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Abstract

The memorization of training data in large lan-
guage models (LLMs) poses significant pri-
vacy and copyright concerns. Existing data ex-
traction methods, particularly heuristic-based
divergence attacks, often exhibit limited suc-
cess and offer limited insight into the funda-
mental drivers of memorization leakage. This
paper introduces Confusion-Inducing Attacks
(CIA), a principled framework for extracting
memorized data by systematically maximizing
model uncertainty. We empirically demonstrate
that the emission of memorized text during
divergence is preceded by a sustained spike
in token-level prediction entropy. CIA lever-
ages this insight by optimizing input snippets
to deliberately induce this consecutive high-
entropy state. For aligned LLMs, we further
propose mismatched Supervised Fine-tuning
(SFT) to simultaneously weaken their align-
ment and induce targeted confusion, thereby
increasing susceptibility to our attacks. Ex-
periments on various unaligned and aligned
LLMs demonstrate that our proposed attacks
outperform existing baselines in extracting ver-
batim and near-verbatim training data without
requiring prior knowledge of the training data.
Our findings highlight persistent memorization
risks across various LLMs and offer a more
systematic method for assessing these vulnera-
bilities.

1 Introduction

The proliferation of modern large language models
(LLMs), trained on internet-scale, heterogeneous
text corpora, presents a double-edged sword. While
this vast data fuels their remarkable capabilities, it
inevitably includes copyrighted materials, person-
ally identifiable information (PII), and other sen-
sitive content. The propensity of LLMs to memo-
rize and reproduce verbatim strings from this train-
ing data—a phenomenon known as memorization—
poses severe privacy risks, undermines intellectual

property rights, and erodes user trust (Nasr et al.,
2025; Carlini et al., 2021). Consequently, under-
standing and mitigating memorization has become
a crucial research direction.

Prior studies (Carlini et al., 2021; Hayes et al.,
2025; Carlini et al., 2023; Nasr et al., 2025) have
demonstrated that adversaries can elicit long, ver-
batim training sequences from modern LLMs, un-
derscoring a fundamental vulnerability. However,
existing extraction techniques face significant lim-
itations. The well-known repetition-based diver-
gence attacks (Nasr et al., 2025), for instance, rely
on hand-crafted heuristics, leading to unstable and
limited success rates and making them easy to cir-
cumvent. Separately, many strategies, including
fine-tuning attacks (Nasr et al., 2025) and other re-
cent methods (Nie et al., 2024; Wang et al., 2024),
often depend on access to training data subsets to
increase attack performance, thereby highlighting
the fundamental challenge of extracting memorized
content without such prior knowledge. Moreover,
our understanding of when a model regurgitates
verbatim training data remains incomplete. Al-
though the mechanistic analysis from Yona et al.
(2025) initiated the exploration of the link between
divergence and attention sinks, this has yet to trans-
late into an effective extraction framework that can
reliably operate under various threat models.

This paper identifies a key to unlocking more
systematic memorized data extraction, stemming
from our observations of model behavior during
repetition-based divergence attacks. Specifically,
we found that among divergence cases, the emis-
sion of actual memorized text—as distinct from
other outputs such as simple repetitions or non-
meaningful contexts—is preceded by a quantifi-
able signal: a sustained and significant spike in
the model’s token-level prediction entropy. This
observation suggests that targeting and amplifying
this specific entropy signature offers a more princi-
pled pathway towards understanding and triggering
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Figure 1: Conceptual illustration of our Confusion-Inducing Attacks (CIA) compared to heuristic approaches.
While heuristic prompts (e.g., “Repeat ‘Debug’ 50 times”, bottom path) often lead to divergence and rarely reveal
memorized text, our CIA with optimized tokens like “Aires casa...” deliberately steers the LLM into a high entropy
state. This induced uncertain state increases the likelihood of the model revealing memorized training data.

memorization.

Building upon this insight, we introduce
Confusion-Inducing Attacks (CIA), a principled
framework for extracting memorized data. CIA
systematically crafts adversarial prompts optimized
to maximize this sustained token-level entropy,
thereby deliberately steering the model towards
the desired high-uncertainty state. Crucially, for
aligned LLMs, which are trained to avoid un-
desirable outputs, such as verbatim regurgita-
tion (Ouyang et al., 2022; Nasr et al., 2025), we
extend CIA with a novel strategy: mismatched
supervised fine-tuning. This involves fine-tuning
the aligned model on carefully constructed datasets
where prompts are deliberately paired with irrele-
vant answers. This process is designed to simulta-
neously weaken the model’s learned alignment and
instill internal representational confusion, thereby
rendering it more susceptible to our uncertainty-
driven extraction prompts. To evaluate our at-
tack’s efficacy and verify extracted sequences, we
utilize the InfiniGram search engine (Liu et al.,
2024), which enables efficient exact-match search-
ing across a diverse collection of open pretraining
datasets.

Our experiments demonstrate the significant po-
tential of CIA. On foundational open-weight mod-
els such as LLAMA 2 (70B) and LLAMA 1 (65B),
CIA achieves substantial verbatim extraction rates
of up to 22.2% and 16.0%, respectively, without
requiring any knowledge of the training data. More-
over, when targeting aligned models like LLAMA 3-
INSTRUCT (70B) and LLAMA 3.1-INSTRUCT (8B),
our combined approach yields extraction rates of up
to 18.8% and 10.6%, respectively, which represent
a clear improvement over the fine-tuning attack

(2.8% and 1.0%) under comparable no-training-
data-access assumptions. These results highlight
the persistent risk of training data memorization
across various LLMs when subjected to our attacks,
and underscore the potential connection between
spikes in token-level uncertainty and the regurgi-
tation of memorized content. In sum, this work
contributes to a deeper understanding of the condi-
tions that can trigger data regurgitation and offers a
more systematic methodology for revealing memo-
rization risks in LLMs.

2 Related Work

There have been many studies analyzing privacy
risks in machine learning. In particular, member-
ship inference attacks (Shokri et al., 2017; Carlini
et al., 2022a; Ko et al., 2023), which aim to de-
cide whether a specific sample was used to train
a model, training-data extraction attacks (Carlini
et al., 2023; Nasr et al., 2025), which focus on
recovering verbatim training examples, and person-
ally identifiable information (PII) extraction (Kim
et al., 2023; Nakka et al., 2024), have been widely
studied. Our work falls under the second category
described: training-data extraction attacks.

Training-data extraction attacks. Carlini et al.
(2021) generated diverse candidate texts, ranked
them with several metrics, and measured the at-
tack success rate of recovering training data among
the top-k candidates. Building on this, Nasr et al.
(2025) crafted “divergence” prompts that occa-
sionally cause large language models (LLMs) to
emit memorized content; they further showed that
fine-tuning on either public data or memorized data
can bypass safety alignment in production mod-
els and make the models regurgitate the training
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data. Hayes et al. (2025); Tiwari and Suh (2025) in-
troduced a sampling strategy that quantifies the
probability of recovering a target verbatim suf-
fix at least once. Some approaches leveraged the
prompt engineering technique along with a sepa-
rate LLM. Specifically, Kassem et al. (2024) used
one LLM to generate prompts that elicit memorized
sequences from the target model, while Wang et al.
(2024) employed a separate generator to produce
dynamic, prefix-dependent soft prompts. Nie et al.
(2024) adopt a two-stage red-teaming pipeline: a
coarse search that locates candidate memorized
samples via training database look-ups, followed
by a fine-grained phase that maximizes extraction
using a similarity-based reward. Crucially, many
of these attacks (Wang et al., 2024; Nasr et al.,
2025; Nie et al., 2024) assume access to a subset
of the training corpus, whereas our method makes
no such assumption. We further note that our work
focuses on untargeted data extraction attacks on
white-box models for a better understanding of the
model’s behavior.

Memorization. Various notions of memorization
have been proposed, including k-eidetic memoriza-
tion (Carlini et al., 2021), T-compressible memo-
rization (Schwarzschild et al., 2024), discoverable
memorization (Carlini et al., 2022b), counterfac-
tual memorization (Feldman and Zhang, 2020), and
probabilistic memorization (Hayes et al., 2025).

We adopt the definition of extractable memoriza-
tion from Nasr et al. (2025).

Definition 2.1 (Extractable Memorization). Let
M be a generative language model, and let y be a
text fragment that appeared in its training corpus.
We say that y is extractably memorized by M if an
adversary—who has no direct access to the training
data—can construct an input prompt p such that
the model, when prompted with p, reproduces y
exactly; that is, M(p) = y.

Following the convention of Nasr et al. (2025),
we consider a string to be verbatim memorized if it
contains at least 50 consecutive tokens that exactly
match the training corpus. Additionally, we ob-
serve cases where the extracted string differs only
marginally (e.g., simple grammatical changes) yet
preserves the original context. To account for this,
we allow a small number of token mismatches (de-
noted as near-verbatim memorization). We detail
these metrics in Section 4.1. Crucially, unlike the
concern raised by Schwarzschild et al. (2024), our
method does not simply ask the model to repeat

a known sentence; instead, we systematically dis-
cover prompts that cause the model to regurgitate
training data.

2.1 Preliminaries

Large Language Models (LLMs) generate text au-
toregressively. Given a preceding context x.;, =
(x1,...,%—1), an LLM parameterized by 6 outputs
a probability distribution Py (x; | x-;) over its vo-
cabulary V for the next token x;. The uncertainty
associated with this prediction can be quantified
using token-level entropy.

Prediction entropy. Let z, € RIV! be the logit
vector for the next token prediction and p; =
softmax(z,) be the corresponding probability vec-
tor. The entropy H; at token position ¢ is then de-
fined as:

Hi ==Y prulogpiu. (1
ueVv
A higher H, indicates greater model uncertainty
about the next token.

Next-token prediction. We consider Supervised
Fine-tuning (SFT), a common technique to adapt
LLMs, where the model is trained to minimize
the cross-entropy loss on a dataset Z = {(x,y)} of
input contexts x and target responses y. The SFT
loss is typically given by:

Iyl
log Py (yi | x,y<i)
=

2

1

Zsr1(0,7) = —E(1y)na [

3 Proposed Methods

Recent work shows that verbatim fragments of an
LLM’s training data can surface when the model’s
generation diverges from the prompt—most no-
tably in repetition-based divergence attacks (Nasr
et al., 2025). In such attacks, a prompt instructing
the model to repeat a word indefinitely eventually
loses its effect, often causing the model to emit
memorized text. Yet empirically, we find that “ask-
to-repeat” is an unreliable mechanism for inducing
divergence. In this work, we pursue two primary
goals: (G1) to operationalize divergence by identi-
fying a reproducible surrogate signal—consecutive
spikes in token-level entropy—and (G2) to design
a principled algorithm that deliberately induces this
specific entropy signature to increase the likelihood
of memorization leakage.
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3.1 Motivation and Problem Statement

To achieve these goals, we first delve into
repetition-based divergence attacks and the poten-
tial link to memorization. While these attacks oc-
casionally cause LLMs to emit training data af-
ter deviating from an instruction, the specific sig-
nals distinguishing memorization from other non-
meaningful forms of divergence or non-divergence
have remained poorly understood. To address this
and gain a deeper understanding, our empirical
investigations, primarily on white-box LLMs to
facilitate detailed analysis, reveal a crucial pattern.

When subjecting LLMs to prompts designed to
induce divergence (e.g., instructing the model to
repeat a specific token), we observe model outputs
falling into three primary categories. (i) Verbatim
memorization: the model diverges and emits se-
quences that are exact matches of its training data.
(i) Non-meaningful divergence: the model devi-
ates from the repetitive instruction but generates
non-meaningful content. (iii) Simple repetition:
the model continues to follow the repetitive instruc-
tion for an extended period.

The next question then becomes: is there a dis-
cernible, quantifiable signal that more reliably dis-
tinguishes memorization leakage from others? Our
analysis of token-level prediction entropy offers a
potential answer. To investigate this, we provided
LLAMA 2 (70B) with 500 different token-repetition
prompts. Divergence, defined as ceasing to repeat
the instructed token (Nasr et al., 2025), occurred in
78% of these queries, while in the remaining 22%,
the model adhered to the instruction. As illustrated
in Figure 2, our key observation is that among these
divergence cases, the emission of actual memorized
text is preceded by a sustained high-entropy spike
at the token level. Quantitative evidence is provided
in Appendix C. While non-meaningful divergence
or simple repetition might occasionally show ele-
vated entropy, it typically lacks both the magnitude
and the consecutive duration observed immediately
prior to memorized data emission. This suggests
that if this consecutive, highly confusing state can
be systematically induced, we can more reliably
steer models towards a state conducive to revealing
memorized training data.

We note that we do not claim that this signal—
the sustained, high token-level entropy—is a suf-
ficient condition for untargeted memorized data
extraction attacks. Rather, while not every instance
of such heightened uncertainty guarantees the gen-

eration of memorized strings, the absence of this
signal appears to preclude it. Therefore, inducing
this specific high-uncertainty state is a necessary
step towards increasing the probability of regurgi-
tating memorized training data.

Problem Statement The empirical observation
of this entropy signature as a necessary precursor
(G1) directly informs our objective (G2): How
can we design a principled algorithm to reliably
and systematically induce this state of sustained,
high token-level uncertainty in both unaligned and
aligned LLMs? We aim to create conditions that
increase the likelihood of extracting memorized
data, thereby providing a more effective pathway
for investigating and assessing memorization risks.
Our subsequent sections detail this approach. We
begin by describing a simple baseline approach in
Section 3.2 for comparison, followed by the presen-
tation of our Confusion-Inducing Attacks (CIA)
in Section 3.3. We then discuss mismatched Su-
pervised Fine-tuning, a strategy to further enhance
efficacy against aligned models, in Section 3.4.

3.2 Proposed Attack: A Baseline

As a simple baseline, we consider an attack
that samples a sequence of random tokens from
the model’s vocabulary without any optimization.
Such a sequence, denoted S;ang = (x1,...,xz) with
each x; ~ Uniform(V), is inherently random and
may induce a degree of model uncertainty. We
evaluate this Random Snippet Attack (RSA) to
establish a non-optimized reference point.

3.3 Proposed Attack: Confusion-Inducing
Attacks

To address our second goal (G2)—designing a prin-
cipled algorithm to systematically induce the iden-
tified entropy signature—we introduce Confusion-
Inducing Attacks (CIA). The objective of CIA
is to systematically craft an input snippet S =
(s1,...,5.) that maximizes the average predictive
uncertainty across its constituent tokens.

Formally, let s., = (s1,...,5—1) be the prefix of
the snippet S before the ¢-th token s,. The entropy
H, of the model’s predictive distribution Py (- | s</)
for the #-th token is given by:

Hy=H(Po(- | 5<))
=Y Po(u|s<i)logPy(u]s<)

ucV
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Figure 2: Token-wise entropy (bits) for LLAMA 2 (70B) responses to repetition-based divergence prompts (Nasr
et al., 2025). Panels show (Left) simple repetition, (Middle) non-meaningful divergence, and (Right) verbatim
memorization (The Lord is my shepherd. ..). We observe a sustained high-entropy spike preceding memorized text
emission in the right panel, which distinguishes it from other behaviors.

A higher H; signifies greater model uncertainty
in predicting s; given the prefix s,. Our primary
objective is to find a snippet $* of length L that max-
imizes the average of these token-wise entropies.
The corresponding loss function to be minimized
is:

1 L
Zan($)=—7 Y H:. “4)
=1

By minimizing Zcia(S), we encourage the
model to maintain a state of high uncertainty
throughout the snippet S (equivalently, S* €
argmaxggyL %Zle H;). We employ a Greedy Co-
ordinate Gradient (GCG) approach (Zou et al.,
2023) to optimize the tokens in S for this objec-
tive. We provide the details on hyperparameters in
Appendix B.

While our primary objective is to maximize the
average entropy across the snippet (Equation 4),
one might also consider maximizing the entropy
only for the prediction following the entire snip-
pet, H(Pg(- | S)). We empirically find that the
consecutive-entropy objective yields superior data
extraction performance (see Appendix C for further
discussion).

3.4 Proposed Attack: Mismatched
Fine-tuning for Aligned Models

Aligned models (Ouyang et al., 2022) are specif-
ically tuned to produce human-preferred, harm-
less responses according to predefined guidelines,
which makes it difficult for an adversary to ex-
tract memorized training data. To counteract their
alignment and sensitize them to our uncertainty-
inducing prompts, we propose the mismatched Su-
pervised Fine-tuning (SFT) method. This strategy
fine-tunes the aligned LLM on deliberately mis-
matched input-output pairs, without relying on typ-
ical conversational templates. The twofold aim

is to revert the model towards a more unaligned,
text-continuation behavior and to instill internal
representational confusion, thereby increasing its
susceptibility to our Confusion-Inducing Attacks
(CIA). For CIA runs on aligned models, we like-
wise apply prompts in raw form to measure the
worst-case risk.

We begin by constructing a mismatched dataset,
denoted as Dy,js. This process starts with a public
dataset, Dpyp, composed of question-answer pairs,
denoted (g,a). From Dy, we first sample a sub-
set of questions. For each question g;, we create a
mismatched pair (g;,a;) by associating g; with an
incorrect or irrelevant answer a}. The mismatched
answer a. can be an answer to a different ques-
tion g; (where j # i) from Dpy,. This dataset of
deliberately incorrect pairings is then formed as:
Dnis = {(gi,a})} . We then perform supervised fine-
tuning (SFT) on the previously aligned LLM using
the constructed mismatched dataset Dy,;s. The ob-
jective of this SFT process is to intentionally train
the model on these incorrect associations, thereby
inducing confusion within its learned representa-
tions or knowledge space.

The fine-tuning process aims to minimize a loss
function defined over the pairs in Dy,;s. The over-
all loss function for fine-tuning on Dy, denoted
Zis(0), is formulated as the average loss over all
pairs in Dyyis:

1

Diﬂmis(e) Z .i”(q,a’;@).

|Dmis ’ (11711’) e[)mis

This fine-tuning procedure encourages the model
to learn the incorrect (g,a’) pairings from Dyy;s,
thereby perturbing its established knowledge and
creating internal representational conflicts. Ap-
pendix B presents the datasets and hyperparameter
details for our fine-tuning method.
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4 Experiment

In this section, we empirically evaluate the ef-
fectiveness of our proposed Confusion-Inducing
Attacks (CIA) and mismatched Supervised Fine-
tuning (SFT) strategy as well as our Random Snip-
pet Attacks (RSA). We begin by detailing the ex-
perimental setup in Section 4.1. Subsequently,
Section 4.2 presents our evaluation against un-
aligned models, and Section 4.3 assesses perfor-
mance against aligned models. Finally, Section 5
provides ablation studies to verify the impact of
key components of our approach, including the
confusion-based SFT.

4.1 Experiment setup

Evaluation metrics. Our evaluation pipeline for
quantifying memorization begins with generating
responses from each model and attack method to
500 distinct prompts. Each generated response is
then assessed for potential memorization of pre-
training data. Such instances are identified using
the InfiniGram search tool (Liu et al., 2024), which
performs efficient exact-match searches against
a comprehensive collection of open pretraining
datasets. Recognizing that perfect verbatim out-
puts can be obscured by minor discrepancies, we
extend this initial search to a near-verbatim metric.
For any sequence identified by InfiniGram as a can-
didate match, we perform a two-stage refinement:
first, we determine the longest common substring
(LCS) between the generated sequence and the cor-
responding training document. Second, this LCS is
bidirectionally extended to ascertain if a 50-token
span can be formed while tolerating a limited num-
ber of token mismatches (Further details on this
process can be found in Appendix B.3).

Subsequently, to ensure that identified matches
represent meaningful, non-trivial memorized
strings rather than highly repetitive outputs, we
further apply a diversity filter to any sequence
identified as a match in the preceding steps.
For a matched sequence Sygrcn, let T (Spmarcn) =
(t1,t2,...,ty) be its tokenization into N tokens,
and U (Syucn) be the set of unique tokens within
T (Syaren). We calculate its diversity score as:

|U(Smatch)|

DiV(Smatch) - N

&)

Any matched sequence Syqrcn With Div(Syarcn)
below a predefined threshold (0.1 in our experi-
ments) is considered an overly repetitive generation

and is subsequently filtered out, thus not contribut-
ing to our final memorization counts. Our final
reported metrics are the percentage of the initial
500 generations that pass both the matching crite-
ria and this diversity filter. We report: VM @50
(Verbatim Match, 0 mismatches), MS@50 (up to 5
mismatches), and M10 @50 (up to 10 mismatches).
Sequences meeting M10 @50 typically maintain
high semantic similarity with the original training
string (see Appendix A).

Models. We cover open-weight models to fa-
cilitate a deeper understanding and enable pre-
cise memorization evaluation against known pre-
training corpora. For unaligned models, we se-
lect LLAMA 2 (70B), LLAMA 1 (65B) (Touvron
et al., 2023), and OLMO (7B) (Groeneveld et al.,
2024). For aligned models, we evaluate LLAMA 2-
CHAT (70B), LLAMA 3.1-INSTRUCT (8B), and
LLAMA 3-INSTRUCT (70B) (Grattafiori et al.,
2024). Although the exact training source for the
LLAMA family is unknown, we follow Weber et al.
(2024) to validate our approach.

Baselines. We compare our Confusion-Inducing
Attacks (CIA) against several relevant baselines,
selected for their focus on untargeted extraction
without requiring access to training data subsets.
For unaligned models, these include the Repe-
tition Attack (RA) (Nasr et al.,, 2025), which
uses heuristic prompts for repetitive generation;
the EOS Attack (EA) (Nie et al., 2024), em-
ploying repeated <eos> tokens; and the Random
Wiki Attack (RWA) (Nasr et al., 2025), using 5-
token Wikipedia spans. We also include our non-
optimized Random Snippet Attack (RSA), which
samples 20 random vocabulary tokens. For aligned
models, we additionally include the Fine-tuning
Attack (FA) (Nasr et al., 2025), which first reverts
models towards an unaligned state using a subset
of The Pile (Gao et al., 2020) before prompting
with Wikipedia spans.

4.2 Evaluation on Unaligned Models

Table 1 summarizes the performance of our
Confusion-Inducing Attacks (CIA) against un-
aligned models. Across all tested models and tol-
erance thresholds, CIA consistently achieves supe-
rior memorization extraction rates. For VM @50,
CIA yields rates of 16.0% on LLAMA 1 (65B),
22.2% on LLAMA 2 (70B), and 6.0% on OLMO
(7B). These represent a substantial improvement
over baselines when evaluated under comparable
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Attack Method LLAMA 1 (65B) LLAMA 2 (70B) OLMo (7B)

VM@50 M5@50 M10@50 VM@50 M5@50 MI10@50 VM@S50 M5@50 M10@50
RA (Nasr et al., 2025) 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.0 0.4
EA (Nie et al., 2024) 1.0 1.2 1.2 0.8 1.2 1.4 0.2 0.2 0.2
RWA (Nasr et al., 2025) 7.0 8.8 9.6 8.6 10.0 10.6 1.4 22 22
RSA (Ours, baseline) 74 9.4 10.4 10.8 13.2 13.6 1.2 1.6 22
CIA (Ours) 16.0 19.0 20.0 22.2 254 27.0 6.0 9.4 9.6

Table 1: Attack success rates (%) on unaligned models. We report verbatim matches requiring 50 consecutive tokens
(VM @50), and matches allowing up to 5 (M5 @50) or 10 (M10@ 50) token mismatches. The best performing

result for each metric and model is highlighted in bold.

conditions, assuming no prior knowledge of train-
ing data.

These heuristic-based baselines often possess in-
herent limitations. For instance, while RA often
induces a high rate of model divergence, in most
cases, the outputs are non-meaningful rather than
actual memorized content. Moreover, we observe
that even when divergence occurs with RA, the
generated outputs often still contain repeated sen-
tences, which decreases their diversity (Figure 3).
Additionally, the RWA serves as a limited indica-
tor of overall memorization risks. Its reliance on
Wikipedia prompts means it is inherently biased
towards public content, making it less effective at
revealing the memorization of more sensitive or
private information.

In general, all evaluated baselines exhibit lim-
ited verbatim extraction rates, typically falling be-
low 10%. On the other hand, CIA, by systemati-
cally engineering model confusion through targeted
entropy maximization, establishes a significantly
higher and more reliable lower bound on the memo-
rization risk inherent in these foundational models.
These results strongly support our hypothesis that
inducing a state of high, sustained predictive confu-
sion can destabilize a model’s generative process,
thereby markedly increasing the likelihood of it
leaking well-memorized training sequences. Fur-
thermore, we also observe that extracting data is
more challenging (i.e., yields lower attack success
rates) from smaller models such as OLMO (7B),
which are generally assumed to have memorized
less data due to their limited capacity (Huang et al.,
2024).

4.3 Evaluation on Aligned Models

Turning to aligned models, our evaluations high-
light the significant challenge of extracting mem-
orized data using existing baseline attacks. As
detailed in Table 2, the RA yields a 0% success

rate across all tested aligned models for verbatim
matches, and the RWA similarly achieves negli-
gible performance, typically below 1% VM @50.
Even the FA, specifically designed to counteract
alignment, results in VM @50 rates of only around
1-1.4%, and does not exceed 3% even under a 10-
mismatch tolerance (M10@50).

In contrast, our combined Confusion-Inducing
Attack with mismatched Supervised Fine-tuning
(CIA+SFT) demonstrates a marked improvement.
For VM @50, CIA+SFT achieves extraction rates
ranging from 2.8% to 6.0%, consistently outper-
forming all baselines. Interestingly, when allowing
for slight variations (e.g., M5@50 or M10@50),
our CIA+SFT method achieves between 17.2%
and 18.8% attack success rate on LLAMA 3-
INSTRUCT (70B) and from 10.2% to 10.6% attack
success rate on LLAMA 3.1-INSTRUCT (8B). This
performance significantly surpasses all baseline
methods, which struggle to achieve meaningful ex-
traction rates under these more forgiving metrics
as well.

These results suggest that our approach is a more
effective strategy for surfacing memorized content
from aligned LLMs. While extracting from aligned
models remains inherently challenging, our method
offers an effective initial pathway to probe their
memorization vulnerabilities.

5 Ablation study

We conduct ablation experiments on the LLAMA 2-
CHAT (70B) model to describe the contributions of
our mismatched Supervised Fine-tuning under the
controlled setting. Results are presented in Table 3.

Effect of mismatched SFT. The efficacy of in-
ducing confusion via SFT is evident when com-
paring fine-tuning on benign versus mismatched
datasets. As shown in Table 3, employing SFT with
a mismatched dataset (CIA + SFT (mismatched))
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LLAMA 2-CHAT (70B)

LLAMA 3-INSTRUCT (70B)

LLAMA 3.1-INSTRUCT (8B)

Attack Method

VM M5 M10 VM M5 M10 VM M5 M10

@50 @50 @50 @50 @50 @50 @50 @50 @50
RA (Nasr et al., 2025) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EA (Nie et al., 2024) 0.2 0.2 04 0.0 0.0 0.0 0.0 0.0 0.0
RWA (Nasr et al., 2025) 0.0 0.0 0.0 0.2 0.4 0.6 0.0 0.2 0.2
FA (Nasr et al., 2025) 1.4 2.6 2.8 1.0 1.8 2.8 0.2 0.6 1.0
RSA (Ours, baseline) 1.2 1.2 1.4 1.2 1.2 1.2 0.0 0.0 0.0
CIA + SFT (Ours) 3.0 5.4 8.6 6.0 17.2 18.8 2.8 10.2 10.6

Table 2: Attack success rates (%) on aligned models. Metrics include verbatim matches (VM @ 50) and matches
allowing up to 5 M5 @50) or 10 (M10@50) token mismatches. We use bold text to denote the best-performing

result for each metric and model.

Attack Method / Setting VM @50 MS5@50
Baselines
RA (Nasr et al., 2025) 0.0 0.0
EA (Nie et al., 2024) 0.2 0.2
RWA (Nasr et al., 2025) 0.0 0.0
FA (Nasr et al., 2025) 1.4 2.6
RSA (Ours, non-optimized) 1.2 1.2
Proposed Methods
CIA (no SFT) 1.2 1.8
CIA + SFT (benign data) 0.7 3.6
RSA + SFT (mismatched) 2.4 5.4
CIA + SFT (mismatched) 3.0 54

Table 3: Ablation study and baseline comparison on
the LLAMA 2-CHAT (70B) model. For each metric and
model, the top-performing result is presented in bold.

improves extraction rates (e.g., 3.0% VM @50 and
5.4% M5 @50) compared to SFT with benign data
(0.7% VM @50 and 3.6% M5 @50). This under-
scores the benefit of targeted confusion injection
for perturbing the model and increasing its suscep-
tibility to CIA.

Effect of mismatched SFT with CIA. Compar-
ing CIA with and without SFT reveals the amplify-
ing effect of our fine-tuning strategies. While CIA
alone (no SFT) achieves a VM @50 of 1.2% and an
M5 @50 of 1.8%, the inclusion of mismatched SFT
elevates these to 3.0% and 5.4%, respectively. This
demonstrates that SFT, particularly when designed
to induce confusion, potentiates the effectiveness
of our entropy-driven CIA.

Effect of mismatched SFT with RSA. To fur-
ther isolate the contribution of mismatched SFT,
we evaluate SFT with RSA and compare it against
RS A without SFT. As Table 3 shows, mismatched
SFT boosts the extraction performance, confirming
that mismatched SFT is a strong preconditioner.

Response Diversity. To ensure extracted se-
quences are non-trivial, we further analyze the gen-

Attack Methods
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Figure 3: Response token diversity of different attack
methods across varying filtering thresholds. The y-
axis shows token diversity (unique tokens / total tokens
in generated output, as per Equation 5), while the x-axis
indicates the diversity threshold.

erated response token diversity using Equation 5.
We assume that genuine memorized content, unlike
simple repetitions of tokens or sentences, should
exhibit reasonable diversity. As shown in Figure 3,
responses from CIA demonstrate a higher diver-
sity of response tokens, compared to baselines like
RA, which tend to produce outputs with signifi-
cantly lower diversity scores (e.g., many fall be-
low a diversity score of 0.175). Although RWA
also shows relatively high token diversity due to its
Wikipedia-based prompts, which encourage natural
model continuations, its success in extracting mem-
orized content often relies on fortuitous alignment
of its public-domain prefixes with sequences the
model has memorized, rather than a systematically
designed attack.

6 Conclusion

In conclusion, this work demonstrates that inducing
sustained high token-level entropy—the core of our
Confusion-Inducing Attacks (CIA)—substantially
enhances the extraction of memorized data from

35323



both unaligned and aligned LLMs. We establish a
possible empirical link between this targeted uncer-
tainty and memorization leakage, offering a more
principled and reliable pathway to trigger this leak-
age compared to conventional heuristic methods.
These insights deepen our understanding of train-
ing data regurgitation and provide a more effective
method for assessing LLM vulnerabilities.

7 Limitations

While this work introduces a novel approach, we
acknowledge limitations that also chart pathways
for future research. First, although inducing a high-
entropy state is identified as a critical precursor for
increased memorization likelihood, its universal
sufficiency is not yet established. Second, our pri-
mary reliance on white-box models, essential for in-
depth behavioral analysis, naturally limits the im-
mediate applicability of our attack implementations
to black-box systems such as CHATGPT (Achiam
et al., 2023) and GEMINI (Team et al., 2024). In
addition, for worst-case evaluation, we deliberately
used a raw template, but in practice, integrating
chat templates with entropy-maximizing attacks
may provide a more realistic pathway for black-
box settings. Since black-box systems vary in
the degree of controllability they expose—for ex-
ample, whether they permit fine-tuning APIs or
enforce fixed prompt templates—exploring these
constraints and their interaction with our method
remains an interesting direction for future work.
Future efforts should therefore be directed towards
a more nuanced characterization of these precur-
sor uncertainty states across diverse architectures,
alongside the development of more adaptable meth-
ods for assessing and mitigating memorization
risks, especially within black-box settings.

Black-box extensions. We focus on the white-
box setting to directly probe internal uncertainty
signals and characterize worst-case privacy risk.
Nonetheless, the core idea—inducing sustained
high uncertainty—extends to black-box deploy-
ments that allow fine-tuning and controllable
prompt formatting: apply mismatched SFT via the
API, then use a non-gradient prompt attack (e.g.,
RSA). We leave a comprehensive black-box explo-
ration to future work.
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A Qualitative Analysis

To complement our quantitative metrics, this sec-
tion presents a qualitative analysis of model gener-
ations that exhibit both verbatim and near-verbatim
memorization. By comparing these extracted out-
puts with their corresponding matched training
data, we identify consistent patterns in the types of
content particularly susceptible to such leakage.

The semantic fidelity of the identified near-
verbatim matches is illustrated in Figure 4. Notably,
sequences meeting the M5 @50 criterion consis-
tently achieve high semantic similarity (i.e., cosine
similarity) scores (ranging from 96.4% to 99.7%),
indicating a strong preservation of meaning despite
minor surface-level discrepancies. While scores
for M10 @50 matches are marginally lower, they
still maintain substantial semantic alignment with
the original content as qualitatively described in
Table 6. These results support that our criteria
for near-verbatim matches effectively capture se-
mantically faithful reproductions, underscoring the
necessity of tolerance-aware evaluations in memo-
rization studies.

Our qualitative review (Table 6) further reveals
that when memorization occurs, models frequently
reproduce highly structured content. This often
includes factual summaries, software metadata,
and texts with institutional or formal language pat-
terns. Such sequences typically possess predictable
linguistic and structural characteristics, rendering
them more prone to being accurately memorized
and replicated. Several generated outputs retain
original formatting (e.g., bullet points), precise
timelines, and named entities with minimal de-
viation, suggesting that the model preserves not
merely the raw text but also elements of its original
discourse structure.

Collectively, these observations demonstrate that
verbatim and near-verbatim matches are both preva-
lent and semantically significant, positioning them
as a critical component in comprehensive assess-
ments of training data memorization.

B Additional Details

All experiments were conducted using an NVIDIA
H100 GPU.
B.1 Hyperparameter Settings

For our CIA, we optimize input snippets using a
modified Greedy Coordinate Gradient (GCG) (Zou

Box Plot: Distribution of Semantic Similarity

100
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94

Semantic Similarity (%)

92 4

90

M5@50 M10@50

Figure 4: Distribution of semantic similarity scores
for matched sequences under two tolerance settings:
M5 @50 and M10@50. While both settings yield high
semantic overlap with training data, M5 @50 shows
consistently higher fidelity with low variance, support-
ing its utility in identifying near-verbatim memorization.

et al., 2023) approach. We run the GCG optimiza-
tion process for a maximum of 200 steps. In each
step, we consider the top 64 candidate token substi-
tutions at each position within the snippet and eval-
uate 256 candidate sequences to select the optimal
replacement based on our entropy-maximization
objective (see Section 3.3 for loss details). The
initial snippets for optimization vary in length and
source, as detailed with each experiment. For the
final generation phase after obtaining an optimized
CIA snippet, we employ greedy decoding (i.e.,
temperature set to 0.0) and instruct the model to
generate up to 512 new tokens, with a minimum
generation length of 100 tokens enforced to ensure
sufficient output for analysis. We further note that,
unlike the original GCG, we optimize the input
snippet S itself to maximize its internal predictive
entropy, without a predefined target response.

B.2 Fine-tuning Configuration

In Section 3.4, we provide details on our mis-
matched Supervised Fine-tuning (SFT) strategy.
Our mismatched dataset, D5, was constructed
to perturb the model’s learned associations by mix-
ing truthful and deliberately incorrect input-output
pairings. The process involved these key steps:
First, we sourced question-answer pairs from the
Truthful QA (Lin et al., 2021) and WikiQA (Yang
etal., 2015) datasets. Second, to create mismatched
data, the answers within each of these source
datasets were randomly shifted such that most ques-
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Unaligned Models

LLAMA 1 (65B)

LLAMA 2 (70B) OLMo (7B)

CIA Variant (Loss Objective) VM@50 M5@50 MI10@50 VM@50 M5@50 M10@50 VM@50 M5@50 M10@50

CIA (Avg. Snippet Entropy) 16.0 19.0 20.0
CIA (Last Token Entropy) 16.4 20.8 22.6

22.2 25.4 27.0 6.0 9.4 9.6
18.4 28.8 22.6 2.4 3.8 42

Table 4: Comparison of CIA performance with different entropy-based loss objectives across unaligned models.
Values are attack success rates (%). VM @50 (0 mismatches), M5 @50 (<5 mismatches), M10@50 (<10

mismatches) for 50-token sequences.

tions g; were paired with an answer a;. originally
belonging to a different question g; (j # i). For
WikiQA, duplicate questions were removed prior
to this shifting, retaining only the first encountered
answer for each unique question. All pairs were
formatted in an Alpaca-like instruction-output style
(instruction: g, input: "", output: @’). Third, these
two sets of mismatched data (from Truthful QA and
from the unique, processed WikiQA) were com-
bined. Finally, the combined dataset was filtered to
retain only entries where the question (instruction)
length was at least 10 characters and the answer
(output) length was at least 50 characters. This pro-
cedure yielded a total of 1,998 samples for Dyy;s.
We performed mismatched SFT on the aligned
models using LoRA (Hu et al., 2022) for parameter-
efficient adaptation, targeting all linear layers with
a LoRA rank of 8. The model was fine-tuned on
our Dps dataset. Key training parameters included
a learning rate of 1.0 x 10~* with a cosine learning
rate scheduler and a warmup ratio of 0.1. We uti-
lized a per-device batch size of 2 with 8 gradient
accumulation steps, resulting in an effective batch
size of 16. The model was trained for 100 iterations.
No specific chat template was applied, meaning the
model processed raw instruction-output pairs. The
maximum sequence length was set to 2048 tokens.

B.3 Search Algorithm Details

Our method for identifying and verifying memo-
rized sequences within model generations employs
a two-stage pipeline. This process aims to find
50-token segments that match pretraining data, ac-
commodating a controlled number of mismatches.

Stage 1: Candidate Document Retrieval via In-
finiGram. The initial stage focuses on retriev-
ing candidate training documents relevant to each
model-generated sequence. We utilize the Infini-
Gram search engine (Liu et al., 2024), querying
it with representative subsequences derived from
the model’s output. These subsequences are adap-

tively processed (either as words or tokens based
on the generation’s characteristics) to identify train-
ing documents containing potentially similar seg-
ments. To maintain search quality, a diversity filter
is applied to exclude overly repetitive generations
before querying.

Stage 2: Approximate Substring Matching with
Tolerance. In the second stage, each candidate
document retrieved from Stage 1 is meticulously
aligned with the full model-generated sequence.
The objective is to identify the optimal 50-token
span that constitutes a match, allowing for a pre-
defined number (k) of mismatches to account for
minor variations. This alignment is performed us-
ing a seed-and-extend strategy: first, the Longest
Common Substring (LCS) between the generated
sequence and the candidate document is identified
to serve as an anchor. This anchor is then bidirec-
tionally extended using a dynamic programming al-
gorithm, which maximizes the length of the aligned
sequence while adhering to the specified mismatch
tolerance k. This alignment process is repeated
for various tolerance levels (e.g., k = 0,5,10) to
categorize matches as verbatim or near-verbatim.

This two-stage approach, which combines effi-
cient candidate retrieval with a detailed, tolerance-
aware alignment, enables the systematic identifica-
tion of 50-token memorized sequences, even those
with slight deviations from the original training
data.

C Additional Results

We present additional results comparing two vari-
ants of our Confusion-Inducing Attacks (CIA)
framework, which differ in their entropy optimiza-
tion objectives. As described in Section 3.3, our
primary CIA method optimizes the average token-
level entropy across the full input snippet, whereas
an alternative variant focuses on maximizing the
entropy of the token immediately following the
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Table 5: Pre-emission entropy vs. non-memorized base-
line (bits).

Attack method Memorized Case Non-Memorized Case

RSA 6.64 6.10
FA (SFT+Wiki) 7.21 3.81
snippet.

Table 4 reports performance across unaligned
models. We find that optimizing for average snip-
pet entropy generally results in higher verbatim
memorization rates (VM @50), supporting our ob-
jective of inducing a sustained high-entropy state
that encourages memorization. While the Last To-
ken Entropy variant sometimes outperforms in near-
verbatim settings (e.g., M5 @50, M10@50), our
focus is on exact matches, where the average-based
objective is more consistently effective. Both strate-
gies remain valid components of the broader CIA
framework, designed to explore different mecha-
nisms of inducing model uncertainty for memoriza-
tion extraction.

C.1 Evidence for the Link Between High
Entropy and Memorization

We quantify the relationship between sustained
token-level entropy and the onset of verbatim mem-
orization across non-optimized baselines. For
each successful extraction, we compute the mean
entropy (in bits) over the 5 tokens immediately
preceding the first token of the memorized span
(“Memorized Case”). As a control, we compute
the mean entropy over the first 5 generated tokens
in runs that do not yield memorized spans (“Non-
Memorized Case”).

In both settings, the pre-emission entropy is
higher than the corresponding non-memorized
baseline. This supports our claim that sustained
high uncertainty precedes memorization events.
While this does not prove sufficiency, it strengthens
the view that inducing such a state is a necessary
step that increases extraction likelihood.
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Type Text

Example 1
Training The Man Who Fell to Earth is a 1976 British science fiction film directed by Nicolas
Data Roeg and written by Paul Mayersberg, based on Walter Tevis’s 1963 novel of the same

name, about an extraterrestrial who crash lands on Earth seeking a way to ship water to
his planet, which is suffering from a severe drought. The film retains a following for its
use of surreal imagery and the performance by David Bowie (in his first starring film
role) as the alien Thomas Jerome Newton; the film also stars Candy Clark, Buck Henry,
and Hollywood veteran Rip Torn.

Generation The Man Who Fell to Earth is a 1976 British science fiction film directed by Nicolas

VM @50

Roeg and written by Paul Mayersberg, based on Walter 1963 novel of the same name,
about an extraterrestrial who crash lands on Earth seeking a way to ship water to his
planet, which is suffering from a severe drought. The film maintains a strong cult
following for its use of surreal imagery and its performances by David Bowie (in his first
starring film role), Candy Clark, and Hollywood veteran Rip Torn.

1963 novel of the same name, about an extraterrestrial who crash lands on Earth seeking
a way to ship water to his planet, which is suffering from a severe drought. The film

M5@50 The Man Who Fell to Earth is a 1976 British science fiction film directed by Nicolas

(98.3%) Roeg and written by Paul Mayersberg, based on Walter 1963 novel of the same name,
about an extraterrestrial who crash lands on Earth seeking a way to ship water to his
planet, which is suffering from a severe drought. The film maintains a strong cult
following for its use of surreal imagery and its performances by David Bowie (in his first
starring film role)
The Man Who Fell to Earth is a 1976 British science fiction film directed by Nicolas

M10@50 Roeg and written by Paul Mayersberg, based on Walter 1963 novel of the same name,

(96.4%)  about an extraterrestrial who crash lands on Earth seeking a way to ship water to his
planet, which is suffering from a severe drought. The film maintains a strong cult
following for its use of surreal imagery and its performances by David Bowie (in his first
starring film role)

Example 2
Training The National Hockey League was organized on November 26, 1917, in Montreal,
Data Quebec after the suspension of operations of its predecessor organization, the National

Hockey Association (NHA), which had been founded in 1909 in Renfrew, Ontario. The
NHL immediately took the NHA’s place as one of the leagues that contested for the
Stanley Cup in an annual interleague competition before a series of league mergers and
folds left the NHL as the only league left competing for the Stanley Cup in 1926.

Generation The 2019-2020 season is the 100th in the history of the National Hockey League. The

VM @50

M5@50
(96.4%)

NHL was established in 1917 in Montreal, Quebec, Canada after the suspension of
operations of its predecessor organization, the National Hockey Association (NHA),
which had been founded in 1909. The NHL took the NHA’s place as one of the leagues
that contested for the Stanley Cup, an annual competition established in 1893.

after the suspension of operations of its predecessor organization, the National Hockey
Association (NHA), which had been founded in 1909

1917 in Montreal, Quebec, Canada after the suspension of operations of its predecessor
organization, the National Hockey Association (NHA), which had been founded in 1909
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Type Text
1917 in Montreal, Quebec, Canada after the suspension of operations of its predecessor
M10@50 organization, the National Hockey Association (NHA), which had been founded in 1909.
91%) The NHL took the NHA’s place as one of the leagues that contested for the Stanley Cup,
an annual
Example 3
Training \aCV3h is a free software application from the System Maintenance subcategory, part of
Data the System Utilities category. The app is currently available in English and it was last

updated on 2015-06-08. The program can be installed on Android. \aCV3h (version
1.0.0) has a file size of 7.55 MB and is available for download from our website. Just
click the green Download button above to start. Until now the program was downloaded
0 times. We already checked that the download link to be safe, however for your own
protection we recommend that you scan the downloaded software with your antivirus."

Generation SURWiFi HLS \ucOcl is a free software application from the System Maintenance

VM @50

M5@50
97.4%)

M10@50
91.9%)

subcategory, part of the System Utilities category. The app is currently available in
English and it was last updated on 2016-08-24. The program can be installed on Android.
SURWiFi HLS \ucOc1 (version 1.0.0) has a file size of 2.10 MB and is available for
download from our website. Just click the green Download button above to start. Until
now the program was downloaded 0 times. We already checked that the download link to
be safe, however for your own protection we recommend that you scan the downloaded
software with your antivirus.Here you can find the changelog of SURWiFi HLS \ucOc1
since it was posted on our website on 2016-09-27

and is available for download from our website. Just click the green Download button
above to start. Until now the program was downloaded O times. We already checked that
the download link to be safe, however for your own protection we recommend that you
scan the downloaded software with your antivirus.

(version 1.0.0) has a file size of 2.10 MB and is available for download from our website.
Just click the green Download button above to start. Until now the program was
downloaded O times. We already checked that the download link to be safe, however for
your own protection we recommend that you scan the downloaded software with your
antivirus.

is a free software application from the System Maintenance subcategory, part of the
System Ultilities category. The app is currently available in English and it was last
updated on 2016-08-24. The program can be installed on Android. SURWiFi HLS \ucOc1
(version 1.0.0) has a file size of 2.10 MB and is available for download from our website.
Just click the green Download button above to start. Until now the program was
downloaded O times. We already checked that the download link to be safe, however for
your own protection we recommend that you scan the downloaded software with your
antivirus.

Example 4
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Training FIFA World Cup was the 19th FIFA World Cup, the world championship for men’s
Data national association football teams. It took place in South Africa from 11 June to 11 July

2010. The bidding process for hosting the tournament finals was open only to African
nations; in 2004, the international football federation, FIFA, selected South Africa over
Egypt and Morocco to become the first African nation to host the finals. The matches
were played in 10 stadiums in nine host cities around the country, with the final played at
the Soccer City stadium in South Africa’s largest city, Johannesburg. Thirty-two teams
were selected for participation via a worldwide qualification tournament that began in
August 2007. In the first round of the tournament finals, the teams competed in
round-robin groups of four teams for points, with the top two teams in each group
proceeding. These 16 teams advanced to the knockout stage, where three rounds of play
decided which teams would participate in the final. In the final, Spain, the European
champions, defeated third-time finalists the Netherlands 10 after extra time, with Andrs
Iniesta’s goal in the 116th minute giving Spain their first world title, becoming the eighth
nation to win the tournament, and the first European nation to win the tournament outside
its home continent. Host nation South Africa, 2006 champions Italy and 2006 runners-up
France were all eliminated in the first round of the tournament. It was the first time that
the hosts were eliminated in the first round. New Zealand with their three draws were the
only undefeated team in the tournament, but were also eliminated in the first round

Generation FIFA World Cup was the 19th FIFA World Cup, the world championship for men’s

national association football teams. It took place in South Africa from 11 June to 11 July
2010. The bidding process for hosting the tournament finals was open only to African
nations; in 2004, the international football federation, FIFA, selected South Africa over
Egypt and Morocco to become the first African nation to host the finals. The matches
were played in 10 stadiums in nine host cities around the country, with the final played at
the Soccer City stadium in South Africa’s largest city, Johannesburg. Thirty-two teams
were selected for participation via a worldwide qualification tournament that began in
August 2007. In the first round of the tournament finals, the teams competed in
round-robin groups of four teams for points, with the top two teams in each group
proceeding. These 16 teams advanced to the knockout stage, where three rounds of play
decided which teams would participate in the final. In the final, Spain, the European
champions, defeated the Netherlands 1-0 after extra time, with Andrés Iniesta’s goal in
the 116th minute giving Spain their first world title. Spain became the eighth nation to
win the tournament and the first European nation to win a World Cup hosted outside its
home continent: all previous World Cups held outside Europe had been won by South
American nations. As a result of their win, Spain represented the World in the 2013 FIFA
Confederations Cup. Host nation South Africa, 2006 world champions Italy and 2006
runners-up France were all eliminated in the first round of the tournament. It was the first
time that the hosts had been eliminated in the first round. New Zealand, with their three
draws, were the only undefeated team in the tournament, but they were also eliminated in
the first round.
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FIFA World Cup was the 19th FIFA World Cup, the world championship for men’s
national association football teams. It took place in South Africa from 11 June to 11 July
2010. The bidding process for hosting the tournament finals was open only to African
nations; in 2004, the international football federation, FIFA, selected South Africa over
Egypt and Morocco to become the first African nation to host the finals. The matches
were played in 10 stadiums in nine host cities around the country, with the final played at
the Soccer City stadium in South Africa’s largest city, Johannesburg. Thirty-two teams
were selected for participation via a worldwide qualification tournament that began in
August 2007. In the first round of the tournament finals, the teams competed in
round-robin groups of four teams for points, with the top two teams in each group
proceeding. These 16 teams advanced to the knockout stage, where three rounds of play
decided which teams would participate in the final. In the final, Spain, the European
champions, defeated

FIFA World Cup was the 19th FIFA World Cup, the world championship for men’s
national association football teams. It took place in South Africa from 11 June to 11 July
2010. The bidding process for hosting the tournament finals was open only to African
nations; in 2004, the international football federation, FIFA, selected South Africa over
Egypt and Morocco to become the first African nation to host the finals. The matches
were played in 10 stadiums in nine host cities around the country, with the final played at
the Soccer City stadium in South Africa’s largest city, Johannesburg. Thirty-two teams
were selected for participation via a worldwide qualification tournament that began in
August 2007. In the first round of the tournament finals, the teams competed in
round-robin groups of four teams for points, with the top two teams in each group
proceeding. These 16 teams advanced to the knockout stage, where three rounds of play
decided which teams would participate in the final. In the final, Spain, the European
champions, defeated the Netherlands 1-0 after extra time, with Andrés Iniesta’s goal in
the 116th minute giving Spain their first world title

FIFA World Cup was the 19th FIFA World Cup, the world championship for men’s
national association football teams. It took place in South Africa from 11 June to 11 July
2010. The bidding process for hosting the tournament finals was open only to African
nations; in 2004, the international football federation, FIFA, selected South Africa over
Egypt and Morocco to become the first African nation to host the finals. The matches
were played in 10 stadiums in nine host cities around the country, with the final played at
the Soccer City stadium in South Africa’s largest city, Johannesburg. Thirty-two teams
were selected for participation via a worldwide qualification tournament that began in
August 2007. In the first round of the tournament finals, the teams competed in
round-robin groups of four teams for points, with the top two teams in each group
proceeding. These 16 teams advanced to the knockout stage, where three rounds of play
decided which teams would participate in the final. In the final, Spain, the European
champions, defeated the Netherlands 1-0 after extra time, with Andrés Iniesta’s goal in
the 116th minute giving Spain their first world title. Spain became the eighth nation to
win the tournament and the first European nation to win
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Training Message from Principal Billy Haggans\nOn behalf of the staff at CIS Academy, I am
Data happy to welcome you to the 2019-20 school year! We are looking forward to a

productive partnership with you to ensure our children can achieve their highest potential.
We recognize that in order to be successful in school, our children need support from
both the home and school. We know a strong partnership with you will make a great
difference in your child’s education. As partners, we share the responsibility for our
children’s success and want you to know that we will do our very best to carry out our
responsibilities. We ask that you guide and support your child’s learning by ensuring that
he/she:\nAttends school daily and arrives on time, ready for the day’s learning
experience\nCompletes all homework assignments given by teachers\nReads daily to
develop a love for reading and to improve literacy skillsschool experiences with you so
that you are aware of his/her school life\nInforms you if he/she needs additional support
in any area or subject\n

Generation The 2019-2020 school year is off to a great start! We are excited to welcome new and

VM @50

MS5@50
(97.5%)

returning students to our school. We are looking forward to a productive partnership with
you to ensure our children can achieve their highest potential. We recognize that in order
to be successful in school, our children need support from both the home and school. We
know a strong partnership with you will make a great difference in your child’s education.
As partners, we share the responsibility for our children’s success and want you to know
that we will do our very best to carry out our responsibilities. We ask that you guide and
support your child’s learning by ensuring that he/she:\n1) Attends school daily and
arrives on time, ready for the day’s learning experience\n2) Completes all homework
assignments given by teachers\n3) Reads daily to develop a love for reading and to
improve literacy skills\n4) Shares school experiences with you so that you are aware of
his/her school life\n5) Informs you if he/she needs additional support in any area or
subject

We are looking forward to a productive partnership with you to ensure our children can
achieve their highest potential. We recognize that in order to be successful in school, our
children need support from both the home and school. We know a strong partnership
with you will make a great difference in your child’s education. As partners, we share the
responsibility for our children’s success and want you to know that we will do our very
best to carry out our responsibilities. We ask that you guide and support your child’s
learning by ensuring that he/she:\n

We are looking forward to a productive partnership with you to ensure our children can
achieve their highest potential. We recognize that in order to be successful in school, our
children need support from both the home and school. We know a strong partnership
with you will make a great difference in your child’s education. As partners, we share the
responsibility for our children’s success and want you to know that we will do our very
best to carry out our responsibilities. We ask that you guide and support your child’s
learning by ensuring that he/she: \n1) Attends school daily and arrives on time, ready for
the day’s learning experience\n2) Completes all homework assignments given by
teachers\n
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We are looking forward to a productive partnership with you to ensure our children can
achieve their highest potential. We recognize that in order to be successful in school, our
children need support from both the home and school. We know a strong partnership
with you will make a great difference in your child’s education. As partners, we share the
responsibility for our children’s success and want you to know that we will do our very
best to carry out our responsibilities. We ask that you guide and support your child’s
learning by ensuring that he/she:\n1) Attends school daily and arrives on time, ready for
the day’s learning experience\n2) Completes all homework assignments given by
teachers\n3) Reads daily to develop a love for reading and to improve literacy skills\n4)
Shares school experiences with you so that you are aware of his/her school life\n5)
Informs you if he/she needs additional support in any area or subject\n

Example 6

Training
Data

This study covers the latent demand outlook for truck trailers and chassis with axle rating
of 10,000 pounds or more across the states and cities of the United States. Latent demand
(in millions of U.S. dollars), or potential industry earnings (P.I.LE.) estimates are given
across some 12,600 cities in the United States.For each city in question, the percent share
the city is of its state and of the United States as a whole is reported. These comparative
benchmarks allow the reader to quickly gauge a city vis-a-vis others. This statistical
approach can prove very useful to distribution and/or sales force strategies. Using
econometric models which project fundamental economic dynamics within each state
and city, latent demand estimates are created for truck trailers and chassis with axle
rating of 10,000 pounds or more. This report does not discuss the specific players in the
market serving the latent demand, nor specific details at the product level. The study also
does not consider short-term cyclicalities that might affect realized sales. The study,
therefore, is strategic in nature, taking an aggregate and long-run view, irrespective of the
players or products involved. This study does not report actual sales data (which are
simply unavailable, in a comparable or consistent manner in virtually all cities in the
United States). This study gives, however, my estimates for the latent demand, or
potential industry earnings (P.I.E.), for truck trailers and chassis with axle rating of
10,000 pounds or more in the United States.

Generation This study covers the latent demand outlook for frozen yogurt across the states and cities

of the United States. Latent demand (in millions of U.S. dollars), or potential industry
earnings (P.I.LE.) estimates are given across some 12,600 cities in the United States. For
each city in question, the percent share the city is of its state and of the United States as a
whole is reported. These comparative benchmarks allow the reader to quickly gauge a
city vis-a-vis others. This statistical approach can prove very useful to distribution and/or
sales force strategies. Using econometric models which project fundamental economic
dynamics within each state and city, latent demand estimates are created for frozen
yogurt. This report does not discuss the specific players in the market serving the latent
demand, nor specific details at the product level. The study also does not consider
short-term cyclicalities that might affect realized sales. The study, therefore, is strategic
in nature, taking an aggregate and long-run view, irrespective of the players or products
involved. This study does not report actual sales data (which are simply unavailable, in a
comparable or consistent manner in virtually all cities in the United States). This study
gives, however, my estimates for the latent demand, or potential industry earnings
(P.LLE.), for frozen yogurt in the United States
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across the states and cities of the United States. Latent demand (in millions of U.S.
dollars), or potential industry earnings (P.I.E.) estimates are given across some 12,600
cities in the United States. For each city in question, the percent share the city is of its
state and of the United States as a whole is reported. These comparative benchmarks
allow the reader to quickly gauge a city vis-a-vis others. This statistical approach can
prove very useful to distribution and/or sales force strategies. Using econometric models
which project fundamental economic dynamics within each state and city, latent demand
estimates are created for

across the states and cities of the United States. Latent demand (in millions of U.S.
dollars), or potential industry earnings (P.I.LE.) estimates are given across some 12,600
cities in the United States. For each city in question, the percent share the city is of its
state and of the United States as a whole is reported. These comparative benchmarks
allow the reader to quickly gauge a city vis-a-vis others. This statistical approach can
prove very useful to distribution and/or sales force strategies. Using econometric models
which project fundamental economic dynamics within each state and city, latent demand
estimates are created for frozen yogurt

across the states and cities of the United States. Latent demand (in millions of U.S.
dollars), or potential industry earnings (P.I.LE.) estimates are given across some 12,600
cities in the United States. For each city in question, the percent share the city is of its
state and of the United States as a whole is reported. These comparative benchmarks
allow the reader to quickly gauge a city vis-a-vis others. This statistical approach can
prove very useful to distribution and/or sales force strategies. Using econometric models
which project fundamental economic dynamics within each state and city, latent demand
estimates are created for frozen yogurt

Example 7

Training
Data

The 2012 Summer Olympics, officially the Games of the XXX Olympiad[2] and
commonly known as London 2012, was a major international multi-sport event
celebrated in the tradition of the Olympic Games, as governed by the International
Olympic Committee (I0C). It took place in London, United Kingdom, from 27 July to 12
August 2012. The first event, the group stage in women’s football, began two days earlier,
on 25 July.[3][4] More than 10,000 athletes from 204 National Olympic Committees
(NOCs) participated.[5] Following a bid headed by former Olympic champion Sebastian
Coe and then-Mayor of London Ken Livingstone, London was selected as the host city
on 6 July 2005 during the 117th IOC Session in Singapore, defeating bids from Moscow,
New York City, Madrid and Paris.[6] London was the first city to host the modern
Olympic Games three times,[7][8] having previously done so in 1908 and in 1948.[9][10]
Construction for the Games involved considerable redevelopment, with an emphasis on
sustainability.[11] The main focus was a new 200-hectare (490-acre) Olympic Park,
constructed on a former industrial site at Stratford, East London.[12] The Games also
made use of venues that already existed before the bid.[13] The Games received
widespread acclaim for their organisation, with the volunteers, the British military, and
public enthusiasm praised particularly highly.[14][15][16].
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Generation The 2012 Olympic Games in London are the 30th Summer Olympic Games. The Games
are scheduled to be held from 27 July to 12 August 2012. The first event, the group
stages in women’s football, began two days earlier on 25 July. More than 10,000 athletes
from 204 National Olympic Committees (NOCs) are expected to participate. Following a
bid headed by former Olympic champion Sebastian Coe and the then Mayor of London
Ken Livingstone, London was selected as the host city on 6 July 2005 during the 117th
I0OC Session in Singapore, defeating bids from Moscow, New York City, Madrid and
Paris. London became the first city to host the modern Olympics three times, having
previously done so in 1908 and in 1948. Construction in preparation for the Games
involved considerable redevelopment, particularly themed towards sustainability. The
main focus of this is a new 200 hectare Olympic Park, constructed on a former industrial
site at Stratford, East London. The Games also make use of venues which were already
in place before the bid. The Games received widespread promotion from a variety of
sources, including the popular BBC series Sherlock, and the launch of The Royal Mint’s
series of commemorative coins.

VM @50 of London Ken Livingstone, London was selected as the host city on 6 July 2005 during
the 117th IOC Session in Singapore, defeating bids from Moscow, New York City,
Madrid and Paris.

M5@50 Following a bid headed by former Olympic champion Sebastian Coe and the then Mayor

(99.7%)  of London Ken Livingstone, London was selected as the host city on 6 July 2005 during
the 117th IOC Session in Singapore, defeating bids from Moscow, New York City,
Madrid and Paris. London became the first city to host the modern Olympics three times,
having previously done so in 1908 and in 1948.

More than 10,000 athletes from 204 National Olympic Committees (NOCs) are expected
M10@50 to participate. Following a bid headed by former Olympic champion Sebastian Coe and
(94.2%)  the then Mayor of London Ken Livingstone, London was selected as the host city on 6
July 2005 during the 117th IOC Session in Singapore, defeating bids from Moscow, New
York City, Madrid and Paris. London became the first city to host the modern Olympics
three times, having previously done so in 1908 and in 1948.

Table 6: Representative examples of verbatim and near-verbatim memorization. For each case, we show the
matched training data segment, the model’s generated output, and matching spans under VM @50, M5 @50, and
M10@50. These examples span diverse domains—film summaries, historical records, software descriptions, public
announcements, and structured reports—and highlight the model’s ability to reproduce semantically faithful content
with minor surface variation. Similarity scores in parentheses reflect semantic overlap between generation and
reference.
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