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Abstract

Cross-lingual transfer allows models to per-
form tasks in languages unseen during training
and is often assumed to benefit from increased
multilinguality. In this work, we challenge this
assumption in the context of two underexplored,
sense-aware tasks: polysemy disambiguation
and lexical semantic change. Through a large-
scale analysis across 28 languages, we show
that multilingual training is neither necessary
nor inherently beneficial for effective transfer.
Instead, we find that confounding factors, such
as fine-tuning data composition and evaluation
artifacts, can better account for the perceived
advantages of multilinguality. Our findings call
for more rigorous evaluations in multilingual
NLP, and more nuanced and sensible choice of
models for transfer. We release fine-tuned mod-
els and benchmarks to support further research,
with implications extending to low-resource
and typologically diverse languages.

1 Introduction

Cross-lingual transfer enables multilingual pre-
trained models to leverage knowledge acquired in
one language to perform tasks in another (e.g., Wu
and Dredze, 2019; Ponti et al., 2018). This ability
underpins many of today’s advances in multilingual
NLP and has been evaluated across a wide range of
tasks - from syntactic parsing and POS tagging to
more complex, semantics-driven tasks like question
answering, language inference, and paraphrasing
(see Philippy et al. (2023) for a review).

Polysemy disambiguation, despite being foun-
dational to linguistic meaning and a long-standing
challenge in NLP (Navigli, 2009; Bevilacqua et al.,
2021), has received relatively little attention in
transfer learning research. Polysemy poses unique
challenges to transfer due to its inherently language-
specific nature (Rzymski et al., 2020). For example,
while the English word mole denotes ‘a small bur-
rowing mammal’ and ‘a skin blemish,” its Hindi

counterpart @ (til) refers to the latter sense but
also means ‘sesame seed’. Such non-aligned senses
across languages complicate direct transfer, mak-
ing it an ideal testbed for evaluating the true limits
of cross-lingual generalization.

A common assumption is that multilinguality
itself, set by a model’s exposure to multiple lan-
guages, is key for cross-lingual transfer. While it
is evident that models must support both source
and target languages, the extent to which broader
multilinguality facilitates transfer remains unclear
and understudied. Does access to more languages
intrinsically improve transfer, or do other factors,
such as language similarity or training setup, drive
the observed gains?

In this work, we investigate the role of multilin-
guality in cross-lingual transfer for two underex-
plored, sense-aware tasks: polysemy disambigua-
tion and lexical semantic change detection. We
examine whether multilingual fine-tuning is truly
essential for successful transfer, or whether pre-
viously reported benefits stem from confounding
factors. Our results show that multilinguality is nei-
ther necessary nor intrinsically beneficial in these
settings, challenging prevailing assumptions about
the mechanisms underlying multilingual transfer.

While our findings may seem narrowly focused,
they illuminate broader issues central to NLP, with
implications for low-resource and domain-specific
settings for which relying on broader multilingual
models and corpora is not an option, as well as the
wider research community. We release the best-
performing models to support further analysis.

2 Related Work

Cross-lingual transfer studies have expanded from
tasks like syntactic parsing, POS tagging, and
semantic classification (Wu and Dredze, 2019;

!Best-performing MONO and MULTI models are available
in the collection Multilinguality Does not Make Sense.
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Choenni et al., 2023a; Pires et al., 2019; de Vries
et al., 2022) to more complex ones such as NER,
NLI (Dolicki and Spanakis, 2021; Srinivasan et al.,
2021), and more recently QA, paraphrasing, and
sentiment analysis (Lauscher et al., 2020; Ahuja
et al., 2023; Choenni et al., 2023b; Wang et al.,
2023). Most studies rely on pretrained multilingual
models like XLM-R and mBERT.

Research also focused on factors affecting trans-
fer, including linguistic similarity (Lauscher et al.,
2020), pretraining corpus size and diversity (Srini-
vasan et al., 2021; Ahuja et al., 2023), lexical over-
lap (Patil et al., 2022; de Vries et al., 2022), and
model architecture (K et al., 2020). Language se-
lection also varied, from high-resource (Choenni
et al., 2023b) to extremely low-resource languages
tackled with continuous pretraining (Ebrahimi and
Kann, 2021; Imani et al., 2023).

Despite extensive work, the role of multilingual-
ity itself is rarely tested directly and is often as-
sumed to be beneficial. A notable exception is Sha-
ham et al. (2024), who compare PaLLM 2 fine-tuned
on monolingual versus multilingual data for instruc-
tion tuning, and find that modest multilingual ex-
posure aids transfer, while too much can degrade it.
However, their analysis is limited to a single model
and task, leaving open questions about pretraining
and generalizability. Choenni et al. (2023b) show
that source language examples can influence tar-
get predictions, but without explicitly controlling
for multilinguality, offering only indirect evidence.
Chang et al. (2024) directly manipulated multilin-
guality by pretraining over 10,000 models across
250 languages, but only evaluated using perplex-
ity with no standard tasks, making comparisons
difficult and replication impractical.

Notably underrepresented in transfer research
are sense-aware tasks, such as polysemy disam-
biguation and lexical semantic change (LSC), de-
spite the central role polysemy has in NLP. Un-
like sentiment analysis or other tasks amenable
to meaning-preserving translations, polysemy
exhibits substantial language-specific variation
(Rzymski et al., 2020), making it particularly suit-
able for rigorous evaluation of zero-shot multilin-
gual transfer ability.

Exceptions for polysemy are few. Raganato et al.
(2020) reported transfer to 12 languages, but used
only English as a source language, while Dairkee
and Dubossarsky (2024) found near-zero transfer
to Hindi, raising questions about the feasibility of
zero-shot transfer in low-resource settings. In con-

trast, Goworek et al. (2025) recently showed no-
table zero-shot transfer from English to 10 low-
resource languages, highlighting the need for fur-
ther investigation.

With regard to LSC, Arefyev et al. (2021)
showed that training on polysemy disambiguation
generalizes to semantic change detection, linking
the two tasks. Cassotti et al. (2023) followed
up and fine-tuned models on multilingual poly-
semy datasets, achieving state-of-the-art results
(Schlechtweg et al., 2020) and strong transfer to
unseen languages (Periti and Tahmasebi, 2024).

None of these works studied multilinguality it-
self. A notable exception is Berend (2022), who
explicitly examined the role of multilinguality in
word sense disambiguation transfer. However, their
study investigated the role of multilinguality only at
the pretraining stage, rather than during fine-tuning.
This is a less practical perspective given the ubig-
uitous use of multilingual models in NLP today,
where many languages lack high quality monolin-
gual models.

Overall, while multilingual transfer has been
widely studied, the direct contribution of multi-
linguality in fine-tuning remains underexplored,
especially in lexically focused tasks like polysemy
and LSC. This work addresses that gap by sys-
tematically testing the role of multilinguality in
sense-aware transfer. By manipulating multilingual
conditions, we clarify when and how multilingual-
ity supports cross-lingual generalization, helping to
resolve prior conflicting findings and inform future
research on transfer learning.

3 Methods

In this study, we set to isolate multilinguality from
confounds, enabling a clear assessment of its inde-
pendent impact on zero-shot transfer in polysemy
disambiguation and LSC tasks. We conduct a large-
scale evaluation of zero-shot and full-shot cross-
lingual transfer performance across 28 languages,
focusing on the unique contribution of multilingual
training. To achieve this, we implement an experi-
mental framework that systematically controls for
potential confounds, ensuring that observed effects
are attributed to multilinguality rather than artifacts
of training data size or pretraining exposure.

3.1 Tasks

The Word in Context (WiC) formulation of pol-
ysemy disambiguation is used. By pairing two
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sentences with the same polysemous word Pile-
hvar and Camacho-Collados (2019) transformed
this task into a binary classification problem, where
a target word appears either in the same sense or in
a different sense as per the example below:

The couple went for a date last night.
He marked this date on my calendar.

This reformulation removed the need for a sense-
label per word, which is language-specific, making
the task more suitable for cross-lingual transfer.
For LSC, we compare the models’ representa-
tions of words occurring in natural sentences across
two corpora from different time periods. The under-
lying assumption, which is the basis of all distribu-
tional semantics, is that changes in words’ meaning
are reflected in measurable changes to their repre-
sentations over time (Periti and Montanelli, 2024).

3.2 Data

MCL, XL and Hindi datasets, which together span
18 languages, were used for training and evaluation,
while AM?iCO and LSCD (LSC Detection), span-
ning 14 and 7 languages, respectively, were used
only for evaluation.” As some languages have only
development and test data, we followed Cassotti
et al. (2023) who sampled 75% of the development
data of each language to enable training on these
languages (keeping the remaining 25% for setting
hyperparameters), using their exact train-dev-test
splits. All WiC datasets are class-balanced, setting
the chance baseline at 50%. German, French and
English are overrepresented in the dataset relative
to other languages (see Figure 4).

MCL by Martelli et al. (2021) spans English,
Arabic, French, Russian and Chinese, constructed
by annotating sentences from native corpora: Ba-
belNet (Navigli and Ponzetto, 2010), the United
Nations Parallel Corpus (Ziemski et al., 2016) and
Wikipedia, with inter-annotator agreement of 0.95
and 0.9 on English and Russian, respectively.

XL by Raganato et al. (2020) used WordNet
of Bulgarian, Chinese, Croatian, Danish, Dutch,
English, Estonian, Japanese, Korean and Farsi, fil-
tering out fine-grained senses. French, German and
Italian used Wiktionary. The reported mean human
accuracy was 80%, and varied between 74% for
German, 87% for Danish and 97% for Farsi.

Hindi WiC by Dairkee and Dubossarsky (2024)
consists of 12,000 sentence pairs, constructed from

2AM?iCO uses English as a pivot language therefore is
biased toward it; LSCD is not in the WiC format.

a sense-annotated Hindi Corpus (Singh and Sid-
diqui, 2016) of 60 polysemous nouns.

AM?ZiCO by Liu et al. (2021) has English
paired with 14 target languages. Compiled from
Wikipedia Dumps of each language by selecting
words with at least two different Wikipedia pages
that show ambiguity in both the target language
and English. Overall human accuracy was 90.6%,
with an inter-annotator agreement of 88.4%.

Lexical Semantic Change Detection (LSCD)
covers seven languages from different sources:
English, German, Latin, and Swedish from
Schlechtweg et al. (2020), Spanish from Zamora-
Reina et al. (2022), Chinese from Chen et al.
(2023), and Norwegian from Kutuzov et al.
(2022).3 For each language and target word, an
equal number of sentences were sampled from cor-
pus 1 (historical) and corpus 2 (modern).

3.3 Multilingual Base Models

To ensure robustness, we use five multilingual mod-
els that differ in their language coverage, and in the
pretraining proportions of these languages.
XLM-R-large (Conneau et al., 2020) and
mBERT (Devlin et al., 2019) are pretrained on
100 and 104 languages, respectively, covering all
languages in our study, which enables us to train
and evaluate on all languages in zero- and full-shot
transfer. Both models are commonly used in multi-
lingual research. XLM-R was extensively used in
the context of WiC and LSC (Raganato et al., 2020;
Cassotti et al., 2023; Dairkee and Dubossarsky,
2024), providing a strong baseline for comparison.
BLOOM (BigScience Large Open-science
Open-access Multilingual Language Model) by
Le Scao et al. (2023) is pretrained on 46 languages,
with a focus on low-resource languages, 10 of
which overlap with those used in our study.
LLaMAZ3-8B-Instruct (Grattafiori et al., 2024,
Al@Meta, 2024) is a decoder-only instruction-
tuned language model with 8 billion parameters,
significantly larger than the other models. Pretrain-
ing data is not public, and is assumed to include
major NLP datasets (Sainz et al., 2023), like WiC.
MuRIL (Multilingual Representations for In-
dian Languages) by Khanuja et al. (2021) is pre-
trained on 16 Indian languages + English, which,
along with Hindi, are the only languages overlap-
ping with our study. It was used to test an edge
case of zero-shot transfer (see §4.2).

3Norwegian;, Norwegians, are two corpus pairs, compar-
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Figure 1: Mean accuracies and SD (bars) for multilingual and monolingual models on WiC datasets using different
pretrained models. Colors indicate whether fine-tuning was done on all data or on its sampled portion (Hindi and
Chinese appear only in the former due to their smaller data which did not allow subsampling). Hindi, as a single
language dataset, does not have SD. For detailed results see Appendix H.

3.4 Model Training and Testing

We fine-tune models on different combinations
of the data, creating three conditions: (1)
MONOIingual models, trained on a single language.
Only the 5 largest languages were considered; (2)
MULTIlingual models, trained on all languages;
and (3) MULTIglingual models, trained on all but
one held-out language. We also compare these
models while controlling for the total amount of
fine-tuning in the FIXED F.T. condition, denoted
by MODEL-. By systematically comparing per-
formance across conditions while controlling for
fine-tuning size and pretraining exposure, we iso-
late the effect of multilinguality on cross-lingual
transfer in WiC and LSC tasks.

Fixed Fine-Tuning To control for the different
training sizes across languages, fixed-size versions
of datasets were created for the MULTI, ENGLISH,
FRENCH and GERMAN datasets by randomly sub-
sampling 8,750 examples from their training sets.*

ing the words from four time periods.
“Other languages had too little data to subsample.

Finetuning Details All encoder models were
fine-tuned in the same way, selectively focusing
on different subsets of the WiC datasets. Follow-
ing Cassotti et al. (2023) and after a failed pilot
study with cross-encoders, a Siamese bi-encoder
was used to generate two distinct vector representa-
tions (embeddings) for the two usages of the target
word in the two sentences. The model outputs the
cosine distance between the output embeddings of
the two inputs, and, in order to adapt it to the binary
nature of WiC, a threshold is applied to decide if
the words are classified as having the same sense.
The model is trained to update its parameters (i.e.,
embeddings) to maximize this distance when the
target appears in different meanings (label 0) and
minimize it when the meanings are the same in the
two sentences (label 1), by minimizing contrastive
loss. During training, as well as inference, special
tokens, <t> and </t>, are placed around the tar-
get word in each sentence to signal what word the
model should focus on.

To preserve comparability and avoid cherry-
picking, we fixed a single hyperparameter configu-
ration and did not perform per-model/per-language
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tuning or multi-seed sweeps, which may understate
best-case performance and limit our characteriza-
tion of variance across runs. For more discussion
of this decision, see Appendix E.

To verify that performance is significantly im-
proved by fine-tuning rather than being the result
of inherent sense-distinction ability of contextual-
ized embeddings, we conduct no-fine-tuning exper-
iments with frozen pretrained models. The results
corroborate this and can be found in Appendix L.
For details of LLaMA’s fine-tuning (same data, dif-
ferent procedure), see Appendix L.1.

Testing To evaluate models on WiC, a threshold
for each model is determined by maximizing accu-
racy on the validation set of the training language.
This threshold collapses the cosine distance be-
tween the output embeddings of the two inputs into
a binary label. For LSC, we follow Cassotti et al.
(2023) and output a fixed-size vector for the target
word in each sentence. Taking all vectors for each
word across the two time-bins, a change score is
computed using APD and PRT measures (Kutuzov
and Giulianelli, 2020), and evaluated against gold-
label change scores using Spearman correlation, as
standard in LSC (Periti and Tahmasebi, 2024).

4 Experiments and Evaluation

4.1 Multilinguality Effects and Confounds

To rigorously assess the role of multilinguality in
zero-shot transfer, we conduct three types of con-
trolled comparisons, ensuring that fine-tuning size
is held constant and distinguishing between full-
shot and true zero-shot transfer scenarios. We pro-
vide a comprehensive evaluation of four multilin-
gual base-models (§3.3) on 28 languages, first ex-
amining whether multilingual training offers an ad-
vantage and then systematically accounting for key
confounding factors. We summarize the average
accuracies of the models in Figure 1 and present the
true zero-shot transfer comparison in Table 2. Due
to space constraints, except for Figure 1, we show
and discuss XLM-R results in the main text, only
briefly discussing other models while providing
their full results in Appendix H.

Testing for Multilingual Advantage We con-
trast between MONO models, which are fine-tuned
on a single language, and the MULTI model, trained
on all available data in the MCL and XL WiC
datasets. If multilinguality is indeed critical, then

>Training hyperparameters and model sizes are in Table 6.

MULTI should consistently outperform MONO mod-
els, which by definition do not have access to infor-
mation outside of their own language beyond their
pretraining stage. Our results show a mixed pat-
tern, with many MONO models on-par or even bet-
ter than MULTI on the MCL, AM?iCO and HINDI
datasets, and a multilinguality advantage on the XL
dataset (blue bars of the FULL F.T condition in Fig-
ure 1). LLaMA is the exception to the rule, though
its results are 5%-10% points lower than XLM-R.
We attribute the low transfer of Hindi and Chinese
MONO models to their smaller dataset sizes, and
subsequently tested whether dataset size is a poten-
tial confound in our analyses.

Dataset Size Confound MULTI is fine-tuned on
an order of magnitude more data than any other
model (see Figure 4), which gives it an unfair ad-
vantage over all monolingual models. We therefore
fix the size of the training datasets across all mod-
els (§3.4) to enable a fair comparison, and repeat
the same analysis under these controlled conditions.
The results in Figure 1, and especially the compari-
son between FULL F.T and FIXED F.T (blue and
orange bars, respectively) which are summarized
in Table 1, show that the performance of the MULTI
model drops much more than MONO English when
training size is controlled, perhaps due to a larger
relative drop in training size, making MONO En-
glish the best model across most datasets. Simi-
lar drops are observed for mBERT, BLOOM, and
LLaMA (Tables 7-9), which for the latter largely
diminished the advantage it had in FULL F.T. De-
spite its drop in the FIXED F.T condition, LLaMA
seems to benefit from multilingual fine-tuning more
than other models. We attribute this to its nature
as a generative model and pretraining uncertainty
which may include data contamination unwanted
for our experiments (Sainz et al., 2023). Addi-
tionally, LLaMA relies on English prompts with
explicit task instructions, which showed improved
performance, particularly for HINDI and CHINESE,
where training data is more limited. Overall, this
contrast (blue and orange) undermines the notion
that training on a multilingual dataset inherently
improves transfer. Instead, the advantage originally
observed for MULTI in the Full F. T may largely
be due to more training data (122.4k examples for
MULTI cf. 54.7k for German, 46.1Kk for French, and
15.1k for English; see Table 4). This finding does
not imply that training on more examples is not a
good strategy to improve transfer, which it clearly
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is, only that attributing the performance gains to
multilinguality is flawed.

Error Analysis If multilinguality equips mod-
els with novel sense-understanding, then not only
should its performance improve, but also its errors
should differ from MONO models that lack expo-
sure to such linguistic diversity. Instead, Figure 6
shows greater overlap of errors between MULTI and
MONO models, which even increases for FIXED
F.T, supporting a notion that MULTI is simply an-
other MONO model (see formulation of alignment
measures in Appendix F). This provides converging
evidence that supports previous findings, further
undermining the importance of multilinguality.

Dataset

Model MCL | XL | Hindi | Am?iCO
MULTI -5.0 -5.0 | 2.7 -4.0
ENGLISH -0.6 -0.6 | 1.2 -1.5
GERMAN -6.8 44 | -2.0 -4.3
FRENCH -9.5 -5.5 | -19.6 | -8.7

Table 1: Percentage change in average accuracy of
XLM-R per dataset (Fixed ET. - Full ET.)

Language

YouaLy
asaury)

uRuLIRD

Dataset XL MCL | XL MCL
790 | 653 | 829

783

MCL [ XL
687 | 766 | 783 [ 722 |
750 | 675
712 | 669
784 | 762
60.7 | 664

Z8. MULTIg— | 67.6

— [ [ ususug

GERMAN—
FRENCH— 68.6
ENGLISH— 69.3

HINDI= 62.1
CHINESE— 623

5801 | 681 |

Table 2: XLLM-R (fixed F.T.) zero-shot results for MONO
and MULTI models. For each of the 5 column languages,
the Z.S. MULTIg— row reports the model’s performance
when it is trained multilingually with that language held
out. Rows lang_ report monolingual models trained
on lang, evaluated on each column test language. Grey
cells indicate full-shot conditions (target language in-
cluded in fine-tuning).

The Z.S. MULTIg= row presents the results
of five different multig— models (each trained on
all available languages excluding the target lan-
guage, specified by the column, respectively). The
{lang}— rows show the results of the specified
monolingual model on the test set specified by the
column. Grey cells mark full-shot conditions for
monolingual models.

Full-shot Exposure Artifact We currently mea-
sure transfer by conflating zero- and full-shot, when
the target language is present in training, together.
Since MULTI is trained on all the languages it is
later evaluated on (except Hindi), it is effectively

evaluated under full-shot conditions. In contrast,
MONO models are only full-shot with respect to
their training language, and zero-shot for all the
rest. Thus, comparing transfer between MULTI and
MONO models is unfair, as full-shot learning is
expected to be much better than zero-shot transfer.

To address this, we train five different MULTIg
models, excluding one language at a time on which
that specific model is later evaluated on, while still
fixing the amount of fine-tuning data as before, and
compare them to MONO models. We focus on the 5
languages with the most training data. If multilin-
guality is truly of merit, then MULTI models, that
were trained on 14 languages overall (minus the
held-out language they are evaluated on), should
outperform MONO models.

Table 2 shows that MONO English outperforms
zero-shot MULTIg, on all languages, and the only
case where zero-shot MULTIg outperforms MONO
models is English, where the ENGLISH model is
full-shot, and thus not considered in this evalua-
tion (grayed). This further disproves the assumed
benefit of multilingual training, as prior advan-
tage in performance that was originally associated
with multilinguality stemmed, at least in part, from
mixing full-shot with zero-shot transfer conditions,
which only MULTI possessed. Similar results were
obtained for mBERT, BLOOM and even LLaMA,
although with GERMAN as the best zero-shot model
(see Tables 10-12). Interestingly, the strong zero-
shot performance of MULTI models on English
could be related to the prevalence of English in
the base models’ pretraining data.

4.2 Underlying Factors of Successful Transfer

Correlation with Model’s Pretraining Size Our
analyses reject multilinguality as a key driver of
zero-shot transfer, showing its effects stem from
training data size - a confound, albeit a beneficial
one. Yet, even after controlling for this, transfer
results varied considerably across target languages.
Before their fine-tuning, multilingual models un-
dergo pretraining on large-scale datasets spanning
multiple languages. The prevalence of a target lan-
guage within a model’s pretraining corpus, or "pre-
training size", may influence the model’s ability to
represent, process and transfer to that language.
To test this hypothesis, and understand what
drives variation in transfer results,
puted Pearson correlations between languages’ log-
transformed pretraining sizes in models for which
pretraining sizes were available (XLM-R, mBERT,

we€ com-
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BLOOM) and their corresponding accuracies on
the four WiC datasets and on LSCD.°

Figure 2 shows strong correlations between a lan-
guage’s pretraining size and its accuracy as a target
language. We attribute BLOOM'’s poor correlations
to its unusual pretraining language distribution that
focuses on low-resource languages. The lack of
correlation in XL remains unclear and requires fur-
ther investigation (see §5 for discussion).

104

0.

Dataset
~1.0 - m— MCL

XL
[ AM2ICO
15D -

@

Pearson Correlation Coefficient

XLMR MBERT BLOOM

Fine-Tuned Model Base

Figure 2: Mean correlations between languages pretrain-
ing sizes and zero-shot performance of MONO models.

Linguistic Similarity We tested the link between
linguistic similarity and transferability using syn-
tactic similarity scores (Littell et al., 2017), which
quantify similarity based on shared syntactic fea-
tures, as is standard in NLP (Philippy et al., 2023).
Pearson correlations between similarity scores and
model accuracies were computed across target lan-
guage pairs. Syntactic similarity showed some cor-
relation with zero-shot performance, the effect was
weaker and less consistent than that of pretraining
size (see Appendix 5). Moreover, we found that
syntactic similarity is highly correlated with pre-
training size, further undermining its contribution.

Zero-shot Transfer from Unknown Languages
While the correlation analysis provides useful in-
sights, it remains slightly inconclusive. A key limi-
tation is that we cannot pretrain models to directly
manipulate this variable for a controlled experi-
ment. We also lack sufficient fine-tuning data for
languages that were less prominent during pretrain-
ing, making it difficult to determine whether poor
model performance stems from limited fine-tuning
or limited exposure during pretraining.

®Pretraining sizes are provided in Appendix 13. For
BLOOM, we removed languages not in its pretraining.

Evaluation Language (notin PT)
— B Hindi B French
| English = German
Chinese

3 Full-Shot

Accuracy

Hindi English French German Chinese Multi
Model Fine-Tuning Language

Figure 3: MuRIL accuracy scores. "(not in PT)" are
languages absent from MuRIL’s pretraining.

To counter this, we analyzed transfer in an edge
case scenario. We used MuRIL (§3.3), a model
pretrained exclusively on 16 Indian languages and
English. Evaluating zero-shot transfer performance
of models that are fine-tuned on languages entirely
absent from MuRIL’s pretraining corpus can offer
insight on the role of pretraining size in transfer.

Figure 3 shows graded transfer effects associated
with the pretraining size, supporting the correlation
analysis above. Hindi, being the dominant lan-
guage in MuRIL (despite less data than English,
it benefits from exposure to 16 Indic languages,
including 2—4 with the same script and 9 with lex-
ical overlap), enjoys the largest zero-shot transfer
regardless of the fine-tuning language (tallest blue
bars across all different models, not considering
the full-shot condition in white), followed by En-
glish (yellow bars). Second, we observe substantial
transfer from French, German and even Chinese
on Hindi, languages MuRIL was not pretrained on
(see §5 for further discussion). Third, MuRIL was
able to learn and perform well on German, despite
it being absent from its pretraining stage.

We find that the MULTI model, despite being
trained predominantly on German, French, En-
glish, and Chinese, failed to learn any meaning-
ful sense disambiguation, let alone transfer them
to Hindi. This highlights a stark contrast: while
MuRIL trained on monolingual data can effectively
learn the task from languages it was not pretrained
on, the multilingual data appears too noisy for ef-
fective transfer in this extreme zero-shot setting.

4.3 Lexical Semantic Change Detection

®For Norwegian, two corpora pairs are available — the
period 1929-1965 paired with 1970-2013, reported as NOy,
as well as 1980-1990 with 2012-2019, reported as NO,.
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English 757 | 703 || 137 | 681 | 772 | 436 | 673
German 873 | .863 || .841 | .867 | .844 | .635 | .641
Swedish 754 | 801 || .154 | 618 | .724 | 480 | .4%9
Latin 035 | 117 || 161 | 136 | .135 | -.177 | 091
Spanish 665 | 696 || .670 | 664 | 711 | 354 | .383
Chinese 734 | .652 649 | 499 | 737 | 524 | 593
Norwegian; 668 | 729 || .638 | .697 | 777 | .525 | .400
Norwegian, || .634 | .655 || .604 | 580 | .645 | 433 | 439
Average 631 | 652 || .632 | 593 | .668 | 401 | .464

Table 3: Spearman correlations of XLM-R models’
APD scores with graded semantic change scores across
LSCD tasks in different languages. Best scores are in
bold, scores within 0.05 of the best are underlined.

We evaluate XL-LEXEME (Cassotti et al., 2023),
trained on multilingual and inter-lingual data (all
WiC datasets plus AM2iCO), against the same
MONO models from earlier analyses. As in WiC,
MULTI is matched or outperformed in all but two
languages by MONO English or German. XL-
LEXEME outperforms only on German, but all
well-trained MONO models perform well on this
task. Notably, MONO English outperforms all other
models on average and in 4 out of 8 test languages.
Results correlate strongly with pretraining sizes in
all three models (Figure 2), echoing WiC patterns.

Zero-shot transfer performs on par with full-shot.
On German, MONO FRENCH and ENGLISH outper-
form the GERMAN model, and ENGLISH is most ef-
fective on Spanish, Chinese, and Norwegian. PRT
confirms these trends, with ENGLISH showing the
highest correlation. Across mBERT and BLOOM,
MONO models often match or outperform MULTI
models (Tables 26-28).”

Overall, our results show that the best results
in LSC are obtained by monolingual models, dis-
missing multilinguality as an important factor in
cross-lingual transfer also on this task.

5 Discussion

Disentangling the effects of multilinguality from
confounding factors such as data quality and pre-
training exposure is inherently challenging. Rather
than providing a single definitive explanation, we
identify consistent trends and highlight effects that
reflect the nuanced nature of cross-lingual transfer.

"LLaMA models were not evaluated on LSCD as prompt-
ing generative models with hundreds of usages to produce a
scalar ‘change score’ is not practically feasible.

Quantity over Multilinguality Our results show
that the amount of fine-tuning data matters more
than the number of languages included during
training, as FULL F.T. MONO models trained
on more data typically outperform the FIXED F.T.
MULTI model. In both fine-tuning conditions, the
MULTI model only partially outperforms monolin-
gual models, with the ENGLISH model often match-
ing or exceeding it, even in the FULL F.T. setting.
Taken together, this pattern of results challenges
the assumption that multilingual training inherently
improves zero-shot transfer; rather, data quantity
drives most gains. Notably, Berend (2022), who
also tested the role of multilinguality in word sense
disambiguation but in the pretraining stage, reached
the same conclusions. Our results not only comple-
ment those of Berend but are also more practical
as multilingual models are in much wider use than
monolingual ones in transfer scenarios, where the
latter are actually lacking for many languages.

Quality Beyond Quantity The frequent outper-
formance of the MONO English model on most
tasks could point to data quality as an important
factor. Certainly, the quality of training data can
impact performance, and consequently, transfer to
other languages. English may enjoy datasets of
higher quality, often attributed to their curation,
annotation protocols, sense granularity and text
quality (Philippy et al., 2023). However, assess-
ing or normalizing data quality across languages
for polysemy disambiguation is nearly impossible
without costly native-speaker annotations. Thus,
this factor remains difficult to study directly.

Other Underlying Factors ENGLISH’s strong
performance may be tied to its dominance in pre-
training data which is supported by its strong over-
all correlations reported in §4.2. The contrasting
results from MuRIL, where transfer was strongest
to Hindi when Hindi had a pretraining size advan-
tage over English, further underscore this point and
provide an informative exception.

Our results show that both pretraining size and
language similarity are tied to transfer, but the for-
mer has a stronger correlation. The influence of
pretraining size on cross-lingual transfer is well
established (Lauscher et al., 2020; Srinivasan et al.,
2021; Ahuja et al., 2023), as the correlation be-
tween language similarity and transfer performance
(Wu and Dredze, 2019; Pires et al., 2019; K et al.,
2020). However, while both variables clearly influ-
ence transfer, the effect seems to depend on the spe-
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cific task on which transfer is evaluated: pretrain-
ing size correlates more with semantic tasks (e.g.,
NLI, QA), while linguistic similarity benefits syn-
tactic tasks (e.g., POS tagging, dependency pars-
ing) (Lauscher et al., 2020; Philippy et al., 2023).

We suggest that sense-aware tasks, such as poly-
semy disambiguation and semantic change, should
follow the semantic route. Given the language-
specific nature of word senses, syntactic similarity
offers limited benefit in the transfer of knowledge.
Our findings confirm this: transfer performance in
these tasks depends more on pretraining size than
on linguistic similarity. The rationale of this inter-
pretation is rooted in the type and relevance of lin-
guistic knowledge that is being transferred (Rajaee
and Monz, 2024; Goldman et al., 2025). We pro-
pose that syntactic tasks rely more heavily on struc-
tural similarities across languages, and thus benefit
from linguistic similarity. As syntactic patterns di-
verge across typologically distant languages, their
utility in transfer diminishes. In contrast, seman-
tic tasks are more dependent on the diversity and
scale of pretraining data, which exposes models to
a wider range of meaning representations.

Lexical Semantic Change The results on LSCD
align with the conclusions observed in the WiC
tasks: multilinguality does not necessarily lead
to improved performance, and monolingual mod-
els, particularly ENGLISH, often outperform mul-
tilingual ones. This holds even when the test lan-
guage is included in the multilingual setup (and,
of course, absent from the monolingual model), as
seen in the cases of Spanish, Chinese, and Nor-
wegian, where the English model outperformed
both multilingual models. These findings reinforce
the paper’s central claim: multilinguality is neither
necessary nor inherently beneficial for effective
transfer, and monolingual models can surpass mul-
tilingual ones even under comparison conditions
that favor the latter. In such cases, the multilingual
model benefits from full-shot exposure to the test
language, while the monolingual model is evalu-
ated in a zero-shot setting—yet still performs better.
These results further emphasize the role of dataset
quality in transfer, suggesting that the perceived
advantages of multilinguality may be confounded
by differences in training data quality.

As lexical semantic change gains popularity and
more languages are being studied using computa-
tional methods, it is important not to perpetuate
the misconception that multilingual models are al-

ways the best solution—not even when the target
language is included in the multilingual training
setup. This conclusion is further supported by Baes
et al. (2025), who recently showed that the state-
of-the-art model for LSCD—the multilingual XL-
LEXEME by Cassotti et al. (2023) also included
in our comparisons—is not the best choice across
different semantic change scenarios. Their findings
call for a more nuanced approach to model selec-
tion—one that accounts for the specific conditions
of the linguistic inquiry being studied, whether it
is a different language or type of change.

Large Models and Architectures Notably,
larger models like LLaMA, pretrained on much
more data, underperform compared to smaller mod-
els like XLM-R. This corroborates our main finding
that increasing the amount of training data alone
— whether in terms of language coverage or vol-
ume — does not guarantee better transfer. However,
architectural differences (encoder vs. decoder), hy-
perparameter tuning, and adaptation methods likely
also influence performance and require further in-
vestigation. Additionally, Berend (2022) suggests
that multilingual models may not even be neces-
sary for effective transfer, highlighting that mono-
lingual pretrained models can achieve strong cross-
lingual generalization on sense-aware tasks when
combined with appropriate adaptation techniques.

6 Conclusion

This study is the first to directly investigate the role
of multilinguality in transfer for sense-aware tasks,
polysemy and lexical semantic change. Our results
indicate that the improved performance typically
attributed to multilinguality largely stems from con-
founding factors such as training size, rather than
linguistic diversity. Indeed, training on all available
languages increases data quantity, inadvertently
benefiting transfer, but this effect should not be
mistakenly credited to multilingual diversity itself.
While further research is needed to determine
whether these patterns generalize across other tasks,
they may underline broader implications for mul-
tilingual NLP research that traditionally favored
multilingual quantity over data quality. As expand-
ing datasets across multiple languages is costly,
and sometimes not practical for some tasks and
languages, future research should prioritize under-
standing the characteristics of training regimes that
facilitate transfer in order to optimize training re-
sources for effective cross-lingual transfer.
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7 Limitations

Zero-shot transfer enables models to perform tasks
in languages without task-specific training data.
However, its effectiveness depends on the pre-
trained model’s ability to capture the linguistic
properties of both the source and target languages,
as well as the availability of sufficient, high-quality
data in the fine-tuning language. Our study is con-
strained by this limitation, as we were only able
to train models on a limited set of languages with
highly imbalanced data distributions. As in broader
cross-lingual transfer research, high-resource lan-
guages dominate, while lower-resource languages
often lack sufficient data for effective fine-tuning.

We evaluated zero-shot transfer on two tasks:
WiC and LSCD. Both use the same bi-encoder ar-
chitecture and cosine similarity to produce their
outputs. While these results provide useful insights,
further research is needed to validate the findings
across other tasks and model architectures.

Our evaluation of LLaMA is limited to the WiC
task, and several factors constrain its interpretabil-
ity. First, its pretraining data is unknown so we
could not assess the correlation of performance
with pretraining size. Second, LLaMA’s pretrain-
ing could include the datasets used in our train-
ing or evaluation. And lastly, adapting WiC to
LLaMA’s generative format (see Appendix L.1)
introduced further limitations, such as the lack of
a threshold to control sense discrimination, and
a cue about the task for LLaMA, which encoder-
based models lacked. Considering these, LLaMA
is not directly comparable to the other models. Fu-
ture work is needed to better understand the impact
of these architectural differences. Due to compu-
tational resource constraints, we were unable to
include other larger-scale models (8B+ parameters)
or mixture-of-experts (MoE) variants in our exper-
iments. Despite this, our study remains broadly
relevant as encoder-based models remain crucial
for tasks like classification, regression, and rank-
ing in retrieval systems, where their efficiency and
lower resource demands make them well-suited.
Additionally, on-device performance requires fast
inference and low memory usage. While recent
hardware and quantization techniques enable some
larger models to run locally on powerful devices,
encoder models remain preferred for many real-
world applications that require fast, cost-effective,
and scalable solutions, especially in specialized or
low-resource settings.

Further investigation into the factors influencing
zero-shot performance, particularly in low-resource
languages, is essential for improving cross-lingual
transfer and democratizing access to language tech-
nologies.

8 [Ethical Considerations

This study investigates factors influencing success-
ful zero-shot transfer, with the goal of informing
the NLP community on how to develop more ef-
fective methods for speakers of low-resource lan-
guages. We evaluate models on tasks in a total of
28 languages and provide details on the languages
and dataset sources used to create the datasets.

We do not foresee any direct ethical risks aris-
ing from our findings. Rather, this work promotes
more responsible resource allocation by encourag-
ing a shift away from continual dataset creation
in favor of improving cross-lingual transfer tech-
niques and understanding what defines high-quality
datasets. However, it is important to acknowledge
that zero-shot methods, while beneficial, may still
introduce biases due to disparities in pretraining
data, potentially disadvantaging underrepresented
languages. Additionally, reliance on transfer from
high-resource languages may reinforce linguistic
hierarchies, where certain languages disproportion-
ately influence model behavior.

Future work should continue to critically assess
the impact of cross-lingual transfer on linguistic
diversity and ensure that improvements in NLP
benefit a wide range of language communities eq-
uitably.

9 Acknowledgments

We are grateful to Francesco Periti and Dominik
Schlechtweg for their invaluable feedback and in-
sightful advice on this manuscript, and to Mahmud
Akhter and Pierluigi Cassotti for their support.

This work has in part been funded by the re-
search program Change is Key! supported by Riks-
bankens Jubileumsfond (under reference number
M21-0021).

References

Kabir Ahuja, Harshita Diddee, Rishav Hada, Milli-
cent Ochieng, Krithika Ramesh, Prachi Jain, Ak-
shay Nambi, Tanuja Ganu, Sameer Segal, Mohamed
Ahmed, Kalika Bali, and Sunayana Sitaram. 2023.
MEGA: Multilingual evaluation of generative Al

35013


https://doi.org/10.18653/v1/2023.emnlp-main.258

Jing Chen,

In Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pages
4232-4267, Singapore. Association for Computa-
tional Linguistics.

Al@Meta. 2024. Llama 3 model card.

Nikolay Arefyev, Daniil Homskiy, Maksim Fedoseev,

Adis Davletov, Vitaly Protasov, and Alexander
Panchenko. 2021. Deepmistake: Which senses are
hard to distinguish for a wordincontext model. In
Computational Linguistics and Intellectual Technolo-
gies - Papers from the Annual International Confer-
ence 'Dialogue’ 2021.

Naomi Baes, Raphael Merx, Nick Haslam, Ekaterina

Vylomova, and Haim Dubossarsky. 2025. LSC-eval:
A general framework to evaluate methods for as-
sessing dimensions of lexical semantic change using
LLM-generated synthetic data. In Findings of the As-
sociation for Computational Linguistics: ACL 2025,
pages 10905-10939, Vienna, Austria. Association
for Computational Linguistics.

Gabor Berend. 2022. Combating the curse of multi-

linguality in cross-lingual WSD by aligning sparse
contextualized word representations. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 24592471,
Seattle, United States. Association for Computational
Linguistics.

Michele Bevilacqua, Tommaso Pasini, Alessandro Ra-

ganato, and Roberto Navigli. 2021. Recent trends
in word sense disambiguation: A survey. In Inter-
national Joint Conference on Artificial Intelligence,
pages 4330-4338. International Joint Conference on
Artificial Intelligence, Inc.

Pierluigi Cassotti, Lucia Siciliani, Marco DeGemmis,

Giovanni Semeraro, and Pierpaolo Basile. 2023. XI-
lexeme: Wic pretrained model for cross-lingual lexi-
cal semantic change. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 1577—
1585.

Tyler A. Chang, Catherine Arnett, Zhuowen Tu, and

Ben Bergen. 2024. When is multilinguality a curse?
language modeling for 250 high- and low-resource
languages. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 4074-4096, Miami, Florida, USA. Association
for Computational Linguistics.

Emmanuele Chersoni, Dominik
Schlechtweg, Jelena Proki¢, and Chu-Ren Huang.
2023. Chiwug: A graph-based evaluation dataset
for chinese lexical semantic change detection. In
Proceedings of the 4th Workshop on Computational
Approaches to Historical Language Change, pages
93-99.

Rochelle Choenni, Dan Garrette, and Ekaterina Shutova.

2023a. Cross-lingual transfer with language-specific

35014

subnetworks for low-resource dependency parsing.
Computational Linguistics, pages 613—-641.

Rochelle Choenni, Dan Garrette, and Ekaterina Shutova.

2023b. How do languages influence each other?
studying cross-lingual data sharing during LM fine-
tuning. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 13244-13257, Singapore. Association for
Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,

Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmadn, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440-
8451, Online. Association for Computational Lin-
guistics.

Farheen Dairkee and Haim Dubossarsky. 2024.

Strengthening the wic: New polysemy dataset in
hindi and lack of cross lingual transfer. In Proceed-
ings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), pages 15341-
15349.

Wietse de Vries, Martijn Wieling, and Malvina Nissim.

2022. Make the best of cross-lingual transfer: Ev-
idence from POS tagging with over 100 languages.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 76767685, Dublin, Ireland.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Btazej Dolicki and Gerasimos Spanakis. 2021.

Analysing the impact of linguistic features on cross-
lingual transfer. arXiv preprint arXiv:2105.05975.

Abteen Ebrahimi and Katharina Kann. 2021. How to

adapt your pretrained multilingual model to 1600
languages. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 45554567, Online. Association for Computa-
tional Linguistics.

Omer Goldman, Uri Shaham, Dan Malkin, Sivan Eiger,

Avinatan Hassidim, Yossi Matias, Joshua Maynez,
Adi Mayrav Gilady, Jason Riesa, Shruti Rijhwani,
et al. 2025. Eclektic: a novel challenge set for eval-
uation of cross-lingual knowledge transfer. arXiv
preprint arXiv:2502.21228.


https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.18653/v1/2025.findings-acl.570
https://doi.org/10.18653/v1/2025.findings-acl.570
https://doi.org/10.18653/v1/2025.findings-acl.570
https://doi.org/10.18653/v1/2025.findings-acl.570
https://doi.org/10.18653/v1/2022.naacl-main.176
https://doi.org/10.18653/v1/2022.naacl-main.176
https://doi.org/10.18653/v1/2022.naacl-main.176
https://doi.org/10.18653/v1/2024.emnlp-main.236
https://doi.org/10.18653/v1/2024.emnlp-main.236
https://doi.org/10.18653/v1/2024.emnlp-main.236
https://doi.org/10.1162/coli_a_00482
https://doi.org/10.1162/coli_a_00482
https://doi.org/10.18653/v1/2023.emnlp-main.818
https://doi.org/10.18653/v1/2023.emnlp-main.818
https://doi.org/10.18653/v1/2023.emnlp-main.818
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2022.acl-long.529
https://doi.org/10.18653/v1/2022.acl-long.529
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.351
https://doi.org/10.18653/v1/2021.acl-long.351
https://doi.org/10.18653/v1/2021.acl-long.351

Roksana Goworek, Harpal Singh Karlcut, Hamza
Shezad, Nijaguna Darshana, Abhishek Mane, Syam
Bondada, Raghav Sikka, Ulvi Mammadov, Rauf
Allahverdiyev, Sriram Satkirti Purighella, Paridhi
Gupta, Muhinyia Ndegwa, Bao Khanh Tran, and
Haim Dubossarsky. 2025. SenWiCh: Sense-
annotation of low-resource languages for WiC using
hybrid methods. In Proceedings of the 7th Workshop
on Research in Computational Linguistic Typology
and Multilingual NLP, pages 61-74, Vienna, Austria.
Association for Computational Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Ayyoob Imani, Peiqin Lin, Amir Hossein Kargaran,
Silvia Severini, Masoud Jalili Sabet, Nora Kass-
ner, Chunlan Ma, Helmut Schmid, André Martins,
Frangois Yvon, and Hinrich Schiitze. 2023. Glot500:
Scaling multilingual corpora and language models to
500 languages. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1082—-1117,
Toronto, Canada. Association for Computational Lin-
guistics.

Karthikeyan K, Zihan Wang, Stephen Mayhew, and Dan
Roth. 2020. Cross-lingual ability of multilingual bert:
An empirical study. In International Conference on
Learning Representations.

Simran Khanuja, Diksha Bansal, Sarvesh Mehtani,
Savya Khosla, Atreyee Dey, Balaji Gopalan,
Dilip Kumar Margam, Pooja Aggarwal, Rajiv Teja
Nagipogu, Shachi Dave, Shruti Gupta, Subhash
Chandra Bose Gali, Vish Subramanian, and Partha
Talukdar. 2021. Muril: Multilingual representations
for indian languages. Preprint, arXiv:2103.10730.

Andrey Kutuzov and Mario Giulianelli. 2020. UiO-
UvA at SemEval-2020 task 1: Contextualised em-
beddings for lexical semantic change detection. In
Proceedings of the Fourteenth Workshop on Semantic
Evaluation, pages 126—134, Barcelona (online). Inter-
national Committee for Computational Linguistics.

Andrey Kutuzov, Samia Touileb, Petter Maehlum, Tita
Enstad, and Alexandra Wittemann. 2022. Nor-
DiaChange: Diachronic semantic change dataset for
Norwegian. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
2563-2572, Marseille, France. European Language
Resources Association.

Anne Lauscher, Vinit Ravishankar, Ivan Vuli¢, and
Goran Glavas. 2020. From zero to hero: On the
limitations of zero-shot language transfer with mul-
tilingual Transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4483—4499, On-
line. Association for Computational Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Frangois Yvon,
Matthias Gallé, et al. 2023. Bloom: A 176b-
parameter open-access multilingual language model.

Patrick Littell, David R. Mortensen, Ke Lin, Katherine
Kairis, Carlisle Turner, and Lori Levin. 2017. URIEL
and lang2vec: Representing languages as typological,
geographical, and phylogenetic vectors. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 8—14, Valencia, Spain.
Association for Computational Linguistics.

Qianchu Liu, Edoardo Maria Ponti, Diana McCarthy,
Ivan Vuli¢, and Anna Korhonen. 2021. AM2iCo:
Evaluating word meaning in context across low-
resource languages with adversarial examples. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
7151-7162, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Federico Martelli, Najla Kalach, Gabriele Tola, Roberto
Navigli, et al. 2021. Semeval-2021 task 2: Multilin-
gual and cross-lingual word-in-context disambigua-
tion (mcl-wic). In Proceedings of the 15th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2021), pages 24-36.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM computing surveys (CSUR), 41(2):1-
69.

Roberto Navigli and Simone Paolo Ponzetto. 2010. Ba-
belNet: Building a very large multilingual semantic
network. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 216-225, Uppsala, Sweden. Association for
Computational Linguistics.

Vaidehi Patil, Partha Talukdar, and Sunita Sarawagi.
2022. Overlap-based vocabulary generation im-
proves cross-lingual transfer among related lan-
guages. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 219-233, Dublin,
Ireland. Association for Computational Linguistics.

Francesco Periti and Stefano Montanelli. 2024. Lexical
semantic change through large language models: a
survey. ACM Comput. Surv., 56(11).

Francesco Periti and Nina Tahmasebi. 2024. A system-
atic comparison of contextualized word embeddings
for lexical semantic change. In Proceedings of the
2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), pages 4262-4282, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

Fred Philippy, Siwen Guo, and Shohreh Haddadan.
2023. Towards a common understanding of con-
tributing factors for cross-lingual transfer in multi-
lingual language models: A review. In Proceedings

35015


https://doi.org/10.18653/v1/2025.sigtyp-1.7
https://doi.org/10.18653/v1/2025.sigtyp-1.7
https://doi.org/10.18653/v1/2025.sigtyp-1.7
https://doi.org/10.18653/v1/2023.acl-long.61
https://doi.org/10.18653/v1/2023.acl-long.61
https://doi.org/10.18653/v1/2023.acl-long.61
https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
https://arxiv.org/abs/2103.10730
https://arxiv.org/abs/2103.10730
https://doi.org/10.18653/v1/2020.semeval-1.14
https://doi.org/10.18653/v1/2020.semeval-1.14
https://doi.org/10.18653/v1/2020.semeval-1.14
https://aclanthology.org/2022.lrec-1.274/
https://aclanthology.org/2022.lrec-1.274/
https://aclanthology.org/2022.lrec-1.274/
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://aclanthology.org/E17-2002/
https://aclanthology.org/E17-2002/
https://aclanthology.org/E17-2002/
https://doi.org/10.18653/v1/2021.emnlp-main.571
https://doi.org/10.18653/v1/2021.emnlp-main.571
https://doi.org/10.18653/v1/2021.emnlp-main.571
https://aclanthology.org/P10-1023/
https://aclanthology.org/P10-1023/
https://aclanthology.org/P10-1023/
https://doi.org/10.18653/v1/2022.acl-long.18
https://doi.org/10.18653/v1/2022.acl-long.18
https://doi.org/10.18653/v1/2022.acl-long.18
https://doi.org/10.1145/3672393
https://doi.org/10.1145/3672393
https://doi.org/10.1145/3672393
https://doi.org/10.18653/v1/2024.naacl-long.240
https://doi.org/10.18653/v1/2024.naacl-long.240
https://doi.org/10.18653/v1/2024.naacl-long.240
https://doi.org/10.18653/v1/2023.acl-long.323
https://doi.org/10.18653/v1/2023.acl-long.323
https://doi.org/10.18653/v1/2023.acl-long.323

of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5877-5891, Toronto, Canada. Association for
Computational Linguistics.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: the word-in-context dataset for evalu-
ating context-sensitive meaning representations. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267-1273,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996-5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Edoardo Maria Ponti, Ivan Vuli¢, Goran Glavas, Nikola
Mrksié, and Anna Korhonen. 2018. Adversarial
propagation and zero-shot cross-lingual transfer of
word vector specialization. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 282-293, Brussels, Bel-
gium. Association for Computational Linguistics.

Alessandro Raganato, Tommaso Pasini, Jose Camacho-
Collados, and Mohammad Taher Pilehvar. 2020. XI-
wic: A multilingual benchmark for evaluating seman-
tic contextualization. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 7193-7206.

Sara Rajaee and Christof Monz. 2024. Analyzing the
evaluation of cross-lingual knowledge transfer in mul-
tilingual language models. In Proceedings of the 18th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2895-2914, St. Julian’s, Malta. Asso-
ciation for Computational Linguistics.

Christoph Rzymski, Tiago Tresoldi, Simon J Green-
hill, Mei-Shin Wu, Nathanael E Schweikhard, Maria
Koptjevskaja-Tamm, Volker Gast, Timotheus A Bodt,
Abbie Hantgan, Gereon A Kaiping, et al. 2020. The
database of cross-linguistic colexifications, repro-
ducible analysis of cross-linguistic polysemies. Sci-
entific data, 7(1):13.

Oscar Sainz, Jon Campos, Iker Garcia-Ferrero, Julen
Etxaniz, Oier Lopez de Lacalle, and Eneko Agirre.
2023. NLP evaluation in trouble: On the need to mea-
sure LLLM data contamination for each benchmark.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 10776-10787, Sin-
gapore. Association for Computational Linguistics.

Dominik Schlechtweg, Barbara McGillivray, Simon
Hengchen, Haim Dubossarsky, and Nina Tahmasebi.
2020. SemEval-2020 task 1: Unsupervised lexical
semantic change detection. In Proceedings of the

Fourteenth Workshop on Semantic Evaluation, pages
1-23, Barcelona (online). International Committee
for Computational Linguistics.

Uri Shaham, Jonathan Herzig, Roee Aharoni, Idan
Szpektor, Reut Tsarfaty, and Matan Eyal. 2024. Mul-
tilingual instruction tuning with just a pinch of mul-
tilinguality. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 2304-2317,
Bangkok, Thailand. Association for Computational
Linguistics.

Satyendr Singh and Tanveer J Siddiqui. 2016. Sense
annotated hindi corpus. In 2016 International Con-
ference on Asian Language Processing (IALP), pages
22-25. IEEE.

Anirudh Srinivasan, Sunayana Sitaram, Tanuja Ganu,
Sandipan Dandapat, Kalika Bali, and Monojit Choud-
hury. 2021. Predicting the performance of multilin-
gual nlp models. arXiv preprint arXiv:2110.08875.

Fei Wang, Kuan-Hao Huang, Kai-Wei Chang, and
Muhao Chen. 2023. Self-augmentation improves
zero-shot cross-lingual transfer. In Proceedings of
the 13th International Joint Conference on Natural
Language Processing and the 3rd Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
1-9, Nusa Dua, Bali. Association for Computational
Linguistics.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas:
The surprising cross-lingual effectiveness of BERT.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-1IJCNLP), pages 833-844, Hong
Kong, China. Association for Computational Linguis-
tics.

Shijie Wu and Mark Dredze. 2020. Are all languages
created equal in multilingual BERT? In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 120—130, Online. Association for Com-
putational Linguistics.

Frank D. Zamora-Reina, Felipe Bravo-Marquez, and
Dominik Schlechtweg. 2022. LSCDiscovery: A
shared task on semantic change discovery and de-
tection in Spanish. In Proceedings of the 3rd Work-
shop on Computational Approaches to Historical
Language Change, pages 149-164, Dublin, Ireland.
Association for Computational Linguistics.

Michat Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The United Nations parallel cor-
pus v1.0. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC‘16), pages 3530-3534, PortoroZ, Slovenia.
European Language Resources Association (ELRA).

35016


https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/D18-1026
https://doi.org/10.18653/v1/D18-1026
https://doi.org/10.18653/v1/D18-1026
https://doi.org/10.18653/v1/2024.eacl-long.177
https://doi.org/10.18653/v1/2024.eacl-long.177
https://doi.org/10.18653/v1/2024.eacl-long.177
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.18653/v1/2023.findings-emnlp.722
https://doi.org/10.18653/v1/2020.semeval-1.1
https://doi.org/10.18653/v1/2020.semeval-1.1
https://doi.org/10.18653/v1/2024.findings-acl.136
https://doi.org/10.18653/v1/2024.findings-acl.136
https://doi.org/10.18653/v1/2024.findings-acl.136
https://doi.org/10.18653/v1/2023.ijcnlp-short.1
https://doi.org/10.18653/v1/2023.ijcnlp-short.1
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2022.lchange-1.16
https://doi.org/10.18653/v1/2022.lchange-1.16
https://doi.org/10.18653/v1/2022.lchange-1.16
https://aclanthology.org/L16-1561/
https://aclanthology.org/L16-1561/

A Model Training Details

Model Type Model Name Training Size
MULTI MULTI 122.4k
GERMAN 54.7k
FRENCH 46.1k
MONO ENGLISH 15.1k
HINDI Tk
CHINESE 2.5k

Table 4: Fine-tuning sizes.

Figure 4: Proportions of languages in WiC datasets
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German
French
English
Hindi
Chinese
Italian
Bulgarian
Danish
Korean
Arabic
Russian
Dutch
Japanese
Farsi
Croatian
Estonian

Hyperparameter Value
Hidden activation gelu
Hidden dropout probability 0.1
Hidden size 1024
Initializer range 0.02
Intermediate size 4096
Layer norm epsilon 1x107°
Max position embeddings 514
Number of attention heads 16
Number of hidden layers 24
Position embedding type Absolute
Vocabulary size 250004
Learning rate 1x107°
Weight decay 0.0

Max sequence length () 128

Table 6: Fine-tuning hyperparameters used in our exper-
iments.

B Percentage Change Between Full E.T. -

Fixed F.T.
Dataset | \ror, | XL | Hindi | Am?iCO
Model
MULTI -3.3 -5.1 | -123 | 24
ENGLISH 1.6 2.1 0.1 1.5
GERMAN 1.6 1.5 -18.2 | -3.0
FRENCH -7.7 0.3 23.1 2.8

Table 7: Percentage change in average accuracy of

used for training. MULTT is trained on all of them except

Hindi.
Model Number of Parameters
XLM-R 560M
BLOOM 560M
mBERT 178M

LLaMA3-8B-Instruct 8B

MuRIL

506M

mBERT per dataset (Fixed F.T. - Full ET.)

Dataset

Modal MCL | XL | Hindi | Am?iCO
MULTI -11.5 | -9.1 | -13.0 | 4.8
ENGLISH -5.3 -0.9 | 249 | 3.2
GERMAN -11.5 | -5.8 | 204 | -3.7
FRENCH -176 | -54 | 245 | -4.0

Table 8: Percentage change in average accuracy of

BLOOM per dataset (Fixed F.T. - Full ET.)

Table 5: Number of parameters for each selected pre-

trained model.

Modal Dataset | vior, | XL | Hindi | Am?iCO
MULTI -5.9 2.2 ] 12.8 0.5
ENGLISH -1.9 3.5 3.6 2.1
GERMAN -14 -1.5 | -183 | 0.7
FRENCH -1.1 -0.8 | 4.8 -2.6

Table 9: Percentage change in average accuracy of

LLaMA per dataset (Fixed F.T. - Full ET.)
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C Linguistic Similarit el g |zl g |5l =]|2]|e¢
g y Language § g g =) & 2 £ =3
E | 2| =12 & | Z | 2
Dataset XL MCL XL MCL XL Hindi MCL XL
Z.S. MULTI ) — 66.7 77.6 67.4 74.1 68.4 71.5 72.7 68.9
GERMAN— 715 64.9 47.2 75.9 71.9
FRENCH—

104

0.5

0.0 1

Dataset 1
— MCL
—1.0 { m— XL
I AM2iCO
15D
N Syntactic Similarity

Pearson Correlation Coefficient

MBERT BLOOM

Fine-Tuned Model Base

XLMR

Figure 5: Mean correlations of syntactic similarity (be-
tween the fine-tuning language of MONO models and
the target language) and zero-shot performance on the
target languages. Superimposed on the correlation re-
ported in Figure 2) for comparison to correlations with
pretraining sizes.

D Zero-Shot Comparison of mBERT and
BLOOM Models

) o e o <] = 2 2
Language s 8|2 | & |2 | £|¢2|¢
El = = @ o
Dataset XL MCL XL MCL XL Hindi MCL XL
Z.S. MULTI g — 62.9 74.9 62.7 69.9 64.6 58.4 65.8 64.5
GERMAN— 72.2 61.3 73.6 56.3 51.0 67.7 63.9
FRENCH—

ENGLISH= 65.6
HINDI— 55.7
CHINESE— 61.9

Table 10: mBERT (Fixed F.T.) Zero-shot performance
of MULTI models (z.S. MULTI) and monolingual models
not trained on the target language. Grey cells indicate
full-shot scenarios. All trained on 8,750 examples.

o o o o

Language g 5 § & & :E: ;; ?

E g g z z = g g

El = = & &
Dataset XL MCL XL MCL XL Hindi MCL XL
Z.S. MULTI g — 48.6 54.1 52.9 54.1 539 579 50.0 50.1
GERMAN— 50.0 50.0
FRENCH— 50.3 50.0 50.0
ENGLISH— 51.2 55.6 52.8
HINDI— 49.7 50.0 50.0

CHINESE— 49.8 501 [ 500

Table 11: BLOOM (Fixed E.T.) Zero-shot performance
of MULTI models (Z.S. MULTI) and MONO models not
trained on the target language. Grey cells indicate full-
shot scenarios. All trained on 8,750 examples.

ENGLISH— 63.6
HINDI— 59.8
CHINESE— 64.0

Table 12: LLaMA (Fixed F.T.) Zero-shot performance
of MULTI models (z.S. MULTI) and MONO models not
trained on the target language. Grey cells indicate full-
shot scenarios. All trained on 8,750 examples.

E On the Lack of Extensive
Hyperparameter Tuning

To keep cross-model and cross-language compar-
isons fair and interpretable, we deliberately avoided
extensive per-model or per-language hyperparame-
ter tuning. Instead, we adopted a single configura-
tion taken from independent prior work and applied
it uniformly across all models and settings, with
an identical early-stopping rule. This choice limits
researcher degrees of freedom and reduces the risk
of inadvertently “tuning into” our research hypoth-
esis, which can happen when many parameters are
adjusted differently across conditions. While more
aggressive tuning could raise the peak performance
of individual systems, it would blur causal attri-
bution and undermine the comparability that our
study seeks to emphasize.
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Fine-Tuned Model
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Average Overlap of Incorrect Predictions
with Other Monolingual Models
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Figure 6: Average proportion of each model’s incorrect predictions on the WiC task (across all test files) that are
also made by monolingual models in the same fine-tuning condition, as defined in Equation F. Multilingual models
are indicated with diagonal hatching. The same Hindi and Chinese models are included in both conditions due to
their limited fine-tuning size.

F Error Analysis

We perform error analysis to further analyze how, and if multilingual models differ from their monolingual
counterparts.
Let:

* M be the set of monolingual models in the same fine-tuning condition,
* m be the model of interest, where m € M U {MULTI},

* Err(m) be the set of incorrect predictions made by model m,

_ [Bre(m)nErr(m’)|

ZECOIE the proportion of m’s errors also made by model m/'.

* Align(m,m’)
Then, the average proportion of alignment of model m with the monolingual models is given by:

|M}_1 Z |Er1r(m)ﬁErr(m’)|7 ifme M
e

- [Err(m)]
AvgAlign = !
g g (m) 1 i |Err(m)NErr(m’)| if -
m/eM
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G Pretraining Sizes of Languages Used in Our Analysis

ISO Code Language XLM-R mBERT BLOOM MuRIL
AR Arabic 3.37 0.72 4.26 -
BG Bulgarian 4.07 0.24 - -
BN Bengali 2.24 0.12 2091 -
DA Danish 3.84 024 - -
DE German 4.21 1.66 - -
EN English 5.71 2.89 6.12 3.30
ES Spanish 3.99 1.66 5.10 -
ET Estonian 1.96 024 - -
EU Basque 1.10 0.12 1.16 -
FA Persian 4.72 043 - -

FI Finnish 4.01 043 - -
FR French 4.06 1.66 5.27 -

HI Hindi 3.05 0.12 3.18 1.95
HR Croatian 3.07 024 - -

ID Indonesian 5.01 043 2098 -

IT Italian 3.44 1.14 - -

JA Japanese 4.25 1.14 - -
KA Georgian 2.31 0.12 - -
KK Kazakh 2.00 0.12 - -
KO Korean 4.01 043 - -
LA Latin 1.25 0.06 - -
NL Dutch 341 0.72 - -
NO Norwegian 3.91 043 - -
RU Russian 5.63 1.66 - -
SV Swedish 2.57 0.72 - -
TR Turkish 3.09 043 - -
UR Urdu 1.90 0.12 1.28 1.00
7ZH Simplified Chinese 3.87 1.14  5.50 -
ZH Traditional Chinese 2.87 1.14 0.54 -

Table 13: Models’ log-transformed pretraining sizes (originally in GB) of languages used in our analysis.
Language proportions for LLaMA-3-8B-Instruct’s pretraining corpus are not publicly available.
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H All Results on Monolingual and Cross-Lingual WiC tasks

Dataset — MCL XL Hindi

Type Model Language [\ | BN | BR ‘ RU ‘ ZH | BG | DA | DE | EN | ET | FA ‘ FR | HR | IT | JA | KO | NL | zZH | HI
MULTI MULTI 826 | 880 | 826 843 855 | 830 | 760 | 837 | 704 | 623 666 780 | 706 | 725 | 667 | 784 | 771 7194 [ 93
GERMAN 824 | 852 | 81.0 | 820 | 8201 | 69.0 | 721 | 844 | 676 | 623 | 62.0 | 67.3 | 652 | 65.7 | 621 | 682 | 730 | 134 | 767

FRENCH 808 | 855 | 813 | 81.4 | 813 | 67.5 | 739 | 710 | 679 | 600 | 679 78.1 | 657 | 69.3 | 630 | 66.7 | 763 | 738 | 7838

MONO ENGLISH 824 | 902 | 84.6 | 851 | 844 | 708 | 738 | 67.8 | 706 | 600 | 62.8 | 659 | 708 | 642 | 629 | 735 | 745 | 762 | 787
HINDI 561 | 66.0 | 538 | 625 | 60.7 | 61.7 | 61.0 | 621 | 56.8 | 503 | 538 | 59.7 | 48.5 | 522 | 51.9 | 582 | 612 | 664 | 839

CHINESE 627 | 68.01 | 613 | 619 726 | 573 | 624 | 623 | 613 | 55.1 | 724 | 581 | 588 | 598 | 57.0 | 582 | 634 688 | 4.2

MULTI_ 776 | 3.0 807 776 790 | 690 | 703 | 750 | 690 | 63.1 738 672 | 696 | 652 | 655 | 02| 687 732 | 766

GERMAN— 759 [ 783 | 77 [ 32 75 | 671 | 658 | 74.1 [606 | 574 [ 60.6 | 638 | 645 | 63 | 615 | 618 | 669 | 675 | 747

FIXED FINE.TUNING FRENC 705 | 77 | 737|706 | 712 | 59 | 649 | 686 | 63 | 569 | 72 655 | 63.5 | 635 | 615 | 59.2 | 646 | 669 | 59.3
ENGLISH= 828 | 892 | 84.1 | 834 | 840 | 719 | 718 | 693 | 689 | 582 | 66.6 | 656 | 73.5 | 627 | 615 | 685 | 726 | 75.1 | 79.9

HINDI® 56.1 | 660 | 538 | 62.5 | 607 | 617 | 61.0 | 62.1 | 56.8 | 503 | 53.8 | 59.7 | 485 | 522 | 519 | 582 | 612 | 664 | 889

CHINESE®. 627 | 68.1 | 613 | 619 726 | 573 | 624 | 623 | 613 | 55.1 | 724 | 581 | 588 | 598 | 57.0 | 582 | 634 688 | 4.2

GERMANg— 759 | 829 | 777 779 784 | 682 | 683 | 676 | 68.1 | 59 692 676 | 69.1 | 66 | 636 | 674 | 674 716 | 79

25, MULTI FRENCHg— 742 | 811 | 79 778 764 | 706 | 687 | 707 | 685 | 595 669 | 653 | 703 | 623 | 617 | 672 | 71 71| 764
S ENGLISHg— 766 | 829 | 786 745 777 | 707 | 68 | 736 | 687 | 63.1 759 658 | 73 | 649 | 617 | 684 | 68 716 | 768
CHINESEq— 80.1 | 833 | 812 77.3 | 783 | 707 | 69.8 | 719 | 679 | 585 665 668 | 70.8 | 666 | 625 | 686 | 704 | 722 | 799

Table 14: XLLM-R models’ accuracies on all monolingual WiC tasks. Full-shot conditions where the fine-tuning
included the target language are highlighted in yellow.

Dataset — AMZiCO
Type Model Language |\ BN DE EU FI D JA KA | KK | KO RU TR UR ZH
MULTI MULTI 630 | 657 | 693 | 654 | 700 | 678 | 658 | 672 | 632 | 669 | 699 | 674 | 645 | 666
GERMAN 645 | 639 | 678 | 666 | 683 | 6/.1 | 644 | 642 | 625 | 669 | 67.7 | 664 | 612 | 659
FRENCH 677 | 680 | 700 | 667 | 725 | 682 | 683 | 689 | 618 | 679 | 724 | 682 | 615 | 665
MONO ENGLISH 674 | 661 | 699 | 662 | 730 | 687 | 685 | 665 | 61.8 | 689 | 71.8 | 687 | 660 | 676
HINDI 584 | 513 | 606 | 550 | 60.1 | 548 | 615 | 523 | 522 | 615 | 603 | 580 | 558 | 597
CHINESE 560 | 501 | 59.7 | 570 | 586 | 564 | 600 | 530 | 550 | 589 | 571 | 577 | 555 | 599
MLCL— 610 | 627 | 663 | 621 | 672 | 641 | 648 | 610 | 582 | 632 | 659 | 624 | 605 | 618
GERMAN_ 602 | 576 | 646 | 619 | 636 | 612 | 61.6 | 632 | 602 | 594 | 644 | 6.1 | 575 | 613
FIXED FINE-TUNING FRENCH— 60.7 | 526 | 634 | 574 | 634 | 600 | 621 | 570 | 562 | 598 | 620 | 594 | 57.0 | 56.1
ENGLISH— 656 | 627 | 700 | 636 | 711 | 676 | 673 | 645 | 602 | 679 | 708 | 666 | 662 | 656
HINDI®. 584 | 513 | 606 | 550 | 60.1 | 548 | 615 | 523 | 522 | 615 | 603 | 580 | 558 | 597
CHINESE®. 560 | 501 | 59.7 | 570 | 586 | 564 | 600 | 530 | 550 | 589 | 571 | 577 | 555 | 599
GERMANg— 682 | 680 | 709 | 687 | 753 | 704 | 690 | 703 | 648 | 698 | 738 | 682 | 658 | 666
25 ULt FRENCH g — 720 | 697 | 725 | 699 | 753 | 724 | 726 | 726 | 680 | 731 | 746 | 727 | 682 | 69.1
S ENGLISHg — 627 | 604 | 649 | 593 | 665 | 625 | 629 | 608 | 578 | 633 | 647 | 621 | 622 | 628
CHINESEg — 710 | 723 | 723 | 681 | 769 | 701 | 699 | 704 | 680 | 725 | 744 | 722 | 688 | 675

Table 15: XLM-R models’ accuracies on inter-lingual WiC tasks. Each language in the AM2iCO dataset is paired
with English, making the tasks inter-lingual.

Dataset — MCL XL Hindi

Type Model Language | \p | BN | ER ‘ RU ‘ ZH | BG | DA | DE | EN | ET | FA | FR | HR | IT | JA | KO | NL | ZH | HI
MULTI MULTL 75.1 | 814 | 762 767 748 | 795 | 659 | 84.8 | 64.1 | 562 644 746 | 686 | 720 | 612 | 67.1 | 697 722 [T07
GERMAN 65.1 | 725 | 684 | 682 | 67.6 | 556 | 593 | 829 | 57.6 | 554 | 59.1 | 583 | 57.1 | 57.1 | 546 | 54.2 | 575 | 616 | 693

FRENCH 716 | 746 | 717 | 719 | 69.7 | 57.9 | 622 | 63.6 | 604 | 587 | 60.1 762 | 569 | 635 | 579 | 57.7 | 652 | 655 | 69.3

MONO ENGLISH 735 | 821 | 76.1 | 732 | 727 | 579 | 633 | 619 | 641 | 528 | 62.1 | 61.5 | 61.8 | 59.6 | 57.6 | 548 | 634 | 664 | 733
HINDI 647 | 69.6 | 67 | 655 | 641 | 51.1 | 575 | 557 | 559 | 482 | 59.8 | 564 | 532 | 529 | 507 | Sl | 52 | 60.7 | 76.1

CHINESE 68.7 | 78.1 727 | 69.1 70.8 | 56.4 63 619 | 614 | 56.7 | 659 | 634 | 60.5 60 56.9 | 559 | 63.6 68 59.7

MULTI_ 715 | 793 | 761 706 702 | 639 | 621 | 724 | 642 | 603 66 654 | 667 | 637 | 609 | 588 | 636 657 | 584

GERMANC 604 | 736 | 722 | 671 [ 67.7 | 596 | 592 | 739 | 56.3 [ 569 | 639 | 61.3 | 59.3 | 61.8 | 58.7 | 583 | 573 | 639 | 510

FIXED FINE-TUNING FRENCH_ 614 | 725 | 660 | 629 | 582 | 61.2 | 62.8 | 662 | 628 | 572 | 67.5 659 | 645 | 628 | 557 | 583 | 64.1 | 604 | 46.2
ENGLISH— 74.6 843 | 783 | 754 73 62.5 | 623 | 65.6 | 639 | 54.1 64.6 | 628 | 679 60 587 | 59.4 | 648 | 68.1 73.4

HINDIZ 647 | 69.6 | 67 | 655 | 641 | 511 | 575 | 557 | 559 | 482 | 59.8 | 564 | 532 | 529 | 507 | 51 | 52 | 60.7 | 76.1

CHINESEL 68.7 | 78.1 | 727 | 69.1 708 | 564 | 63 | 619 | 614 | 567 | 659 | 634 | 605 | 60 | 569 | 559 | 636 68 | 59.7

GERMANg— 72.1 762 | 744 693 692 | 613 | 619 | 629 645 | 544 650 632 | 689 | 61.7 | 595 | 604 | 62.0 659 | 615

25, MULTI FRENCHg 65.5 | 742 | 749 700 67.5 | 630 | 615 | 682 | 641 | 562 658 | 627 | 66.7 | 605 | 57.9 | 585 | 605 633 | 64.7
S ENGLISH— 573 | 699 | 638 622 638 | 612 | 59.1 | 694 | 64.6 | 567 632 642 | 600 | 627 | 590 | 60.1 | 649 632 | 438
CHINESEg_ 662 | 739 | 716 680 | 658 | 634 | 617 | 69.1 | 643 | 579 628 622 | 657 | 625 | 60.7 | 60.0 | 64.1 | 645 | 583

Table 16: mBERT models’ accuracies on all monolingual WiC tasks. Full-shot conditions where the fine-tuning
included the target language are highlighted in yellow.

35021



Dataset — AMZiCO

Type Model Language | y»p | BN | DE | EU | FI | ID | JA | KA | KK | KO | RU | TR | UR | zH
MULTI MULTI 605 | 61.6 | 649 | 59.1 | 644 | 62.7 | 604 | 599 | 572 | 59.7 | 64.8 | 61.1 | 57.8 | 60.9
GERMAN 56.7 | 60.1 | 619 | 59.6 | 61.9 | 61.7 | 59.7 | 58.1 | 59.2 | 57.8 | 623 | 61.7 | 57.2 | 58.7
FRENCH 585 | 57 | 624 | 61 | 644 | 64.1 | 626 | 58 | 55 | 59.6 | 642 | 624 | 57.5 | 60.7
MONO ENGLISH 598 | 60 | 63.8 | 60.6 | 63.9 | 647 | 61.5 | 612 | 59 | 624 | 639 | 61.6 | 61.5 | 61.5
HINDI 512 | 509 | 57.2 | 50.1 | 50.8 | 52.2 | 49.9 | 50.2 | 49.2 | 50.8 | 53.8 | 50.8 | 51 | 50
CHINESE 53 | 527|597 | 502 | 527 | 559 | 529 | 51 | 488 | 52.9 | 58.8 | 52.8 | 50.7 | 51.5
MLCL— 583 | 604 | 64.7 | 56,5 | 61.1 | 61.0 | 59.0 | 55.5 | 53.0 | 58.1 | 61.7 | 58.7 | 582 | 55.6
GERMAN— 55.8 | 559 | 635 | 55.1 | 59.1 | 60.6 | 56.6 | 54.6 | 51.0 | 57.3 | 60.0 | 57.8 | 535 | 534
FRENCH— 58.9 | 577 | 61.7 | 56.6 | 60.4 | 59.0 | 57.8 | 54.5 | 53.5 | 58.5 | 60.3 | 58.6 | 56.5 | 56.9
FIXED FINE-TUNING ENGLISH_ 628 | 62.6 | 66.6 | 603 | 653 | 65.1 | 63.7 | 62 | 595 | 639 | 65.7 | 63.1 | 63 | 62.8
HINDIZ 512 | 509 | 57.2 | 50.1 | 50.8 | 522 | 49.9 | 50.2 | 49.2 | 50.8 | 53.8 | 50.8 | 51 | 50
CHINESE® 53 | 527|597 | 502 | 527 | 559 | 52.9 | 51 | 488 | 52.9 | 58.8 | 52.8 | 50.7 | 51.5
GERMANg— 623 | 63.1 | 664 | 61.0 | 682 | 638 | 645 | 63.0 | 60.0 | 64.6 | 658 | 652 | 61.2 | 656
S MULTI FRENCHg— 654 | 64.6 | 689 | 648 | 71.0 | 69.1 | 66.1 | 64.4 | 652 | 648 | 67.5 | 68.6 | 642 | 67.6
-5 ENGLISHg— 59.2 | 579 | 60.8 | 56.8 | 60.4 | 60.4 | 60.8 | 57.0 | 558 | 585 | 61.0 | 60.0 | 57.0 | 60.1
CHINESEg— 633 | 66.0 | 69.0 | 62.8 | 68.6 | 65.1 | 64.0 | 64.9 | 60.2 | 65.7 | 65.8 | 67.1 | 59.5 | 65.5

Table 17: mBERT models’ accuracies on inter-lingual WiC tasks.
Dataset — MCL XL Hindi
Type Model Language 1o T BN | BR ‘ RU ‘ ZH | BG | DA | DE | EN | ET ‘ FA ‘ FR | HR | IT | JA | KO | NL | ZH | HI
MULTI MULTI 714 73.9 65.8 54.8 75.6 74.0 56.1 80.8 62.3 58.7 55.1 72.3 542 66.7 57.5 69.3 59.5 71.0 70.9
GERMAN 62.9 66.1 62.3 552 66.1 51.8 549 829 | 58.4 559 54 \ 57.5 51 539 56.4 56.2 555 61.2 68.8
FRENCH 72.7 74.9 68.4 | 54.6 72.8 52.8 50.1 52.7 61 52.3 559 74.4 50 57.9 54.4 56.4 52.8 66.2 69.7
MONO ENGLISH 68.7 74.1 70.4 533 68.8 50.1 504 50.2 624 51 529 60.1 50.7 52 529 50.1 494 59.1 73.1
HINDI 55 50 50 50 50 50 50 49.7 49.9 50 49.2 ‘ 50.1 49.8 50 50 50.9 50 50 88.6
CHINESE 61.8 50 50 50 545 | 49.5 50 49.8 50 49.5 53 50.1 49 50.2 50 52 49.9 59 46.2
MULTI— 64 59.2 54.9 507 552 533 50.7 61.7 53.9 56.2 522 57.3 534 58.6 535 56.8 563 557 579
GERMAN— 573 49.7 494 485 50.0 499 50.6 61.3 51.0 46.9 50.5 \ 50.7 542 50.8 50.2 547 535 50.0 48.4
FIXED FINE-TUNING FRENCH= 522 51.1 523 | 50.0 | 50.0 | 49.7 49.6 50.3 53.1 49.0 522 60.4 | 48.3 53.7 50.1 50.5 49.7 50.0 45.1
: ENGLISH— 60.8 746 | 674 50.5 55.6 50.7 51.5 51.2 58.6 | 50.3 50 57.1 50 54.6 51.1 52.7 49.2 52.8 482
HINDIZ 55 50 50 50 50 50 50 49.7 499 50 49.2 50.1 49.8 50 50 50.9 50 50 88.6
CHINESEL 61.8 50 50 50 54.5 49.5 50 49.8 50 49.5 53 ‘ 50.1 49 50.2 50 52 499 59 46.2
GERMANg— 525 55.5 542 489 54.5 51.8 50.3 | 48.6 57.5 51.5 532 57.1 52.7 583 532 | 588 54.0 52.8 54.7
2.5, MULTI FRENCHg— 559 52.6 | 50.7 51.8 529 475 51.2 55.7 55.9 53.8 494 ‘ 529 52.7 584 532 56.0 50.5 529 48.1
o B ENGLISHg— 62.8 54.1 54.3 529 57.1 50.9 51.7 58.3 53.9 56.2 50.7 56.7 49.5 542 534 57.7 52.6 56.0 444
CHINESEg— 50.5 51.0 54.7 50.1 \ 50.0 514 | 499 572 | 54.8 54.6 51.2 56.0 | 53.7 574 | 51.1 56.0 54.4 \ 50.1 43.7

Table 18: BLOOM models’ accuracies on all monolingual WiC tasks. Full-shot conditions where the fine-tuning
included the target language are highlighted in yellow.

Dataset — AMZiCO

Type Model Language | \p | BN | DE | EU | FI | ID | JA | KA | KK | KO | RU | TR | UR | zH
MULTI MULTI 58.0 | 56.6 | 55.2 | 54.0 | 523 | 574 | 56.2 | 524 | 532 | 53.6 | 51.8 | 52.8 | 55.0 | 596
GERMAN 552 | 556 | 52 | 54 | 52.6 | 534 | 555 | 518 | 572 | 493 | 53 | 533 | 54 | 55
FRENCH 57.8 | 54.1 | 555 | 51.3 | 509 | 584 | 53.6 | 49.1 | 50.7 | 51.4 | 51.2 | 504 | 57.5 | 60.8
MONO ENGLISH 592 | 547 | 558 | 52.8 | 53.4 | 563 | 554 | 514 | 51.8 | 499 | 52.6 | 50.3 | 55.8 | 55.1
HINDI 50 | 50 | 50 | 49 | 50 | 50.1 | 50.1 | 50.1 | 49.8 | 504 | 50.1 | 50 | 50 | 50.4
CHINESE 50 | 50 | 50 | 475|499 | 50 | 514 | 50.1 | 495 | 49.8 | 509 | 499 | 50 | 48.2
MULTI— 499 | 50.0 | 51.0 | 50.1 | 50.3 | 51.0 | 51.1 | 50.1 | 49.8 | 49.9 | 49.8 | 482 | 50.0 | 49.4
GERMAN— 50.0 | 50.0 | 50.0 | 50.2 | 49.2 | 503 | 50.7 | 50.1 | 50.0 | 489 | 489 | 49.8 | 50.0 | 515
FRENCH— 50.0 | 50.0 | 50.6 | 49.2 | 49.4 | 50.0 | 49.6 | 50.0 | 50.2 | 48.5 | 49.2 | 49.9 | 50.0 | 49.5
FIXED FINE-TUNING ENGLISH_ 555 | 50 | 523|507 | 515 | 504 | 50 | 50.1 | 50 | 497 | 50.1 | 495 | 50 | 49.9
HINDIZ 50 | 50 | 50 | 49 | 50 | 50.1 | 50.1 | 50.1 | 49.8 | 504 | 50.1 | 50 | 50 | 50.4
CHINESE™. 50 | 50 | 50 | 475|499 | 50 | 514 | 50.1 | 49.5 | 49.8 | 509 | 499 | 50 | 48.2
GERMANg— 522 | 496 | 514 | 51.1 | 50.0 | 514 | 50.8 | 52.5 | 53.0 | 505 | 49.2 | 51.3 | 50.2 | 53.1
Js. MULTI FRENCHg— 51.0 | 514 | 51.5 | 52.7 | 500 | 52.7 | 52.8 | 53.3 | 49.2 | 51.1 | 50.8 | 52.5 | 51.5 | 49.0
S ENGLISHg— 50.1 | 50.0 | 49.8 | 50.0 | 51.4 | 50.7 | 50.4 | 50.0 | 50.0 | 49.9 | 50.0 | 50.4 | 50.0 | 47.5
CHINESEg— 52.7 | 50.1 | 54.1 | 50.9 | 51.3 | 49.4 | 50.6 | 50.5 | 50.2 | 51.5 | 48.1 | 51.9 | 50.2 | 49.5

Table 19: BLOOM models’ accuracies on inter-lingual WiC tasks.
Dataset — MCL XL Hindi
Type Model Language | [ eN | PR | RU | 70 | BG | DA | DE | EN | ET | FA | PR | HR | IT | JA | KO | NL | zH | HI
MULTI MULTI 71.8 85.6 76.5 | 78.1 80.2 69.5 | 679 | 77.9 71.6 62.1 79.0 | 742 | 694 | 709 | 669 73.7 | 75.1 72.8 58.7
GERMAN 71.5 | 789 77.0 | 759 | 779 | 643 | 68.9 80.0 | 70.2 533 | 69.0 | 69.0 | 67.6 | 644 | 63.6 | 65.6 | 71.2 | 72.4 65.5
FRENCH 70.4 ‘ 78.7 727 | 71.7 | 753 | 62.8 | 67.0 | 69.9 69.6 533 | 69.2 76.5 | 63.0 | 67.6 | 63.1 | 68.6 | 72.7 | 70.3 59.7
MONO ENGLISH 70.3 85.0 | 76.9 | 748 | 70.9 | 549 | 62.3 | 60.3 67.7 | 50.5 | 63.2 | 632 | 55.1 | 57.1 | 532 | 55.6 | 59.8 | 65.4 62.6
HINDI 64.8 | 72.7 664 | 68.7 | 694 | 564 | 583 | 59.8 64.1 50.8 | 67.6 | 56.8 | 60.0 | 584 | 57.5 | 58.2 | 62.8 | 64.7 72.9
CHINESE 69.3 | 70.7 709 | 71.5 715 | 64.8 | 63.7 | 64.0 68.7 56.7 | 70.9 | 62.1 672 | 61.7 | 60.1 | 664 | 654 70.2 68.5
MULTI— 734 79.8 749 | 732 | 732 665 | 652 | 75.6 71.0 62.1 80.1 70.6 | 70.6 | 674 | 64.0 69.0 | 68.8 | 71.5 T1.5
GERMAN= 709 | 77.5 77.1 TIL.7 1 759 | 60.5 | 65.3 76.6 | 64.9 574 | 74.1 68.0 | 662 | 644 | 612 [ 598 | 69.2 | 71.9 47.2
IXED FINE-TUNING FRENCH— 70.7 | 77.1 70.5 | 69.8 | 745 | 654 | 634 | 68.6 67.8 60.5 | 769 | 65.8 | 64.5 | 63.3 | 63.6 | 684 | 63.7 | 71.6 64.5
F - l ENGLISH= 68.5 84.0 | 742 | 747 | 71.1 62.7 | 624 | 63.6 70.2 | 55.1 632 | 645 | 59.8 | 61.0 | 58.6 | 62.8 | 659 | 64.4 66.2
HINDIZ 64.8 72.7 66.4 68.7 69.4 56.4 | 583 59.8 64.1 50.8 67.6 56.8 60.0 | 584 | 57.5 | 58.2 | 62.8 64.7 729
CHINESEL 69.3 ‘ 70.7 709 | 71.5 71.5 | 64.8 | 63.7 | 64.0 68.7 56.7 | 709 | 62.1 672 | 61.7 | 60.1 | 664 | 654 70.2 68.5
GERMANg— 63.2 81.4 74.8 70.8 70.6 64.6 | 64.3 66.7 714 62.1 78.1 704 | 669 | 66.2 | 620 664 | 71.4 65.7 67.6
2.5, MULTI FRENCHg— 69.3 789 776 | 74.1 76.6 657 | 63.6 | 74.2 72.2 63.1 775 | 674 | 67.6 | 655 | 646 69.6 | 69.7 | 70.4 61.6
/-S. MUL ENGLISHg— 61.6 ‘ 74.1 69.9 67.2 69.6 63.2 | 64.2 76.3 68.4 58.5 73.9 69.4 | 63.5 | 664 | 62.1 68.7 | 69.6 67.6 56.7
CHINESEg— 704 783 728 | 71.7 | 727  63.1 | 629 | 72.0 68.2 65.1 71.1 67.8 | 689 | 62.7 | 627 67.5 | 68.8 | 68.9 62.9

Table 20: LLaMA models’ accuracies on all monolingual WiC tasks. Full-shot conditions where the fine-tuning
included the target language are highlighted in yellow.
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Dataset — AMZCO

Type Model Language | g | gN | DE | BU | F1 | D | 7o | KA | KK | kO | RU | TR | UR | zH
MULTI MULTI 611 | 59.7 | 63.5 | 58.1 | 60.0 | 59.8 | 59.7 | 574 | 56.0 | 61.7 | 603 | 58.6 | 552 | 615
GERMAN 599 | 55.0 | 60.6 | 552 | 57.7 | 573 | 60.0 | 550 | 56.8 | 60.2 | 583 | 58.3 | 545 | 573
FRENCH 58.5 | 58.0 | 62.5 | 57.1 | 63.6 | 58.8 | 59.4 | 56.5 | 532 | 60.5 | 60.3 | 60.2 | 57.2 | 59.0
MONO ENGLISH 61.9 | 61.0 | 63.9 | 57.6 | 63.9 | 60.1 | 62.0 | 59.5 | 57.0 | 63.6 | 62.3 | 60.1 | 59.5 | 62.1
HINDI 59.8 | 59.7 | 62.1 | 56.1 | 60.0 | 59.8 | 59.1 | 55.8 | 552 | 59.5 | 60.5 | 57.0 | 55.5 | 58.6
CHINESE 59.0 | 56.4 | 62.2 | 554 | 59.4 | 60.1 | 58.8 | 532 | 53.5 | 563 | 59.8 | 59.3 | 55.5 | 58.5
MULTI— 61.6 | 580 | 64.6 | 585 | 63.8 | 61.1 | 60.2 | 582 | 55.0 | 59.0 | 59.5 | 60.0 | 58.0 | 613
GERMAN_ 571 | 57.7 | 603 | 56.7 | 605 | 593 | 595 | 58.5 | 552 | 60.8 | 589 | 57.5 | 55.8 | 58.0
FRENCH— 56.3 | 57.6 | 58.3 | 57.5 | 59.4 | 58.6 | 559 | 52.9 | 52.0 | 553 | 56.9 | 564 | 56.0 | 55.4
FIXED FINE-TUNING ENGLISH— 60.1 | 59.1 | 61.1 | 56.5 | 60.7 | 58.6 | 58.1 | 60.3 | 56.0 | 59.2 | 60.4 | 569 | 58.5 | 59.6
HINDI™. 59.8 | 59.7 | 62.1 | 56.1 | 60.0 | 59.8 | 59.1 | 55.8 | 552 | 59.5 | 60.5 | 57.0 | 55.5 | 58.6
CHINESE® 59.0 | 564 | 622 | 554 | 59.4 | 60.1 | 58.8 | 532 | 53.5 | 563 | 59.8 | 59.3 | 55.5 | 58.5
GERMANg— 731 | 730 | 789 | 72.1 | 786 | 763 | 758 | 724 | 71.5 | 76.0 | 80.0 | 758 | 69.8 | 76.3
2S. MULTI FRENCHg— 713 | 68.7 | 725 | 69.6 | 73.8 | 71.1 | 70.1 | 69.7 | 68.5 | 722 | 74.1 | 71.6 | 67.5 | 70.8
S ENGLISHg— 57.7 | 56.0 | 59.3 | 57.2 | 59.9 | 59.0 | 589 | 56.3 | 552 | 59.9 | 58.7 | 57.3 | 58.2 | 59.7
CHINESEg— 746 | 727 | 763 | 71.0 | 76.1 | 745 | 747 | 723 | 68.5 | 742 | 763 | 743 | 70.5 | 749
Table 21: LLaMA models’ accuracies on inter-lingual WiC tasks.
Dataset — MCL XL Hindi
Type Modal Language | \p | ex | PR | RU | ztt | BG | DA | DE | EN | BT | PA | PR | HR | 1T | 1A | KO | ML | 20 | m
HINDI 56.8 | 56.6 50.9 | 50.1 492 | 50.3 | 52.7 | 49.5 563 | 51.5 | 50.5 | 51.3 | 50.5 | 57.4 | 52.7 | 53.0 | 53.5 | 488 86.5
ENGLISH 56.2 86.6 | 64.5 | 50.7 | 49.1 50.2 | 524 | 525 704 | 51.0 | 49.1 56.0 | 463 | 534 | 50.0 | 50.0 | 51.0 | 50.1 814
MONO FRENCH 527 | 612 56.7 | 50.3 | 50.0 | 52.8 | 56.1 48.8 58.7 | 549 | 515 509 | 50.7 | 54.2 | 50.8 | 59.6 | 53.8 | 54.0 64.0
GERMAN 553 | 68.5 62.7 | 51.0 | 51.2 | 499 | 56.0 80.0 | 62.0 | 55.1 | 56.5 | 574 | 48.8 | 552 | 51.1 | 50.0 | 56.4 | 51.0 69.8
CHINESE 50.0 | 50.2 52.8 | 509 543 | 499 | 514 | 51.6 51.7 | 52.1 | 51.9 | 516 | 53.2 | 554 | 50.6 | 584 | 51.5 52.1 56.6
MULTI MULTI 483 484 499 502 | 49.0 50.7 | 50.1 50.9 488 | 49.0 468 | 51.6 | 50.5 | 51.2 | 52.7 | 51.5 | 47.2 | 49.8 459

Table 22: MuRIL models’ accuracies on all monolingual WiC tasks. Full-shot conditions where the fine-tuning
included the target language are highlighted in yellow.

Dataset — AMZiCO
Type Model Language | o | BN | DE | EU | FI | ID | JA | KA | KK | KO | RU | TR | UR | ZH
HINDI 496 | 503 | 50.8 | 495 | 52.1 | 485 | 475 | 49.9 | 49.0 | 50.8 | 50.6 | 50.2 | 50.7 | 50.0
ENGLISH 537 | 717 | 653 | 55.9 | 573 | 59.8 | 49.8 | 49.0 | 49.0 | 493 | 51.7 | 54.8 | 702 | 48.7
MONO FRENCH 49.5 | 51.1 | 51.6 | 48.8 | 497 | 499 | 50.0 | 48.1 | 50.7 | 47.5 | 51.9 | 51.4 | 51.5 | 502
GERMAN 526 | 57.6 | 56.9 | 54.8 | 544 | 562 | 511 | 522 | 51.8 | 502 | 53.7 | 52.5 | 53.8 | 511
CHINESE 50.0 | 50.1 | 50.0 | 50.0 | 49.9 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 49.9 | 50.0 | 50.0 | 50.0
MULTI MULTI 496 | 477 | 504 | 485 | 495 | 493 | 47.7 | 489 | 51.5 | 502 | 49.1 | 493 | 49.2 | 48.1

Table 23: MuRIL models’ accuracies on inter-lingual WiC tasks.

35023




BN Full FT. W Fixed FT. Bl Pretrained

Fine-Tuned Model 3 Monolingual ZZ2 Multilingual

XLMR MBERT BLOOM LLAMA

°
©
°
©
°
©
°
©

o ¢
®
o ¢
®

N3
+
+

=
+

Average Accuracy
o o
PO
Average Accuracy
o o
PO
Average Accuracy
° o o o
25 @ I
Average Accuracy
o o o
20 @

LESLSSD L 2 7 7 7 D LSS L 2 v 7 1 D L& & & LSS L 2 2 72 7 D
SIS RSV AA SN NG IEA SIS & T S R Lo
VO L EERE R SRS S S EEIE 868 WO EESE SRS NS EEEEREE S
CE € TSRS CE € TE N EES CE € IO FESE CE ¢ IS FESS
SE L SE L SR L S L
0.9 0.9 0.9 0.9
08 08 08 08
g g g g
< o7 S o7 S o7 S o7
< & g g g -|--|-|
& 06 +-h & 06 h T h & 06 & 06 rh
g g g g
Z 05 Z 05 Z 05 Z 05
0.4 0.4 0.4 0.4
4 LSS L 2. 72 2 7D LSS R 2 2 7 1 D LSS R 2 7 1 1 D LSS ® 2 7 v 1 D
Q NS EER S8 NS EEF @ S N @ KEIE S NS EEIE S
u CE € T FEES CE €TSS CE € IO FESE SE ¢ TS FESE
& & @ & O L@ & (& O L@ &
S S L S L SR CL SR L
© 0.9 0.9 0.9 0.9
= — gos8 ~1 08 08 Z 08
o al [— g - g g
= Sor7 g o7 = S o7 g o7 %
= 2 £ £ 2 ’
Er Z0s . % 0s % 0s g
€ € g g
gl)5 g05 g05 g05 ’
. I ) L ) ) Ziln
4
0.4 0.4 0.4 0.4
SeElfSS L2 2 2 2 D LSS R 2 2 7 7D LSS R 2 7 1 7 D LSS R 2 7 1 7 D
O A7 L& 7 NSNS PNRNECIC TR OINR NSNS PRI T IR W NSNS PRI T IR R
W e S S W e S F RS 5HS WO & PSS 6S W& & PSS S5
SE ¢S "@‘é@‘(@(‘& CE ¢ TE W IS CECIENY OIS CECIENY PO
SF T SF T SF CF
0.9 0.9 0.9 0.9
O zos 208 > 08 Z 08
O & g g £
= 5 H H 5
N §o7 g o7 g o7 g o7
s < rH £ £ £
<3 8 s 8
g g I g
g g g g
z E z z

PSS L2 2 2 1 D P ELSS L s 1 7
S PSS PO
<SS [ORS Ot G SE

INTER-LINGUAL
288
3
s
+
=3j
p/g
-
==
3

[ P

Figure 7: Mean accuracy with standard deviation for multilingual and monolingual models on WiC datasets,
showing both pretrained (no-fine-tuning) and fine-tuned performance. Color encodes whether fine-tuning used
the full training set, a subsampled portion, or whether the pretrained models were used off-the-shelf. Hindi and
Chinese appear only in the full-data condition due to limited size. The Hindi dataset has no error bars because it is a
single-language dataset.

I Performance of Pretrained Models without Fine-Tuning

It is logical to ask whether pretrained multilingual language models already separate word senses in
a no-fine-tuning setting. Because contextual embeddings integrate sentence context via attention, one
might expect embeddings of mole in “burrowing mammal” vs. “skin blemish” to diverge more than two
occurrences of the same sense, even without fine-tuning. To probe this, we evaluate pretrained models
without task-specific training by classifying sentence pairs using cosine distance between target-word
embeddings, consistent with our main protocol.

Threshold selection and considerations. In our main experiment setup, each fine-tuned encoder uses
a cosine-distance decision threshold set on dev data from its fine-tuning language (or multilingual dev
for MULTI models). For encoders without fine-tuning, no model-specific dev data exists, leaving only
flawed alternatives: (A) calibrate once on pooled multilingual dev data (introducing mixture bias), (B)
tune separately on each test set (test leakage, inflated scores), or (C) calibrate per language (uses target-
language supervision unavailable to the pretrained encoders). We adopt Option A as the least biased
feasible choice. We sweep candidate thresholds on the pooled dev data to maximize accuracy and then
fix that single global threshold for each encoder across all datasets. This avoids test leakage and keeps
calibration constant, but the global threshold inevitably reflects mixture statistics and tailors to the average
of all the data, and can favor high-resource languages. Accordingly, these numbers are a sanity check for
learning rather than directly comparable performance estimates.

Results. Figure 7 shows that XLM-R, mBERT, and BLOOM consistently benefit from fine-tuning across
nearly all conditions, with the few exceptions concentrated in low-data fine-tuning settings (e.g., Chinese
or Fixed F.T.) when evaluated on Hindi. These gains indicate that fine-tuning substantially improves sense
discrimination beyond what is present in the pretrained geometry.
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For LLaMA, the dynamics differ slightly. The generative model is prompted (see Figure 9 for the
prompt) rather than based on a cosine-distance threshold. Its zero-shot instruction-following yields
a stronger baseline than the pretrained encoders on most tasks; accordingly, despite using the same
WiC training data, its absolute gains from fine-tuning are smaller. This reflects an architectural/interface
contrast—encoders benefit from shaping the embedding space and a calibrated decision threshold, whereas
LLaMA already executes the task from the prompt and changes less with additional supervision.

We include full results for the no-fine-tuning baselines in Table 24. These baselines show that sense
discrimination improves with fine-tuning; however, they are not intended for head-to-head comparison
with fine-tuned models due to the necessarily different threshold calibration.

Dataset — MCL XL Hindi
Language
Model AR | EN FR | RU | ZH | BG | DA | DE | EN ET FA FR | HR 1T JA KO | NL | ZH HI
XLM-R 622 | 622 | 61.6 | 58.7 | 58.0 | 58.5 | 60.6 | 56.1 | 56.1 | 53.1 | 53.9 | 53.1 | 57.0 | 54.8 | 56.9 | 55.7 | 58.7 | 60.0 | 66.1
MBERT 56.2 | 585 | 51.2 | 52.1 | 53.7 | 58.1 | 54.2 | 544 | 52.8 | 54.7 | 552 | 52.6 | 54.7 | 50.3 | 56.4 | 56.8 | 62.6 | 53.1 | 63.8
BLOOM 61.1 | 50.0 | 50.0 | 50.0 | 50.0 | 49.9 | 50.0 | 49.0 | 50.0 | 50.1 | 49.9 | 50.0 | 50.1 | 49.7 | 50.3 | 50.0 | 50.0 | 53.9 | 63.6
LLAMA 672 | 642 | 654 | 580 | 62.8 | 554 | 63.2 | 56.9 | 55.7 | 584 | 579 | 53.8 | 53.4 | 52.8 | 46.5 | 54.1 | 53.7 | 70.6 | 62.5
MURIL 50.0 | 499 | 574 | 51.8 | 504 | 49.8 | 49.9 | 485 | 50.8 | 50.6 | 56.1 | 58.2 | 49.7 | 50.0 | 56.2 | 50.2 | 53.2 | 504 | 59.8

Table 24: Pretrained models’ accuracies on all monolingual WiC tasks.

Dataset — AMZiCO
Model Language | wp | BN | DE | BU | F1 | ID | JA | KA | KK | KO | RU | TR | UR | zH
XLM-R 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 49.9 | 50.1 | 50.0 | 50.0
MBERT 50.0 | 50.0 | 50.1 | 50.1 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 49.9 | 49.9 | 50.0 | 50.0
BLOOM 50.0 | 50.0 | 50.0 | 50.8 | 49.9 | 50.1 | 502 | 50.1 | 49.8 | 49.9 | 49.7 | 49.9 | 50.0 | 49.8
LLAMA 583 | 55.7 | 61.6 | 553 | 573 | 593 | 58.7 | 54.7 | 532 | 579 | 577 | 56.8 | 59.0 | 60.3
MURIL 50.5 | 49.7 | 50.3 | 50.0 | 49.8 | 50.6 | 49.7 | 50.6 | 50.0 | 49.6 | 49.8 | 50.1 | 52.2 | 50.0

Table 25: Pretrained models’ accuracies on inter-lingual WiC tasks.
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J Performance of XLM-R, mBERT and BLOOM-Based Models on LSCD Tasks

MuRIL models were excluded from this evaluation due to poor cross-lingual performance, resulting from
a lack of pretraining on most of the target languages. LLaMA models were also not evaluated, as the
LSCD task format is not well-suited to generative architectures.

Language Metric XL-LEXEME MULTI GERMAN FRENCH ENGLISH HINDI CHINESE
English APD 757 703 737 681 772 436 673
PRT 495 492 241 337 535 363 367
German APD 873 863 841 867 844 635 641
PRT .881 890 829 831 873 755 682
Swedish APD 755 801 754 618 724 430 439
PRT 678 673 522 138 627 277 332
Latin APD -035 117 161 136 135 177 091
PRT 467 392 445 405 429 512 512
Spanish APD 665 696 670 664 711 354 383
PRT 633 .698 .655 .649 643 355 267
Chinese APD 734 652 649 499 737 524 593
PRT 702 708 623 578 684 552 432
Norwegiany | APD 668 729 638 697 777 525 400
PRT 769 784 730 740 845 551 435
Norwegiany | AFD 634 655 604 530 645 433 439
PRT 532 .583 557 525 636 337 396
Average APD 631 652 632 593 668 401 464
PRT .645 652 575 525 659 463 428

Table 26: Spearman correlations of XLLM-R models’ APD and PRT scores with graded semantic change scores
across LSCD tasks, transposed to show languages as rows. Best scores are bolded; scores within 0.05 of the best are
underlined.

Language Metric MULTI GERMAN FRENCH ENGLISH HINDI CHINESE
English APD | .754 566 551 711 506 684
PRT | .470 397 393 434 309 328
German APD | .760 719 a2 810 551 783
PRT | .834 759 846 845 550 705
Swedish APD | 377 A73 1002 437 523 541
PRT | .082 145 -504 266 207 366
Latin APD | .I81 ~092 ~058 158 163 -190
PRT | .298 339 235 038 462 412
Spanish APD | .629 500 531 651 452 536
PRT | .636 462 546 617 332 407
Chinese APD | .654 554 336 668 651 619
PRT | .690 623 493 .686 427 529
Norwegian; | APD | 596 515 561 638 631 7700
PRT | .724 .698 580 748 558 601
Norwegians | APD | 601 596 464 604 a12 581
PRT | .474 527 260 535 238 421
Average APD | .569 479 401 545 436 532
PRT | .526 494 356 521 385 471

Table 27: Spearman correlations of mBERT models” APD and PRT scores with graded semantic change scores
across LSCD tasks, transposed to show languages as rows. Best scores from fine-tuned models are bolded; scores
within 0.05 of the best are underlined.
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Language | Metric | MULTI | GERMAN | FRENCH | ENGLISH | HINDI | CHINESE
English APD | .689 463 657 656 176 201
PRT | .469 293 459 487 215 342
German APD | .634 606 244 410 075 144
PRT | .720 723 A74 564 274 499
Swedish APD | 278 399 303 311 276 132
PRT | .287 326 219 -.052 134 -.041
Latin APD | -.068 ~104 081 -197 230 173
PRT | .367 221 323 314 125 310
Spanish APD | 501 370 474 599 326 230
PRT | .489 372 450 521 284 178
Chinese APD | .550 467 570 592 216 299
PRT | .546 381 506 568 395 159
Norwegiam, | AFD | 278 289 131 345 002 051
PRT | .251 512 -015 354 240 363
Norwegiany | AFD | 395 193 237 089 ~.109 -046
PRT | .264 216 261 041 -303 -118
Average APD | .407 335 337 351 001 116
PRT | .424 380 335 350 170 211

Table 28: Spearman correlations of BLOOM models’ APD and PRT scores with graded semantic change scores
across LSCD tasks, transposed to show languages as rows. Best scores from fine-tuned models are bolded; scores
within 0.05 of the best are underlined.

35027



K LLaMA

K.1 LLaMA outperformed by XLM-R

Figure 8 shows that XLM-R generally outperforms
LLaMA across most datasets under both full and
fixed fine-tuning conditions, except when the mod-
els are trained on Hindi or Chinese. This can be
attributed to LLaMA’s instruction-following pre-
training, which enables it to better generalize from
limited examples, which is particularly valuable in
low-resource settings. In contrast, XLM-R lacks
such capabilities and must infer both the task and
the language from sparse training data. This issue
is exacerbated by the fact that LLaMA was pro-
vided with prompts, which were consistently in
English due to tokenizer limitations, while XLM-R
had no explicit indication of either the task or input
language during training or evaluation except for
the sparse training data.

While we include LLaMA in our evaluation
to provide a comparison with recent large lan-
guage models (LLMs) and instruction-tuned ar-
chitectures, our results suggest that encoder-based
models like XLM-R remain more effective for in-
context polysemy disambiguation. Despite the gen-
erative capabilities of LLaMA, it underperforms on
these tasks in most languages compared to XLLM-
R, particularly when ample training data is avail-
able. This highlights the continued relevance of
encoder-based models, which demonstrate stronger
task-specific performance and greater cross-lingual
transfer.

L LLaMA Fine-Tuning Parameters

Fine-tuning details
pre-trained LLMs Meta-Llama-3-8B-Instruct
GPUs NVIDIA A40 (48GB)
PEFT LoRA
LoRA dropout 0.1
Weight decay 0.001
Learning rate le-4
LoRArank 128
LoRAalpha 256
Warmup ratio 0.05
Num train epochs 3
Gradient accumulation steps 4
Max seq. length 512
Batch size 8
Optimizer paged_adamw_8bit
LoRA target modules q_proj, VP roj, k_.p roj, 0_proj ;
gate_proj, up_proj, down_proj

Table 29: Settings and parameters for fine-tuning
Llama3Instruct.

L.1 Prompts and Response Parsing

We adapted the WiC task to a generative setting
for LLaMA by using the prompt shown in Fig-
ure 9. This prompt format was used consistently
during both training and evaluation. For training,
the prompt was followed by the correct binary label
(“1” or “0”) as the target output. During evalua-
tion, the model generated this label based on the
prompt alone. We evaluated the pretrained model
using several alternative prompt formulations on
evaluation in all languages, ultimately selecting the
one that yielded the highest overall performance.

To extract model predictions, we used the fol-
lowing simple rule-based parser:

if "1" in output and "@" not in output:

return "1"

elif "0" in output and "1" not in output:
return "0"

else:

return None # counts as incorrect

In practice, nearly all outputs followed the ex-
pected format, with the vast majority consisting of
a single “1” or “0”.
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Figure 8: Differences between the per-dataset average accuracies of XLM-R based models and LLaMA-based
models trained on the same data in both Full and Fixed Fine-Tuning conditions.

System message:

Act as an expert lexicographer: determine if a given word has the same sense in two sentences,
and respond with 1 if the sense is the same, or @ if it is different.

User message:

Determine if "{target_word}" has the same meaning in these two sentences.
You MUST reply with ONLY:

1 — if the meaning is identical.

0@ — if the meaning differs.

Sentence 1: "{sentencel}”
Sentence 2: "{sentence2}”

Answer (ONLY 1 or 0):

Figure 9: System and user prompt used to adapt the WiC task for LLaMA.
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