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Abstract

Spatial reasoning is a fundamental aspect of
human intelligence. One key concept in spa-
tial cognition is the Frame of Reference (FoR),
which identifies the perspective of spatial ex-
pressions. Despite its significance, FoR has
received limited attention in AI models that
need spatial intelligence. There is a lack of
dedicated benchmarks and in-depth evaluation
of large language models (LLMs) in this area.
To address this issue, we introduce the Frame
of Reference Evaluation in Spatial Reasoning
Tasks (FoREST) benchmark, designed to as-
sess FoR comprehension in LLMs. We evaluate
LLMs on answering questions that require FoR
comprehension and layout generation in text-
to-image models using FoREST. Our results re-
veal a notable performance gap across different
FoR classes in various LLMs, affecting their
ability to generate accurate layouts for text-to-
image generation. This highlights critical short-
comings in FoR comprehension. To improve
FoR understanding, we propose Spatial-Guided
prompting, which improves LLMs’ ability to
extract primitive spatial concepts and relations.
Our proposed method improves overall perfor-
mance across spatial reasoning tasks.

1 Introduction

Spatial reasoning plays a significant role in hu-
man cognition and daily activities. It is also a cru-
cial aspect in many AI problems (Kordjamshidi
et al., 2025), including language grounding (Zhang
and Kordjamshidi, 2022; Yang et al., 2024), nav-
igation (Zhang and Kordjamshidi, 2023; Yamada
et al., 2024), computer vision (Liu et al., 2023;
Chen et al., 2024), medical domain (Gong et al.,
2024), and image generation (Cho et al., 2023b;
Gokhale et al., 2023). One key concept in spatial
reasoning is the Frame of Reference (FoR), which
identifies the perspective of spatial expressions.
FoR has been studied extensively in cognitive lin-
guistics (Edmonds-Wathen, 2012; Vukovic and

Figure 1: Illustration of FoR classes. The cat is the
locatum, the car is the relatum, and arrows denote the
perspective.

Williams, 2015). Levinson (2003) initially defines
three FoR classes: relative, based on the observer’s
perspective; intrinsic, based on an inherent feature
of the reference object; and absolute, using environ-
mental cues like cardinal directions (see Figure 1).
This framework was expanded by Tenbrink (2011)
to a more comprehensive framework, serving as the
basis of this paper. Understanding FoR is impor-
tant for many applications, especially in embodied
AI. In such applications, an agent must simultane-
ously comprehend multiple perspectives, including
the one from the instruction giver and from the
instruction follower, to communicate and perform
tasks effectively (Liu et al., 2013). However, recent
spatial evaluation benchmarks have largely over-
looked FoR. For example, the text-based bench-
marks Mirzaee et al. (2021); Shi et al. (2022);
Mirzaee and Kordjamshidi (2022); Rizvi et al.
(2024) and text-to-images benchmarks (Gokhale
et al., 2023; Huang et al., 2023; Cho et al., 2023a,b)
assume a fixed perspective for all spatial expres-
sions. This inherent bias limits situated spatial
reasoning, restricting adaptability in interactive en-
vironments where perspectives can change.

To systematically investigate the role of FoR in
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spatial understanding, we create a new resource,
Frame of Reference Evaluation in Spatial Reason-
ing Tasks (FoREST), to evaluate models’ ability
to comprehend FoR from textual descriptions and
extend this evaluation to grounding and visualiza-
tion. Our benchmark includes spatial expressions
with FoR ambiguity—cases where multiple FoRs
may apply to the described situation—as well as
spatial expressions with only a single valid FoR.
This design allows evaluation of the models’ un-
derstanding of FoR in both scenarios. We eval-
uate several LLMs in a QA setting that requires
FoR understanding and employ the FoR concept in
text-to-image models. Our findings reveal perfor-
mance differences across FoR classes and show that
LLMs exhibit bias toward specific FoRs when han-
dling ambiguous cases. This bias extends to layout-
diffusion models, which rely on LLM-generated
layouts in the image generation pipeline. To en-
hance FoR comprehension in LLMs, we propose
Spatial-Guided prompting, which enables models
to analyze and extract additional spatial informa-
tion, including directional, topological, and dis-
tance relations. We demonstrate that incorporating
spatial primitives and relations improves question-
answering and layout generation, ultimately en-
hancing text-to-image generation performance.

Our contribution1 are summarized as follows,
1) We introduce the FoREST benchmark to sys-
tematically evaluate LLMs’ FoR comprehension,
2) We analyze the impact of FoR information on
text-to-image generation using diffusion models,
3) We propose a prompting approach that gener-
ates spatial primitives and relations in the chain of
reasoning, which enhances the performance of QA
and layout diffusion models.

2 Spatial Primitives

We review three semantic aspects of spatial infor-
mation expressed in language: Spatial Roles, Spa-
tial Relations, and Frame of Reference.
Spatial Roles. We focus on two main spatial
roles (Kordjamshidi et al., 2010) of Locatum, and
Relatum. The locatum is the object described in the
spatial expression, while the relatum is the other
object used to describe the position of the locatum.
An example is a cat is to the left of a dog, where
the cat is the locatum, and the dog is the relatum.
Spatial Relations. When dealing with spatial
knowledge representation and reasoning, three

1code and dataset available at Github repository.

main relations are often considered: directional,
topological, and distal (Hernández, 1994; Cohn and
Renz, 2008; Kordjamshidi et al., 2011). Directional
describes an object’s direction based on specific co-
ordinates, e.g., left and right. Topological describes
the containment between two objects, such as in-
side. Distal describes qualitative and quantitative
relations regarding the distance between entities.
An example of a qualitative distal relation is far,
and an example of a quantitative one is 3km.
Frame of Reference. We use four frames of ref-
erence investigated in the cognitive linguistic stud-
ies (Tenbrink, 2011). These are defined based on
the concept of Perspective, which is the origin of a
coordinate system to determine the direction. The
four frames of reference are defined as follows.
1. External Intrinsic describes a spatial relation
from the relatum’s perspective, where the relatum
does not contain the locatum. The top-right image
in Figure 1 shows this case with the sentence, A cat
is to the right of the car from the car’s perspective.
2. External Relative describes a spatial relation
from the observer’s perspective. The top-left image
in Figure 1 shows an example with the sentence, A
cat is to the left of a car from my perspective.
3. Internal Intrinsic describes a spatial relation
from the relatum’s perspective, where the relatum
contains the locatum. The bottom-right of Figure 1
shows this case with the sentence, A cat is inside
and back of the car from the car’s perspective.
4. Internal Relative describes a spatial relation
from the observer’s perspective where the locatum
is inside the relatum. The bottom-left image in
Figure 1 shows this case with the sentence, A cat is
inside and to the left of the car from my perspective.

3 FoREST Dataset Construction

To systematically evaluate LLMs on the frame
of reference (FoR) recognition, we introduce the
Frame of Reference Evaluation in Spatial Reason-
ing Tasks (FoREST) benchmark. Each instance
in FoREST consists of a spatial context (T ), a set
of corresponding FoRs (FoR) which is a subset
of {external relative, external intrinsic, internal
intrinsic, internal relative}, a set of questions and
answers ({Q,A}), and a set of visualizations ({I}).
An example of T is “A cat is to the right of a dog.
A dog is facing toward the camera.” The set of ap-
plicable FoRs for T is {external intrinsic, external
relative}. A question-answer pair is Q = “Based
on the camera’s perspective, where is the cat from
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Figure 2: The dataset creation pipeline. It begins by selecting a locatum and a relatum from a pre-defined list of
objects and then applies templates to generate the spatial expressions (T ). FoRs are then assigned based on the
relatum properties. T is categorized based on the number of applicable FoRs. For example, A cat is to the right of a
dog (with two possible FoRs: external intrinsic and external relative) belongs to the A-split. Then, its disambiguated
version (A cat is to the right of a dog from the dog’s perspective) is added to the C-split. Next, if applicable, the
relatum orientation is included for visualization and question generation. Finally, Unity3D generates the scene
configurations, and the question-answer pairs are derived from T .

the dog’s position?”, A = {left, right}. There is
an ambiguity in the FoR for this expression. Thus,
the answer will be left if the model assumes the
external relative FoR. In contrast, it will be right if
the model assumes the external intrinsic FoR. The
visualization of this example is shown in Figure 2.
Dataset statistics are provided in Table 1.

3.1 Context Generation

We select two distinct objects—a relatum (R) and
a locatum (L)—from a set of 20 objects and apply
them to a Spatial Relation template, <L> <spatial
relation> <R>, to generate the context T . FoRs
for T are determined based on the properties of
the selected objects. Depending on the number of
possible FoRs, T is categorized as ambiguous (A-
split), where multiple FoRs apply, or clear (C-split),
where only one FoR is valid. We further augment
the C-split with disambiguated spatial expressions
derived from the A-split, as shown in Figure 2.

3.2 Categories based on Relatum Properties

Using the FoR classes in Section 2, we identify two
key properties contributing to FoR ambiguity. The
first property is the relatum’s intrinsic direction. It
creates ambiguity between intrinsic and relative
FoRs, since spatial relations may originate from
either the relatum’s or the observer’s perspective.
The second property is the relatum’s affordance as
a container. It introduces the ambiguity between
internal and external FoR, as spatial relations may
refer to either inside or outside of the relatum. Note

that containment is defined as the ability of the
relatum to contain the locatum, considering both
objects’ sizes. Based on these properties, we define
four distinct cases: Cow, Box, Car, and Pen.
Case 1: Cow Case. In this case, the selected re-
latum has intrinsic directions but cannot be the
container for the locatum. An example object is
a cow. In such cases, the relatum provides a per-
spective for spatial relations. The applicable FoR
classes are FoR = {external intrinsic, external rel-
ative}. We augment the C-split with expressions
of this case, but include the perspective to resolve
their ambiguity. To specify the perspective, we use
predefined templates for augmenting clauses, such
as from {relatum}’s perspective for external intrin-
sic or from the camera’s perspective for external
relative. For example, if the context is “A cat is to
the left of the cow”, in the A-split, the counterparts
included in the C-split are “A cat is to the left of the
cow from the cow’s perspective.” for the external
intrinsic and “A cat is to the left of the cow from
my perspective.” for the external intrinsic.
Case 2: Box Case. In this case, the relatum has
the container affordance but lacks intrinsic direc-
tions, e.g, a box. The applicable FoR classes are
FoR = {external relative, internal relative}. To in-
clude unambiguous counterparts in the C-split, we
specify a topological relation by adding inside for
internal relative and outside for external relative.
For example, given the sentence “A cat is to the
left of the box.”, the unambiguous T with internal
relative FoR is “A cat is inside and to the left of
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the box.” The counterpart for external relative is
“A cat is outside and to the left of the box.”
Case 3: Car Case. A relatum with an intrinsic
direction and container affordance falls into this
case. An example object is a car. The applicable
FoR classes are FoR = { external relative, external
intrinsic, internal intrinsic, internal relative}. To
augment C-split with the disambiguated counter-
parts of such cases, we add perspective and topol-
ogy information to the sentences similar to the Cow
and Box cases. An example expression for this case
is A person is in front of the car. The four disam-
biguated counterparts to include in the C-split are

“A person is outside and in front of the car from the
car itself.” for external intrinsic, “A person is out-
side and in front of the car from the observer.” for
external relative, “A person is inside and in front
of the car from the car itself.” for internal intrinsic,
and “A person is inside and in front of the car from
the observer.” for internal relative.
Case 4: Pen Case. In this case, the relatum lacks
both the intrinsic direction and the affordance as
a container. An example object is a pen. Lacking
these two properties, the created context has only
one applicable FoR, FoR = {external relative}.
Therefore, we can categorize this case into both
splits without any modification. An example of
such a context is “The book is to the left of a pen.”

3.3 Context Visualization
In our visualization, complexity arises when the
relatum has an intrinsic direction, as its orientation
can complicate the spatial representation. For ex-
ample, for the visualization of A cat is to the right
of a dog from the dog’s view, the cat can be placed
in different coordinates based on the dog’s orien-
tation. To address this issue, we add a template
sentence for each direction, such as <relatum> is
facing toward the camera, to specify the relatum’s
orientation of all applicable T for visualization and
QA. For instance, “A cat is to the left of a dog.”
becomes “A cat is to the left of a dog. The dog is
facing toward the camera.”. To avoid occlusion,
we generate visualizations only for external FoRs,
since one object may become invisible in internal
FoR classes. We use only C-split expressions, as
they have a unique FoR interpretation for visual-
ization. A scene configuration is then created by
applying a predefined template, as illustrated in
Figure 2. The images are generated using the Unity
3D simulator (Juliani et al., 2020), producing four
variations per expression T with different back-

A-split
Case Context QA-CP QA-RP T2I

Cow Case 792 3168 3168 3168
Car Case 128 512 512 512
Box Case 120 120 120 120
Pen Case 488 488 488 488

Total 1528 4288 4288 4288
C-Split

FoR Class Context QA-CP QA-RP T2I
External Relative 1528 4288 3680 4288
External Intrinsic 920 3680 3680 3680
Internal Intrinsic 128 512 512 0
Internal Relative 248 632 512 0

Total 2824 9112 8384 7968

Table 1: Dataset statistics of FoREST A-split and C-
split portions. QA-CP and QA-RP are question-answer
pairs with camera perspective and question-answer pairs
with relatum perspective, respectively. T2I refers to the
prompt used in Text-to-Image experiments.

grounds and object positions. Further details of the
creation process are provided in Appendix A.

3.4 Question-Answering Generation

We generate corresponding questions for each spa-
tial expression (T ). When the relatum has an in-
trinsic direction, we also include its orientation as
described in Section 3.3. Our benchmark contains
two question types. The first asks for the spatial
relation between two objects from the camera’s
perspective, following predefined templates such
as, Based on the camera’s perspective, where is
the locatum relative to the relatum’s position? The
second queries the relation from the relatum’s per-
spective, using the same templates but replacing
the camera with the relatum. The first type is gener-
ated for all T , while the second applies only when
the relatum has an intrinsic direction. Answers are
determined by the corresponding FoR, the spatial
relation expressed in T , and the relatum’s orien-
tation when applicable. Question template varia-
tions were generated using GPT-4o, with details
provided in Appendix A.3. To demonstrate that
the order of the locatum and the relatum in the
question does not affect LLMs’ performance, we
also evaluate Qwen2-72B on templates with the
reversed order of the locatum and the relatum in
Appendix F.2. Qwen2-72B performs similarly on
both orders, so we use only the question templates
where the locatum precedes the relatum in the re-
maining experiments.

4 Models and Tasks

This paper focuses on Question-Answering and
Text-to-Image tasks using the FoREST benchmark
to evaluate FoR in spatial reasoning comprehen-
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sively. FoREST supports additional tasks, such as
FoR identification, detailed in Appendix K.

4.1 Question-Answering (QA)
Task. The QA task evaluates LLMs’ ability to
adapt contextual perspectives across different FoRs.
The input includes a spatial expression T , relatum
orientation (if available), and a question Q query-
ing the spatial relation from either the observer’s
or the relatum’s perspective. The output is a spatial
relation S, restricted to {left, right, front, back}.
We use both dataset splits for this task.
Zero-shot baseline. We call the LLM with instruc-
tions, a spatial context, and a question expecting
a spatial relation as the response. The prompt in-
structs the model to answer the question with one of
the candidate spatial relations without explanation.
Few-shot baseline. We create four spatial expres-
sions, each assigned to a single FoR class to prevent
bias. Following the steps in Section 3.4, we gener-
ate a corresponding question and answer for each.
These serve as examples in our few-shot prompting.
The input to the model is the instruction, example,
spatial context, and the question.
Chain-of-Thought (CoT) baseline (Wei et al.,
2022). To create CoT examples, we modify the
prompt to require reasoning before answering. We
manually craft reasoning explanations with the nec-
essary information for the few-shot examples. The
input to the model is the instruction, CoT example,
spatial context, and the question.
Human baseline. We conducted a small-scale hu-
man study with three participants, compensated as
research assistants. Each participant was shown 25
randomly selected QA examples per relatum case
in the A-split, for a total of 150 examples. Each
example consisted of a textual scene description
and a corresponding question. See Appendix G for
details. We report average accuracy across partici-
pants to reflect the human baseline.

4.2 Text-To-Image (T2I)
Task. This task assesses the ability of diffusion
models to consider FoR by evaluating their gener-
ated images. The input is a spatial expression, T ,
and the output is a generated image (I). C and A
splits with external FoRs are used for this task.
Stable Diffusion Model. We use the stable diffu-
sion model as the baseline for the T2I task. This
model only needs the scene description as input.
Layout Diffusion Model. This model operates
in two phases: text-to-layout and layout-to-image.

Given that the LLM can generate the bounding box
layout (Cho et al., 2023b), we provide the LLM
with instructions and T to create the layout. The
layout consists of bounding box coordinates for
each object in the format of {object: [x, y, w, h]},
where x and y denote the starting point and h and
w denote the height and width. The bounding box
coordinates and T are then passed to the layout-to-
image model to produce the final image, I .

4.3 Spatial-Guide (SG) Prompting

We hypothesize that the spatial relation types and
FoR classes defined in Section 2 can guide QA and
layout generation. For example, the external intrin-
sic FoR emphasizes that spatial relations originate
from the relatum’s perspective. To leverage this, we
propose SG prompting, an additional step applied
before QA or layout generation. This step extracts
spatial information, including direction, topology,
distance, and the FoR, from the spatial expression
T , as supplementary input to guide LLMs in QA
or layout generation. We manually craft four exam-
ples covering these aspects. First, we specify the
perspective for directional relations, e.g., left rel-
ative to the observer, to distinguish intrinsic from
relative FoR. Next, we indicate whether the loca-
tum is inside or outside the relatum for topologi-
cal relations to differentiate internal from external
FoR. Lastly, we provide an estimated quantitative
distance to support topological and directional re-
lation identification, e.g., far. These examples are
provided in a few-shot setting to guide the model
in automatically extracting such information. The
extracted information is then used to guide CoT
reasoning in QA and layout generation.

5 Experimental Results

5.1 Evaluation Metrics

QA. We report accuracy (acc.) based on the correct
answer defined as follows. Since the questions
can have multiple correct answers, as explained in
Section 3, the prediction is correct if it matches any
valid answer. Additionally, we report the model’s
bias distribution when FoR ambiguity exists. I% is
the percentage of correct answers when assuming
an intrinsic FoR, while R% is this percentage with
a relative FoR assumption. Note that cases where
both FoR assumptions lead to the same answer are
excluded from the bias calculation.
T2I. We adopt spatialEval (Cho et al., 2023b) for
evaluating T2I spatial ability. We modify it to ac-
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Question with Camera Perspective Question with Relatum Perspective
Model Cow Car Box Pen Avg. Cow Car Avg.

R% I% Acc. R% I% Acc. Acc. Acc. Acc. R% I% Acc. R% I% Acc. Acc.
Llama3-70B (1) 48.1 51.5 62.5 58.0 41.6 65.5 73.3 72.5 64.3 61.0 38.7 62.1 51.8 47.9 61.8 62.1
Llama3-70B (2) 49.1 50.5 62.2 52.2 47.4 64.7 85.8 85.5 65.8 59.6 40.1 57.1 55.5 44.2 61.8 57.7
Llama3-70B (3) 49.4 50.3 80.7 49.4 50.3 79.6 95.8 94.9 82.6 60.8 39.0 77.2 55.1 44.6 80.9 77.7
Llama3-70B (4) 59.4 40.2 73.6 57.9 41.7 74.8 100.0 100.0 77.5 60.6 39.1 65.7 56.0 43.7 67.7 66.0
Qwen2-72B (1) 96.6 2.9 95.6 95.9 3.6 95.0 100.0 100.0 96.1 8.8 90.6 79.3 7.8 91.7 83.6 79.9
Qwen2-72B (2) 89.0 10.5 84.4 85.6 13.9 85.5 100.0 100.0 86.8 17.7 81.8 78.3 10.4 89.1 86.3 79.4
Qwen2-72B (3) 67.2 32.4 88.6 62.0 37.6 83.4 100.0 100.0 89.6 21.3 78.3 85.5 22.7 76.9 83.6 85.2
Qwen2-72B (4) 93.0 6.5 90.1 94.6 4.9 93.3 100.0 98.6 91.7 8.2 91.2 86.0 10.5 89.0 87.4 86.2
Qwen2VL-72B (1) 49.5 50.5 78.3 51.6 48.4 80.0 98.3 96.9 81.2 41.0 59.0 55.4 44.7 55.3 59.0 56.0
Qwen2VL-72B (2) 40.9 59.1 89.4 44.7 55.3 79.0 100.0 100.0 89.6 32.7 67.3 66.9 28.5 71.5 67.0 66.9
Qwen2VL-72B (3) 63.5 36.5 84.0 72.2 27.8 84.5 100.0 100.0 86.3 51.0 49.0 77.7 54.6 45.4 82.8 78.4
Qwen2VL-72B (4) 50.5 49.5 78.3 59.5 40.5 67.4 98.3 99.6 79.9 23.5 76.5 78.2 33.0 67.0 67.7 76.7
GPT-4o (1) 84.3 15.3 94.5 88.5 11.0 97.3 99.2 99.8 95.6 21.6 78.0 91.6 16.1 83.5 90.5 91.4
GPT-4o (2) 69.0 30.6 76.6 80.3 19.2 89.5 100.0 100.0 81.5 29.0 70.5 74.7 30.9 68.7 77.5 75.1
GPT-4o (3) 41.5 58.3 92.3 38.2 61.6 91.0 100.0 99.8 93.2 33.9 65.8 93.9 32.0 67.6 93.9 93.9
GPT-4o (4) 26.0 73.9 79.2 27.7 72.1 79.4 96.7 94.3 81.4 16.2 83.4 95.5 19.2 80.4 94.8 95.4
Human-baseline 36.6 63.4 90.7 27.8 72.2 96.0 72.0 82.7 85.3 41.4 58.6 97.3 36.1 63.9 96.0 96.7

Table 2: QA accuracy in the A-split. R% and I% indicate the proportion of cases where the model assumes a relative
or intrinsic FoR for an ambiguous expression (see Section 5.1). Acc denotes accuracy, and Avg is the micro-average
accuracy. (1) 0-shot, (2) 4-shot, (3) CoT, and (4) SG+CoT.

Question with Camera Perspective Question with Relatum Perspective
Model ER (CP) EI (RP) II (RP) IR (CP) Avg. ER (CP) EI (RP) II (RP) IR (CP) Avg.
Llama3-70B (0-shot) 44.8 38.4 39.7 54.4 42.6 42.2 47.1 62.5 34.4 45.1
Llama3-70B (4-shot) 43.0 40.0 39.1 47.3 41.9 41.8 60.9 77.7 35.2 52.0
Llama3-70B (CoT) 57.8 46.1 44.7 46.0 51.5 55.5 56.8 71.5 49.0 56.6
Llama3-70B (SG+CoT) 47.6 42.9 50.0 35.6 45.0 55.4 64.5 75.0 47.1 60.1
Qwen2-72B (0-shot) 94.5 35.2 31.8 93.2 66.9 28.7 89.3 93.6 23.8 59.0
Qwen2-72B (4-shot) 90.2 39.5 39.1 68.5 65.3 33.5 92.1 94.0 29.5 62.7
Qwen2-72B (CoT) 81.4 57.4 58.6 62.5 69.1 39.5 83.7 85.2 37.7 61.6
Qwen2-72B (SG+CoT) 97.6 42.5 31.3 93.8 71.4 42.8 86.6 92.0 34.0 64.5
Qwen2VL-72B (0-shot) 68.3 40.2 42.4 75.3 56.0 37.4 60.1 82.2 35.5 50.0
Qwen2VL-72B (4-shot) 78.4 41.0 44.5 66.1 60.5 38.0 85.4 91.2 29.9 61.6
Qwen2VL-72B (CoT) 58.4 62.4 68.4 40.7 59.3 48.6 43.5 36.1 61.9 46.4
Qwen2VL-72B (SG+CoT) 99.0 50.0 47.5 93.0 75.9 27.3 37.3 37.1 34.0 32.7
GPT-4o (0-shot) 79.7 45.1 39.5 90.2 64.2 46.9 88.5 98.2 34.8 67.5
GPT-4o (4-shot) 68.0 52.6 60.7 74.1 61.8 44.9 98.2 100.0 37.5 71.2
GPT-4o (CoT) 81.7 76.1 82.4 71.5 78.8 53.0 91.1 90.6 50.8 71.9
GPT-4o (SG+CoT) 97.9 72.2 72.7 93.4 85.8 48.9 96.3 95.9 36.1 71.8

Table 3: QA accuracy in the C-Split across various LLMs. ER, EI, II, and IR denote external relative, external
intrinsic, internal intrinsic, and internal relative FoRs, respectively. Avg denotes the micro-average accuracy. CP
indicates context with a camera perspective, while RP denotes context with a relatum perspective.

count for FoR by converting relations to a cam-
era perspective before passing them to spatialEval,
which assumes this viewpoint. Accuracy is deter-
mined by comparing the bounding box and depth
map of the relatum and locatum. For FoR ambi-
guity, a generated image is correct if it aligns with
at least one valid FoR interpretation. We report re-
sults using VISORcond and VISORuncond (Gokhale
et al., 2023) metrics. VISORcond evaluates spatial
relations only when both objects appear correctly,
aligning with our focus on spatial reasoning. While,
VISORuncond evaluates the overall performance,
including object creation errors.

5.2 Experimental Setting

QA. We use Llama3-70B (Llama, 2024), Qwen2-
72B (Qwen Team, 2024), Qwen2VL-72B (Wang
et al., 2024), and GPT-4o (OpenAI, 2024) as back-
bone models. All models are evaluated with zero-
shot, few-shot, CoT, and our SG+CoT prompting
under temperature 0 to ensure reproducibility.
T2I. We select Stable Diffusion SD-1.5 and SD-
2.1 (Rombach et al., 2021) as our stable diffu-
sion models and GLIGEN(Li et al., 2023) as the
layout-to-image backbone. For translating spatial
descriptions into bounding box information, we
use Llama3-8B and Llama3-70B, as detailed in
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VISOR(%)
A-Split C-Split

Model cond (I) cond (R) cond (avg) cond (I) cond (R) cond (avg)
EI FoR ER FoR all

SD-1.5 51.11 21.61 72.72 48.95 68.72 53.92 53.77 53.83
SD-2.1 57.97 21.49 79.46 54.10 75.39 60.06 59.64 59.83
Llama3-8B + GLIGEN 53.67 25.78 79.45 66.08 77.38 57.51 65.98 62.12
Llama3-70B + GLIGEN 54.49 29.45 83.94 68.68 81.43 56.47 69.53 63.49
Llama3-8B + SG + GLIGEN (Our) 57.46 27.96 85.42 71.14 83.17 58.84 70.36 65.15
Llama3-70B + SG + GLIGEN (Our) 56.54 30.59 87.13 66.56 83.75 56.77 70.04 64.06

Table 4: VISORcond score explained in Section 5.1 where I refers to the Cow and Car cases where relatum has
intrinsic directions, and R refers to the Box and Pen cases where relatum lacks intrinsic directions, avg is the
micro-average of I and R. EI and ER FoR represent the generated image considered corrected by EI or ER FoR.

Section 4.2. The same LLMs are used to generate
spatial information for SG prompting. We generate
four images to compute the VISOR score follow-
ing (Gokhale et al., 2023) Inference steps for all
T2I models are set to 50. For the evaluation, we
select grounding DINO (Liu et al., 2025) for object
detection and DPT (Ranftl et al., 2021) for depth
mapping, following VPEval (Cho et al., 2023b).
The experiments were conducted on two A6000
GPUs, totaling approximately 300 GPU hours.

5.3 Results

RQ1. What is the LLM’s bias when FoR is am-
biguous? Table 2 presents the QA results for the
A-split. Since the context lacks a fixed perspective,
a model extracting spatial relations alone should
ideally reach 100% accuracy. Our goal, however,
is to assess LLMs’ bias by measuring how often
they adopt a specific perspective. In the Box and
Pen cases, relatum properties do not introduce FoR
ambiguity in directional relations, making the task
pure extraction rather than reasoning. Thus, we
focus on the I% and R% of the Cow and Car cases,
which best reflect LLMs’ bias. Qwen2-72B consis-
tently achieves 80–95% accuracy across all experi-
ments by selecting spatial relations directly from
context, suggesting it may disregard the question’s
perspective. This is supported by attention analy-
sis in Appendix D. The attention maps show that
most correct Qwen2 responses assume a shared per-
spective between context and question and pay low
attention to the perspective stated in the question.
GPT-4o exhibits similar bias in 0-shot and 4-shot
settings but shifts toward intrinsic interpretation
with CoT. This shift reduces accuracy on camera-
perspective questions, where FoR adaptation plays
a larger role than relation extraction. Llama3-70B
shows no strong preference, slightly favoring rel-
ative FoR, but this balance lowers performance

due to increased reasoning demands. Qwen2VL
follows a similar pattern but achieves higher accu-
racy, likely due to visual training. GPT-o4-mini
with high visual reasoning shows the same pattern,
which is later discussed as an additional experi-
ment in Appendix C. Moreover, our experiments
with humans, presumed to have prior visual knowl-
edge, show strong reasoning ability, achieving over
90% accuracy even in scenarios where perspective
preference requires FoR adaptation. In our results,
humans slightly prefer intrinsic FoR over relative
FoR. Their cultural background and recently seen
examples may also influence their preference as
discussed in (Coventry et al., 2018). A detailed
analysis of human performance is provided in Ap-
pendix G. In summary, we conjecture that Qwen2
performs well by focusing on extraction without
reasoning FoR, while other models attempt rea-
soning but often fail to reach correct conclusions,
leading to lower accuracy. To support this claim
and further analyze the results, we provide a quan-
titative analysis in Appendix E, examining how lin-
guistic expressions of spatial relations and facing
directions in the context influence model outputs.

RQ2. Can LLMs adapt FoR when answering
the questions? To address this question, we ana-
lyze QA results of C-split in Table 3, where con-
text and question explicitly specify the perspective.
Results show that LLMs struggle with FoR conver-
sion, especially when the question is asked from
the relatum’s perspective and the context is given
from the camera’s perspective, with the highest ac-
curacy only 55.5% with Llama3-70B (CoT). We
further analyze FoR adaptation in Llama3-70B and
GPT-4o using the confusion matrix in Figure 3.
Our findings reveal that pure-text LLM, Llama3-
70B, systematically reverses left and right. This
contrasts with humans, who in English typically
reverse front and back when describing spatial re-
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Figure 3: Confusion matrices of spatial relation predic-
tions by Llama3 and GPT-4o in 0-shot and SG+CoT
settings, when FoR adaptation is required.

lations from a perspective, while preserving lateral
directions (Hill, 1982). This difference explains
Llama3’s poor adaptation to the camera perspective.
In contrast, large multimodal models like GPT-4o
follow expected patterns, consistent with Zhang
et al. 2025b. While the GPT-4o results suggest
some ability to convert the relatum’s perspective
into the camera’s with in-context learning (up to
82.4% accuracy), the reverse direction—from the
camera’s perspective to the relatum’s—remains
challenging, reaching only 53% accuracy (see GPT-
4o+CoT). A similar trend appears when comparing
Qwen2 and Qwen2VL, as discussed in Appendix B.
Qwen2VL performs better when shifting to the
camera perspective but performs worse with the
reverse direction, often failing to generate correct
reasoning. This difficulty persists for several mod-
els when converting spatial relations from images
to the relatum’s perspective, as noted in Zhang et al.
2025b. Based on our Attention analysis, one pos-
sible reason for poor performance in perspective
shift in Qwen2 is that the model often overlooks
orientation tokens, critical for answering FoR ques-
tions. The detail of the analysis and visualizations
can be found in Appendix D. Another observed
reason is that the model tends to rely on a fixed
facing direction when answering (facing toward or
facing away). We provide a quantitative analysis
of this behavior in Appendix E.
RQ3. How can an explicit FoR identification
help spatial reasoning in QA? We compare CoT
and SG+CoT results to assess the effect of FoR
identification on LLMs’ spatial reasoning in QA.

Based on C-Split results (Table 3), incorporating
SG improves the model’s ability to identify the
correct perspective from input expression ranging
from 2.9% to 30% of cases where the context and
question share the same perspective. These cases
are easier as the models do not need FoR adapta-
tion. However, two notable exceptions arise. First,
Llama3 performs poorly on camera-perspective
questions, and FoR identification via SG fails
to improve its performance. This may be due
to Llama3’s lack of visual training, which we
speculate limits its FoR understanding. Second,
Qwen2VL struggles with relatum-perspective rea-
soning, showing negative gains even with CoT. SG
is less effective when context and question differ in
perspective; while it helps identify the correct FoR
in context, it does not enhance reasoning across
perspectives. This limitation is evident in A-Split
results (Table 2), where models only improve sig-
nificantly when SG aligns their preference with
the question’s perspective, as seen in Qwen2-72B
and GPT-4o. SG identification results are reported
in the Appendix K. Still, FoR identification im-
proves overall spatial reasoning (see Avg. column
for SG+CoT in Table 4).
RQ4. How can explicit FoR identification
help spatial reasoning in visualization? To ad-
dress this question, we evaluate the SG+GLIGEN
baseline with a focus on the VISORcond metric,
which better reflects the model’s spatial under-
standing than the overall performance measured
by VISORuncond alternative that is reported in Ap-
pendix I. Table 4 shows that adding spatial infor-
mation and FoR classes (SG+GLIGEN) improves
performance across all splits compared to the GLI-
GEN baseline. In particular, SG improved the
model’s performance when expressions follow a
relative FoR. This finding aligns with QA results
in Table 2, where Llama3 prefers relative FoR in
camera-perspective scenarios. In contrast, baseline
diffusion models (SD-1.5 and SD-2.1) perform bet-
ter for intrinsic FoR, even though GLIGEN is based
on SD-2.1. This outcome is likely due to GLI-
GEN’s reliance on bounding boxes for spatial con-
figurations, which limits handling of intrinsic FoR
because object properties and orientation—critical
for intrinsic reasoning—are missing. Despite this
limitation, incorporating FoR information via SG-
prompting improves performance across all FoR
classes. We provide further analysis on SG for the
layout generation in Appendix J.
RQ5. How does human FoR understanding com-
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pare to LLMs’? For understanding FoR, humans
usually adopt the perspective of a specific object,
a process linked to the theory of mind, when de-
scribing spatial relations (Loy and Demberg, 2023).
However, the ability to shift spatial perspective
can be influenced by factors such as social con-
text (Creem-Regehr et al., 2013), situational cir-
cumstances (Gunalp et al., 2019), and linguistic
or cultural background (Bohnemeyer et al., 2014).
These factors highlight the inherent difficulty of
FoR reasoning, even for humans. For LLMs, the
challenge is even more pronounced. A key limi-
tation stems from the nature of their training data,
which is often based on image–caption pairs from
2D images or spatial descriptions grounded primar-
ily in the visual modality from a camera perspective.
As a result, models tend to learn spatial relations
only from this specific viewpoint, restricting their
ability to generalize beyond it. As shown in Ta-
ble 2, our results indicate that most language-only
models (e.g., Llama3) struggle with perspective
shifts, whereas multimodal LLMs (e.g., GPT-4o)
perform significantly better, though primarily from
the camera perspective. This bias of MLLMs to-
ward a single FoR system is consistent with previ-
ous findings (Zhang et al., 2025b), which show that
MLLMs often fail to adapt to cultural variation in
perspective-taking, typically aligning with the En-
glish language. This bias underscores the need to
improve LLMs’ ability to generalize across diverse
spatial reasoning tasks. Future work would be in-
teresting to explore novel ideas for both large-scale
and realistic training data, as well as reasoning
techniques that enable models’ FoR reasoning.

6 Related Work

Frame of Reference in Cognitive-Linguistic (CL)
Studies. The concept of the frame of reference
in CL studies was introduced by Levinson 2003
and later expanded with more diverse spatial re-
lations (Tenbrink, 2011). Subsequent research in-
vestigated the human preferences for specific FoR
classes (Vukovic and Williams, 2015; Shusterman
and Li, 2016; Ruotolo et al., 2016; Coventry et al.,
2018). For instance, Ruotolo et al. 2016 examined
how FoR influences scene memorization. They
found that participants performed better when spa-
tial relations were based on their own position
rather than external objects, highlighting a distinc-
tion between relative and intrinsic FoR.
Frame of Reference in AI. Several benchmarks

have been developed to evaluate the spatial under-
standing of AI models in multiple modalities; for
instance, textual QA (Shi et al., 2022; Mirzaee
and Kordjamshidi, 2022; Rizvi et al., 2024), and
text-to-image (T2I) benchmarks (Gokhale et al.,
2023; Cho et al., 2023a,b). However, most of these
benchmarks overlook FoR, assuming a single FoR
for all instances despite its significance in cogni-
tion. Recent vision-language studies have begun
addressing this gap (Liu et al., 2023; Zhang et al.,
2025b,a; Wang et al., 2025). For instance,Zhang
et al. 2025a; Wang et al. 2025 propose benchmarks
that incorporate the concept of perspective in em-
bodied AI and situated 3D environments, although
FoR is not the primary focus of either work. Liu
et al. 2023 examines FoR’s impact on visual ques-
tion answering but focuses only on the intrinsic
and relative FoR categories. Our work covers a
wider range of FoRs. Zhang et al. 2025b explores
FoR ambiguity by evaluating spatial relations from
camera-perspective images, with FoR specified in
the question. In contrast, our work examines spa-
tial reasoning across multiple FoRs and perspective
changes, extending beyond the camera’s viewpoint.
We further demonstrate that explicitly identifying
FoR for in-context learning enhances spatial rea-
soning in both QA and T2I tasks.

7 Conclusion

Given the significance of spatial reasoning in AI
models, we introduce the Frame of Reference
Evaluation in Spatial Reasoning Tasks (FoREST)
benchmark to evaluate FoR comprehension in tex-
tual spatial expressions through question answering
and grounding in the visual modality via diffusion
models for text to image generation. Using this
benchmark, we identify notable differences in FoR
comprehension across LLMs, as well as their strug-
gles with questions that require adapting between
multiple FoRs. Moreover, biases in FoR interpreta-
tion affect layout generation in text-to-image mod-
els. To improve FoR comprehension, we propose
Spatial-Guided prompting, which extracts topolog-
ical, distal, and directional information in addi-
tion to FoR, and incorporates this knowledge into
downstream prompting. Employing SG improves
performance in both QA tasks requiring FoR under-
standing and text-to-image generation models by
providing a more accurate layout to these models.
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A Additional Details of FoREST Creation

We define the nine categories of objects selected in
our dataset as indicated below in Table 5. We select
sets of locatum and relatum based on the proper-
ties of each class to cover four cases of frame of
reference defined in Section 3.2. Notice that we
also consider the appropriateness of the container;

for example, the car should not contain the bus.
Based on the selected locatum and relatum. To
create an A-split spatial expression, we substitute
the actual locatum and relatum objects in the Spa-
tial Relation template. After obtaining the A-split
contexts, we create their counterparts using the per-
spective/topology clauses to make the counterparts
in the C-split. Then, we obtain the I-A and I-C
split by applying the directional template to the
first occurrence of relatum when it has intrinsic
directions. The directional templates are “that is
facing towards,” “that is facing backward,” “that is
facing to the left,” and "that is facing to the right.”
All the templates are in the Table 6. We then con-
struct the scene configuration from each modified
spatial expression and send it to the simulator de-
veloped using Unity3D. Eventually, the simulator
produces four visualization images for each scene
configuration.

A.1 Scene generation
The process begins by randomly placing the rela-
tum in the scene with an orientation specified by
the scene configuration. The relatum’s orientation
is then sampled from predefined ranges: [-40, 40]
for front, [40, 140] for left, [140, 220] for back,
and [220, 320] for right. Next, the locatum is posi-
tioned relative to the relatum according to the given
spatial relation. If the FoR is relative, the locatum
is placed with respect to the camera’s orientation;
otherwise, it is placed with respect to the relatum’s
orientation. We then check whether both objects
are visible from the camera. If not, the process re-
generates the locatum and the relatum until a valid
placement is achieved. Once placement is finalized,
one of six backgrounds is randomly selected. This
procedure is repeated four times for each scene
configuration.

A.2 Object models and background
For the object models and background, we obtain
them from the Unity Asset Store2. All of them are
free and available for download. All 3D models
used are shown in Figure 4.

A.3 Templates
Context templates All manually created templates
used to create a FoREST spatial expression are
given in Table 6.
Question Templates. To generate question tem-
plates, we first prompt GPT-4o with a manually

2https://assetstore.unity.com
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Figure 4: All 3d models used to generate visualizations for FoREST.

Category Object(s) Intrinsic Direction Possible Container
Small object without intrinsic directions umbrella, bag, suitcase, fire hydrant ✗ ✗

Big object with intrinsic directions bench, chair ✓ ✗
Big object without intrinsic direction water tank ✗ ✗

Container box, container ✗ ✓
Small animal chicken, dog, cat ✓ ✗
Big animal deer, horse, cow, sheep ✓ ✗

Small vehicle bicycle ✓ ✗
Big vehicle bus, car ✓ ✓

Tree tree ✗ ✗

Table 5: All selected objects with two properties: intrinsic direction, and affordance of being a container

created template (the first in Table 7). GPT-4o then
generates eight additional variations, including ver-
sions with the relatum and locatum in reversed
order. Each template was manually reviewed and
validated before being added to our corpus; the full
set is listed in Table 7. Templates from the cam-
era’s perspective use the camera as the perspective,
while templates from the relatum’s perspective use
the relatum object. For each generated scenario,
we select one normal and one reversed template
to ensure both orders are represented, allowing us
to evaluate whether the order of the locatum and
relatum influences model performance. In the FoR-
EST dataset, the contexts of both orders are kept
separate.

B Impact of Visual Training

To analyze the impact of visual training, we
compare Qwen2 with Qwen2-VL, which extends
Qwen2 with visual perception capability. In the
A-split (Table 2), Qwen2-VL shows a more bal-

Figure 5: Confusion matrices of spatial relation answers
when Qwen2 and Qwen2-VL must adapt FoR in the
0-shot and (SG+CoT) settings.
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{locatum} is in front of {relatum}
{locatum} is on the left of {relatum}
{locatum} is to the left of {relatum}

Spatial Relation Templates {locatum} is behind of {relatum}
{locatum} is back of {relatum}
{locatum} is on the right of {relatum}
{locatum} is to the right of {relatum}
within {relatum}

Topology Templates and inside {relatum}
and outside of {relatum}
from {relatum}’s view
relative to {relatum}

Perspective Templates from {relatum}’s perspective
from my perspective
from my point of view
relative to observer
{relatum} facing toward that camera

Orientation Templates {relatum}is facing away from the camera.
{relatum} facing left relative to the camera
{relatum} facing right relative to the camera

Table 6: All templates used to create FoREST dataset.

In the {perspective}, how is {locatum} positioned in relation to {relatum}?
Based on the {perspective}, where is the {locatum} from the {relatum}’s position?

Normal Templates From the {perspective}, what is the relation of the{locatum} to the {relatum}?
Looking through the {perspective}, how does {locatum} appear to be oriented relative to {relatum}’s position?
Based on the {perspective}, where is {locatum} located with respect to {relatum}’s location?

In relation to the {relatum}, where is the {locatum} located when viewed from {perspective}?
In the {perspective}, given {relatum} as reference, where is {locatum} located?

Reverse Templates Relative to the {relatum}, where can the {locatum} be found from the viewpoint of {perspective}?
Considering {relatum} as reference, where does {locatum} lie when seen from {perspective}?

Table 7: Question templates used to construct the FoREST dataset. Normal templates refer to cases where the
locatum precedes the relatum, while reversed templates are the opposite. Normal templates are used in the main
experiments, and reversed templates in the additional experiment (Appendix F.2).

anced preference pattern and stronger performance
than Qwen2. This suggests that, unlike Qwen2,
which often extracts spatial relations without ac-
counting for perspective, Qwen2-VL can also rea-
son about perspective shifts. This observation
is further supported by the C-split results in Ta-
ble 3, where Qwen2-VL substantially outperforms
Qwen2 in cases requiring adaptation of spatial re-
lations across perspectives. These findings rein-
force our hypothesis that visual training improves
a model’s ability to interpret perspective changes.
Nevertheless, Qwen2-VL still struggles to reason
from the relatum’s perspective in CoT and SG+CoT
settings. While visual training enables it to handle
perspective shifts more effectively, its reasoning
remains more accurate when questions are framed
from the camera’s viewpoint. This limitation is
expected, since training data—particularly image-
captioning datasets—are typically annotated from
a human, camera-based perspective, restricting the
model’s ability to generalize across viewpoints.

C GPT-o4-mini-high Results

For comparison with the main paper results, we
include newer modelss such as GPT-4o-mini-high,
a model configured for enhanced reasoning. As
shown in Table 8, GPT-4o-mini-high exhibits a
balanced preference between relative and intrinsic
interpretations in the A-split. Similar to Qwen2VL,
it demonstrates strong reasoning ability, achiev-
ing high accuracy even when FoR adaptation is
required, likely due to its visual reasoning ca-
pability. Notably, in the C-split, GPT-4o-mini-
high performs well on relatum-perspective ques-
tions, even outperforming GPT-4o (SG+CoT) in
Table 9. However, its performance declines on
camera-perspective questions, perhaps due to train-
ing that emphasizes alternative perspectives over
the camera view. These results indicate that per-
spective shifting remains a challenge in the textual
domain, even for strong reasoning models.
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Question with Camera Perspective Question with Relatum perspective
Model Cow Car Box Pen Avg. Cow Car Avg.

R% I% Acc. R% I% Acc. Acc. Acc. Acc. R% I% Acc. R% I% Acc. Acc.
GPT-4o (1) 84.3 15.3 94.5 88.5 11.0 97.3 99.2 99.8 95.6 21.6 78.0 91.6 16.1 83.5 90.5 91.4
GPT-4o (2) 69.0 30.6 76.6 80.3 19.2 89.5 100.0 100.0 81.5 29.0 70.5 74.7 30.9 68.7 77.5 75.1
GPT-4o (3) 41.5 58.3 92.3 38.2 61.6 91.0 100.0 99.8 93.2 33.9 65.8 93.9 32.0 67.6 93.9 93.9
GPT-4o (4) 26.0 73.9 79.2 27.7 72.1 79.4 96.7 94.3 81.4 16.2 83.4 95.5 19.2 80.4 94.8 95.4
o4-mini-high 68.0 31.6 92.0 69.9 29.7 94.7 100.0 99.4 93.4 58.5 41.3 86.9 50.2 49.5 93.3 87.8
Human-baseline 36.6 63.4 90.7 27.8 72.2 96.0 72.0 82.7 85.3 41.4 58.6 97.3 36.1 63.9 96.0 96.7

Table 8: Additional results of QA accuracy in the A-Split with GPT-o4-mini-high. R% and I% represent the
percentage the model assumes relative or intrinsic FoR for ambiguous expression, explained in Section 5.1. Acc is
the accuracy, and Avg is the micro-average of accuracy. (1): 0-shot, (2): 4-shot, (3): CoT, and (4): SG+CoT.

Question with Camera Perspective Question with Relatum Perspective
Model ER (CP) EI (RP) II (RP) IR (CP) Avg. ER (CP) EI (RP) II (RP) IR (CP) Avg.
GPT-4o (0-shot) 79.7 45.1 39.5 90.2 64.2 46.9 88.5 98.2 34.8 67.5
GPT-4o (4-shot) 68.0 52.6 60.7 74.1 61.8 44.9 98.2 100.0 37.5 71.2
GPT-4o (CoT) 81.7 76.1 82.4 71.5 78.8 53.0 91.1 90.6 50.8 71.9
GPT-4o (SG+CoT) 97.9 72.2 72.7 93.4 85.8 48.9 96.3 95.9 36.1 71.8
o4-mini-high 68.7 73.1 72.1 79.0 71.4 78.9 91.9 93.9 62.7 84.5

Table 9: Additional results of QA accuracy in the C-Split with GPT-o4-mini-high. ER, EI, II, and IR denote external
relative, external intrinsic, internal intrinsic, and internal relative FoRs. Avg represents the micro-average accuracy.
CP refers to context with camera perspective, while RP denotes context with relatum perspective.

Figure 6: Attention weights of input context for Ques-
tion Answering in A-split. Considering the following
semantic concepts: locatum mention in context, relation
in context, relatum in context, relatum orientation, per-
spective in question, locatum in question, and relatum
in question. Three patterns are considered: (1) incorrect
answers, (2) correct answers assuming a shared per-
spective between context and question, and (3) correct
answers assuming different perspectives.

D Attention Analysis

D.1 Experimental setting

We conducted an attention-based interpretability
analysis using Qwen2 in a 0-shot setting, where
only the context and question were provided. We
focused on analyzing attention weights across key
semantic elements in both A-split and C-split. We
analyzed the attention weights for various groups

of tokens that convey the following concepts: lo-
catum mention occurring in the context, relation
in context, relatum in context, perspective in con-
text, relatum orientation, perspective in question,
locatum in question, and relatum occurring in the
question. We categorized response patterns into
three scenarios: (1) the model answers incorrectly,
(2) the model answers correctly with the assump-
tion that the same perspective holds for context and
question, and (3) the model answers correctly with
the assumption that context and question have dif-
ferent perspectives. Note that we separate the anal-
ysis for both splits because the conceptual tokens
are different, that is, the perspective mentioned in
the context is only for the C-split.

D.2 Experimental results
A-split. According to Figure 6, we found that, for
the correct responses, the model paid the least at-
tention to the question’s perspective in the same
perspective. Meanwhile, for the different perspec-
tive case, attention significantly increased to tokens
related to the relation, the question perspective, and
the relatum in the question. This result illustrates
that these tokens played an important role in adapt-
ing spatial relations for perspective shifts. However,
when the model increased attention weight on re-
latum orientation compared to other tokens, more
errors occurred in answering the questions.
C-split. According to Figure 7, in cases that require
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(a) Questions that require changing perspective. (b) Questions that do not require changing perspec-
tive.

Figure 7: Attention weights of input context for Question Answering in C-split. Considering the following semantic
concepts: locatum mention in context, relation in context, relatum in context, perspective in context, relatum
orientation, perspective in question, locatum in question, and relatum in question. Two patterns are considered:
(1) incorrect answers, (2) correct answers. We separate the questions that require and do not require perspective
changing.

a shift in perspective, we observed that the model
pays significantly more attention to the spatial re-
lation in context, the question perspective, and the
relatum in the question concepts necessary for an-
swering correctly. However, the model largely over-
looks the orientation tokens, which also play a cru-
cial role in resolving these questions. This lack of
attention to orientation may majorly contribute to
the model’s failures in perspective-shifting scenar-
ios. In cases where the relation mentioned remains
the same in both the context and the answer, we
observed that the model, in incorrect predictions,
tends to assign higher attention to the relatum in the
question. In contrast, correct predictions are asso-
ciated with more balanced attention across tokens.
Maintaining moderate attention to all tokens ap-
pears to help the model consistently respond with
the correct relation, repeating it from the context.

E Analysis of Various Spatial
Configurations

In this section, we performed additional diagnostics
by analyzing key features that may contribute to
model failures, including the facing direction of the
relatum of C-split and the type of spatial relations
expressed in the context. This analysis is conducted
over two settings: 0-shot and SG+CoT, using both
Qwen2-72B and GPT-4o models.

E.1 Facing direction

According to Table 10, we observe that the facing
direction plays a significant role in the performance
drop for both Qwen2-72B and GPT-4o. Both mod-

els achieve relatively high performance only when
the relatum is facing either toward or away from the
camera, compared to when it is facing left or right
relative to the camera. This effect is particularly
noticeable in GPT-4o, which shows a substantial
performance gap between cases where the relatum
is facing the camera and other directions. We spec-
ulate that this error stems from biases in the train-
ing data, which typically consist of image–caption
pairs based on 2D images where objects are clearly
oriented toward the camera. As a result, LLMs
appear to overfit to FoR reasoning patterns on spe-
cific facing directions (facing toward the camera),
leading to confusion—particularly between “left”
and “right” that usually reverse when the relatum is
facing toward the camera—when the relatum is ori-
ented differently, even if the image is not presented
in the input.

E.2 Spatial relation

According to Table 11, we observe that Qwen2-
72B does not always extract the relation in C-split.
However, it shows some evidence of extraction
when the spatial lexical form is “front” or “back”
as the accuracy is higher in these cases. In scenar-
ios where the spatial lexical form is either “left”
or “right,” the model appears to attempt reason-
ing (i.e., going beyond extracting the same relation
mentions in the context), but often fails to pro-
duce correct results. For GPT-4o (multimodal),
the model demonstrates overall better performance
than Qwen2, except in cases that require conversion
to “left” or “right.” This may be attributed to errors
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Qwen2-72B + 0-shot GPT-4o + 0-shot
Facing Direction Front Back Left Right Avg. Facing Direction Front Back Left Right Avg.
Front 83.97 80.53 33.21 33.78 57.87 Front 84.54 77.29 66.79 69.85 74.62
Back 70.42 66.79 29.20 32.82 49.81 Back 58.02 47.52 16.41 30.15 38.02
Left 0.19 0.00 2.29 39.50 10.50 Left 96.95 61.64 5.73 9.92 43.56
Right 0.00 0.00 26.15 3.63 7.44 Right 64.31 26.34 1.53 1.72 23.47

Qwen2-72B + SG + CoT GPT-4o + SG + CoT
Facing Direction Front Back Left Right Avg. Facing Direction Front Back Left Right Avg.
Front 98.09 83.02 6.87 13.17 50.29 Front 50.95 58.78 95.80 95.99 75.38
Back 75.00 75.57 37.60 36.83 56.25 Back 86.26 93.89 2.86 2.29 46.33
Left 12.21 19.27 0.38 83.78 28.91 Left 73.47 35.11 51.34 63.17 55.77
Right 5.73 48.28 57.25 9.73 30.25 Right 79.01 56.49 60.31 49.81 61.40

Table 10: The accuracy of each relation type (column-label) for each facing direction (row-label) presented in the
input context for Qwen2-72B and GPT-40 with 0-shot and SG+CoT settings.

Qwen2-72B + 0-shot GPT-4o + 0-shot
Spatial Relation Front Back Left Right Avg. Facing Direction Front Back Left Right Avg.
Front 83.97 66.79 2.29 3.63 39.17 Front 84.54 47.52 5.73 1.72 34.88
Back 70.42 80.53 26.15 39.50 54.15 Back 58.02 77.29 1.53 9.92 36.69
Left 0.19 0.00 29.20 33.78 15.79 Left 96.95 26.34 16.41 69.85 52.39
Right 0.00 0.00 33.21 32.82 16.51 Right 64.34 61.64 66.79 30.15 55.73

Qwen2-72B + SG + CoT GPT-4o + SG + CoT
Spatial Relation Front Back Left Right Avg. Facing Direction Front Back Left Right Avg.
Front 98.09 75.57 0.38 9.73 45.94 Front 50.95 93.89 51.34 49.81 61.50
Back 75.00 83.02 57.25 83.78 74.76 Back 86.26 58.78 60.31 63.17 67.13
Left 12.21 48.28 37.60 13.17 27.81 Left 73.47 56.49 2.86 95.99 57.20
Right 5.73 19.27 6.87 36.83 17.18 Right 79.01 35.11 95.80 2.29 53.05

Table 11: The accuracy of each relation type (column-label) for each spatial relation (row-label) presented in the
input context for Qwen2-72B and GPT-40 with 0-shot and SG+CoT settings.

introduced by facing direction, where the model
appears to rely too heavily on reasoning patterns
conditioned on the object facing toward the camera.
Nevertheless, these results also indicate that the
SG+CoT approach provides clear improvements
when reasoning is required, though confusion be-
tween “left” and “right” persists.

F Template Variations Analysis

F.1 Performance for each question template

We examine the effect of each question template
on the performance of the models. Table 12 reports
average accuracy on the C-split across all ques-
tion templates for Qwen2-72B and GPT-4o. While
results show notable variation across templates,
no single template consistently outperforms others
across all tasks. Template effectiveness depends on
both the prompting technique and the underlying
model. Simpler templates generally yield higher
accuracy, though more complex expressions may
reduce overall performance. Nevertheless, the com-
parative trend remains consistent, as SG+CoT often
outperforms CoT in overall improvement across
both models. Notably, SG prompting yields the

smallest performance variation across templates.

F.2 Order variation in question templates
We include an additional template experiment to
ensure that results are independent of the order of
spatial entities (locatum and relatum) in the ques-
tions. A reversed template is shown in Table 7.
Results. According to Table 13 and Table 14, the
average accuracy difference between the original
benchmark templates and the reverse versions is rel-
atively small across A-split, C-split (Table 13 and
Table 14). In particular, the difference ranges from
1% to 4%, with an average of 2.76%. Detailed
comparisons can be seen by examining the new
C-split of Table 14 alongside Table 3 in the main
paper. Specifically, for questions asked from the
camera perspective, performance slightly declines
when using reverse templates, with the largest drop
observed in the 4-shot setting (a decrease of 3.6%).
In contrast, questions asked from the relatum per-
spective show improvement with reverse templates,
particularly in the CoT setting, where accuracy
increases by 3.8%. Notably, the challenge of per-
spective conversion persists and even worsens with
reverse questions, suggesting that these gains are
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Model T0 T1 T2 T3 T4 Avg. Highest ∆
Qwen2 (0-shot) 70.23 61.36 69.35 65.55 67.97 66.91 8.87
Qwen2 (4-shot) 65.15 64.01 68.80 63.24 65.46 65.34 5.57
Qwen2 (CoT) 71.26 66.11 72.78 63.40 71.87 69.10 9.37
Qwen2 (SG + CoT) 71.15 70.92 72.89 70.11 71.69 71.36 2.78
GPT-4o (0-shot) 64.02 61.14 73.16 65.77 56.66 64.19 16.50
GPT-4o (4-shot) 65.85 52.23 70.55 61.64 58.33 61.78 18.31
GPT-4o (CoT) 80.98 69.65 84.81 83.24 74.98 78.78 15.16
GPT-4o (SG + CoT) 85.74 85.02 84.10 86.53 87.57 85.79 3.47

Table 12: Average accuracy across different templates. Ti refers to the generated QA template i in Table 6. ∆
measures the difference in accuracy between two different templates.

primarily due to cases where the model extracts
spatial relations directly from the context without
considering perspective. Finally, we observe that
Qwen2 exhibits consistent behavior across both
question orders by comparing the new results of
A-split with Table 1. Qwen2 still favors answering
FoR questions with the spatial lexicon explicitly.

G Human bias in Ambiguous Cases

"""
Instruction:
You will be provided with a scene

description that describes the
spatial relationship between two
objects.

The scene description may include object
orientation , such as A is facing

toward the camera , to indicate the
direction A is facing.

You will then receive a question asking
about the spatial relationship
between A and B from either the
camera 's perspective or an object 's
perspective.

Your task is to answer the question
based on your understanding of the
given spatial relationship.

"""

Listing 1: Insturction for collecting human results on
QA using A-split of FoREST dataset.

G.1 Experimental setting

We provided a Google Form with instructions (List-
ing 1), followed by 150 questions. These were
sampled from relatum categories in the A-split: 25
per case, covering four cases (Cow, Car, Box, Pen)
for camera-perspective questions, and two cases
(Cow, Car) for relatum-perspective questions, as
Box and Pen lack intrinsic direction. No time con-
straints were imposed, and all participants were
compensated at the standard research assistant rate.
At the end, participants were informed about the
study details and asked for consent to use their re-
sponses in the analysis. Results were evaluated

using the metric defined in Section 5.1, and par-
ticipant accuracies were averaged to establish the
human baseline.

G.2 Experimental results

Individual human results are shown in Table 15.
These results indicate that humans rely heavily
on their assumptions when interpreting ambiguous
frame-of-reference (FoR) contexts. Most partici-
pants favored the intrinsic FoR in A-split scenarios,
though this preference varied across individuals,
suggesting that background or prior visual experi-
ence may influence FoR interpretation. This aligns
with findings from cognitive studies on how hu-
mans describe spatial relations, which indicate that
recent examples may influence (Coventry et al.,
2018). However, our results contrast with other
studies suggesting that humans tend to adopt an
egocentric (relative) FoR in scenes with fewer land-
marks and an allocentric (intrinsic) FoR in those
with more landmarks (Forster et al., 2023). Since
our study does not provide visual input, we cannot
infer how participants mentally reconstruct scenes
to answer the questions with only two objects in the
scene. The next notable point is that while Box and
Pen cases appear straightforward for models (Ta-
ble 2), humans may still struggle with questions in
these categories. Humans do not exhibit the same
limitations as LLMs in perspective-shifting tasks.
When the context and question differ in perspective,
humans still achieve over 90% accuracy, whereas
LLMs often struggle with this type of reasoning.

H Qualitative Observations

Example of QA Bias in the A-split. To illustrate
example biases in the A-split, we present three
types of model behavior. The first, shown in Fig-
ure 8, occurs when the model assumes a shared
perspective between context and question, allow-
ing it to extract spatial relations directly without
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Question with Camera Perspective Question with Relatum Perspective
Model Cow Car Box Pen Avg. Cow Car Avg.

R% I% Acc. R% I% Acc. Acc. Acc. Acc. R% I% Acc. R% I% Acc. Acc.
Qwen2-72B (1) 70.6 29.0 94.1 69.0 30.6 92.6 100.0 100.0 94.7 26.5 73.1 85.5 27.1 72.5 87.6 85.8
Qwen2-72B (2) 68.6 31.0 87.7 65.9 33.7 85.1 100.0 100.0 89.1 28.7 70.8 81.7 24.6 74.9 86.3 82.3
Qwen2-72B (3) 45.3 54.4 86.1 41.6 58.2 85.5 100.0 100.0 88.0 35.1 64.5 87.8 36.6 63.0 85.7 87.5
Qwen2-72B (4) 54.5 45.2 88.9 52.4 47.3 90.6 100.0 100.0 90.7 42.3 57.4 78.3 35.6 64.0 82.8 78.9

Table 13: QA accuracy in the A-split with Qwen2-72B using templates where the locatum and relatum order is
reverse, across all settings. R% and I% represent the percentage the model assumes relative or intrinsic FoR for
ambiguous expression, explained in Section 5.1. Acc is the accuracy, and Avg is the micro-average of accuracy. (1):
0-shot, (2): 4-shot, (3): CoT, and (4): SG+CoT.

Question with Camera Perspective Question with Relatum Perspective
Model ER (CP) EI (RP) II (RP) IR (CP) Avg. ER (CP) EI (RP) II (RP) IR (CP) Avg.
Qwen2-72B (0-shot) 90.6 32.9 31.8 91.1 64.0 26.4 96.8 99.8 24.4 61.7
Qwen2-72B (4-shot) 87.3 33.9 34.4 72.6 61.7 31.0 96.7 99.4 22.7 63.5
Qwen2-72B (CoT) 80.1 54.2 55.7 66.9 67.4 35.7 96.0 97.5 27.0 65.4
Qwen2-72B (SG+CoT) 96.6 41.7 31.2 93.7 70.6 44.0 92.1 94.7 35.0 67.7

Table 14: QA accuracy in the C-split with Qwen2-72B using templates where the locatum and relatum order is
reverse, across all settings. ER, EI, II, and IR denote external relative, external intrinsic, internal intrinsic, and
internal relative FoRs. Avg represents the micro-average accuracy. CP refers to context with camera perspective,
while RP denotes context with relatum perspective.

Figure 8: The example in A-split of FoREST, where
the model correctly answers both perspectives. In this
example, the model responds with the spatial relation in
the context, assuming all questions and context have the
same perspective.

Figure 9: The example in A-split of FoREST, where
the model correctly answers both perspectives. In this
example, the model assumes the context has a relatum
perspective.

FoR reasoning. This scenario is the most common
behavior of Qwen2. The second, illustrated in Fig-
ure 9, arises when the model assumes the context
always reflects the relatum’s perspective, favoring
intrinsic over relative interpretation. Lastly, Fig-
ure 10 shows the model assuming the context al-
ways adopts the camera perspective.
Incorrect Reasoning in the C-split QA Task. To
demonstrate LLMs’ confusion in left–right scenar-

Figure 10: The example in A-split of FoREST, where
the model correctly answers both perspectives. In this
example, the model assumes the context has a camera
perspective.

ios, we present a quantitative example of a failure
case in Figure 11.

I VISOR-uncond Results

As mentioned in Section 5.1, VISORuncond pro-
vides the overall spatial relation score, including
images with object generation errors. Because
it is less focused on evaluating spatial interpreta-
tion than VISORcond, which explicitly assesses a
text-to-image model’s spatial reasoning, we report
VISORuncond results here in Table 16 rather than in
the main paper. The results follow a similar pattern
with the VISORcond metric, that is, base models
(SD-1.5 and SD-2.1) perform better under the rel-
ative frame of reference, while layout-to-image
models (e.g., GLIGEN) perform better under the
intrinsic frame of reference.
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Question with Camera Perspective Question with Relatum Perspective
Model Cow Car Box Pen Avg. Cow Car Avg.

R% I% Acc. R% I% Acc. Acc. Acc. Acc. R% I% Acc. R% I% Acc. Acc.
P #1 22.7 77.3 88.0 8.3 91.7 96.0 92.0 96.0 93.0 20.8 79.2 96.0 4.2 95.8 96.0 96.0
P #2 8.7 91.3 92.0 0.0 100.0 96.0 36.0 56.0 70.0 20.0 80.0 100.0 16.7 83.3 96.0 98.0
P #3 78.3 21.7 92.0 75.0 25.0 96.0 88.0 96.0 93.0 83.3 16.7 96.0 87.5 12.5 96.0 96.0
Human-baseline 36.6 63.4 90.7 27.8 72.2 96.0 72.0 82.7 85.3 41.4 58.6 97.3 36.1 63.9 96.0 96.7

Table 15: QA accuracy in the A-Split of human study. R% and I% represent the percentage the model assumes
relative or intrinsic FoR for ambiguous expression, explained in Section 5.1. Acc is the accuracy, and Avg is the
micro-average of accuracy. (1): 0-shot, (2): 4-shot, (3): CoT, and (4): SG+CoT.

VISOR(%)
A-Split C-Split

Model uncond (I) uncond (R) uncond (avg) uncond (I) uncond (R) uncond (avg)
SD-1.5 45.43 33.22 43.51 35.06 35.68 35.40
SD-2.1 62.87 43.90 59.89 45.98 46.59 46.31
Llama3-8B + GLIGEN 46.74 38.16 45.39 33.98 39.36 36.89
Llama3-70B + GLIGEN 54.33 46.89 53.17 38.04 46.04 42.37
Llama3-8B + SG + GLIGEN (Our) 51.83 43.24 50.48 36.28 44.43 40.70
Llama3-70B + SG + GLIGEN (Our) 58.92 47.44 57.12 38.23 48.62 43.86

Table 16: VISORuncond score on the A-Split and C-Split where I refers to the Cow Case and Car Case, where
relatum has intrinsic directions, and R refers to the Box Case and Pen case, where relatum lacks intrinsic directions,
avg is the micro-average of I and R.

Figure 11: An example of an incorrect SG+CoT case,
where the model generates incorrect reasoning and in-
correctly converts left to right.

J Analysis of SG-prompting in T2I

To further explain the improvements of SG-
prompting in the T2I task, we assess generated
bounding boxes in the C-split for left–right rela-
tions relative to the camera, since these can be eval-
uated using bounding boxes alone without depth
information. As shown in Table 17, SG-prompting
improved Llama3-70B’s performance by 3.48%,
while Llama3-8B saw a slight decrease of 0.22%.
This evaluation uses all generated layouts from
the C-split, differing from the image subset used
for VISORcond in Table 4. For consistency, we

Model Layout Layoutcond

Llama3-8B 85.26 88.84
Llama3-8B + SG 85.04 88.86
Llama3-70B 88.47 93.16
Llama3-70B + SG 91.95 95.45

Table 17: Layout accuracy where spatial relations are
left or right relative to the camera. Layout is evaluated
for all generated layouts in C-split while Layoutcond
uses the same testing examples as VISORcond.

also report the layoutcond score in Table 17, which
shows that Llama3-8B improves within the same
evaluation subset as VISORcond. Overall, incor-
porating FoR information through SG layout dif-
fusion enables Llama3 to generate better spatial
configurations, thereby enhancing image genera-
tion performance.

K Frame of Reference Identification Task

We evaluate the LLMs’ performance in recogniz-
ing the FoR classes from given spatial expressions.
Each model receives a spatial expression T and out-
puts one FoR class FoR from the valid set of FoR
classes, For ∈ {external relative, external intrinsic,
internal intrinsic, internal relative}. All in-context
learning examples are in the Appendix L.

K.1 Experimental setting
Zero-shot model. We follow the regular setting of
zero-shot prompting. We called the LLM with the
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Model inherently clear require template
CoT SG CoT SG

Llama3-70B 19.84 44.64 (↑ 24.80) 76.72 87.39 (↑ 10.67)
Qwen2-72B 58.20 84.22 (↑ 26.02) 88.36 93.86 (↑ 10.67)
GPT-4o 12.50 29.17 (↑ 16.67) 87.73 90.74 (↑ 3.01)

Table 18: Comparison of CoT and SG prompting in the
C-split, separated into inherently clear contexts (with-
out FoR ambiguity) and template-dependent contexts
(requiring extra information to resolve ambiguity).

instruction prompt and T to find the corresponding
FoR, F , of given T .
Few-shot model. We manually craft four spatial
expressions for each FoR class. To avoid creating
bias, each spatial expression is ensured to fit in
only one FoR class. We provide these examples in
addition to the instruction as a part of the prompt,
followed by T and query F from the LLM.
Chain-of-Thought (CoT) model. To create
CoT (Wei et al., 2022) examples, we modify the
prompt to require reasoning before answering.
Then, we manually crafted reasoning explanations
for each example used in the few-shot. Finally,
we call the LLMs, adding modified instructions to
updated examples, followed by T and query F .
Spatial-Guided Prompting (SG) model. This fol-
lows the same SG setting described in Section 4.3.
We prompt the LLM to extract spatial information
from the given T , expecting it to return the FoR as
part of the SG response. We then extract this FoR
to obtain F . Unlike QA and T2I tasks, this FoR
identification task does not invoke additional CoT
for downstream reasoning.

K.2 Evaluation metrics

We report the accuracy of the model on the multi-
class classification task. Note that the expressions
in A-split can have multiple correct answers. There-
fore, we consider the prediction correct when it is
in one of the valid FoR classes for the given spatial
expression.

K.3 Experimental results

K.3.1 Inherent FoR bias in LLMs
C-spilt. The zero-shot setting reflects the LLMs’
inherent bias in identifying FoR. Table 19 shows
accuracy for each FoR class in the C-split, where
sentences explicitly include topology and perspec-
tive information. Some models strongly favor spe-
cific FoR classes: notably, Gemma2-9B achieves
near-perfect accuracy on external relative FoR but

performs poorly on others—especially external in-
trinsic—indicating a strong bias toward external
relative. In contrast, GPT-4o and Qwen2-72B per-
form well on intrinsic FoR classes but poorly on
relative ones.
A-spilt. We examine FoR bias in the A-split. Based
on the results in Table 19, we plot the top three mod-
els (Gemma2-9B, Llama3-70B, and GPT-4o) for
detailed analysis in Figures 12. The plots show the
frequency distribution of FoR categories. Gemma2-
9B and GPT-4o display strong biases toward ex-
ternal relative and external intrinsic, respectively.
This bias benefits Gemma2-9B in the A-split, since
all spatial expressions can be interpreted as exter-
nal relative. By contrast, GPT-4o’s bias leads to
errors when intrinsic FoRs are invalid, as in the Box
and Pen cases (plots (c) and (d)). Llama3 shows
a different pattern, with its bias depending on the
relatum’s properties, particularly the container af-
fordance. In cases where the relatum cannot serve
as a container (Cow and Pen), Llama3 favors the
external relative. Conversely, when the relatum has
container potential, Llama3 tends to favor external
intrinsic.

K.3.2 Effect of ICL variations
C-spilt. We evaluate model behavior under differ-
ent in-context learning (ICL) methods. As shown
in Table 19, few-shot prompting improves perfor-
mance over zero-shot across multiple LLMs by
reducing their bias toward specific classes, though
this reduction sometimes lowers performance (e.g.,
Gemma2 in the external relative). Another obser-
vation is that while CoT generally improves perfor-
mance in larger LLMs, it can be counterproductive
in smaller models for some FoR classes, likely
because they struggle to infer FoR from longer
contexts. A similar negative effect appears in SG
prompting, which also uses longer explanations.
Despite these degradations in small models, SG
prompting performs well across architectures and
achieves outstanding results with Qwen2-72B. To
better understand this, we compare CoT and SG
prompting in Table 18. CoT shows large perfor-
mance gaps between contexts with inherently clear
FoR and those requiring templates to resolve am-
biguity, indicating its reliance on template-specific
cues. By contrast, SG prompting exhibits a smaller
gap and substantially outperforms CoT in inher-
ently clear contexts. This suggests that guiding
models to identify topological, distance, and direc-
tional relation characteristics enhances FoR com-
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A-split C-Split
Model ER-Split EI-Split II-Split IR-Split Avg.
Gemma2-9B (0-shot) 94.17 94.24 35.98 53.91 57.66 60.45
Gemma2-9B (4-shot) 59.58 55.89(↓ 38.34) 72.61(↑ 36.63) 74.22(↑ 20.31) 54.44(↓ 3.23) 64.29(↑ 3.84)
Gemma2-9B (CoT) 60.49 60.49(↓ 33.74) 60.54(↑ 24.57) 87.50(↑ 33.59) 54.03(↓ 3.63) 65.64(↑ 5.20)
Gemma2-9B (SG)(Our) 72.67 65.87(↓ 28.37) 65.54(↑ 29.57) 53.12(↓ 0.78) 95.97(↑ 38.31) 70.13(↑ 9.68)
llama3-8B (0-shot) 60.21 32.20 90.11 75.78 0.00 49.52
llama3-8B (4-shot) 60.14 47.77(↑ 15.58) 54.35(↓ 35.76) 100.00(↑ 24.22) 41.13(↑ 41.13) 60.81(↑ 11.29)
llama3-8B (CoT) 61.32 61.06(↑ 28.86) 97.28(↑ 7.17) 100.00(↑ 24.22) 36.29(↑ 36.29) 73.66(↑ 24.14)
llama3-8B (SG) (Our) 62.95 63.29(↑ 31.09) 94.57(↑ 4.46) 100.00(↑ 24.22) 43.55(↑ 43.55) 75.35(↑ 25.83)
llama3-70B (0-shot) 84.23 74.08 9.57 92.19 68.55 61.10
llama3-70B (4-shot) 78.47 81.81(↑ 7.72) 64.89(↑ 55.33) 100.00(↑ 7.81) 75.81(↑ 7.26) 80.63(↑ 19.53)
llama3-70B (CoT) 69.11 72.05(↓ 2.03) 97.07(↑ 87.50) 100.00(↑ 7.81) 79.44(↑ 10.89) 87.14(↑ 26.04)
llama3-70B (SG) (Our) 76.50 78.21(↑ 4.12) 97.61(↑ 88.04) 100.00(↑ 7.81) 72.18(↑ 3.63) 87.00(↑ 25.90)
Qwen2-7B (0-shot) 83.64 79.97 59.24 77.34 40.73 64.32
Qwen2-7B (4-shot) 61.12 50.52(↓ 29.45) 65.76(↑ 6.52) 93.75(↑ 16.41) 56.05(↑ 15.32) 66.52(↑ 2.20)
Qwen2-7B (CoT) 72.12 70.81(↓ 9.16) 63.80(↑ 4.57) 99.22(↑ 21.88) 51.61(↑ 10.89) 71.36(↑ 7.04)
Qwen2-7B (SG) 70.61 68.00(↓ 11.98) 71.20(↑ 11.96) 88.28(↑ 10.94) 57.26(↑ 16.53) 71.18(↑ 6.86)
Qwen2-72B (0-shot) 64.46 62.70 100.00 100.00 39.11 75.45
Qwen2-72B (4-shot) 79.12 78.73(↑ 16.03) 99.35(↓ 0.65) 87.50(↓ 12.50) 87.10(↑ 47.98) 88.17(↑ 12.72)
Qwen2-72B (CoT) 88.54 88.87(↑ 26.18) 89.57(↓ 10.43) 93.75(↓ 6.25) 83.47(↑ 44.35) 88.91(↑ 13.46)
Qwen2-72B (SG) 90.51 90.18(↑ 27.49) 93.26(↓ 6.74) 98.44(↓ 1.56) 85.08(↑ 45.97) 91.74(↑ 16.29)
GPT3.5 (0-shot) 83.11 88.15 17.50 70.31 41.13 54.27
GPT3.5 (4-shot) 61.25 48.95(↓ 39.20) 62.72(↑ 45.22) 100.00(↑ 29.69) 28.63(↓ 12.50) 60.07(↑ 5.80)
GPT3.5 (CoT) 66.55 66.62(↓ 21.53) 96.85(↑ 79.35) 100.00(↑ 29.69) 50.81(↑ 9.68) 78.57(↑ 24.30)
GPT3.5 (SG) (Our) 70.61 73.30(↓ 14.86) 92.93(↑ 75.43) 99.22(↑ 28.91) 49.19(↑ 8.06) 78.66(↑ 24.39)
GPT4o (0-shot) 73.82 71.27 98.80 100.00 70.56 85.16
GPT4o (4-shot) 66.23 67.87(↓ 3.40) 98.70(↓ 0.11) 100.00(↑ 0.00) 78.63(↑ 8.06) 86.30(↑ 1.14)
GPT4o (CoT) 72.44 72.77(↑ 1.51) 100.00(↑ 1.20) 100.00(↑ 0.00) 73.79(↑ 3.23) 86.64(↑ 1.48)
GPT4o (SG) (Our) 76.44 74.67(↑ 3.40) 97.72(↓ 1.09) 100.00(↑ 0.00) 68.55(↓ 2.02) 85.23(↑ 0.08)

Table 19: Accuracy results report from FoR Identification with LLMs. The correct prediction is one of the valid FoR
classes for the given spatial expression. All FoR classes are external relative (ER), external intrinsic (EI), internal
intrinsic (II), and internal relative (IR).

prehension.

A-spilt. We use Figure 12 to analyze behavior
under ICL of the A-split. The A-split shows min-
imal improvement overall, though some notable
changes emerge. With few-shot, all models shift
toward external intrinsic FoR—even when the rela-
tum lacks intrinsic direction (Box and Pen)—a bias
also observed in Gemma2-9B, which usually be-
haves differently. This indicates that models inherit
biases from examples despite efforts to avoid them.
CoT reduces some of this bias, encouraging LLMs
to predict relative FoR, which is generally valid
across scenarios. For example, Gemma2 predicts
relative FoR for Cow and Car, while Llama3 does
so for Cow and Pen, where the relatum cannot act
as a container. GPT-4o shows slight improvements
across all cases without relying on relatum proper-
ties. Unlike CoT, SG prompting is effective across
scenarios, significantly reducing biases while fol-
lowing a similar adjustment pattern. Specifically,
it increases external relative predictions for Car
and Cow in Gemma2-9B and for Cow and Pen
in Llama3-70B. GPT-4o shows only slight bias
reduction, yet overall performance improves for

most models (Table 19). Llama3-70B’s behavior
is mirrored in Llama3-8B and GPT-3.5, with corre-
sponding plots shown in Figure 13.

K.3.3 Experiment with different temperatures
We conducted additional experiments to investi-
gate the impact of temperature on model bias in
the A-split of the FoREST dataset. As shown in
Table 20, comparing temperatures 0 and 1 revealed
distribution shifts of up to 10%. However, the rel-
ative preferences across most categories remain
unchanged. In particular, the model produced the
highest-frequency responses for the Cow, Car, and
Pen cases, with some increases under certain set-
tings. Overall, higher temperature does not sub-
stantially increase the diversity of LLM responses
in this task, which is a notable finding.

L Prompt Specifications

L.1 FoR identification task
We provide the prompting for each in-context learn-
ing. The prompting for zero-shot and few-shot
is provided in Listing 2. The instruction answer
for these two in-context learning is “Answer only
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(a) Results of Cow Case in A-Split. (b) Results of Car Case in A-Split.

(c) Results of Box Case in A-Split. (d) Results of Pen Case in A-Split.

Figure 12: Red indicates incorrect FoR identifications and green indicates correct ones. Dark colors represent
relative FoRs, while light colors represent intrinsic FoRs. Round shapes correspond to external FoRs, and squares
correspond to internal FoRs. The plot depth represents the four FoRs—external relative, external intrinsic, internal
intrinsic, and internal relative—from front to back. This plot shows the results for Gemma-9B, Llama3-72B, and
GPT4o.

the category without any explanation. The answer
should be in the form of {Answer: Category.}"

For the Chain of Thought (CoT), we only modi-
fied the instruction answer to “Answer only the cat-
egory with an explanation. The answer should be
in the form of {Explanation: Explanation Answer:
Category.}" Similarly to CoT, we only modified the
instruction answer to “Answer only the category
with an explanation regarding topological, distance,
and direction aspects. The answer should be in the
form of {Explanation: Explanation Answer: Cate-
gory.}", respectively. The example responses are
provided in Listing 5 for Spatial Guided prompting.

# Instruction to find frame of reference
class of given context

"""
Instruction:
You specialize in language and spatial

relations , specifically in the frame
of context (multiple perspectives

in the spatial relation). Identify
the frame of reference category
given the following context. There
are four classes of the frame of
reference (external intrinsic ,
internal intrinsic , external
relative , internal relative). Note
that the intrinsic direction refers

to whether the model has the front/
back by itself. (Example: a bird ,
human. Counter Example: a ball , a
box). "

External intrinsic. The spatial
description of an entity A relative
to another entity B, where (1) A is
not contained by B, (2) the spatial
relation is based on B's facing
orientation (intrinsic direction) if
B has one.

Internal intrinsic. The spatial
description of an entity A relative
to another entity B, where (1) A is
contained by B, (2) the spatial
relation is based on B's facing
orientation (intrinsic direction) if
B has one.

External relative. The spatial
description of an entity A relative
to another entity B, where (1) A is
not contained by B, (2) The spatial
relation is relative to entity C,
where C is not involved in the
spatial relation and only provides
the perspective. An example of C is
the camera.

Internal relative. The spatial
description of an entity A relative
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(a) Results of Cow Case in A-Split. (b) Results of Car Case in A-Split.

(c) Results of Box Case in A-Split. (d) Results of Pen Case in A-Split.

Figure 13: Red indicates incorrect FoR identifications and green indicates correct ones. Dark colors represent
relative FoRs, while light colors represent intrinsic FoRs. Round shapes correspond to external FoRs, and squares
correspond to internal FoRs. The plot depth represents the four FoRs—external relative, external intrinsic, internal
intrinsic, and internal relative—from front to back. This plot shows the results for Llama3-8B and GPT3.5.

to another entity B, where (1) A is
contained by B, (2) The spatial
relation is relative to entity C,
where C is not involved in the
spatial relation and only provides
the perspective. An example of C is
the camera.

{Instruction answer}
# Normal Instruction answer: Find the

frame of reference category without
any explanations. The answer should
be in the form of Answer: Category.

# COT Instruction answer: Find the frame
of reference category with an

explanation. The answer should be in
the form of Explanation:

Explanation. Answer: Category.
# SG Instruction answer: Find the frame

of reference category with an
explanation. Additionally , include
three more explanations relating to
topology , distance , and direction
from the given context. The answer
should be in the form of \"
Explanation: Explanation. Topology:
Explanation. Distance: Explanation.
Direction: Explanation. Answer:
Category.

Context: {spatial exprssion}
"""

Listing 2: Prompt for finding the frame of reference
class of given context.

## These are four examples used in few -
shot , CoT , and SG

# Example 1: The bird is outside the car
and in front of the car relative to
the car.

# Few -shot response: Answer: external
intrinsic

# CoT response: Explanation: The car
does not contain the bird , and the
spatial relation is relative to the
car's facing orientation. The
intrinsic direction of the car is
relevant in this context , as the
description \"in front of\" implies
a direction relative to the sheep's
front or back. Answer: external
intrinsic.

# SG response: Explanation: The car does
not contain the bird , and the

spatial relation is relative to the
car's facing orientation. The
intrinsic direction of the car is
relevant in this context , as the
description \"in front of\" implies
a direction relative to the sheep's
front or back. Topology: The bird is
outside the car. Distance: There is
little distance between the bird
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Model ER EI II IR
temp-0 temp-1 temp-0 temp-1 temp-0 temp-1 temp-0 temp-1

Cow Case

0-shot 75.38 87.12 23.86 12.50 0.76 0.13 0.00 0.25
4-shot 0.00 15.66 100.00 84.34 0.00 0.00 0.00 0.00
CoT 31.82 49.87 68.18 49.87 0.00 0.13 0.00 0.13
SG 51.39 70.45 48.61 29.42 0.00 0.00 0.00 0.13

Box Case

0-shot 22.50 41.67 77.50 58.33 0.00 0.13 0.00 0.25
4-shot 0.00 0.00 100.00 100.00 0.00 0.00 0.00 0.00
CoT 0.00 5.83 100.00 94.17 0.00 0.00 0.00 0.00
SG 11.67 33.33 88.33 66.67 0.00 0.00 0.00 0.00

Car Case

0-shot 55.20 68.24 49.01 31.15 0.79 0.61 0.00 0.00
4-shot 0.60 5.94 99.40 94.06 0.00 0.00 0.00 0.00
CoT 19.64 38.52 80.16 61.27 0.20 0.20 0.00 0.00
SG 44.25 56.97 55.75 43.03 0.00 0.00 0.00 0.00

Pen Case

0-shot 90.62 96.88 9.38 3.12 0.00 0.61 0.00 0.00
4-shot 0.00 7.03 100.00 92.97 0.00 0.00 0.00 0.00
CoT 17.19 28.91 82.81 71.09 0.20 0.20 0.00 0.00
SG 48.31 57.81 54.69 42.19 0.00 0.00 0.00 0.00

Table 20: Percentage distribution of responses from Llama3-70B at two different temperatures (0 and 1) on the
A-split of FoREST. All FoR classes are external relative (ER), external intrinsic (EI), internal intrinsic (II), and
internal relative (IR).

and the car. Direction: The bird is
in the front direction of the car (
entity B). Answer: external
intrinsic.

# Example 2: The bird is inside of the
car and left of the car from the car
's perspective.

# Few -shot response: Answer: internal
intrinsic

# CoT response: Explanation: In this
scenario , the bird is contained
within the car , meaning it is an
internal relationship. Additionally ,
the description specifies the bird'

s position relative to the car ,
indicating that the spatial relation
is relative to the car itself ,

considering its intrinsic direction.
Answer: internal intrinsic.

# SG response: Explanation: In this
scenario , the bird is contained
within the car , meaning it is an
internal relationship. Additionally ,
the description specifies the bird'

s position relative to the car ,
indicating that the spatial relation
is relative to the car itself ,

considering its intrinsic direction.
Topological: The bird is inside the
car. Distance: The bird is in the

same location as the car. Direction:
The bird is in the left direction

of the car (entity B). Answer:
internal intrinsic.

# Example 3: The box is inside and at
the back of the room.

# Few -shot response: Answer: internal
relative

# CoT response: Explanation: In this
context , the box (entity A) is
described as inside the room (entity
B), fulfilling the first condition

for an internal frame of reference.
However , the spatial relation given
(\" at the back \") cannot originate
from the room since the room does
not have intrinsic direction ,
implying it is relative to an
external observer or reference point
(C), such as a camera or a person

viewing the scene. Answer: internal
relative

# SG response: Explanation: In this
context , the box (entity A) is
described as inside the room (entity
B), fulfilling the first condition

for an internal frame of reference.
However , the spatial relation given
(\" at the back \") cannot originate
from the room since the room does
not have intrinsic direction ,
implying it is relative to an
external observer or reference point
(C), such as a camera or a person

viewing the scene. Topological: The
box is inside the room. Distance:
The box is in the same location as
the room. Direction: From the
observer 's perspective , the box is
located at the back of the room.
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Answer: internal relative

# Example 4: A phone is on the left of a
tablet from my perspective.

# Few -shot response: Answer: external
relative

# CoT response: Explanation: In this
context , the spatial relation is
described from the perspective of an
observer (C) who is not involved in
the spatial relation. The phone (A)
is not contained by the tablet (B),
and the spatial relation \"left of

\" is relative to the observer 's
perspective , not the tablet 's facing
orientation. Answer: external

relative.
# SG response: Explanation: In this

context , the spatial relation is
described from the perspective of an
observer (C) who is not involved in
the spatial relation. The phone (A)
is not contained by the tablet (B),
and the spatial relation \"left of

\" is relative to the observer 's
perspective , not the tablet 's facing
orientation. Topological: The phone
is not contained by the tablet.

Distance: There is some distance
between the phone and the tablet.
Direction: From the observer 's
perspective , the phone is located to
the left of the tablet. Answer:

external relative.

Listing 3: Spatial expression examples using for few-
shots, Chain-of-Thought (CoT), and Spatial Guide (SG)
prompting

L.2 Question answering task

'''
#Context: The bird is outside the car

and in front of the car relative to
the car. The car is facing toward
the camera.

#Question: Based on the camera 's
perspective , where is the bird from
the car position in the scene?

#SG information (used in SG + CoT):
Frame of reference Explanation: The
car does not contain the bird , and
the spatial relation is relative to
the car's facing orientation. The
intrinsic direction of the car is
relevant in this context , as the
description \"in front of\" implies
a direction relative to the sheep's
front or back. Topology: The bird is
outside the car. Distance: There is
little distance between the bird

and the car. Direction: The bird is
in the front direction of the car (
entity B). Frame of reference:
external intrinsic.

#Normal response: Answer: front
#CoT / (SG + COT) response:Explanation:

Based on the context , the bird's
position is in the front direction

of the car. The car is facing toward
the camera. Then , the car's front

direction is the camera 's front
direction. Therefore , the bird's
position is in front of the car's
position from the camera 's
perspective. Answer: front

#Context: The bird is inside the car and
left of the car from the car's

perspective. The car is facing to
the right relative to the camera. #
Question: Based on the camera 's
perspective , where is the bird from
the car's position?

#SG information (used in SG + CoT):
Frame of reference Explanation: In
this scenario , the bird is contained
within the car , meaning it is an

internal relationship. Additionally ,
the description specifies the bird'

s position relative to the car ,
indicating that the spatial relation
is relative to the car itself ,

considering its intrinsic direction.
Topological: The bird is inside the
car. Distance: The bird is in the

same location as the car. Direction:
The bird is in the left direction

of the car (entity B). Frame of
reference: internal intrinsic.

#Normal response: Answer: back
#CoT / (SG + COT) response: Explanation:

Based on the context , the bird's
position is in the left direction of
the car. The car is facing to the

right. Then , the car's left
direction is the camera 's back
direction. Therefore , the bird's
position is to the back of the car's
position from the camera 's

perspective. Answer: back

Context: The box is inside and to the
right of the room from the observer '
s perspective.

Question: From the observer 's
perspective , what is the spatial
relation of the box to the room?

#SG information (used in SG + CoT):
Frame of reference Explanation: In
this context , the box (entity A) is
described as inside the room (entity
B), fulfilling the first condition

for an internal frame of reference.
However , the spatial relation given
(\" at the back \") cannot originate
from the room since the room does
not have intrinsic direction ,
implying it is relative to an
external observer or reference point
(C), such as a camera or a person

viewing the scene. Topological: The
box is inside the room. Distance:
The box is in the same location as
the room. Direction: From the
observer 's perspective , the box is
located at the back of the room.
Frame of reference: internal
relative.
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#Normal response: Answer: right
#CoT / (SG + COT) response: Explanation:

Based on the context , the box is to
the right of the room from the

camera 's direction. Therefore , the
box's position is to the right of
the room's position from the
observer 's perspective. Answer:
right

Context: A phone is to the left of a
tablet from my perspective. The
tablet is facing to the right.
Question: From my perspective , what
is the spatial relation of the phone
to the tablet?

#SG information (used in SG + CoT):
Frame of Reference Explanation: In
this context , the spatial relation
is described from the perspective of
an observer (C) who is not involved
in the spatial relation. The phone

(A) is not contained by the tablet (
B), and the spatial relation \"left
of\" is relative to the observer 's
perspective , not the tablet 's facing
orientation. Topological: The phone
is not contained by the tablet.

Distance: There is some distance
between the phone and the tablet.
Direction: From the observer 's
perspective , the phone is located to
the left of the tablet. Frame of

Reference: external relative.
#Normal response: Answer: left
#CoT / (SG + COT) response: Explanation:

Based on the context , the phone is
to the left of the tablet from my
perspective. The direction of the
tablet is not relevant in this
context since the left relation is
from my perspective. Therefore , from
my perspective , the phone is to the
left of the tablet. Answer: left

'''

Listing 4: Spatial expression examples using for few-
shots, Chain-of-Thought (CoT), and Spatial Guide (SG)
prompting for question-answering.

L.3 Text to Layout Task

# Instruction for generating
bounding box

"""
Your task is to generate the bounding

boxes of objects mentioned in the
caption.

The image is size 512 x512. The bounding
box should be in the format of (x, y
, width , height). Please considering
the frame of reference of caption

and direction of reference object if
possible. If needed , you can make

the reasonable guess.
"""

Listing 5: Prompt for generating bounding coordinates
to use as the layout for layout-to-image models.
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