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Abstract
We introduce a novel Question Answering
(QA) architecture that enhances answer selec-
tion by retrieving targeted supporting evidence.
Unlike traditional methods, which retrieve doc-
uments or passages relevant only to a query q,
our approach retrieves content relevant to the
combined pair (q, a), explicitly emphasizing
the supporting relation between the query and
a candidate answer a. By prioritizing this rela-
tional context, our model effectively identifies
paragraphs that directly substantiate the cor-
rectness of a with respect to q, leading to more
accurate answer verification than standard re-
trieval systems. Our neural retrieval method
also scales efficiently to collections containing
hundreds of millions of paragraphs. Moreover,
this approach can be used by large language
models (LLMs) to retrieve explanatory para-
graphs that ground their reasoning, enabling
them to tackle more complex QA tasks with
greater reliability and interpretability.

1 Introduction

Question Answering (QA) systems are increasingly
expected to deliver accurate and reliable informa-
tion; however, recent generative QA technologies
have shown vulnerability to hallucinations. Conse-
quently, methods to verify the factuality of gener-
ated answers have become essential. Previous re-
search on automatic claim verification, such as the
Fact Extraction and VERification (FEVER) chal-
lenge (Thorne et al., 2018), indicates that retrieving
textual evidence—sentences supporting or refuting
a claim—is critical to assess answer correctness.
Previous works, e.g., (Bajaj et al., 2016; Zhang
et al., 2022, 2021), typically apply standard lexi-
cal or neural retrieval techniques (Karpukhin et al.,
2020) to collect such evidence. For instance, Dense
Passage Retrieval (DPR) is commonly queried us-
ing the concatenation of a question q and an answer
candidate a. Although straightforward and effec-
tive, this approach is inherently limited because

q: When does season 6 of the next step start?
a: The series has been renewed for a sixth season of 26

episodes which will premiere in 2018.
s1: "The Next Step" is a Canadian teen drama series. This

is a list of the characters, and who portrays them.
s2: On March 21, 2016, Frank van Keeken announced on

Instagram that "The Next Step" would return for a fifth
season, which premiered on May 26, 2017.

s3: The series has been renewed for a sixth season of 26
episodes which premiered in Canada on September 29,
2018.

s4: "The Next Step" is filmed at Filmport Presentation Cen-
tre, Toronto. Exterior and street shots were shot on
location in Downtown Toronto.

Table 1: A question with answer candidates.

DPR is trained primarily to retrieve documents rel-
evant to the query terms. Thus, top-ranked docu-
ments typically exhibit high lexical overlap with
q and a, but do not necessarily provide evidence
confirming the correctness of a with respect to q.

Table 1 illustrates this limitation by presenting
a question, a candidate answer, and four poten-
tial supporting sentences (s1–s4). The query asks
about the start date of Season 6 of The Next Step.
The provided answer references the sixth season
of a series. To logically confirm this answer, it is
necessary to know that The Next Step is indeed a
series. Sentence s1 explicitly provides this criti-
cal information, despite also including irrelevant
details. In contrast, sentences s2 and s4, although
related to both q and a, fail to provide the essential
missing link. Similarly, s3 restates the answer with-
out offering additional verification that The Next
Step is a series. Crucially, s2 and s3 appear lex-
ically more relevant to the query-answer pair, as
they contain multiple overlapping terms such as
Canada, premiere, and sixth season. This exam-
ple clearly shows that effective evidence selection
cannot rely solely on lexical or topical relevance;
rather, it must explicitly capture the logical support
relation between q and a.

This motivates retrieval architectures that move
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beyond topical similarity to explicitly capture the
support relation between a question, an answer,
and evidence. This paper introduces an innovative
QA architecture incorporating support retrieval and
re-ranking models explicitly trained to identify rel-
evant support relations. We formulate supervised
methods to model these relations by training rank-
ing functions on triples (q, a, s), where s represents
the supporting text. Importantly, we demonstrate
how neural retrieval can leverage this reranking
training data by using a classification head analo-
gous to DPR’s dot-product structure ( ~Q · ~s), where
~Q encodes the query-answer pair (q, a) and ~s en-
codes the supporting evidence. In terms of effi-
ciency, the computational complexity of our Dense
Support Retrieval (DSR) module is the same as that
of standard neural IR retrievers or equivalent ver-
ification systems. The only additional cost arises
from verifying each candidate answer, as evidence
retrieval is an inherent prerequisite for answer veri-
fication.

We evaluate the effectiveness of our support re-
trieval (i) implicitly, by measuring its impact on
AS2, and (ii) explicitly, by calculating support re-
call. In doing so, our approach directly addresses
answer and support granularity at the sentence or
paragraph level, contributing to research on passage
reranking and Answer Sentence Selection (AS2).
Empirically, our Supervised Support Ranker (SSR)
achieves state-of-the-art performance on the Hot-
potQA dataset (Yang et al., 2018), improving AS2
accuracy from 68.4% to 70.2% over the prior best
approach (Zhang et al., 2023). Additionally, on
the FocusQA dataset (Barlacchi et al., 2022), our
Dense Support Retrieval (DSR) significantly im-
proves retrieval performance compared to DPR,
increasing support recall from 12% to 71.6%, and
sets a new AS2 accuracy benchmark by improving
the prior state-of-the-art from 28.7% to 33.1%.

Beyond efficiency and empirical gains, DSR
enables fine-grained relational retrieval. By ex-
plicitly modeling explanatory relations between
(q, a) pairs and supporting passages, our approach
lays the foundation for specialized retrievers (e.g.,
causal, temporal, comparative) and provides a
mechanism for grounding the reasoning of large
language models (LLMs).

2 Background and Related Work

Retrieval-based QA systems, such as those pio-
neered by the TREC QA tracks (Voorhees and Tice,

1999), are conceptually straightforward. Given a
question q, the system first retrieves the top-N rel-
evant documents. These documents are then seg-
mented into paragraphs or sentences, and an answer
selector identifies the text most likely to contain
the correct answer. Below, we summarize relevant
advancements in neural retrieval and AS2.

Dense Passage Retrieval (DPR) Karpukhin
et al. (2020) proposed DPR, an advanced neural
retrieval method for QA systems. Unlike tradi-
tional sparse retrieval methods, which depend pri-
marily on keyword matches, DPR leverages a dual-
encoder architecture based on transformers. This
approach generates dense vector representations
of passages and queries, enabling more nuanced,
semantic-based matching.

All passages in the corpus are encoded offline
into dense vectors ~p. Questions are encoded sep-
arately at inference time into vectors ~q within the
same embedding space. The relevance of a passage
p to a query q is determined by computing their
similarity, typically as the scalar product ~p · ~q. This
similarity score is then used to rank passages effi-
ciently.1 Applications of DPR (Lewis et al., 2020;
Borgeaud et al., 2022; Zhang et al., 2023) have
demonstrated substantial improvements in retrieval
effectiveness over traditional methods.

Answer Sentence Selection (AS2) The standard
AS2 formulation is defined as follows: given a
question q ∈ Q and a set of candidate answers C,
the goal is to learn a function π : Q × C → R,
where π(q, ci) outputs the likelihood that candidate
ci ∈ C correctly answers q.

Recent AS2 models rely on neural architectures
to estimate π, such as convolutional neural net-
works (CNNs) proposed by Severyn and Mos-
chitti (2015), CNNs with attention mechanisms
like Compare-Aggregate (Yoon et al., 2019), and
inter-weighted alignment networks (Shen et al.,
2017). Bonadiman and Moschitti (2020) intro-
duced several joint models surpassing earlier neu-
ral AS2 approaches. These, in turn, were fur-
ther improved upon by transformer-based mod-
els such as TANDA (Garg et al., 2020). Cur-
rent state-of-the-art approaches are ASR (Zhang
et al., 2021) and DAR-DR (Zhang et al., 2023).
Both employ transformer networks that lever-
age multiple candidate answers to estimate the

1For large repositories, exhaustive computation can be
avoided through efficient KNN search (Johnson et al., 2019).
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Figure 1: Our answer verification architecture.

probability of a given candidate ci, computed as
π(ci|c1, . . . , ci−1, ci+1, . . . , ck).

Textual Entailment Finally, entailment methods
test whether a hypothesis follows from a premise,
while our support relation generalizes this idea to
retrieving passages that justify a candidate answer
with respect to a question. This broader framing sit-
uates our model within and beyond the entailment
literature, and points toward future specialized re-
trievers (Bowman et al., 2015; Williams et al., 2018;
Conneau et al., 2017; MacCartney and Manning,
2009).

3 Dense Support Retrieval and Ranking
We propose a novel question answering architec-
ture based on: (i) Dense Support Retrieval (DSR),
which resembles DPR but specifically targets the
support relation rather than general relevance be-
tween queries and texts. This means the retrieved
text explicitly supports the correctness of a can-
didate answer with respect to the query. (ii) A
Support-based Answer Reranker (SBAR), which
leverages retrieved support to select the best answer
candidate. Fig. 1 illustrates our architecture. Given
a user’s question q, a standard QA system initially
provides the top-k candidate answers ai (we use
answer sentences). To identify the best answer, we
first retrieve n supports sij for each candidate ai by
applying DSR to (q, ai). Next, we employ a Super-
vised Support Reranker (SSR) to select the most
accurate support si. Finally, SBAR reranks the
triplets (q, ai, si) to determine the optimal answer
a∗. Although previous work has utilized support
retrieval for answer selection, e.g., (Zhang et al.,
2023), our complete architecture—incorporating
DSR, SSR, and SBAR—is novel.

Dense Support Retrieval (DSR) We build
a query vector ~Q from the pair (q, a), while
each supporting sentence s is encoded into an
embedding ~s. In the introduction, we highlighted
the difference between general relevance and the
specific concept of support necessary to infer
answer correctness. Defining explicit rules for
this support relation is challenging; thus, we train
transformer-based neural models to automatically
capture it using supervised data. Specifically, given
the top supporting sentences s1, . . . , sn retrieved
for query Q, we train DSR using the following
ranking loss:

L(Q, s1, . . . , sn)=− log
esim(Q,sj)

∑n
i=1,i 6=j e

sim(Q,si)
, (1)

where Q = (q, a), sim(Q, si) = ~Q · ~si, sj is the
positive support, and all other si represent negative
supports.

Supervised Support Reranker (SSR) We train
the SSR component in a fully supervised manner
using two alternative loss functions: (i) a cross-
entropy loss, yielding the model SSRCE ; and
(ii) a ranking loss, yielding the model SSRRL,
as defined in Eq.1. For the latter, we reuse the
training instances generated for DSR, substitut-
ing sim(Q, si) and sim(Q, sj) with the supervised
score π(q, a, si) and π(q, a, sj) respectively, as de-
scribed in Sec.2.

Support-based Answer Reranker (SBAR)
SBAR is a triplet-based classifier designed to
perform the AS2 task using retrieved supports.
Starting from a TANDA model, we fine-tune
SBAR on triplets composed of question, candidate
answer, and the corresponding gold support.
Additionally, we introduce the variant SBAR−,
which is further trained using negative supports
retrieved by DSR.

4 Experiments

We first validate our approach against state-of-the-
art methods for AS2 and support ranking. Then,
we analyze the impact of our proposed components,
DSR and SSR.

4.1 Datasets
We conducted primary experiments using two open-
domain question answering datasets:
HotpotQA by Yang et al. (2018) is a widely
used multi-hop QA benchmark comprising approx-
imately 100,000 crowd-sourced questions. The cor-
rect answers to these questions can only be inferred
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AS2 Support Ranking

P@1 MAP MRR P@1 MAP MRR

TANDA 66.0 75.8 76.9 - - -
ASR 68.0 77.2 78.1 - - -
DAR 68.4 77.5 78.5 - - -
DAR-DR 68.3 77.3 78.3 - - -
SBAR* 81.5 86.0 86.6 - - -

SSRCE+SBAR 70.2 78.6 79.2 62.7 67.6 67.6

Table 2: HotpotQA distractor setting results.

by jointly reasoning across multiple Wikipedia
paragraphs. The dataset provides gold-standard
answer phrases along with associated supporting
paragraphs, enabling explicit identification of an-
swers. We adapted HotpotQA to the AS2 task
following (Zhang et al., 2023), splitting paragraphs
into sentences and labeling sentences as correct
answers if they contain the gold-standard answer
phrases. We evaluate our models using the official
distractor dev-set as our test set.
FocusQA by Barlacchi et al. (2022) is specifically
designed for AS2 and is enriched with context in-
formation. Each question-answer pair in FocusQA
is accompanied by four context types: title ques-
tion context (TQC), paragraph question context
(PQC), title answer context (TAC), and paragraph
answer context (PAC). These contexts improve dis-
ambiguation of both questions and answers, closely
aligning with our definition of supporting evidence.
Barlacchi et al. (2022) demonstrated that utilizing
such contextual information substantially enhances
baseline AS2 performance. Table 6 in the appendix
summarizes dataset statistics.

4.2 Experimental Setup
Metrics: The primary metric for QA systems is
Accuracy, equivalent to Precision at 1 (P@1) in
ranking tasks, which measures the percentage of
correctly identified answers. Additionally, we re-
port Mean Average Precision (MAP) and Mean Re-
ciprocal Rank (MRR) to facilitate direct compari-
son with existing benchmarks. Finally, we evaluate
support retrieval effectiveness using Hit-Rate@k
(H@k), defined as the percentage of queries for
which at least one relevant support appears within
the top-k retrieved items.

4.3 HotpotQA Results
We use HotpotQA to evaluate our models in the
standard AS2 benchmark and analyze the effect of
SSR on SBAR. Since the distractor setting already
includes gold supports among the candidates, we

AS2 Support Rank.

P@1 MAP MRR H@1 H@5 H@200

TANDA 28.7 40.7 44.7 - - -

Gold Standard Contexts

TQC 35.9 44.2 51.3 - - -
PQC 41.9 48.0 55.5 - - -
TAC 32.1 43.0 47.2 - - -
PAC 17.2 27.8 31.4 - - -

Retrieved and Ranked PQC

DPR+SSRCE+SBAR 22.2 34.9 38.7 5.0 9.1 12.0

DSR+SSRCE+SBAR 29.0 39.2 44.7 20.2 35.6 43.1

DSR2+SBAR 28.6 39.1 43.8 22.2 37.7 71.6
DSR2+SSRCE+SBAR 30.5 41.1 46.2 25.8 41.1 71.6
DSR2+SSRCE+SBAR− 31.9 42.2 47.2 25.8 41.1 71.6
DSR2+SSRRL+SBAR− 33.1 42.7 48.0 29.7 46.0 71.6

Table 3: Ranking and retrieval results on FocusQA.

do not test DSR here. Previous work (Zhang et al.,
2023) showed that retrieving additional supports in
this setup does not improve performance.

As shown in Tab. 2, ASR and DAR outperform
TANDA by incorporating sentence-level supports.
DAR-DR, which includes additional retrieved sup-
ports, does not improve accuracy, confirming that
distractor passages already contain sufficient infor-
mation. SBAR*, using gold supports, provides an
upper bound.

Our SSRCE+SBAR model improves over
ASR/DAR by 2.0% absolute and successfully se-
lects the correct support 62.7% of the time. This
highlights the value of supervised support rerank-
ing over semi-supervised or implicit methods.

4.4 FocusQA Results

FocusQA provides a realistic evaluation setting
where candidate answers are not artificially con-
strained to include supporting evidence. Table 3
reports our results. Without external support,
TANDA reaches 28.7%.

Using gold contexts reveals strong variation:
paragraph-question context (PQC) yields 41.9%,
title-question context (TQC) gives 35.9%, while
paragraph-answer context (PAC) lowers perfor-
mance to 17.2%. This indicates that helpful support
bridges the question and answer, rather than merely
repeating answer-related content.

For automatic support retrieval, DPR+SBAR
underperforms TANDA (22.2%), confirming that
general relevance is not sufficient for answer ver-
ification. Our Dense Support Retrieval (DSR),
trained specifically to retrieve (q, a)-supportive pas-
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sages, improves to 29.0%, and DSR2, retrained on
its own outputs, slightly outperforms it at 29.5%.
SBAR−, trained with hard negatives from DSR, in-
creases robustness and achieves 30.9%. Replacing
cross-entropy with a ranking loss in SSRRL im-
proves support selection. When combining DSR2,
SBAR−, and SSRRL, we achieve 33.1%, a 4.4%
absolute improvement over TANDA.

Retrieval and reranking metrics further sup-
port these findings. DSR raises Hit@200 from
12% (DPR) to 43.1%, while DSR2 reaches 71.6%.
SSRRL surpasses SSRCE , improving Hit@1 from
25.8% to 29.7% and Hit@5 from 41.1% to 46.0%.
These gains demonstrate that support-aware re-
trieval and ranking yield substantial improvements
for answer sentence selection in realistic, non-
synthetic settings.

5 Retrieval Approach, Efficiency, and
LLM Grounding

This section discusses three central aspects of our
approach: (i) the need for explanatory support be-
yond simple concatenation, (ii) the computational
complexity of Dense Support Retrieval, and (iii)
the potential for grounding large language models
(LLMs).

5.1 Explanatory Support vs. Concatenation

Using (q, a) as a concatenated query does not guar-
antee explanatory support. Our contribution is to
explicitly train a dense retriever with supervised
(q, a, s) triples, where s is a passage that justi-
fies the correctness of a for q. This ensures the
model learns an explanatory relation rather than
general relevance. Empirically, this distinction is
crucial: on FocusQA, DSR improves support re-
call at Hit@200 from 12.0% (DPR) to 71.6%, and
increases AS2 accuracy by +4.4 absolute points.

5.2 Computational Complexity

A concern with elevating retrieval granularity from
q to (q, a) is the potential increase in computational
complexity. In fact, the per-query complexity of
DSR is identical to DPR: both encode passages
offline and issue one dense vector for approximate
nearest neighbor (ANN) search. The only increase
comes from verifying each candidate answer sepa-
rately, which is standard in all answer verification
systems. Thus, DSR introduces no new algorith-
mic complexity, but belongs to the existing class of
answer verification pipelines.

5.3 Potential for LLM Grounding

Retrieved supports can also serve as grounding sig-
nals for large language models (LLMs). Current
LLM retrievers are trained for general relevance,
not explanatory grounding. Our work is the first
to train a dense retriever with (q, a, s) supervision
at scale (130M paragraphs), showing that it is pos-
sible to retrieve explanatory evidence rather than
merely related content.

We envision a broader paradigm of relational
retrievers specialized for different reasoning needs:
support retrievers to justify correctness, causal re-
trievers to establish causal links, temporal retriev-
ers for event ordering, and comparative retrievers
for judgments. An LLM could call such retriev-
ers as specialized APIs depending on the type of
reasoning required. For example, to answer “Did
climate change cause the decline in Arctic fox pop-
ulations?”, an LLM might query: (i) a causal re-
triever, (ii) a temporal retriever, and (iii) a support
retriever.

We believe our paper lays the groundwork for
this vision, opening new directions for fine-grained,
relational grounding of LLMs via retrieval.

6 Conclusion

We proposed a new QA architecture that uses sup-
porting text to select the final answer. We show that
our approach retrieves text supporting the correct-
ness of a for q, with higher accuracy than standard
retrieval systems, even when they use the concate-
nation of q and a as a query. This indicates that
our model captures the relation between q and a,
not just their combined bag of words. This finding
is important, as it suggests we can efficiently re-
trieve answer supports—or other textual relations
between two texts—from hundreds of millions of
paragraphs using our neural support retriever.

In future work, we will apply our approach to
other textual relations, such as entailment or causal-
ity. These results open new directions for scaling
fine-grained semantic reasoning in retrieval-based
QA systems. We also see our approach as a foun-
dation for relational retrievers that can serve as
grounding tools for LLM-based reasoning, improv-
ing both factuality and interpretability.

Limitations

We proposed an effective support retrieval ar-
chitecture for open-domain question answering.
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The textual information that we target is pas-
sages/sentences. This kind of knowledge is the
one researchers are testing to improve grounding
of Large Language Models (LLM). However, we
haven’t performed any experiment to demonstrate
that our retrieved supports can help knowledge
grounding. It may be possible that supporting in-
formation does not produces better effect than just
related information.
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A Example Appendix

A.1 Dataset details
The number of question and question-answer pairs
in each of the splits of each of the datasets is shown
in Table 4.

A.2 Implementation details
DSR implementation and training In the DSR
model implementation, we leveraged eight Tesla
V100 GPUs (32GB memory each) and a batch size
of 128 for training over 40 epochs, utilizing dual
BERT-Base models as the encoder. The Adam opti-
mizer, with a learning rate of 2e-65, was employed.
For inference, a large index was constructed, en-
capsulating around 130 million passages drawn
from 54 million Common-Crawl documents2. We
retrieve top 200 passages for each query. The
dataset was curated from English web documents
of the 5,000 most frequented domains, including
Wikipedia, from 2019 and 2020 Common Crawl
releases, filtering out pages with insufficient length
or improper HTML structures. We also add all of
positive paragraph question contexts of FocusQA
to the index.

SSR implementation and training For SSR
model training, we used the Adam optimizer with
a 5e-6 learning rate, two Tesla A100 GPUs (40GB
memory each), and a batch size of 256. The
SSR model requires only one transformer model, a
RoBERTa-Base, with a maximum sequence length
of 512 and trained over 10 epochs.

TC implementation and training For the train-
ing of our Triplet Classifier (TC), we employed
the Adam optimizer with a learning rate of 5e-
6, using eight Tesla V100 GPUs (32GB memory
each) and a batch size of 512 across 15 epochs.
The TC model utilizes a single transformer model,
RoBERTa-Base, concatenating the triplet as [CLS]

Question [SEP] Answer [SEP] Support Context, with
a maximum sequence length of 512.

Further Discussion Please note that we trained
our model using a publicly available datasets, Fo-
cusQA. The latter was built using open domain
questions, a general retrieval system, and a gen-
eral index built on common crawl (the most repre-
sentative set of web data available to the research
community). Therefore, there is no reason for con-
sidering our results specific. On specific domains,

2commoncrawl.org
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Dataset Train Dev. Test

Question Q/A Pairs Question Q/A Pairs Question Q/A Pairs

HoptotQA 86,447 3,538,844 4,000 164,500 7,405 306,487
FocusQA 3,276 49,386 800 12,498 1,960 48,056

Table 4: Number of questions and labeled question-answer pairs in the train, development, and test splits of the
two QA corpora.

e.g., medical or law texts, our retrieval will be sub-
ject to degradation of performance but this is rather
standard for any retrieval system. That is, it should
not be considered a specific weakness of our ap-
proach.

We train DSR on FocusQA, using the standard
train, dev and test sets (well-described in the Fo-
cusQA paper). In our paper, we describe the pro-
cedures for converting that data in training data for
support retrieval.

Our model requires training data to be designed,
but this only because we train a model for a differ-
ent retrieval paradigm for the first time, i.e., answer
support retrieval. Also standard neural retrieval
models required specific training data to enable
their high accuracy for passage/document retrieval.
Our training data is not more difficult to acquire
than standard one, for example, one can use Fo-
cusQA and HotpotQA procedures.

The nature of our supporting relation is not dif-
ferent from relevance relation, which has been tra-
ditionally used to train retrieval systems. Thus, it
can generalize through different datasets, similar
to relevance retrieval: there is no reason to suspect
that the adaptation challenges of current retrieval
systems are less or more harsh than our support
retrieval system.
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