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Abstract

Large Language Models (LLMs) have demon-
strated strong capabilities in transforming text
descriptions or tables to data visualizations via
instruction-tuning methods. However, it is not
straightforward to apply these methods directly
for a more real-world use case of visualizing
data from long documents based on user-given
intents, as opposed to the user pre-selecting
the relevant content manually. We introduce
the task of intent-based chart generation from
documents: given a user-specified intent and
document(s), the goal is to generate a chart
adhering to the intent and grounded on the doc-
ument(s) in a zero-shot setting. We propose an
unsupervised, two-staged framework in which
an LLM first extracts relevant information from
the document(s) by decomposing the intent and
iteratively validates and refines this data. Next,
a heuristic-guided module selects an appro-
priate chart type before final code generation.
To assess the data accuracy of the generated
charts, we propose an attribution-based met-
ric that uses a structured textual representation
of charts, instead of relying on visual decod-
ing metrics that often fail to capture the chart
data effectively. To validate our approach, we
curate a dataset comprising of 1,242 <intent,
document, charts> tuples from two domains,
finance and scientific, in contrast to the exist-
ing datasets that are largely limited to parallel
text descriptions/ tables and their correspond-
ing charts. We compare our approach with
baselines using single-shot chart generation us-
ing LLMs and query-based retrieval methods;
our method outperforms by upto 9 points and
17 points in terms of chart data accuracy and
chart type respectively over the best baselines.

1 Introduction

Statistical charts offer an intuitive way to grasp
insights from lengthy documents, such as finan-
cial reports and scientific articles, which are often
dense with data, frequently presented in large ta-

Figure 1: Example of intent-based chart generation from
documents. Input: intent, document(s); output: chart.

bles. Automatic chart generation tailored to spe-
cific user goals can significantly enhance various
document consumption and creation workflows.
These include providing illustrative answers to spe-
cific questions, generating multi-modal summaries
for queries, and creating visually rich presentations.

Advancements in LLMs (Brown et al., 2020;
Touvron et al., 2023) have enabled recent efforts in
generating high-quality statistical charts from user-
given text descriptions or tables (Wang et al., 2023;
Han et al., 2023; Maddigan and Susnjak, 2023;
Zhang et al., 2024; Tian et al., 2024; Zadeh et al.,
2024). However, these existing approaches to auto-
matic chart generation typically assume that users
will manually provide tables or textual descriptions
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to be transformed into charts. Consequently, these
methods cannot directly generate charts from raw
documents based on specific user intents or queries.
Further, many previous methods rely on instruction-
tuning techniques that necessitate a substantial vol-
ume of labeled data (in the order of 10s of 1000s)
for effective training. Obtaining such large corpora
of charts paired with their corresponding intents is
a tedious and time-consuming process, particularly
for long documents (spanning > 5 pages), which
are the primary focus of our work.

While LLMs demonstrate superior generation
quality based on natural language prompts (Shao
et al., 2024; Ramu et al., 2024), applying them di-
rectly for chart generation using the given intent as
the NL prompt often leads to charts with (a) halluci-
nations or poor intent adherence in terms of the data
values, and (b) chart types that are not always ap-
propriate for the given data. To address these chal-
lenges, we propose an unsupervised, multi-stage
framework. It first employs an LLM to decompose
the user’s intent to guide an iterative data extraction
and refinement process from the document. Subse-
quently, it selects an appropriate chart type using
predefined visualization heuristics before generat-
ing the final chart. Furthermore, evaluating the
fidelity of such generated charts is non-trivial. Ex-
isting evaluation strategies either rely on human
judgments, which are costly and not easily scal-
able (Tian et al., 2024; Zhang et al., 2024), or em-
ploy LLM- and VLM-based evaluators (Koh et al.,
2024; Ford et al., 2024), which often struggle to
interpret complex charts accurately (Islam et al.,
2024). We propose an attribution-based chart eval-
uation metric that uses a structured text representa-
tion of generated charts, and uses attention-based
heat map obtained from a forward LLM pass, to
detect the spans of data values that are not captured
in the reference charts. As no existing datasets
support this specific task, we finally curate a new
dataset of long documents, intents, and correspond-
ing charts from financial reports and academic pa-
pers from *ACL conferences.

This paper makes four main contributions: (1)
We introduce the novel task of generating charts
from documents based on specific intents, to mimic
real-world use cases for chart generation. (2) We
propose a training-free, multi-stage framework that
leverages LLMs to first execute an intent-guided it-
erative data extraction and refinement process from
documents, and subsequently to select an appropri-
ate chart type through a heuristic-guided deliber-

ation, before constructing the final chart. (3) We
propose a chart evaluation metric to assess the faith-
fulness of the generated chart data when compared
to either a reference chart/ table (reference-based
setting) or source document itself (reference-free
setting). (4) We curate a dataset consisting of 1,242
<intent, document, chart> tuples from financial re-
ports and scientific articles for this task evaluation.

We present experimental results comparing our
method with baselines including naïve prompting
of LLMs and query-based retrieval methods. Our
approach demonstrates notable improvements in
key aspects such as appropriate chart type selection
and chart data accuracy. To the best of our knowl-
edge, this is the first work to address document-to-
chart generation based on intent, and can assist in
furthering research in chart generation.

2 Related Work

Our work on intent-driven chart generation from
documents intersects with several efforts, includ-
ing approaches to generate and evaluate charts
from more structured inputs, and techniques for
understanding user intent and extracting informa-
tion from documents.

2.1 Chart Generation from Pre-Processed
Inputs

A significant body of research addresses chart gen-
eration from structured or semi-structured data.
This includes text-to-chart synthesis, where sys-
tems generate charts from concise textual descrip-
tions (Rashid et al., 2021; Zadeh et al., 2024) or
employ reasoning over structured inputs like ta-
bles (Tian et al., 2024; Wang et al., 2023). Even
more advanced systems that process pre-selected
tabular data (Han et al., 2023) or multimodal in-
puts (Xia et al., 2025) primarily operate on data
that is already directly present. While these meth-
ods demonstrate strong capabilities in translating
well-defined inputs into charts, they typically as-
sume the data is already extracted, curated, and
directly relevant to the desired visualization. Our
work differs significantly by tackling the upstream
challenge of identifying the required information
from voluminous and often complex documents
based on a high-level user intent, before any chart
can be synthesized.
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2.2 Intent Understanding and Information
Extraction from Documents

Understanding user intent to extract relevant in-
formation from long, complex documents is a key
challenge in information retrieval and content gen-
eration. Several research directions have explored
aspects of this problem. In conversational search
and retrieval-augmented generation (RAG), sys-
tems such as RQ-RAG (Chan et al., 2024) aim to
refine ambiguous queries through user-driven clari-
fication dialogues (e.g., “Do you mean revenue over
time or per region?”). However, these approaches
typically operate on short, keyword-based inputs
(e.g., “revenue growth 2023”) and assume iterative
user interaction. Unlike systems that depend on
external user feedback, we incorporate internal val-
idation and refinement steps to improve data com-
pleteness and correctness before chart generation,
with the goal of producing a good-quality chart in
a single pass, without requiring further clarification
or user intervention. Similarly, in the table retrieval
literature, recent work highlights the difficulty of
locating specific table content in documents when
queries are abstract or underspecified (Chen et al.,
2025). In such cases, simple keyword-matching
or embedding retrieval approaches often underper-
form, especially when the query requires interpret-
ing context across paragraphs and tables. While
query decomposition techniques are widely used
in multi-hop question answering and multi-table
reasoning (Chen et al., 2025), they are typically de-
signed to support inference across facts rather than
to extract structured components for data visualiza-
tion. These methods lack fine-grained alignment to
chart-specific needs, such as identifying axis labels,
categories, or values. Unlike broader intent-driven
generation tasks such as story writing or document
drafting (Shao et al., 2024; Ramu et al., 2024), our
problem requires the precise extraction of numer-
ical data, grounded in the document and aligned
with the user’s high-level intent.

2.3 Chart Evaluation

Early chart evaluation works focus on comparing
generated chart specifications or code to ground-
truth references using measures like ROUGE,
BLEU, and CodeBLEU (Tian et al., 2024; Zadeh
et al., 2024). While these offer a measure of simi-
larity or error, they often provide a superficial as-
sessment, potentially overlooking semantic correct-
ness, as data regeneration metrics alone have been

found to offer a limited view of performance (Ford
et al., 2024). Further, human evaluation, involving
user studies or expert reviews (Tian et al., 2024;
Zhang et al., 2024), provides deeper insights into
chart correctness and usability but solely relying on
human evaluation can be costly and not easily scal-
able. More recently, automated approaches using
LLMs or VLMs as evaluators (Ford et al., 2024)
have been proposed. However, they often exhibit
factual errors and hallucinations, particularly strug-
gling with data extraction from charts. (Islam et al.,
2024). To address these limitations while evalu-
ating the factual accuracy in the generated charts
from documents, we advocate for chart attribution:
tracing the generated chart data values back to the
source tables in the document.

3 Task Setup & Dataset

The task of intent-driven chart generation from doc-
uments is characterized by two primary challenges:
first, the precise extraction of relevant data; and
second, the selection of an appropriate chart type
to effectively communicate this information in line
with the user’s intent. Consequently, for a given
document D and a user-specified intent I , the ob-
jective is to produce a statistical chart C that is
both grounded in D and directly addresses I , as
depicted in Figure 1.

3.1 Dataset Curation Overview

Existing chart generation datasets primarily fo-
cus on text-to-chart (Rashid et al., 2021; Zadeh
et al., 2024) and table-to-chart (Han et al., 2023)
tasks, where the input text or tables contain exactly
the information represented in the charts—nothing
more. In contrast, our task involves generating
charts from potentially long and complex docu-
ments that include significantly more content than
what appears in the final visualization. To sup-
port this setting, we curate a new dataset by pro-
viding annotators with source documents (e.g., fi-
nancial reports, scientific articles) and instructing
them to: (a) formulate relevant user intents, and
(b) create corresponding charts grounded in these
documents. However, scaling such annotation is
time-consuming and costly, as it requires deep in-
gestion of lengthy documents (often spanning tens
of pages) to derive meaningful intents. This chal-
lenge motivates our adoption of a zero-shot method-
ology, which requires no task-specific fine-tuning.

For the source documents, we consider two do-
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Figure 2: Sample annotations for a given SEC document and its constituent data tables. An intent and a corresponding
chart are provided, along with the data table supporting the chart and a description summarizing the chart key
takeaways. Other metadata such as page number and tables used from the source document are also provided. We
use the page numbers to truncate the documents to include ±5 pages while using the source documents with the
chart generation methods, to avoid context length issues.

SEC ACADEMIC

# docs 73 106
Avg. # pages 103 11
Avg. # tables 24 6
# intents/ doc 10 5
Avg. table size 10 x 10 6 x 6

Table 1: Source dataset statistics.

mains, namely finance and scientific. We use the
U.S. Securities and Exchange Commission (SEC)
10-K filings1 that are publicly available on the
EDGAR website, and academic papers from *ACL
conferences from the SCIDUET dataset (Sun et al.,
2021) respectively. We scrape the HTML docu-
ments for 1,000 SEC 10-K filings, and consider all
the 1,088 papers from SciDuet in the PDF form.
We parse these HTML and PDF documents2 to ob-
tain the tables in them separately in spreadsheets.
From among the SEC filings, we first filter doc-
uments that contain table(s) with size >7x7, and
then pick the top 100 ones that have the maximum
number of tables in them. As most of the numeric
content that can be visualized is present in tables
in these documents, we use those that densely con-
tain them. Since academic papers do not always
contain very large tables, we take the top 120 docu-

1https://www.sec.gov/edgar.shtml
2BeautifulSoup, https://developer.adobe.com/

document-services/docs/overview/pdf-extract-api/

Dataset Intent Input type # Fig. Desc. Code

ChartLlama ✗ Table 11K ✓ ✓

ChartX ✗ Table 6K ✓ ✓

Text2Chart31-v2 ✗ Table 28.2K ✓ ✓

Ours ✓ Document 2.2K ✓ ✓

Table 2: Comparative analysis with various chart gener-
ation datasets: ChartLlama (Han et al., 2023), ChartX
(Xia et al., 2025), Text2Chart31-v2 (Zadeh et al., 2024).

ments that have the maximum number of tables in
them (and relax the size constraints). Since these
documents contain multiple tables, and each table
can convey several insights, we obtain multiple in-
tents from each of them, to reduce the number of
documents that are to be ingested and the overall
cognitive load. Table 1 provides the source docu-
ment details for the two domains. Figure 2 provides
an overview of the data curation process.

3.2 Data Annotation Setup
To obtain intent-chart annotations, we recruited
three annotators from a freelancing platform,3 who
were compensated at $15/hour. All were proficient
in content creation with similar demographics (na-
tionality, graduate education, age 20-30). After pi-
lot studies (5 documents each), they were instructed
to provide: (a) 5 creative intents; (b) correspond-
ing chart images and tables with appropriate data

3https://www.upwork.com
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Figure 3: The proposed pipeline, illustrating: tterative data extraction, where misalignment with intent or data
incompleteness facilitates a re-extraction. A refinement stage, where minor issues in otherwise suitable data are
corrected. Chart type prediction based on the finalized data, followed by code generation

and chart types; (c) supporting source content (e.g.,
tables, page numbers); and (d) text descriptions
of the charts. To account for subjectivity, annota-
tors could list up to three chart type variants per
intent, ordered by preference. For large tables, they
were encouraged to combine data from multiple
tables or use subsets, critically considering insight-
ful visualizations. The complexity of this task is
reflected in the resulting annotations; while over
95% of charts sourced data from tables (due to the
dense numerical information required for statistical
charts), their creation was often non-trivial. For in-
stance, approximately 15% of charts required com-
posing data from multiple tables. Even for the 80%
of charts that used a single table, annotators had to
perform complex selections and subsetting of the
data to create insightful visualizations supporting
the intent. A smaller portion ( 5%) required inte-
grating data from both textual and tabular content.
Following 2-3 feedback rounds focused on ensur-
ing intents were neither too generic nor specific,
the main task involved generating 5 intent-chart
pairs for academic articles and 10 for SEC filings,
initially yielding 1,275 data points. The authors,
as expert reviewers, then filtered samples with am-
biguous intents or inaccurate charts, resulting in
1,242 <intent, document, chart> tuples. Table 2
compares our dataset with three existing chart gen-
eration datasets. Including plausible chart type

variants for some samples increased the total chart
count to 2.2K charts.

4 DOC2CHART: Methodology

Generating charts directly from documents using
user’s intent as a simple prompt for a Large Lan-
guage Model (LLM) often yields suboptimal re-
sults. Such charts can suffer from poor intent ad-
herence, include hallucinated or irrelevant data,
or omit crucial information, especially when data
spans multiple segments or requires subsetting
from large tables in long documents. To address
these issues, we propose DOC2CHART, an unsu-
pervised, multi-stage framework (illustrated in Fig-
ure 3). Our pipeline systematically processes the
document and intent to produce an accurate and
appropriate chart.

Iterative Data Extraction and Refinement. The
first stage involves decomposing the user intent and
identifying relevant content from the document. To
ensure the highest fidelity of the extracted data
when dealing with the complexities of long-form
content, this initial extraction undergoes a critical
validation and refinement phase. This step system-
atically verifies the accuracy, completeness, and
relevance of the information, applying corrections
or guiding re-extraction as needed. The outcome
of this validation dictates the next step. If crit-
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ical issues such as significant data omissions or
fundamental misinterpretations of the intent are
identified, the validation module generates specific
feedback. This feedback then guides a subsequent
extraction attempt, repeating the initial extraction
step. If no corrections are deemed necessary, the
validated data moves forward directly. This itera-
tive cycle of extraction, validation, and conditional
re-extraction or refinement ensures a high degree
of alignment between the extracted data, the source
document, and the user’s intent.

Chart Type Prediction. After verifying and re-
fining the data, the next step is to determine the
most suitable chart type. This choice can be non-
trivial, as multiple chart types may fit a given
dataset and intent. We adaopt a heuristic-guided ap-
proach where an LLM analyzes the structure of the
data—such as the types of values and the number
of data points or categories, in conjunction with the
user’s intent and recommends a chart type accord-
ingly. For example, line charts are typically pre-
ferred for time-series data to highlight trends, while
bar charts may be used when the data contains only
a few points. Simple categorical comparisons suit
standard bar charts, whereas grouped or stacked
bar charts are better for subcategory comparisons.
Pie charts can be effective for part-to-whole rela-
tionships, but only when the number of segments is
small enough to remain clear. These also help the
model avoid common visualization pitfalls, such
as cluttered visuals or misleading representations.
Rather than relying on rigid rules, the LLM com-
bines data characteristics with these heuristics to
recommend a chart type, along with a justification
and a confidence score for its choice.

Code Generation. Finally, we generate an exe-
cutable chart code with Matplotlib based on the
extracted data and the selected chart type for ren-
dering the chart.

5 Experimental Setup

We conduct experiments using four LLMs, namely
GPT-4o (OpenAI, 2024), Gemini-2.0 (Google,
2024), LLaMA-3.1-8B-Instruct (Meta, 2024) and
Claude-3.5-Sonnet (Anthropic).

5.1 Baselines

We compare our approach against four baselines.
Single-Step Generation serves as the most
straightforward approach, directly generating the

chart from the input document and user intent with-
out any intermediate retrieval.
Embedding-Based Retrieval incorporates a re-
trieval step as no parallel data tables are available
for the intents. The document is segmented based
on headings, and SBERT embeddings (all-MiniLM-
L6-v2) (Reimers and Gurevych, 2019) are used to
retrieve sections most relevant to the intent which
are then used for chart code generation.
LLM-Based Retrieval builds on recent advances
in LLM-powered retrieval (Zhu et al., 2024), which
have demonstrated that LLMs can outperform
embedding-based approaches by capturing richer
contextual relationships between queries and doc-
uments. In this baseline, an LLM is used as a
retriever before generating the chart code.
Query Decomposition for Table Retrieval takes
advantage of the fact that most chart content comes
from tables. Inspired by Chen et al. (2025), this
method decomposes intents into (concept, attribute)
pairs to enhance retrieval accuracy. Query decom-
position is first applied, followed by LLM-based
retrieval to extract relevant tabular data before gen-
erating the chart code.

In all the baselines, the chart type prediction is
fixed to a naïve LLM instruction for a suitable type.

5.2 Evaluation Metrics
The generated charts should accurately reflect the
underlying data from the documents and use appro-
priate chart types to convey the intended informa-
tion. To evaluate these aspects, we use: (a) chart
data accuracy, which includes completeness, cor-
rectness, and overall data quality with respect to
the reference chart and (b) chart type validation, to
compare the predicted type with the ground-truth
chart types. For data accuracy, recent works either
use n-gram text similarity metrics for the gener-
ated code (Han et al., 2023; Zadeh et al., 2024)
or Visual Language Models (VLMs) to compare
the generated and reference charts. However, such
n-gram-based measures are known to be limited
to surface-level aspects and fail to capture the nu-
anced error cases in the data values. VLMs often
struggle with faithfully interpreting complex charts,
especially when dealing with multiple data points
or subtle variations in values (Huang et al., 2024),
and are inherently limited by their visual perception
accuracy (Ford et al., 2024).

We take inspiration in attribution as a strategy
to validate specific spans of text by grounding
them in the source context, both in textual space
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Model Method Chart Data Chart Type
Best Out-of-3

GPT-4o

Single-step 67.38 71.79 75.63

Embedding retrieval 38.98 35.04 38.97
LLM retrieval 59.97 62.90 68.11
LLM retrieval (w/ ques decomp) 57.09 68.45 73.44

DOC2CHART 75.18 79.49 82.62

Gemini-2.0

Single-step 62.51 49.36 52.28

Embedding retrieval 38.92 14.71 14.86
LLM retrieval 59.21 45.55 48.63
LLM retrieval (w/ ques decomp) 50.01 59.72 63.48

DOC2CHART 71.53 74.12 79.41

Claude-3.5-Sonnet

Single-step 63.75 64.80 67.92

Embedding retrieval 43.69 27.29 28.28
LLM retrieval 58.60 61.50 66.33
LLM retrieval (w/ ques decomp) 64.48 61.27 64.74

DOC2CHART 69.45 82.01 84.13

LLaMA-3.1-8B-Instruct

Single-step 39.20 54.47 58.30

Embedding retrieval 24.09 15.66 17.78
LLM retrieval 27.11 40.67 43.31
LLM retrieval (w/ ques decomp) 39.74 48.98 52.48

DOC2CHART 42.17 71.75 78.05

Table 3: Performance comparison of various methods on chart data accuracy and chart type selection. Green
highlights best performance; Red highlights second-best. Our methods DOC2CHART consistently outperform
baselines.

and more recently for VLMs (Jiang et al., 2025;
Phukan et al., 2025) We propose CHARTEVAL,
an attribution-based metric that uses structured tex-
tual representations for charts, and avoids reliance
on visual decoding altogether. We trace the in-
termediate representations of the generated charts,
extracted as structured JSONs before code genera-
tion, back to their source tables in the document(s).
Each chart is represented as a collection of tuples
⟨x-axis, y-axis, value⟩ in the JSON, each of which
is individually validated against the values in the
corresponding tables in ground truth. For this val-
idation, we use a modified version of the attribu-
tion algorithm from (Phukan et al., 2024; Cohen-
Wang et al., 2025): (i) We construct a prompt using
the reference table4 as the "document", and gener-
ated chart JSON as the "output". (ii) We forward
pass this prompt through the Llama-3.1-8b-Instruct
model and aggregate the cross attention scores be-
tween the "output" and "document" tokens to get a
token-level heatmap of <output tokens, document
tokens> size. (iii) For each data value token in
the "output", we identify the best matching span in
the "document" tokens using Kadane’s algorithm

4This can be used for reference chart as well by obtaining
its JSON representation, if table references are not available.

(Kadane, 2023) on the obtained heatmap. While
this formulation of CHARTEVAL does a reference-
based evaluation with the ground truth tables, it
can be extended to a reference-free variant as well,
where the "document" would be the entire source
document context in the LLM forward pass.

5.3 Human Evaluation for Metric Quality

To qualitatively validate our approach, we conduct
human surveys to compare the model-generated
charts against references. Each evaluation instance
consists of an intent, ground truth (GT) chart,
its corresponding GT table, along with three AI-
generated charts (from our approach and two base-
lines), which are anonymized and randomized to
eliminate any biases. We hire three expert anno-
tators and provide them with 300 instances (150
from each domain) to rate them on six criteria:
Chart Data Correctness to measure whether all val-
ues in the AI-generated chart match the reference
data exactly; Chart Data Completeness to evaluate
whether the chart includes all relevant values from
the reference table; Overall Chart Data Quality
to determine how accurately the chart conveys the
reference data; Chart Type Validation to check if
the selected chart type aligns with the given intent

34954



Metric Single-Step LLM-R w/ QD Ours

Chart Data Correctness 2.98 2.59 3.52
Chart Data Completeness 3.12 2.66 3.63
Overall Data Quality 2.98 2.59 3.53
Chart Type Validation 3.72 3.33 4.13
Insightfulness 2.77 2.43 3.36

Overall Quality 2.74 2.41 3.34

Table 4: Comparison of different methods against hu-
man ratings across evaluation axes. LLM-R w/ QD:
LLM retrieval with query decomposition.

and data; Chart Insightfulness to assess how well
the chart highlights key insights, adheres to intent,
and whether visual encoding (e.g., colors, labels,
legends) aids understanding; finally, Overall Chart
Quality to assess the clarity, accuracy, and useful-
ness of the generated chart. Each criterion is rated
on a four-point scale: Minimal, Partial, Most, and
Full, where Minimal indicates the chart does not
meet expectations at all, and Full represents an
ideal chart. If a chart only partially contains correct
values—either missing some or including incorrect
ones—the rating is to be adjusted accordingly. We
compute correlations between CHARTEVAL ratings
and human ratings on these 900 samples, and find a
strong alignment with human judgments (Pearson’s
r = 0.71). Using a simpler LLM-based metric, on
the other hand, where the generated chart tuples
and reference table values are given to an LLM
which is then instructed to provide a rating for data
accuracy, we note a much lower r = 0.39.

6 Results & Discussion

We evaluate the performance of DOC2CHART

pipeline using four LLMs: GPT-4o, Gemini-2.0,
Claude-3.5-Sonnet, and LLaMA-3.1-8B-Instruct
(Table 3). In terms of chart data accuracy,
DOC2CHART significantly outperforms all base-
lines. For instance, with GPT-4o, DOC2CHART

achieves 75.18% accuracy, a notable improvement
over that for the single-step baseline (67.38%)
and other retrieval-augmented approaches such
as LLM retrieval (w/ ques decomp) (57.09%).
Similar trends are observed for other models;
with Gemini-2.0, DOC2CHART (71.53%) substan-
tially surpasses LLM retrieval (w/ ques decomp)
(50.01%). This underscores the benefit of the iter-
ative refinement process in improving the factual
correctness of the extracted data. Similar gains
are observed in chart-type prediction across mod-
els using the heuristic-based analysis using LLM,
compared to naïve prompting. The results con-

sistently show that improving chart data accuracy
through validation and refinement directly trans-
lates to better chart type recommendations as well.

Among the baselines, the single-step one per-
forms the best in most cases for data accuracy.
Embedding-based retrieval consistently underper-
forms, lacking the necessary contextual depth for
accurate chart data extraction. While LLM-based
retrieval, especially when combined with query de-
composition, shows some improvement over sim-
ple embeddings, it still lags behind. The query
decomposition baseline struggles as it only breaks
down the intent into broad topics and attributes
rather than structured data tuples. For example,
when given the intent "Assess the hotel revenues
for the top 5 highest performing regions from 2021
to 2023, focusing on the trends in revenue growth
and regional performance," it outputs generic com-
ponents like <sub_c>hotels:revenue</sub_c>
and <sub_c>revenue:trend</sub_c>. However,
these lack the necessary structure to retrieve pre-
cise data. Table 4 shows the human ratings for the
generations using our approach and two other base-
lines (taking majority rating for each sample and
averaging across samples). Our method’s outputs
are consistently rated higher than those generated
by the baselines, and the single-step baselines are
rated as the next best.

7 Conclusions & Future Work

We present the task of intent-based chart generation
from documents, where the objective is to generate
charts that not only align with a user-specified in-
tent but are also grounded in the source document.
In contrast to prior datasets that focus on table-to-
chart or plain text-to-chart generation, our dataset
includes 1,242 (intent, document, chart) tuples, re-
flecting more realistic and open-ended scenarios.
Our unsupervised, multi-stage framework decom-
poses the user intent to iteratively extract and refine
relevant data,selected appropriate chart type using
visualization heuristics, and generates executable
chart code in a zero-shot manner. While ideal data
accuracy would be close to 1—especially to assist
users in bypassing the need to manually navigate
long documents—our method consistently outper-
forms strong baselines, including single-shot gener-
ation and retrieval-based methods, across both data
accuracy and chart type selection. To increase trust
in AI-generated charts, we advocate for chart at-
tribution: tracing chart values back to their textual
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sources. Future work can extend this by attribut-
ing data values not just to tables but to specific
text spans. Attribution failures may also serve as
useful feedback signals to guide data refinement.
While human evaluations reflect similar trends, it
is important to note that chart type selection can
be inherently subjective—multiple chart types may
be valid depending on the user’s analytic goal—so
future evaluation strategies should account for this
flexibility. We hope that our work paves the way
towards developing more accessible, intent-driven
document visualizations, with potential applica-
tions in domains like finance, science, and public
policy.

8 Limitations

User intents can often be vague or underspecified,
leading to multiple valid interpretations. While our
framework performs intent decomposition and it-
erative refinement to approximate the user’s needs,
it does not incorporate dynamic user feedback or
interactive clarification. Although interactive mech-
anisms—where users confirm or adjust extracted in-
formation—could further improve alignment with
user expectations, our focus is on generating a high-
quality first draft without requiring user interven-
tion. Additionally, due to the limited context win-
dow of current LLMs, scaling the approach to han-
dle multiple long documents remains a challenge.
Lastly, while our chart attribution metric helps eval-
uate factual grounding, it is currently implemented
in a reference-based setting—comparing chart data
directly against source tables. This metric can be
extended to a reference-free setup, where the at-
tribution model takes the generated table and raw
document markdown(s) as input. While this im-
proves scalability, it may occasionally attribute val-
ues to the wrong context if the same value appears
elsewhere in the document—a challenge we leave
for future work.

9 Ethical Statement

Automated chart generation carries the risk of
producing misleading visualizations, especially in
high-stakes domains such as finance, science, and
policy. To mitigate these risks, our work empha-
sizes faithfulness and transparency by introducing
chart attribution—a method that traces chart con-
tent back to its source tables—alongside quanti-
tative evaluation grounded in document data. We
also avoid generating speculative content and re-

strict chart construction to source-supported values
only. Nonetheless, we acknowledge that LLMs
may still produce flawed outputs (hallucinations).
Future work should explore mechanisms for uncer-
tainty estimation, user-in-the-loop validation, and
better safeguards to ensure responsible deployment
of automatic charting systems.
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A Appendix

A.1 Qualitative Examples
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(a) Ground truth (b) Baseline

(c) Ours

Figure 4: Qualitative example for intent-driven chart generation on a financial document. Intent: Examine the
average realized prices per barrel of oil in the United States, International markets, and globally for the years
2021–2023.

A.2 Prompt Templates
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(a) Ground truth (b) Baseline

(c) Ours

Figure 5: Qualitative example for intent-driven chart generation on a research paper. Intent: Analyze the distribution
of articles across different themes in the evaluation process, focusing on thematic representation and balance.
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Task:
Extract structured chart data from the provided content based on the user’s intent, adhering to the specified JSON format.
Input:

• User Intent: {intent}

• Content: {content}

• Optional Feedback (if available): {optional_feedback_section}

• Output Format Schema: {output_format}

Instructions:

1. Carefully read the User Intent.

2. Internal Thought Process (Mentally follow these steps):

• Decompose: Break down the intent into specific data points, labels, categories, and title.
• Locate: Scan the content for exact data matching the above.
• Extract & Structure: Collect and format data strictly according to the schema.

3. Extract relevant data points: (x, y, category), axis labels, and chart title.

4. If feedback is provided: Focus on fixing issues like missing elements or ignored sections. Adjust your decomposition
and extraction accordingly.

5. Output must follow the JSON schema exactly. Keep numeric formats consistent.

6. Output only the JSON object. Do not include explanations or markdown like “‘json.

Example Output Format:
{

"values": [
{
"x": "[string or number]",
"y": "[number or string representing number]",
"category": "[string, optional]"

}
],
"x_axis_label": "[string]",
"y_axis_label": "[string]",
"title": "[string]"

}

Figure 6: Chart Data Extraction
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Task: Validate the extracted chart data against the source content and user intent. Determine if re-extraction is necessary or
if only minor refinements are needed.
Input:

• Original Intent: {intent}

• Source Content: {content}

• Extracted Chart Data: {extracted_data} // JSON object from the extraction step

• Expected Schema: {output_format}

Validation Checks to Perform:

1. Intent Fulfillment & Source Coverage: Does the extracted_data capture the key information requested in the
intent that is present in the Source Content? Are there critical omissions?

2. Data Accuracy: Are the values (x, y, category) and labels/title in extracted_data accurately reflecting the
Source Content?

Response Format:
{

"needs_re_extraction": "[true/false]",
"feedback_for_re_extraction": "[string]",
"suggested_corrections_for_refinement": [
{
"field_path": "[JSON path, e.g., values[0].y or title]",
"suggestion": "[Brief description of the fix, e.g., 'Convert to number']",
"suggested_value": "[Optional: The corrected value if easily determined]"

}
],
"confidence_score": "[0-10 score reflecting confidence in the data]"

}

Focus on the primary decision: re-extract or refine/accept. Keep feedback concise.
Output only a valid JSON and no other text. Do not add prefix like “‘json...

Figure 7: Chart Data Validation
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Task: Apply the suggested minor corrections to the extracted chart data.
Input:

• Original Intent: {intent}

• Source Content: {content}

• Extracted Data (Pre-Refinement): {extracted_data}

• Suggested Corrections: {suggested_corrections}

• Expected Schema: {output_format}

Instructions:

1. Iterate through the Suggested Corrections.

2. Apply each correction to the corresponding field_path in the Extracted Data. Use suggested_value if provided,
otherwise interpret the suggestion.

3. Ensure the final refined_data strictly follows the Expected Schema provided in the input.

4. Do not add new data or make changes beyond the Suggested Corrections.

Response Format:
{
"refined_data": [The data structure with corrections applied, adhering to the Expected Schema],
"refinement_summary": {
"changes_applied_count": [number],
"issues_applying_corrections": [List any suggestions that could not be applied and why]

}
}

Output only a valid JSON and no other text. Do not add prefix like “‘json...“‘

Figure 8: Chart Data Refinement

Task:
Compare a Ground Truth Table and a Predicted Chart JSON in terms of data accuracy by:

• Ensuring consistent numeric formatting.

• Directly comparing values, accounting for slight paraphrasing of attributes and entities.

• Providing a structured output showing discrepancies and an overall accuracy score.

Input:

• Ground Truth Table: A table with rows containing values for entities and attributes (e.g., years, categories, months).

• Predicted Chart JSON: Contains a final_output with x_labels, y_labels, and detailed values.

Instructions:

1. Number Formatting Consistency:

• Scan both datasets to identify the common number format (e.g., decimal precision, thousands separators).
• Ensure all values follow the same formatting rules (e.g., convert ‘1,234.5’, ensure uniform decimal precision,

remove trailing zeros).

2. Compare Ground Truth and Predicted Data:

• Directly compare values, ensuring entities and attributes match, even if paraphrased (e.g., “Sales Revenue” vs.
“Revenue from Sales”).

• Identify and list discrepancies where values differ.

Figure 9: Prompt for LLM-based Data Accuracy Evaluation
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