analyses. The
first three assess aspects of our model: a hyperpa-
rameter search to examine sensitivity to masking
rate (§6.1) and ablation studies to assess the con-
tribution of PCM (§6.2) and LAB (§6.3). The re-
maining two demonstrate its generalization to new
settings through evaluation on two downstream au-
thorship tasks: authorship verification (§6.4) and
machine-generated text detection (§6.5).

6.1 Masking Rate Search

We selected the masking rate in earlier experiments
via hyperparameter search by training models on a
10% random subset of the training set, evaluating
R @8 on the validation set for seen English domains.
A 20% masking rate yielded the best performance
(Figure 4) and was used for full-scale training.

6.2 Ablation Study: PCM

This section evaluates the effectiveness of our pro-
posed PCM for authorship representation.

Setup. We compare PCM against four state-of-
the-art AR methods and two baseline masking ap-
proaches. We restrict evaluation to the English

Model Mask Seen Unseen
RandomOrder - 0.0016  0.0023
LUAR X 10.35 11.79
CAV X 1.50 2.75
StyleDistance X 3.16 4.86
X 22.60 14.64
Stopword  10.34 7.88
RoBERTa POS 19.14 1297
PCM 24.66 16.24

Table 1: PCM achieves the highest R@8 among all
evaluated methods on both seen and unseen English
domains. It outperforms state-of-the-art AR methods
by a substantial margin and surpasses masking baselines
that rely on language-specific resources. For all tables,
the best performance is bolded.

portion of the dataset, as most AR methods are de-
signed specifically for English, and masking base-
lines depend on language-specific resources not
readily available in other languages. For state-of-
the-art AR baselines, we include LUAR (Rivera-
Soto et al., 2021), CAV (Wegmann et al., 2022),
StyleDistance (Patel et al., 2025), and mStyleDis-
tance (Qiu et al., 2025). For masking baselines, we
evaluate Stopword (Zhu and Jurgens, 2021), which
retains only tokens from the predefined SpaCy stop-
word list, and POS (Wang et al., 2023), which
masks proper nouns identified using the Stanza
part-of-speech tagger. Additionally, we include a
random ordering baseline as a lower-bound refer-
ence to contextualize the results.

Results. PCM achieves the best performance
among all AR methods on both seen and unseen En-
glish domains (Table 1). Among the AR baselines,
LUAR performs best, likely due to its use of a con-
trastive training objective—similar to ours—that
aligns well with the authorship attribution task. In
contrast, CAV and StyleDistance perform worse, as
they are not optimized for authorship attribution but
instead focus on reducing topic dependence. Still,
all AR baselines achieve non-trivial R@8 scores
and substantially outperform the random baselines.

PCM consistently outperforms all masking base-
lines on both domain splits. Surprisingly, Stop-
word and POS masking baselines underperform
even the no-masking baseline, despite relying on
high-quality, language-specific resources to iden-
tify function words. This underperformance is
likely due to their deterministic masking schemes,
which create a mismatch between masked train-
ing inputs and unmasked test inputs, hindering the
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LAB English Multilingual
Seen Unseen Seen Unseen

X 20.52 15.49 49.82 32.82

v 19.85 17.75 56.01 39.21

Table 2: LAB improves multilingual R@8 and en-
hances both cross-lingual and cross-domain gener-
alization in terms of R@8. These gains in unseen
English domains and multilingual subsets come at only
a minor cost in seen English domains.

model’s ability to learn consistent stylistic signals.
We hypothesize that stochastic variants of these
approaches could improve performance on English
data; however, we leave this exploration to future
work, as these methods are not applicable to our
multilingual training setup, which is the primary
focus of this study.

6.3 Ablation Study: LAB

This section ablates LAB to see its impact on per-
formance across languages and domains.

Setup. We train the multilingual AR model with
and without LAB and compare their performance.
With LAB, each training batch consists primarily
of documents in the same language. Without LAB,
batches are formed via random shuffling, mixing
documents from different languages. All other
training details remain identical to those used in
the main experiments.

Results. LAB consistently outperforms the ran-
dom batching baseline, achieving over 2% higher
R@8 in unseen English domains and more than
6% gains in both seen and unseen languages, while
incurring less than a 1% drop in seen English do-
mains (Table 2). These results show that LAB
improves cross-lingual and cross-domain general-
ization by reducing easy negatives during training.

6.4 Authorship Verification

We evaluate the zero-shot downstream performance
of our multilingual AR model in two authorship
verification settings that differ from authorship at-
tribution used in previous sections.

Setup. We use the authorship verification task
from the PAN shared tasks, where the goal is to
determine whether a given pair of documents was
written by the same author. Evaluation is conducted
on the test corpora from the 2013 to 2015 PAN
datasets (Juola and Stamatatos, 2013; Stamatatos

B Ours m CAV
LUAR mmm StyleDistance

mStyleDistance

r80

Accuracy (%)

Lo
Machine-Generated
Text Detection

Authorship
Verification

Figure 5: The multilingual models show the best
overall performance in authorship verification tasks.
Multilingual training generalizes competitively to out-
of-domain settings.

et al., 2014, 2015b), covering Greek, Spanish, and
Dutch. The training dataset for our multilingual
AR model includes Greek and Dutch, but not Span-
ish. For zero-shot prediction, we compute cosine
similarity between AR embeddings and use it as
the prediction score, reporting AUROC as the eval-
uation metric. We compare against the same state-
of-the-art AR baselines used in Section 6.2: LUAR,
CAYV, StyleDistance, and mStyleDistance.

Results. Our model outperforms all evaluated
AR baselines (Figure 5, left). Across the 8 splits,
our model achieves the highest AUROC in 3 and
the second-highest in another 3 (Table A8). These
results highlight the strong generalization ability
of our model to out-of-domain and task-shifted
authorship scenarios.

6.5 Machine-Generated Text Detection

We examine the effectiveness of our multilingual
AR model on machine-generated text detection.

Setup. Machine-generated text detection re-
quires distinguishing between human-written and
machine-generated texts. We use the MULTITuDE
dataset (Macko et al., 2023), which includes 11 lan-
guages: English, Spanish, Russian, Dutch, Catalan,
Czech, German, Chinese, Portuguese, Arabic, and
Ukrainian. The training dataset for our AR model
covers a subset of these languages—specifically,
English, Russian, Dutch, Chinese, and Arabic—
while the remaining 6 are unseen during training.
We apply logistic regression with default parame-
ters using scikit-learn (Pedregosa et al., 2011) on
top of the AR embeddings and report prediction
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accuracy. We compare against the same baselines
as in the previous experiment.

Results. Our multilingual AR model achieves
the strongest overall accuracy among all evaluated
methods (Figure 5, right). Our model ranks first in
5 languages and second in another 5, demonstrat-
ing consistent effectiveness across both seen and
unseen languages (Table A9). This result demon-
strates our techniques enable representations that
generalize well even to machine writing.

7 Conclusion

In this paper, we introduce a novel method for mul-
tilingual authorship representation that integrates
two core techniques: (1) PCM, which selectively
masks content words to drive the model’s focus
toward stylistic cues; and (2) LAB, which groups
training data by language to avoid cross-lingual
easy negatives and improve contrastive learning ef-
ficiency. These techniques address key challenges
in authorship modeling, including data scarcity
and topic dependence. Our experiments show that
the proposed multilingual model consistently out-
performs monolingual baselines, with particularly
strong gains in low-resource languages. Further-
more, our method improves performance in pre-
viously unseen languages and domains. Further
analysis examines the effect of the masking rate,
evaluates the contributions of PCM and LAB, and
demonstrates the effectiveness of our model on
downstream tasks. This work demonstrates that
multilingual training can significantly enhance au-
thorship representation models, opening new pos-
sibilities for multilingual authorship analysis. Fu-
ture directions for this work include: (1) extend-
ing LAB to enhance cross-domain generalization;
(2) incorporating a broader range of domains into
the multilingual author-labeled dataset to improve
its diversity and robustness; and (3) exploring the
application of authorship representations to other
style-related tasks.

Limitations

We limit our settings to the case where each author
only writes in one language. While our multilin-
gual models allow for cross-language AR, whether
accurate authorship attribution for authors writing
in multiple languages is possible with our model
remains unclear. Cross-lingual authorship attribu-
tion differs fundamentally from our current focus
and is left for future work.

While we have sourced English language data
from multiple diverse domains, our multilingual
dataset is sourced from a single domain: Wikipedia.
AR dataset remains rare, and Wikipedia is the
largest data source that is feasible to collect for
a high number of languages to ensure linguistic
diversity. While Wikipedia contains multiple gen-
res of text (e.g., articles, talk pages), these do not
reflect the diversity of our English data. Moreover,
the article pages for low-resource languages often
exhibit quality issues (Tatariya et al., 2025), includ-
ing duplicate entries, bot-generated content, and
the presence of foreign scripts. As a result, our eval-
uation likely does not reflect the full cross-domain
generalization capability in non-English languages.

Ethical Considerations

In this work, we present a framework for devel-
oping a multilingual AR model. AR is a dual-use
technology, and models have been used to both re-
veal and hide the identity of an anonymous author
using stylistic difference measurement and style
replacement, respectively. Positive applications of
the technology have been used in applications like
historical document attribution (e.g., Gurney and
Gurney, 1998; Juola et al., 2008) and for identify-
ing likely authors of documents related to criminal
activity (e.g., Olsson, 2009; Saxena et al., 2023).
However, negative applications could also be used
to remove anonymity from individuals in sensitive
situations (e.g,. where their demographics or some
aspect of their identity puts them at risk of cultural
retribution) or where political agents look to pursue
individuals.
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Language Model

French almanach/camembert-large

Italian Musixmatch/umberto-commoncrawl-cased-v1
Polish sdadas/polish-roberta-large-v2

Farsi HooshvareLab/roberta-fa-zwnj-base

Dutch DTAI-KULeuven/robbert-2023-dutch-large
Hebrew HeNLP/HeRo

Indonesian  flax-community/indonesian-roberta-large
Hungarian  uvegesistvan/Hun_RoBERTa_large_Plain

Table Al: Monolingual base models used to train our
monolingual BERT AR models.

A Supplementary Material for Section 4

This section presents supplementary material for
the experimental setup.

A.1 Training Details for Llama model.

Since Llama3.2 is a causal language model, we
modify its attention layers to enable bidirectional
context, following LLM2Vec (BehnamGhader
et al., 2024), and pool over tokens in the final layer
representations. We also apply LoRA (Hu et al.,
2022) to Llama3.2 to enable training with larger
batch sizes, which we find essential for effective
AR learning.

B Supplementary Material for Section 5

We provide additional results of our main experi-
ments.

B.1 Effectiveness across Languages

The full list of R@8 and MRR scores is shown in
Table A5 and Table A6, respectively.

The effectiveness of multilingual AR modeling
depends not only on model size but also on the
degree of multilingual support in the underlying
encoder. Although Llama model is more than twice
the size of XLM-RoBERTa, it outperforms XLM-
RoBERTza in only 10 out of 22 languages, with an
average gain of 2%. The languages where Llama
performs better tend to be high-resource, reflecting
its bias toward languages with large pre-training
corpora. In contrast, XLM-RoBERTa outperforms
Llama in 12 languages, with gaps of up to 20%
in low-resource languages such as Hebrew, Geor-
gian, and Malayalam. Notably, XLM-RoBERTa
performs better in Hindi and Thai—languages
that Llama officially supports—while Llama out-
performs XILM-RoBERTa in Russian and Polish,
which are not officially supported by Llama. These
results underscore the importance of broad mul-
tilingual coverage in the pertaining phase of the

60{ HEE Multilingual (ours) 561

English-only
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Figure Al: The multilingual Llama model also ex-
hibits stronger cross-lingual and cross-domain gener-
alization than its English-only counterpart. Multilin-
gual training improves R@8 on unseen English domains,
seen languages, and unseen languages, while incurring
only a minimal drop in the seen English domain.

language model for effective multilingual author-
ship representation.

The comparison between multilingual and mono-
lingual variants also reveals important distinctions
between the two model families. For most lan-
guages, the monolingual Llama models outperform
their multilingual counterpart, although the margin
is smaller than that observed between monolingual
and multilingual XLM-RoBERTa models. How-
ever, this gap should be interpreted with caution.
Llama’s vocabulary is not optimized for many low-
resource languages, often resulting in subword to-
kenization that splits text into characters or even
bytes. For example, the number of tokens gener-
ated for the same document in Georgian or Malay-
alam is over five times higher in Llama than in
XLM-RoBERTa, making it significantly more dif-
ficult for the model to capture universal stylistic
signals. Therefore, the performance gap between
monolingual and multilingual LLaMA models is
not a reliable indicator of the effect of multilingual
training alone.

B.2 Cross-Lingual and Cross-Domain
Generalization

We repeat the experiments for Figure 3 with
Llama3.2-1B, and the result is shown in Figure Al.
As in the XLM-RoBERTa-large case, multilingual
training improves cross-lingual and cross-domain
generalization at a small cost in seen English do-
main performance. Table A7 presents the corre-
sponding MRR results for both XLM-RoBERTa-
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Figure A2: Hyperparameter search identifies 20% as
the optimal masking rate for RoOBERTa-large. We
search using a 10% random subset of the training data
and report R@8 on the validation set for seen English
domains.

Model Mask Seen Unseen
RandomOrder - 0.0016  0.0023
LUAR X 10.35 11.79
CAV X 1.50 2.75
StyleDistance X 3.16 4.86
X 22.60 14.64
Stopword  10.34 7.88
RoBERTa POS 19.14 1297
PCM 24.66 16.24
Llama X 28.11 17.69
PCM 29.00 19.36

Table A2: PCM achieves the highest R@8 among all
evaluated methods on both seen and unseen English
domains. It outperforms state-of-the-art AR methods
by a substantial margin and surpasses masking baselines
that rely on language-specific resources.

Model Mask Seen Unseen

RandomOrder - 0.0028  0.0038

301 LUAR X 7.50 8.97
CAV X 1.16 2.17

28] StyleDistance X 2.38 3.82
2 X 1643  10.93
® 26 Stopword 7.21 5.87
* RoBERTa PertLE 1366 961
54 PCM 18.08 12.20
Llama X 21.07 13.37

221 PCM 21.90 14.78

0 20 40 60 80 100

Masking Rate (%)

Figure A3: Hyperparameter search identifies 50 %
as the optimal masking rate for Llama3.2-1B. We
search using a 10% random subset of the training data
and report R@8 on the validation set for seen English
domains.

large and Llama3.2-1B, which show a similar trend
to R@8 results.

The full per-domain R@8 and MRR across all
evaluated models are available in Table A16 and Ta-
ble A17, respectively. The full per-language R@8
and MRR across all evaluated models are available
in Table A18 and Table A19, respectively.

C Supplementary Material for Section 6
We provide additional results of our analysis.

Cl1

The hyperparameter search results on XLM-
RoBERTa-large, RoOBERTa-large, and Llama3.2-
1B are shown in Figure 4, Figure A2, and Fig-

Masking Rate Search

Table A3: PCM achieves the highest MRR among all
evaluated methods on both seen and unseen English
domains. It outperforms state-of-the-art AR methods
by a substantial margin and surpasses masking baselines
that rely on language-specific resources.

ure A3, respectively.

C.2 Ablation Study: PCM

Table A2 includes Llama result in addition to Ta-
ble 1. Table A3 presents the MRR results corre-
sponding to Table A2.

C.3 Ablation Study: LAB

Table A4 presents the MRR results corresponding
to Table 2.

C.4 Authorship Verification

Table A8 shows the comprehensive per-split and
overall authorship verification AUROC of all eval-
uated AR models.
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LAB English Multilingual
Seen Unseen Seen Unseen

X 14.99 11.60 38.24 24.24

v 14.59 13.45 45.04 30.36

Table A4: LAB improves multilingual MRR and en-
hances both cross-lingual and cross-domain gener-
alization in terms of MRR. These gains in unseen
English domains and multilingual subsets come at only
a minor cost in seen English domains.

C.5 Machine-Generated Text Detection

Table A9 presents the comprehensive per-language
and overall machine-generated text detection accu-
racy of all evaluated AR models.

C.6 Case study

We show examples of document pairs in Amazon
domain with their authorship attribution results.

Ex1. Query: great video it dose not look like
other that is around the pirce it looks HD best buy
for computer items in a long time use for video chat
people that can teach me the things i need to know
for hobbies like FCC radios skpye not to good go
with oo Voo it free also

Candidate: the photos are over 7mb each the space
adds ups fast but the photos are great if you don’t
have much space on your hard drive on the camera
you can change how many mp the photo take so the
file size are little if you get this camera you should
also get a 16 to 32gb sd card to hold all your photos
Rank: 1, Attribution: Success

Ex2. Query: LOVE my Toms! I was worried at
first because they start off tight, and this was my
first pair so I didn’t know what to expect, but my
sister told me to hang in there and wear for a couple
days- and they definitely stretched out and fit my
feet perfectly! I've worn them on trips from the
east to the west coast, and even over seas, and they
are great! So light for packing, comfy for walking,
and easy to put on and take off. They got muddy
on a recent trip, but I let it dry and just brushed
it off and they were fine. I have a couple pairs of
their wedges, and plan on getting more of these as I
love the comfort and their mission! I have the navy
blue- and I wear them to work and casually, so they
go great with a lot!

Candidate: 1t’s hard to find a long shower curtain,
so this was a great find and is perfect! High quality-
I expect it will last for awhile, and it doesn’t need a

liner which is nice. The colors are great, it doesn’t
stick to you (a nice soft fabric feel), and keeps
everything in the shower. It hangs great- you don’t
have to weigh down, and doesn’t wrinkle. We
didn’t use the rings it came with (they are cheaper
plastic ones), but ones we already had are great.
Highly recommend if you have a rod that is higher-
we use in a stand-up shower.

Rank: 1, Attribution: Success

Ex3. Query: Solid little interface for the money.
I like it a lot. The only thing I think that could
have been done better would be phantom power
control for individual channels, and not just 1-2/3-
4 grouping. I was hoping to run three condenser
mics on my acoustic with the fourth input being
for the plug, but to do this I will need to purchase
a phantom-powered direct box. Not terrible, but
not ideal either. Still a good solution for the home-
studio budget musician.

Candidate: 1 have a "Silent" PC build with a Core
17-5820k, a Noctua NH-D15, three additional case
fans, DDR4 RAM, an ASUS X99 mobo, two
SSDs, one HDD, and a GTX 970, and this pro-
vides enough power to my system that I have yet
to actually hear the fan kick on.

Rank: 9780, Attribution: Fail

Ex4. Query: THIS IS THE MOST COMFORT-
ABLE HANG ON TYPE OF STAND ON EARTH!
Once you have hunted from a Millennium Tree
Stand you will not be able to go back to ordinary.
So purchase this stand with caution and have a yard
sale for your now inadequate equipment. This is
the first of the last stand you will ever buy.
Candidate: This book has adorable illustrations
and is written so that you can just read about one
person at a time (you don’t have to read the entire
book in one setting). A great way to introduce non-
fiction to younger readers while also giving them a
glimpse into strong women throughout history.
Rank: 12018, Attribution: Fail
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Monolingual XLM-RoBERTa Llama3.2

Language  #Data mStyleDistance

BERT Monolingual Multilingual Monolingual Multilingual
French 8,944 60.14 5.58 55.48 55.52 60.58 58.47
Russian 5,584 - 4.98 51.63 52.11 55.71 52.85
Ttalian 5,048 52.61 4.62 49.86 53.57 57.82 55.86
Polish 2,928 56.08 9.04 50.68 52.97 56.59 55.19
Arabic 2,412 - 9.86 54.98 55.76 58.00 54.40
Farsi 2,192 51.09 8.17 51.23 55.38 58.71 55.47
Dutch 2,128 54.84 6.30 51.36 58.08 58.46 58.46
Japanese 1,752 - 13.24 52.45 51.77 59.36 55.25
Turkish 1,492 - 7.64 53.89 57.44 58.45 57.53
Hebrew 1,372 56.12 7.43 51.82 59.11 48.40 40.64
Indonesian 1,268 26.18 9.94 56.31 59.62 61.83 60.05
Hungarian 1,200 56.50 7.90 57.58 61.08 59.58 60.33
Vietnamese 892 - 9.833 59.42 64.69 65.13 64.51
Greek 656 - 9.57 59.30 64.33 64.48 63.41
Serbian 644 - 11.63 63.20 65.53 64.91 62.97
Chinese 616 - 15.70 49.19 52.44 54.55 54.38
Hindi 452 - 16.34 57.74 59.51 64.60 58.48
Thai 404 - 18.72 65.84 72.52 68.07 70.75
Macedonian 216 - 13.76 56.94 62.96 62.50 61.11
Kazakh 200 - 11.39 43.00 58.50 53.00 57.50
Georgian 176 - 15.91 56.82 72.73 57.95 48.30
Malayalam 172 - 11.05 54.70 63.95 42.44 36.31

Table A5: Comparison between multilingual and monolingual training in terms of R@8.

Language #Data Monolingual mStyleDistance XLM-RoBERTa Llama3.2

BERT Monolingual Multilingual Monolingual Multilingual
French 8,944 51.04 4.58 46.05 45.95 52.56 48.53
Russian 5,584 - 3.76 42.37 41.47 46.28 42.26
Italian 5,048 41.60 3.58 39.86 42.93 48.03 44.83
Polish 2,928 46.64 7.75 42.07 43.68 47.59 45.06
Arabic 2,412 - 8.25 44.15 44.20 46.70 43.18
Farsi 2,192 40.43 6.96 41.89 44.67 48.40 44.27
Dutch 2,128 45.11 6.30 41.63 46.77 49.96 48.27
Japanese 1,752 - 10.14 40.51 40.05 47.52 42.70
Turkish 1,492 - 6.24 43.30 44.90 47.51 44.72
Hebrew 1,372 45.93 532 41.62 47.52 36.35 28.29
Indonesian 1,268 16.46 6.94 46.72 48.61 50.66 47.50
Hungarian 1,200 44.12 6.29 45.31 48.36 48.69 48.00
Vietnamese 892 - 7.64 48.70 51.70 54.62 52.21
Greek 656 - 6.98 46.79 50.76 52.57 50.30
Serbian 644 - 8.53 49.49 54.84 52.70 51.53
Chinese 616 - 12.35 39.34 42.35 45.06 44 .84
Hindi 452 - 11.39 45.48 46.77 51.71 44.55
Thai 404 - 14.48 50.95 56.76 54.20 55.03
Macedonian 216 - 10.19 42.27 49.61 48.93 46.32
Kazakh 200 - 9.69 30.78 45.52 37.68 40.60
Georgian 176 - 10.54 41.97 55.62 35.13 33.26
Malayalam 172 - 7.33 37.94 45.01 25.27 22.54

Table A6: Comparison between multilingual and monolingual training in terms of MRR.
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English Multilingual

Model Data
Seen Domain Unseen Domain Seen Languages Unseen Languages
XLM-RoBERTa English 15.30 11.02 34.39 22.44
Multilingual 14.96 11.55 39.20 24.95
Llama English 21.90 14.78 37.42 26.33
Multilingual 21.71 15.35 40.57 27.60

Table A7: Comparison between models trained on multilingual dataset and English-only dataset in MRR metric.

PAN 2013 PAN 2014 PAN 2015
Model Overall
Greek Spanish | Greek Spanish Dutch | Greek Spanish Dutch
LUAR 50.22 89.10 | 68.44 55.88  68.68 | 73.40 58.92 3595 56.48
CAV 57.78 87.82 | 54.68 56.28 6292 | 58.88 60.68 33.24 53.28

StyleDistance 42.22 86.54 | 60.84 65.52 6748 | 52.60 5344  55.33 57.96
mStyleDistance  59.11 57.69 | 48.24 48.12  56.13 | 55.12 43.68  28.55 46.47
Ours (XLM-R)  52.89 69.23 | 67.68 65.24 81.29 | 78.08 69.32  40.17 62.86
Ours (Llama) 48.89 57.05 | 68.56 57.40 78.08 | 70.24 65.64 40.38 61.07

Table A8: The results of the PAN 2013-2015 AV shared task for Greek, Spanish, and Dutch are shown above.
Performance is reported separately for each PAN dataset, as well as the average performance across datasets for
the same language. Our method demonstrates the highest performance overall. The best and the second-best
performances are bolded and italicized, respectively.

Model Arabic Catalan Chinese Czech Dutch English German Portuguese Russian Spanish Ukrainian Overall
(ar) (ca) (zh) (cs) (nl) (en) (de) (pt) (ru) (es) (uk)
LUAR 88.81 84.17 77.90 87.10 83.93 91.37 88.45 76.77 89.93 90.62 80.32 85.36
CAV 85.33 85.14 64.44  88.77 88.72 90.57 89.24 87.36 88.24 89.54 87.37 85.85
StyleDistance 87.65 88.41 69.44 4485 81.56 95.18 64.25 85.97 89.70 93.31 88.19 80.66
mStyleDistance  86.68 88.93 86.73 90.48 88.61 91.89 90.28 89.08 90.38 91.63 89.17 89.42
Ours (XLM-R) 87.02 88.81 88.86 89.92 88.76 93.34 91.55 89.23 91.35 91.52 88.87 89.91
Ours (Llama) 88.85 88.85 88.74 88.84 8891 92.53 89.94 89.30 90.53 90.73 88.87 89.63

Table A9: The table displays the performance of the models on the MULTITuDE dataset for each language. Our
proposed model achieves the best overall performance. The best and the second-best performances are bolded and
italicized, respectively.
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Domain

Description

Seen Domain

Reddit

Gmane
StackExchange
Wikipedia: article
AO3

RealNews
Amazon
NYTimes
BookCorpus
PubMed

Entries in online forum Reddit

Emails from public mailing lists

Entries in Q&A community StackExchange
Articles in Wikipedia

Fan works from Archive of Our Own

News articles from Common Crawl

Reviews on Amazon

Articles from The New York Times
Self-published novel books

Scientific publications from PubMed database

Unseen Domain

Goodreads
Wikipedia: talk

Wikipedia: user talk

Wikipedia: user
food.com
BlogCorpus
SFU-SOCC

Book reviews from website Goodreads
Talks in Wikipedia

User talks in Wikipedia

User pages in Wikipedia

Food recipes from food.com

Blog posts from blogger.com

Online news comments

Table A10: Domain descriptions for our dataset.
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Language

Family

Script

Seen Language

French
Russian
Italian
Polish
Arabic
Farsi
Dutch
Japanese
Turkish
Hebrew
Indonesian
Hungarian
Vietnamese
Greek
Serbian
Chinese
Hindi

Thai
Macedonian
Kazakh
Georgian
Malayalam
Icelandic
Swabhili
Punjabi
Burmese
Javanese
Gujarati
Hausa
Bengali
Yoruba
Ambharic
Malagasy
Chechen
Cherokee

Romance, Indo-European
Slavic, Indo-European
Romance, Indo-European
Slavic, Indo-European
Semitic, Afro-Asiatic
Indo-Iranian, Indo-European
Germanic, Indo-European
Japonic

Turkic

Semitic, Afro-Asiatic
Austronesian

Uralic

Austro-Asiatic

Greek, Indo-European
Slavic, Indo-European
Sino-Tibetan

Indo-Iranian, Indo-European
Kra-Dai, Tai-Kadai

Slavic, Indo-European
Turkic

Kartvelian

Dravidian

Germanic, Indo-European
Atlantic-Congo, Niger-Congo
Indo-Iranian, Indo-European
Sino-Tibetan

Austronesian

Indo-Iranian, Indo-European
Chadic, Afro-Asiatic
Indo-Iranian, Indo-European
Atlantic-Congo, Niger-Congo
Semitic, Afro-Asiatic
Austronesian
Nakh-Daghestanian
Iroquoian

Latin

Cyrillic

Latin

Latin

Arabic

Arabic (Persian variant)
Latin

Kanji, Hiragana, Katakana
Latin

Hebrew

Latin

Latin

Latin

Greek

Cyrillic

Han

Devanagari

Thai

Cyrillic

Cyrillic (formerly Latin and Arabic)
Georgian

Malayalam

Latin

Latin, Braille
Gurmukhi (Eastern Punjab), Shahmukhi (Western Punjab)
Burmese

Latin

Gujarati

Latin

Bengali

Latin

Ethiopic

Latin

Cyrillic

Cherokee

Table A11: The language family and script of seen languages in the multilingual Wikipedia portion of our dataset.

34885



Language Family Script
Unseen Language
German Germanic, Indo-European Latin
Spanish Romance, Indo-European Latin
Portuguese Romance, Indo-European Latin
Ukrainian Slavic, Indo-European Ciyrillic
Czech Slavic, Indo-European Latin
Swedish Germanic, Indo-European Latin
Bulgarian Slavic, Indo-European Ciyrillic
Armenian Armenian, Indo-European Armenian
Finnish Uralic Latin
Uzbek Turkic Latin (formerly Cyrillic)
Marathi Indo-Iranian, Indo-European = Devanagari
Belarusian Slavic, Indo-European Cyrillic
Urdu Indo-Iranian, Indo-European  Arabic (Nastaliq variant)
Telugu Dravidian Telugu
Tagalog Austronesian Latin
Afrikaans Germanic, Indo-European Latin
Egyptian Arabic  Semitic, Afro-Asiatic Arabic (Naskh variant)
Tatar Turkic Cyrillic, Latin (formerly Arabic)
Sundanese Austronesian Latin
Zulu Atlantic-Congo, Niger-Congo Latin
Simple English ~ Germanic, Indo-European Latin
Mazanderani Indo-Iranian, Indo-European  Arabic (Naskh, Nastaliq variant)
Wu Sino-Tibetan Han
Fulah Atlantic-Congo, Niger-Congo Latin, Arabic

Table A12: The language family and script of unseen languages in the multilingual Wikipedia portion of our dataset.
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Domain Train Validation Test Total
Seen Domain

Reddit 2,089,782 122,928 245,858 2,458,568
Gmane 536,915 31,583 63,167 631,665
StackExchange 497,071 29,239 58,480 584,790
Wikipedia: article 416,872 24,522 49,044 490,438
AO3 245,595 14,447 28,894 288,936
RealNews 162,852 9,579 19,160 191,591
Amazon 104,464 6,145 12,290 122,899
NYTimes 100,764 5,927 11,856 118,547
BookCorpus 55,219 3,248 6,497 64,964
PubMed 5,606 330 660 6,596
Total (Seen) 4,215,140 247,948 495,906 4,958,994
Unseen Domain
Goodreads 53,226 106,454 159,680
Wikipedia: talk 48,809 97,619 146,428
Wikipedia: user talk 36,334 72,670 109,004
Wikipedia: user 20,353 40,707 61,060
food.com 6,014 13,030 19,544
BlogCorpus 5,594 11,188 16,782
SFU-SOCC 3,957 7,915 11,872
Total (Unseen) 174,787 349,583 524,370

Table A13: The statistics on the number of authors across domains and splits for the English portion of our dataset.
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Language Train Validation Test Total
Seen Language

French 76,019 4,472 8,944 89,435
Russian 47,458 2,791 5,084 55,833
Italian 42,898 2,523 5,048 50,469
Polish 24,893 1,464 2,930 29,287
Arabic 20,518 1,207 2,414 24,139
Farsi 18,626 1,095 2,192 21,913
Dutch 18,085 1,064 2,128 21,277
Japanese 14,882 875 1,752 17,509
Turkish 12,676 745 1,492 14,913
Hebrew 11,654 685 1,372 13,711
Indonesian 10,774 634 1,268 12,676
Hungarian 10,210 600 1,202 12,012
Vietnamese 7,602 447 895 8,944
Greek 5,585 328 658 6,571
Serbian 5,477 322 645 6,444
Chinese 5,242 308 618 6,168
Hindi 3,845 226 453 4,524
Thai 3,439 202 406 4,047
Macedonian 1,844 108 218 2,170
Kazakh 1,716 101 202 2,019
Georgian 1,486 87 176 1,749
Malayalam 1,460 86 172 1,718
Icelandic 764 45 91 900
Swabhili 563 33 67 663
Punjabi 532 31 64 627
Burmese 403 24 48 475
Javanese 385 22 46 453
Gujarati 290 17 35 342
Hausa 232 14 28 274
Bengali 150 9 18 177
Yoruba 129 7 16 152
Ambharic 73 4 10 87
Malagasy 42 2 6 50
Chechen 11 1 2 14
Cherokee 3 1 2 6
Total (Seen) 349,966 20,580 41,202 411,748

Table A14: The statistics on the number of authors across languages and splits for seen languages in the multilingual
Wikipedia portion of our dataset.
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Language Validation Test Total
Unseen Language

German 37,853 75,708 113,561
Spanish 28,499 56,998 85,497
Portuguese 13,665 27,331 40,996
Ukrainian 6,263 12,528 18,791
Czech 4,704 9,408 14,112
Swedish 4,371 8,742 13,113
Bulgarian 1,841 3,684 5,925
Armenian 1,641 3,282 4,923
Finnish 976 1,953 2,929
Uzbek 815 1,631 2,446
Marathi 364 730 1,094
Belarusian 364 730 1,094
Urdu 361 724 1,085
Telugu 273 548 821
Tagalog 211 423 634
Afrikaans 162 325 487
Egyptian Arabic 116 233 349
Tatar 108 218 326
Sundanese 73 147 220
Zulu 21 42 63
Simple English 20 42 62
Mazanderani 14 29 43
Wu 9 19 28
Fulah 2 4 6
Total (Seen) 102,726 205,479 308,205

Table A15: The statistics on the number of authors across languages and splits for unseen languages in the
multilingual Wikipedia portion of our dataset.
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Split 4Data RoBERTa |  XLM-RoBERTa | Llama3.2

Eng(Ours) Eng(No Mask) ‘ Eng(Ours) Multi(Ours) ‘ Eng(Ours) Eng(No Mask) Multi(Ours)

Seen Domain

Reddit 245,858 8.21 7.12 5.98 5.35 9.69 8.85 9.28
Gmane 63,167 51.54 47.92 43.53 40.77 62.18 62.12 59.50
StackExchange 58,480 15.03 13.19 13.28 12.04 22.32 20.33 21.42
Wikipedia: article 49,044 52.80 49.77 49.20 50.25 58.69 58.98 58.31
AO3 28,894 53.45 49.45 48.30 44.73 59.63 58.19 56.52
RealNews 19,160 56.28 52.38 48.63 46.22 62.45 61.87 60.16
Amazon 12,290 17.94 16.09 14.43 13.56 20.48 18.42 19.54
NYTimes 11,856 17.92 16.39 13.70 13.62 20.75 18.91 20.31
BookCorpus 6,497 61.64 56.90 55.38 52.95 63.35 62.09 65.14
PubMed 660 74.92 71.36 66.82 68.33 85.21 83.54 84.91
Unseen Domain

Goodreads 106,454 4.85 4.06 6.21 6.10 5.16 4.68 7.03
Wikipedia: talk 97,619 22.84 20.27 19.01 24.03 28.60 26.33 32.00
Wikipedia: user talk 72,670 22.11 20.19 19.46 26.52 27.31 25.25 32.42
Wikipedia: user 40,707 33.08 31.73 32.01 33.84 36.82 36.42 37.99
food.com 13,030 2.90 2.28 2.26 2.92 2.82 2.03 291
BlogCorpus 11,188 36.83 33.59 28.17 29.10 34.33 31.45 36.66
SFU-SOCC 7915 13.02 11.78 13.06 15.30 15.22 12.54 17.64

Table A16: Comprehensive per-domain R @8 results for multilingual and English-only models.

Split #Data RoBERTa | XLM-RoBERTa | Llama3.2

Eng(Ours) Eng(No Mask) \ Eng(Ours) Multi(Ours) \ Eng(Ours) Eng(No Mask) Multi(Ours)

Seen Domain

Reddit 245,858 5.34 4.60 3.88 3.51 6.35 5.70 6.12
Gmane 63,167 38.88 35.93 32.29 30.04 48.91 49.02 46.55
StackExchange 58,480 9.65 8.49 8.52 7.92 15.19 13.51 14.56
Wikipedia: article 49,044 42.30 39.24 39.00 40.42 48.66 48.33 48.79
AO3 28,894 40.81 37.25 36.41 3347 46.97 44.56 4431
RealNews 19,160 40.96 37.51 35.00 33.64 46.72 45.70 45.13
Amazon 12,290 1141 10.15 9.33 8.73 13.09 11.85 12.65
NYTimes 11,856 11.64 10.53 9.08 9.11 13.58 12.10 13.54
BookCorpus 6,497 44.52 39.81 39.91 37.78 48.39 47.81 50.02
PubMed 660 57.84 53.16 47.59 49.25 71.80 65.78 70.20
Unseen Domain

Goodreads 106,454 3.03 2.56 3.94 3.88 3.29 3.00 4.50
Wikipedia: talk 97,619 16.88 14.68 13.87 17.96 21.74 19.58 24.89
Wikipedia: user talk 72,670 17.08 15.53 15.00 20.90 21.57 19.89 26.21
Wikipedia: user 40,707 27.35 26.10 26.61 28.15 30.60 30.02 31.55
food.com 13,030 2.02 1.58 1.78 2.21 1.86 1.45 2.01
BlogCorpus 11,188 26.05 23.54 19.27 20.06 24.84 21.81 26.63
SFU-SOCC 7,915 8.67 7.62 8.79 10.27 10.00 8.49 11.96

Table A17: Comprehensive per-domain MRR results for multilingual and English-only models.
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Split #Data RoBERTa |  XLM-RoBERTa | Llama3.2

Eng(Ours) Eng(No Mask) \ Eng(Ours) Multi(Ours) \ Eng(Ours) Eng(No Mask) Multi(Ours)

Seen Language

French 8,944 35.64 30.65 43.82 55.52 51.02 49.76 58.47
Russian 5,584 7.17 6.56 42.10 52.11 45.49 43.95 52.85
Italian 5,048 33.76 27.93 41.03 53.57 47.61 46.88 55.86
Polish 2,930 30.21 26.16 43.82 52.97 46.82 45.77 55.19
Arabic 2,414 11.46 8.96 43.95 55.76 41.07 41.89 54.40
Farsi 2,192 9.22 7.53 45.57 55.38 43.07 41.97 55.47
Dutch 2,128 37.95 32.50 46.43 58.08 51.88 49.44 58.46
Japanese 1,752 20.52 17.64 45.21 51.77 50.17 49.25 55.25
Turkish 1,492 27.78 23.66 48.53 57.44 51.68 49.13 57.53
Hebrew 1,372 10.17 8.05 48.98 59.11 18.20 21.03 40.64
Indonesian 1,268 34.62 31.07 51.81 59.62 51.11 49.60 60.05
Hungarian 1,202 27.21 23.46 48.83 61.08 49.08 49.83 60.33
Vietnamese 895 27.58 21.92 58.52 64.69 57.14 58.48 64.51
Greek 658 16.46 13.26 59.45 64.33 57.32 54.57 63.41
Serbian 645 20.11 17.62 56.52 65.53 56.56 55.63 62.97
Chinese 618 23.21 20.54 47.56 52.44 49.84 47.53 54.38
Hindi 453 14.27 12.83 51.55 59.51 49.11 47.32 58.48
Thai 406 20.30 14.98 62.87 72.52 63.25 64.50 70.75
Macedonian 218 19.91 18.75 54.63 62.96 54.17 53.37 61.11
Kazakh 202 24.25 20.00 51.00 58.50 43.50 44.79 57.50
Georgian 176 20.74 15.06 67.05 72.73 26.14 28.41 48.30
Malayalam 172 11.92 13.08 51.16 63.95 19.64 23.13 36.31
Icelandic 91 36.36 33.52 63.64 80.68 59.09 57.50 76.14
Swahili 67 44.53 45.31 59.38 64.06 46.88 56.25 60.94
Punjabi 64 32.03 25.78 60.94 67.19 34.38 28.13 43.75
Burmese 48 34.38 32.29 75.00 83.33 39.58 41.67 47.92
Javanese 46 53.41 46.59 65.91 56.82 57.50 45.83 62.50
Gujarati 35 37.50 25.00 68.75 90.63 37.50 37.50 46.88
Hausa 28 71.43 62.50 67.86 78.57 87.50 87.50 95.83
Bengali 18 53.13 62.50 81.25 68.75 87.50 75.00 75.00
Yoruba 16 87.50 81.25 87.50 93.75 87.50 87.50 87.50
Ambharic 10 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Malagasy 6 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Unseen Language

German 75,708 17.73 13.44 25.01 34.25 31.02 29.35 35.50
Spanish 56,998 2431 19.41 31.15 39.53 37.64 35.25 42.29
Portuguese 27,331 25.57 20.65 35.85 44.49 39.68 38.03 44.84
Ukrainian 12,528 5.35 4.65 31.63 40.77 30.18 31.19 38.94
Czech 9,408 20.90 16.95 36.61 46.95 41.40 38.63 46.39
Swedish 8,742 28.13 23.56 40.07 50.77 45.74 43.27 50.01
Bulgarian 3,684 8.06 7.13 41.99 52.01 41.11 39.70 46.68
Armenian 3,282 5.87 3.86 25.03 29.30 9.54 9.39 13.29
Finnish 1,953 13.14 11.01 21.06 2351 21.47 20.75 24.39
Uzbek 1,631 18.06 15.60 33.60 36.18 33.95 30.94 37.13
Marathi 730 11.47 10.85 39.84 48.08 40.52 37.50 41.21
Belarusian 730 11.54 9.82 45.05 51.51 40.93 40.42 50.69
Urdu 724 10.64 10.36 44.34 52.62 35.69 33.06 46.94
Telugu 548 9.03 5.93 41.06 49.27 14.34 15.81 20.40
Tagalog 423 44.17 42.14 54.76 61.67 54.72 53.61 59.43
Afrikaans 325 43.21 38.43 51.54 58.95 48.13 48.13 51.88
Egyptian Arabic 233 23.92 18.75 62.07 74.14 60.78 62.05 72.41
Tatar 218 20.83 18.98 3241 37.50 43.52 36.54 50.93
Sundanese 147 28.47 27.43 45.14 52.78 40.97 39.58 43.75
Zulu 42 56.25 53.75 77.50 72.50 65.00 59.38 70.00
Simple English 42 93.75 95.00 92.50 95.00 92.50 100.00 92.50
Mazanderani 29 58.93 53.57 75.00 82.14 83.33 50.00 95.83
Wu 19 62.50 65.63 81.25 75.00 68.75 68.75 75.00
Fulah 4 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table A18: Comprehensive per-language R @8 results for multilingual and English-only models.
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Split #Data

RoBERTa

‘ XLM-RoBERTa

Llama3.2

Eng(Ours) Eng(No Mask) \ Eng(Ours) Multi(Ours) \ Eng(Ours) Eng(No Mask) Multi(Ours)

Seen Language

French 8,944 26.73 22.24 34.45 45.95 41.09 39.68 48.53
Russian 5,584 5.36 4.75 32.21 41.47 35.45 33.21 42.26
Italian 5,048 24.85 19.95 32.04 42.93 37.61 35.99 44.83
Polish 2,930 22.58 19.66 34.37 43.68 38.17 35.88 45.06
Arabic 2,414 9.44 7.02 34.29 44.20 31.82 31.94 43.18
Farsi 2,192 7.46 6.08 35.20 44.67 33.26 31.56 44.27
Dutch 2,128 28.81 23.87 36.62 46.77 41.43 39.84 48.27
Japanese 1,752 14.99 12.60 34.27 40.05 38.93 37.10 42.70
Turkish 1,492 19.70 16.77 36.59 44.90 39.20 36.71 44.72
Hebrew 1,372 7.58 5.84 38.42 47.52 13.12 15.01 28.29
Indonesian 1,268 25.11 22.12 40.33 48.61 38.39 37.71 47.50
Hungarian 1,202 19.49 16.07 38.28 48.36 38.18 37.25 48.00
Vietnamese 895 19.46 16.20 46.08 51.70 46.30 44.83 52.21
Greek 658 11.65 9.21 4491 50.76 43.65 43.41 50.30
Serbian 645 14.81 13.03 44.34 54.834 44.48 42.49 51.53
Chinese 618 17.52 14.35 38.99 42.35 39.89 38.71 44.84
Hindi 453 10.57 9.61 39.97 46.77 36.92 37.18 44.55
Thai 406 15.00 11.49 52.03 56.76 47.84 50.31 55.03
Macedonian 218 13.12 11.99 42.45 49.61 41.15 38.40 46.32
Kazakh 202 16.52 12.76 3891 45.52 31.34 30.22 40.60
Georgian 176 15.84 10.15 48.78 55.62 20.33 19.39 33.26
Malayalam 172 8.31 7.30 34.53 45.01 13.97 14.27 22.54
Icelandic 91 23.46 21.39 48.39 57.15 33.60 39.86 52.05
Swabhili 67 3348 30.87 43.75 42.18 39.12 41.54 38.28
Punjabi 64 18.84 14.77 47.02 51.22 18.13 19.27 27.96
Burmese 48 21.98 21.23 58.61 64.08 25.88 21.79 32.17
Javanese 46 35.35 29.49 48.41 46.65 33.33 39.06 46.61
Gujarati 35 20.20 13.27 52.31 54.96 23.61 20.13 26.57
Hausa 28 45.47 45.89 55.35 54.21 53.17 58.41 52.48
Bengali 18 36.46 31.67 46.28 42.61 51.27 45.00 58.51
Yoruba 16 45.68 44.03 52.33 50.12 56.15 45.72 61.89
Ambharic 10 24.30 31.32 60.73 84.38 37.72 - 53.35
Malagasy 6 100.00 93.75 87.50 100.00 100.00 100.00 100.00
Unseen Language

German 75,708 12.82 9.61 18.75 26.63 23.47 22.04 27.36
Spanish 56,998 17.70 14.03 23.42 30.68 28.53 26.54 32.87
Portuguese 27,331 18.47 14.72 26.77 34.47 0.13 28.50 34.71
Ukrainian 12,528 4.17 3.51 22.89 31.06 21.99 22.46 29.21
Czech 9,408 14.81 11.81 26.93 35.77 31.19 28.64 6.25
Swedish 8,742 20.63 16.99 30.53 40.73 35.43 33.40 39.47
Bulgarian 3,684 5.70 5.14 30.85 39.94 30.22 28.81 35.47
Armenian 3,282 4.44 3.23 18.37 21.60 6.95 7.11 9.55
Finnish 1,953 8.93 7.24 14.21 15.77 14.79 14.04 16.72
Uzbek 1,631 12.23 10.61 23.61 26.17 23.34 21.64 26.46
Marathi 730 8.36 7.99 29.12 35.87 27.85 25.95 29.71
Belarusian 730 7.73 6.17 33.20 39.53 29.70 28.55 37.28
Urdu 724 7.70 6.77 32.93 40.87 25.46 23.58 34.83
Telugu 548 6.84 4.80 27.93 36.41 9.61 10.08 13.98
Tagalog 423 31.74 30.00 41.29 48.82 40.38 0.31 5.91
Afrikaans 325 31.72 27.84 40.10 45.80 39.35 39.82 40.97
Egyptian Arabic 233 18.64 13.75 51.16 58.24 49.85 49.36 58.19
Tatar 218 13.43 10.97 21.76 25.71 28.08 25.79 33.79
Sundanese 147 21.84 20.71 31.79 37.17 31.70 28.42 34.07
Zulu 42 44.73 41.90 55.23 53.81 43.28 41.05 45.32
Simple English 42 82.22 80.48 80.03 80.29 83.01 91.02 83.48
Mazanderani 29 35.27 28.71 59.46 66.35 63.80 45.01 71.18
Wu 19 27.47 30.52 50.32 56.88 47.14 52.21 51.26
Fulah 4 91.67 93.75 100.00 100.00 100.00 100.00 100.00

Table A19: Comprehensive per-language MRR results for multilingual and English-only models.
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