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Abstract

Whether language models (LMs) have induc-
tive biases that favor typologically frequent
grammatical properties over rare, implausible
ones has been investigated, typically using ar-
tificial languages (ALs) (White and Cotterell,
2021; Kuribayashi et al., 2024). In this pa-
per, we extend these works from two perspec-
tives. First, we extend their context-free AL for-
malization by adopting Generalized Categorial
Grammar (GCG) (Wood, 2014), which allows
ALs to cover attested but previously overlooked
constructions, such as unbounded dependency
and mildly context-sensitive structures. Second,
our evaluation focuses more on the generaliza-
tion ability of LMs to process unseen longer
test sentences. Thus, our ALs better capture
features of natural languages and our experi-
mental paradigm leads to clearer conclusions —
typologically plausible word orders tend to be
easier for LMs to productively generalize.

1 Introduction

Attested natural languages (NLs) possess different
grammatical properties, such as different word or-
ders. This naturally raises a question about what
kind of language is easier for language models
(LMs) to learn (Cotterell et al., 2018; Mielke et al.,
2019; White and Cotterell, 2021; Borenstein et al.,
2024; Arnett and Bergen, 2025). This question
has even been extended to counterfactual, impossi-
ble languages (Mitchell and Bowers, 2020; Kallini
et al., 2024; Kuribayashi et al., 2024). Two related
additional questions are why are some combina-
tions of features typologically common and oth-
ers rare (Dryer and Haspelmath, 2013), and what
role if any can LMs play in exploring such ques-
tions (Chomsky et al., 2023).

To answer these questions, we need to under-
stand how we can adequately measure the inductive
bias of LMs over specific grammatical properties?

*Equal contribution.

There are at least two challenges from both data
and evaluation metric perspectives. On the data
side, NLs differ across a variety of dimensions, and
thus isolating a specific grammatical factor for eval-
uation is challenging with NL data (Mielke et al.,
2019). The use of artificial languages (ALs), in-
stead, is a promising direction to enable more con-
trolled experimental setups (White and Cotterell,
2021), but ALs are often highly simplified and lack
critical properties underlying NLs, such as context-
free Dyck languages. On the evaluation metric side,
LM performance is often measured with perplexity
(PPL) on the held-out dataset sampled from the
same distribution (domain) as the training data.1

An additional important aspect to be evaluated in
language learning is, however, the ability to produc-
tively generalize to longer sentences from shorter
stimuli, generally motivated by the argument of
“infinite use of finite means”.

In this paper, we advance this line of research
on both data and evaluation sides. For the data,
we introduce an extensible approach to defining
ALs, based on Generalized Categorial Grammars
(GCGs) (Wood, 2014). Our framework can support
the inclusion of mildly context-sensitive (indexed
language) constructions, such as cross-serial de-
pendencies, and a general approach to unbounded
filler-gap dependencies, while maintaining diverse
naturalistic constructions. We exemplify this by
extending the set of ALs in White and Cotterell
(2021) to include object relative clauses as one ex-
emplar of unbounded dependencies.

For the evaluation metric, we target the general-
ization of LMs from shorter exposures during train-
ing to a longer test set. That is, we train LMs on a
set of shorter AL sentences and then evaluate their
performance on the unseen, longer AL sentences.
We further introduce several evaluation perspec-

1We use the terms “in-domain” and “out-of-domain” just
based on the length of the dataset in this study, while these are
often relevant to more semantic differences of the data.
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tives on the generalization test set, including PPLs
on specific challenging constructions that require
proper syntactic generalization, such as unbounded
dependencies, as well as grammatical judgment
accuracy rather than holistic PPL scores.

In our experiments, following White and Cot-
terell (2021) and Kuribayashi et al. (2024), we re-
peatedly evaluate LM’s generalization ability, using
different ALs with different word order configura-
tions. Here, we try to answer the question of which
word order configurations facilitate LMs to bet-
ter perform generalization to longer sentences and
accurately make grammaticality judgments. In par-
ticular, we are interested in whether typologically
plausible word orders make it easier for LMs to
perform productive linguistic generalization.

Our experimental results offer several novel find-
ings. First, out-of-domain evaluation with longer
sentences makes LMs’ inductive bias clearer, com-
pared to preference across different word orders on
in-domain (same length as training data) evaluation.
Second, stronger correlations between LM perfor-
mance and typological distributions emerge once
the scope is extended from in-domain to generaliza-
tion based evaluation. That is, typologically plau-
sible word order tends to be easier for LMs to per-
form generalization to longer sentences, rather than
just fitting to in-domain data. Third, RNN’s per-
formance is overall better aligned with typological
plausibility throughout our three experiments, than
other architectures, such as Transformers, which
supports that working memory constraints shape
typologically frequent word orders in natural lan-
guage (Hawkins, 1994; Futrell et al., 2020; Hahn
et al., 2021).

2 Background

2.1 Artificial Language Learning

ALs are often used in targeted evaluation of LMs.
One line of research uses ALs to assess whether
LMs can learn patterns corresponding to different
levels of the Chomsky Hierarchy. Someya et al.
(2024), for instance, test whether LMs can learn
regular, context-free, and context-sensitive lan-
guages, specifically those involving nested, long-
distance, and cross-serial dependencies. Addi-
tional studies use context-free and mildly context-
sensitive languages, like Dyck languages and
anbncn, to test how well LMs generalize to longer
sequences (Suzgun et al., 2019; Weiss et al., 2018;
El-Naggar et al., 2022), and explore how differ-

ent LM architectures correspond to various levels
of the Chomsky Hierarchy (Delétang et al., 2022).
However, a key limitation is that many of these ALs
are far removed from natural language, involving
highly simplified vocabularies, unrealistic degrees
of (self-)embedding and limited constructional va-
riety.

Another area of research builds on the claim by
Chomsky et al. (2023) that neural LMs can learn
both possible and impossible human languages,
making them unable to distinguish between the
two. Kallini et al. (2024) constructed typologically
impossible ALs by systematically permuting and
modifying an English dataset, following Ravfogel
et al. (2019). Their experiments show that GPT-
2 models struggle to learn these impossible ALs,
which is inconsistent with the claims by Chomsky
et al. (2023). Still, it is difficult to pinpoint exactly
which linguistic features make language learning
more challenging, due to the complex, multidimen-
sional nature of the modified input.

Inspired by Ravfogel et al. (2018), White and
Cotterell (2021) use ALs generated by a proba-
bilistic context-free grammar (PCFG) to study the
inductive biases of LMs towards particular word
orders. By defining six structural parameters that
reverse the order of constituents in different syntac-
tic rules, they generate a range of word order con-
figurations and evaluate LSTM and Transformer
performance across them. Kuribayashi et al. (2024)
extend this work by evaluating cognitively inspired
LMs on the same ALs. However, due to the con-
straints of the PCFGs used, their ALs do not in-
clude several attested grammars or constructions,
such as Verb-Subject-Object (VSO) word order,
and mildly context-sensitive constructions. They
also do not test LMs’ generalization to longer sen-
tences.

Concurrent works have also explored other for-
mulations of ALs; for example, Xu et al. (2025)
explored dependency-based corpus modification,
Hunter (2025) proposed ALs with constituency-
based non-adjacency, and Yang et al. (2025) used
multiple languages as a seed NLs to develop ALs.
Our previous work introduced GCG-based ALs,
but did not test length generalization and focused
on the replication and extension of existing PPL-
based studies (El-Naggar et al., 2025).

2.2 Generalization to Longer Sentences
Human language possesses the property of pro-
ductive and systematic compositionality, where
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new sentences are formed from known basic com-
ponents (Montague, 1970; Chomsky, 1957). Hu-
mans are able to produce and comprehend an open-
ended number of sentences from early limited expo-
sure to short ones. This indicates that humans are
able to generalize during learning from short (in-
domain) sentences to longer (out-of-domain) sen-
tences. There is a long-standing debate on whether
neural network (NN) models can generalize pro-
ductively and systematically (Fodor and Pylyshyn,
1988; Baroni, 2020). Notably, the generalization of
LMs to complex (potentially longer) sequences has
been evaluated in a wide range of tasks, e.g., deduc-
tive reasoning (Clark et al., 2021; Saparov et al.,
2023), arithmetic reasoning (Kudo et al., 2023), or
programming (Dziri et al., 2023).

ALs are often used to evaluate LM’s fundamen-
tal linguistic competence and their generalization
ability to longer sentences, typically with, e.g.,
Dyck languages and anbn(cn) (Weiss et al., 2018;
Suzgun et al., 2019; El-Naggar et al., 2022, 2023).
Weiss et al. (2018), for example, empirically test
LSTM, GRU (Cho et al., 2014), and Elman RNN
(Elman, 1990) LMs, and LSTMs learn anbn most
effectively, but they eventually fail on longer se-
quences. Similarly, Suzgun et al. (2019) empiri-
cally assess the ability of their LSTM models to
learn Dyck languages effectively and generalize to
longer sequences. However, they do not address
whether this behavior is precise enough to gener-
alize to sequences that are significantly longer. El-
Naggar et al. (2022) use Dyck languages to evalu-
ate long-term generalization of counting on LSTM,
ReLU and GRU models. They use training and test
sets of the same size and sequence length as Suzgun
et al. (2019), but additionally test their models on
significantly longer sequences, and find that their
models do not generalize effectively to these very
long sequences.

Another commonly used AL for model general-
ization is SCAN (Lake and Baroni, 2018). They
evaluate the models’ generalizability to new com-
binations from familiar components, e.g., from
“jump” and “twice” to “jump twice.” Still, the
mentioned ALs for generalization tests, including
anbn(cn) languages, Dyck languages, and SCAN,
do not reflect many of the properties of attested
NLs, and may not be adequate to evaluate induc-
tive biases in realistic language learning scenarios.

2.3 Categorial Grammar

A categorial grammar (CG) consists of a lexicon
that assigns each word a basic or functor category,
along with a set of rules that define how functor
categories combine with basic categories in both
syntax and semantics. Slash notation is used to
indicate the direction of the argument relative to
the resulting category: for example, α/β denotes
a functor that expects a β to its right to form an ex-
pression of category α. Classical CG includes just
two combinatory rules: forward functional appli-
cation (a) and backward functional application
(b), as shown below.

(a) α/β β ⇒ α

(b) β α\β ⇒ α

Below is an example of forward and backward ap-
plication using the English transitive verb "chased",
which is the functor category (S\NP )/NP .

Tom chased Jerry

NP (S\NP)/NP NP
>

S\NP
<

S
We use English examples to demonstrate rules

and derivations. In CG, the majority, if not all,
of the variation across languages can be attributed
to differences in the lexical categories assigned to
words.

CG, which has the expressive power of context-
free grammar (CFG), has been extended to com-
binatory categorial grammar (CCG) (Steedman,
1996), and generalized categorial grammars (GCG)
(Wood, 2014) by introducing additional operations
to combine categories. One such operation is com-
position, which, like functional application, has
forward (a) and backward (b) variants, shown be-
low.

(a) α/β β/γ ⇒ α/γ

(b) β\γ α\β ⇒ α\γ

Composition (B) is demonstrated below.

child in school studied

NP (NP\NP)/NP NP S\NP
>

NP\NP
<B

S\NP
<

S
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tall man ga whom Kim ga met sang and danced

NP/NP NP NPSUBJ\NP (NPSUBJ\NPSUBJ)/(S/NPOBJ) NP NPSUBJ\NP (S\NPSUBJ)/NPOBJ S\NPSUBJ X\X/X S\NPSUBJ
>

NP
< < <Φ>

NPSUBJ NPSUBJ S\NPSUBJ
<P>

(S/NPOBJ)\NPSUBJ
<

S/NPOBJ
>

NPSUBJ\NPSUBJ
<B

S\NPSUBJ
<

S

Figure 1: Example of a sentence and its derivation.

Another operation in GCG is coordination (Φ),
where 2 constituents with the same categories can
be combined into a single one of the same type
if they are separated by a conjunction. This is
demonstrated in the example below.

Tom and Jerry caused trouble

NP CONJ NP (S\NP)/NP NP
<Φ>

NP
>

S\NP
<

S
We do not use CCG-style type raising, and in-

stead use permutation from GCG due to its greater
computational tractability. We use cyclic permu-
tation as defined by Briscoe (1997, 2000), where
the arguments to functor categories can be cycli-
cally permuted while maintaining their directional-
ity. Formally:

(α|β1)...|βn ⇒ (α|βn)|β1
Permutation (P) is shown below:

man whom I met

NP (NP\NP)/(S/NP) NP (S\NP)/NP
<P>

(S/NP)\NP
<

S/NP
<

NP\NP
<

NP
We design our ALs based on the application,

composition, coordination, and permutation rules
defined above. Figure 1 shows an example of the
parse of an English-like AL sentence.

3 Dataset

3.1 Overview
We introduce a new set of ALs designed using our
GCG framework, which allows us to create a wider
range of ALs that reflect different word orders and
long-distance dependencies. We generally repli-
cate the experiments of Kuribayashi et al. (2024)

and White and Cotterell (2021) on our new datasets
and extend these with generalization tests. Because
GCGs can, in principle, generate all syntactic pat-
terns observed in natural languages, our framework
offers a more comprehensive framework to eval-
uate neural LMs. We illustrate this flexibility by
extending the dataset of White and Cotterell (2021)
to include object relative clauses with potentially
unbounded dependencies. Our ALs are parameter-
ized by word order parameters (Table 1), similarly
to White and Cotterell (2021). Each binary word
order parameter controls the order of components
within sets of constructions; for example, param-
eter S changes the order of subject and verb. By
setting these parameters independently and exhaus-
tively, we create a set of ALs that differ in word
order rules from each other. All parameters ex-
cept O follow those used by White and Cotterell
(2021). The additional O parameter introduces a
subject–object ordering rule, which enables us to
cover VSO and OSV word orders that were not rep-
resented in the ALs created by White and Cotterell
(2021), resulting in 96 distinct ALs.

3.2 Lexicon

We first define 11 GCG lexical syntactic categories
as shown in Table 2. The directionality of the
slashes in each category will be determined once
the word order parameters are set (Table 1). Note
that we include subject and object markers, and
these consistently adopt postpositional case mark-
ing, following White and Cotterell (2021).2 Our
lexicon is the same size as that in White and Cot-
terell (2021), consisting mostly of English words.
To simplify the setting, we currently disregard
subject-verb number agreement and trained word-
level LMs without subword tokenization; that is,
phonological and morphological patterns are not

2We changed the case marking system to be word-level
(Taro -ga [whom I met]) rather than phrase-level (Taro [whom
I met] -ga) adopted in White and Cotterell (2021). Here, ga is
a nominal case marker.
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Param. Description 0 (head-final) 1 (head-initial)

S Order of subject and verb
VI → S\NPSUBJ
VT → (S\NPSUBJ)|NPOBJ
VCOMP → (S\NPSUBJ)|SCOMP

VI → S/NPSUBJ
VT → (S/NPSUBJ)|NPOBJ
VCOMP → (S/NPSUBJ)|SCOMP

VP Order of object and verb
VT → (S|NPSUBJ)\NPOBJ
VCOMP → (S|NPSUBJ)\SCOMP
REL → (NPSUBJ|NPSUBJ)|(S\NPOBJ)

VT → (S|NPSUBJ)/NPOBJ
VCOMP → (S|NPSUBJ)/SCOMP
REL → (NPSUBJ|NPSUBJ)|(S/NPOBJ)

O Order of subject and object Subject occurs before the object Object occurs before the subject

COMP Position of complementizer COMP → SCOMP\S COMP → SCOMP/S

PP Postposition or preposition PREP → (NP\NP)/NP PREP → (NP/NP)\NP

ADJ Order of adjective and noun ADJ → NP/NP ADJ → NP\NP

REL Position of relativizer REL → (NPSUBJ/NPSUBJ)\(S|NPOBJ) REL → (NPSUBJ\NPSUBJ)/(S|NPOBJ)

Table 1: Binary word order parameters and their corresponding GCG categories. “α → β” indicates α is expanded
to β in the GCG derivation. Some expansion rules interact with multiple word order parameters, e.g., VT →
(S/NPSUBJ)|NPOBJ, and non-target directionalities are denoted as “|” representing either forward or backward
slashes.

GCG Lexical Syntactic Category Example

Noun Phrase (NP) – NP Kim ga kissed Sandy o
Subject Marker – NPSUBJ\NP Kim ga kissed Sandy o
Object Marker – NPOBJ\NP Kim ga kissed Sandy o
Adjective (ADJ) – NP|NP red car ga ran
Transitive Verb (VT) – (S|NPSUBJ)|NPOBJ Kim ga kissed Sandy o
Intransitive Verb (VI) – S|NPSUBJ red car ga ran
Verb with Complement (VCOMP) – (S|NPSUBJ)|SCOMP Kim ga believed that Sandy lied
Complementizer (COMP) – SCOMP|S Kim ga believed that Sandy lied
Preposition (PREP) – (NP|NP)|NP elf on shelf ga laughed
Relativizer (REL) – (NPSUBJ|NPSUBJ)|(S|NPOBJ) man ga whom I ga met laughed
Conjunction – Var\Var/Var Kim and Sandy ga ate

Table 2: Lexical syntactic categories, their derivations, and their examples (colored) supplemented with an English
sentence as a context. The vertical bars “|” in the GCG lexical syntactic categories represent either forward or
backward slashes, determined by word order parameters listed in Table 1.

modeled by our LMs.

3.3 Generating the Datasets
To test the length generalization of LMs, we create
three variations of the AL corpus: (i) SHORT with
a length of 3–8 words, (ii) MEDIUM with a length
of 9–10 words, and (iii) LONG with a length of
11–20 words. Only the SHORT part is used for
LM training, and the models are tested in held-out
SHORT, MEDIUM, and LONG test sets.

The datasets are generated over several steps:

1. Set word order parameters. We generate
the AL corpus for each combination of the
seven parameters. Each AL is defined by a
unique combination of parameter values, such
as 0101101 for “English” which corresponds
to settings S=0, VP=1, O=0, COMP=1, PP=1,
ADJ=0, and REL=1 (see Table 1).

2. Generate templates. Once word order pa-
rameters are fixed, to ensure coverage of all
valid sentences in each AL, we generate all
possible sequences of word categories up to a
length of 10 (for SHORT and MEDIUM sets).
These category sequences are then parsed us-
ing a GCG parser configured according to the
respective grammar with the lexical syntactic
categories as terminal symbols.3 A sequence
of word categories is treated as grammatical
if the parser produces at least one derivation
with S as a root.

3. Sample lexicons. Once grammatical tem-
plates with word categories are generated, we

3We modify the NLTK CCGChartParser (Bird et al., 2009)
by disabling type raising and incorporating the permutation
operation described in Briscoe (1997, 2000), which we use to
parse our sentence templates.
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build sentences by randomly sampling lexi-
cons for each word category. The number of
sampled sentences is adjusted based on some
policies. In our case, we sampled sentences to
form a uniform distribution of sentence length
within the training and test data, e.g., 1K of
length-3 sentences, 1K of length-4 sentences,
..., 1K of length-8 sentences. An example of a
valid sentence parse is illustrated in Figure 1.

4. Augument LONG set. Using the existing
templates of lengths 3-10 words (SHORT and
MEDIUM), we create the templates for the
LONG test set, where the template lengths are
11-20 words. We extend the existing templates
in 3 different ways:

(a) Concatenation: 2 valid templates are
concatenated end to end.

(b) Mid-sentence insertion with a conjunc-
tion: A conjunction and the second tem-
plate are inserted at different points in
the first template.

(c) Appending with a conjunction: Ap-
pending a template to another template
using a conjunction.

We filter the valid extended templates by pars-
ing them using the GCG parsers for all 96
ALs, as previously done for the templates of
length 3-10.

5. Sample lexicons for templates of LONG set.
We randomly sample 20,000 unique valid tem-
plates for each of the 96 ALs and, for each
template, we sample one sentence from the
lexicon. For each AL, we end up with 20,000
unique sentences of length 11-20.

Appendix A shows further details on the GCG
parser configuration, as well as the statistics of the
data we generated, including the template numbers
for each length.

4 Experimental Settings

Models. We evaluate three variants of neural
LMs: simple RNN (Elman, 1990), LSTM (Hochre-
iter and Schmidhuber, 1997), and Transformer
(Vaswani et al., 2017). These models are trained
using the Fairseq toolkit (Ott et al., 2019). We
quantify their inductive bias on what kind of word
order they are good at for productive generalization.
See Appendix B.1 for more details on the models.

Training. The training set consists of 80K sen-
tences of lengths 3-8 words (SHORT training set).
The sentence length is equally distributed, and in
each length, templates are also uniformly sam-
pled.4 We stop the training based on an early-
stopping criterion with a patience of five epochs
(i.e., the training stops when validation loss does
not decrease in five consecutive epochs) and a max-
imum of 10,000 update steps.

Evaluation. We use different evaluation metrics
in different experiments, but they are all focused on
generalization for longer sentences (≥ 9; MEDIUM

and LONG sets) than those in the training data. We
trained three LMs with different seeds for model
initialization, and reported scores are the average
of three runs.

Typological alignment (TA). We measure per-
plexity (PPL), the geometric mean of word proba-
bilities across sequences, in each language. That
is, we obtained the PPL distribution over the 96
languages we used. Following Kuribayashi et al.
(2024), we report Pearson’s correlation coefficients
between PPL and the percentage of respective word
order in the world. The typological distribution is
based on the percentage of languages that adopt the
respective word order estimated with WALS (Dryer
and Haspelmath, 2013) and Grambank (Skirgård
et al., 2023).5 Lower negative correlation indicates
that learnability is better aligned with typological
commonality, i.e., the more common the word or-
der is, the more easily the model learns and produc-
tively generalizes it. Appendix B.2 includes details
on these databases.

5 Experiment 1: PPLs

Evaluation settings. We first measure the PPLs
on MEDIUM and LONG (out-of-domain) test sets
with 20K longer sentences for each set. For a
comparison, we also measure PPLs on the 20K
SHORT (in-domain) set with the same length
distribution, i.e., length of 3–8, as training data.
We ensured that there is no overlap between each
test set and training set, and all the vocabulary in

4Longer sentences have a larger number of grammatically
possible templates; thus, this uniform sampling automatically
introduces the tendency that shorter templates are more fre-
quently selected.

5We basically used the WALS database (Dryer and Haspel-
math, 2013) to count the frequency of word orders, following
the same procedure as (Kuribayashi et al., 2024), and the
COMP statistics are supplemented with Grambank (Skirgård
et al., 2023) as the COMP statistics are not recorded in WALS.
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(a) SHORT test (length 3–8).
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(b) MEDIUM test (length 9–10).
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(c) LONG test (length 11–20).

Figure 2: Distributions of perplexities and typological plausibility across languages. The error bars indicate max
and min PPLs within three runs.

the test sets is used at least once in the training set.

Results. Figure 2 illustrates the PPL and typo-
logical distributions, and Table 3 summarizes the
results. First, the PPLs in longer test sets have
larger variance (Figure 2), and thus are more in-
formative about which word order is easier to learn
and generalize for a particular LM. The flat PPL
distribution in SHORT set, particularly for LSTMs,
was also reported in White and Cotterell (2021).
Second, Table 3 shows that the TA score and
PPLs for each word order group substantially
change between in-domain (SHORT) and out-of-
domain (MEDIUM and LONG) evaluation. In
particular, the TA scores in the out-of-domain eval-
uation are consistently negative, while not in the
in-domain evaluation.6 These suggest that typolog-

6This negative result in in-domain data seems to contra-
dict Kuribayashi et al. (2024), where length generalization is

ically plausible word orders tend to be easier for
LMs to productively generalize, in contrast to just
fitting to the in-domain data. Third, we also have
some architecture-dependent differences between
in-domain and out-of-domain PPLs; specifically,
the TA scores for LSTM and RNN drastically
improved in the out-of-domain evaluation, and
RNN with LONG test set achieved the best (low-
est) correlation in all settings. In contrast, Trans-
former yielded a good correlation only with the
in-domain test, which diminished in out-of-domain
tests. The out-of-domain results are somewhat intu-
itive if one believes that typologically common pat-
terns are a consequence of human limited working

not considered, but the advantage of working memory limi-
tation is reported. This might be due to the difference in the
length distribution of the training data (i.e., our study uses
much shorter sentences than them), and we clarify that their
results do not always hold if the training/evaluation domain is
limited.
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SHORT MEDIUM LONG

Model SOV OSV SVO OVS VSO VOS TA ↓ SOV OSV SVO OVS VSO VOS TA ↓ SOV OSV SVO OVS VSO VOS TA ↓

Transformer (PPL ↓) 41.8 41.6 42.3 42.6 42.7 43.3 −27.7† 65.2 63.5 64.2 65.9 66.1 65.0 −10.4 102.3 99.4 97.9 104.0 107.6 97.9 −19.2
LSTM (PPL ↓) 38.7 38.8 38.7 38.4 39.1 38.5 −14.2 85.9 91.7 88.0 97.5 92.9 97.9 −31.0† 131.9 141.5 160.7 205.5 180.9 207.5 −33.4†

RNN (PPL ↓) 40.4 41.0 40.6 39.7 40.1 39.7 13.0 67.8 67.9 66.7 69.6 69.0 69.4 −17.4 91.8 94.6 93.2 118.0 109.0 114.2 −43.1†

Natural Lang. (Prob. ↑) 0.54 0.04 0.23 0.01 0.12 0.05 - 0.54 0.04 0.23 0.01 0.12 0.05 - 0.54 0.04 0.23 0.01 0.12 0.05 -

Table 3: Average PPLs within each base word order group as well as Pearson’s correlation coefficient between PPL
and the frequency of respective word order in the world. Negative TA (typological alignment) scores are highlighted
in bold. Statistical significance of correlation coefficient (p<0.05) is marked with †.

Language Recursive Relative Clauses Embedded Relative Clause

0000000 John ga promised which pasta ga nibbles which
fruits ga wall o received

John ga pasta ga nibbles that said which fruits
ga wall o received

0101101 (English) fruits ga which pasta ga which John ga promised
nibbles received wall o

fruits ga which John ga said that pasta ga nibbles
received wall o

1111111 received wall o fruits ga which nibbles pasta ga
which promised John ga

received wall o fruits ga which said that nibbles
pasta ga John ga

Table 4: Examples in challenging test sets. The examples with the 0101101 word order parameters follow the basic
English word order.

Model RECURSIVE (TA ↓) EMBEDDED (TA ↓)

Transformer −5.1 −23.5†

LSTM 9.2 −3.7
RNN 12.9 −18.1†

Table 5: Correlation between PPL in the targeted eval-
uation set for each language and typological plausibil-
ity. Statistical significance of correlation coefficient
(p<0.05) is marked with †.

memory, and the LSTM and RNN with recurrent
model architecture have such cognitively plausible
constraints, at least compared to the Transformer
architecture.

6 Experiment 2: PPLs in Targeted
Generalization Sets

PPLs reported in § 5 are a holistic measure of out-
of-domain generalization, given that the data is less
focused on specific linguistic phenomena.

Evaluation settings. As a complementary evalu-
ation, we introduce additional challenging out-of-
domain test sets that focus on unbounded depen-
dency constructions: (i) recursive relative clauses,
where two relative clauses are used in a nested; and
(ii) embedded relative clauses, where the relative
clause is in another subordinate clause, such as “he
said” (Table 4). We refer to these test sets as the RE-
CURSIVE and EMBEDDED test sets, respectively.
All the sentences have the same construction as
shown in Table 4, and lexicons are randomly sam-

pled, resulting in 500 test sentences. Note that these
constructions are successfully regarded as gram-
matical under our GCG-based framework with the
permutation operation, and are not included in the
training set as they exceed the length of 8. We
report the TA score, i.e., correlation between PPL
and typological distribution, on these challenging
test sets.

Results. Table 5 shows the TA scores for each
challenging set and model. In the RECURSIVE set,
the correlations are not statistically significant. The
ease of such generalization was not related to the
typological plausibility of word order, and possibly
LMs simply failed to learn such a complex struc-
ture. In the EMBEDDED set, the correlations tend
to be negative, and Transformer and RNN exhib-
ited statistically significant correlations. This result
in EMBEDDED set is overall consistent with the
previous finding that typologically common ALs
are easier to generalize for LMs. That is, we found
that, when the evaluation is extended to specific
complex constructions, the results are somewhat
phenomenon-dependent and require further investi-
gation with broader-coverage targeted evaluations.

7 Experiment 3: Grammaticality
Judgment Accuracy

Lastly, we also perform grammaticality judgment
evaluation as orthogonal to PPL evaluation, follow-
ing the widely adopted minimal pair grammatical-
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Language Case Type Judgment Verb Type Judgment

0000000 fluffy soft and intelligent mango ga owl o controls green machine ga escorts which scooter ga walk
*fluffy soft and intelligent mango o owl o controls *green machine ga evolves which scooter ga walk

0101101 (English) fluffy soft and intelligent mango ga controls owl o scooter ga which green machine ga escorts walk
*fluffy soft and intelligent mango o controls owl o *scooter ga which green machine ga evolves walk

1111111 controls owl o mango fluffy soft and intelligent ga walk scooter ga which escorts machine green ga
*controls owl o mango fluffy soft and intelligent o *walk scooter ga which evolves machine green ga

Table 6: Examples in grammatical judgment tests. Ungrammatical sentences are marked with *. The examples with
the 0101101 word order parameters follow the basic English word order.

Case Type Verb Type

Model Corr.↑ Avg. Acc. Corr.↑ Avg. Acc.

Transformer 0.14 97.7±1.5 0.27† 81.0±14.7
LSTM 0.03 97.2±1.4 0.28† 85.1±9.6
RNN 0.21† 97.4±1.4 0.23† 77.4±15.5

Table 7: Correlation between accuracy and typological
plausibility distribution, along with average and stan-
dard deviation of accuracy. Statistical significance of
correlation coefficient (p<0.05) is marked with †.

ity judgment paradigm (Warstadt et al., 2020).

Evaluation settings. As a case study, we selected
two simple test cases: (i) case type accuracy, and
(ii) verb type selection accuracy (Table 6). Accu-
racy is measured based on whether a model could
assign a high sentence probability to a grammati-
cal sentence, given a pair of grammatical and un-
grammatical ones. 500 sentences are first sam-
pled from the MEDIUM set used in § 5 as out-of-
domain grammatical sentences. For each gram-
matical sentence, in the case type accuracy data,
an ungrammatical option is created by replacing
a case marker with a grammatically incorrect one
(i.e., ga→o or o→ga). In the verb type data, a
transitive verb in the original sentence is wrongly
replaced with an intransitive verb as an ungram-
matical option (e.g., escorts→evolves). The tar-
get token to be replaced is randomly selected if
there are several candidates in a sentence. Note
that, in our tests, the sentence length is aligned
between the two options, and thus we simply cal-
culated and compared the accumulated sentence
probability p(s) =

∏
wi∈s p(wi|w<i) without any

length normalization. The grammatical judgment
accuracy is measured in each word order configu-
ration, and the correlation between the accuracies
and typological plausibilities over 96 languages is
reported (noted as Corr.). This correlation should
be positive if typologically common ALs are easier
to learn.

Results. Table 7 shows the correlation scores,
as well as average accuracy for each setting. All
the correlations are positive, but only the RNN
showed a statistically significant correlation in
both settings. These results are in line with the
findings in § 5 that typologically frequent word
order facilitates grammar acquisition, and a model
with limited working memory yields better typo-
logical alignment. To sum up all the experiments,
the RNN exhibited superior typological alignment
in length generalization, at least compared to the
Transformer, especially in § 5 and § 7 (and some-
what comparable results in § 6). Given that RNN
has the most limited working memory, as it does
not have the gate mechanism of the LSTM or
attention-based context access of a Transformer,
this suggests that working memory limits create
inductive bias predicting typological word order
distributions.

8 Conclusion

In this paper, we create an AL framework inspired
by White and Cotterell (2021) to assess LM in-
ductive biases towards different word orders. We
extend their framework from a PCFG to a GCG,
and use 96 ALs to evaluate simple RNN, LSTM
and Transformer LMs. We calculate perplexity
(PPL) on short, medium and long sentences, and
observe a moderate alignment between PPL and fre-
quency of word order in attested NLs, particularly
in the out-of-domain evaluation with more complex
linguistic constructions. Overall, we observe that
the performance of recurrent models, especially
RNNs, provides good correlation with typologi-
cal distributions, indicating that they may be the
most typologically aligned models that generalize
effectively on typologically frequent word order
patterns. In contrast, Transformers seem to be the
least aligned when evaluated on generalization to
longer sentences.
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Limitations

While our artificial language (AL) framework pro-
vides a controlled environment for evaluating lan-
guage models (LMs), it does not fully capture the
richness and variability of natural languages. The
ALs used in this study are simplified and do not,
for example, differentiate between verb tenses or
include subject-verb agreement. We also do not
explore ambiguity, and ensure that each word in
the lexicon belongs to exactly one category, unlike
in NLs. Future work is needed to systematically
investigate a broader range of linguistic phenomena
within this framework.

In the future, there are different avenues that we
aim to explore. We would like to explore how dif-
ferent training methods can affect model learning
and generalization. Another potential future direc-
tion to explore is to investigate model learning and
behavior when we introduce more features found in
NLs, for example, subject-verb number agreement,
or lexical ambiguity.

Ethical Statement

The data used in this paper is artificially generated
data that is based mostly on English. There is no
sensitive information in the data, and no security
risks in the contents of this paper. We have no
ethical concerns with the contents of this paper.

AI Writing/Coding Assistance Policy

We occasionally used writing assistance systems,
i.e., Grammarly and ChatGPT, but these are for the
purpose of correcting grammatical/spelling errors
and adjusting wording. In other words, our use of
AI writing assistance falls under the category (a)
Assistance purely with the language of the paper,
described in ARR.
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Figure 3: The distribution of the SHORT and MEDIUM
template lengths in our ALs (X-axis: template length,
Y-axis: template count). The box and error bars present
Q1 and Q3 percentiles, respectively.
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Figure 4: The distribution of all the LONG template
lengths in the extended templates created from the
SHORT and MEDIUM templates (X-axis: template
length, Y-axis: template count). The box and error
bars present Q1 and Q3 percentiles, respectively.

A Dataset Details

A.1 Heuristics Applied During SHORT and
MEDIUM Template Generation

To improve the efficiency of the template genera-
tion process, we apply a set of heuristics to filter out
templates that would not produce valid sentences
in any of our artificial languages.

We discard templates that meet any of the fol-
lowing criteria:

1. Contain fewer than 3 words (since all gram-
mars require at least 3 words for a valid sen-
tence),

2. Begin with a conjunction,

3. End with a conjunction,

4. Include two consecutive conjunctions,

5. Include two consecutive prepositions,
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Figure 5: The distribution of the sampled LONG tem-
plate lengths, which we use to sample the sentences
for the LONG test set (X-axis: template length, Y-axis:
template count). The box and error bars present Q1 and
Q3 percentiles, respectively.

6. Start with subject or object markers,

7. Contain more subject and object markers than
NPs,

8. Contain a complementiser without an associ-
ated complement verb.

We plot the distribution of the different template
lengths across our ALs. We show this in Figure 3
for SHORT and MEDIUM length templates and Fig-
ures 4 and 5 for LONG templates. There is a slight
variation in the number of templates in each AL,
which is attributed to constraints naturally imposed
by GCG, e.g., SVO word order can create “S1 V1
and S2 V2 O” as well as “S V1 O1 and V2 O2”
structures but SOV word order can only create the
“S O1 V1 and O2 V2” structure.

Category Type

S Primitive
NP Primitive
VT (S\NPSUBJ)/NPOBJ
VI S\NPSUBJ
VCOMP (S\NPSUBJ)/SCOMP
COMP SCOMP/S
PREP (NP/NP)\NP
ADJ NP/,NP
REL (NPSUBJ\NPSUBJ)/(S/NPOBJ)
SUBJ NPSUBJ\NP
OBJ NPOBJ\NP
CONJ var\.,@var/.,@var

Table 8: GCG grammar for the word order consistent
with the English language
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Artifact License Purpose

NLTK (Bird et al., 2009) Apache License 2.0 to parse sentences in data generation
Fairseq (Ott et al., 2019) MIT Linense to train LMs
White and Cotterell (2021) Data MIT License to determine dataset configuration
WALS (Dryer and Haspelmath, 2013) Creative Commons CC-BY 4.0 to find word order statistics in NLs
Grambank (Skirgård et al., 2023) Creative Commons CC-BY 4.0 to find word order statistics in NLs

Table 9: Details on artifacts we used in this study

S 82A Order of Subject and Verb (Dryer, 2013e)
VP 83A Order of Object and Verb (Dryer, 2013c)
O 81A Order of Subject, Object and Verb (Dryer, 2013f)

COMP Feature GB421: Is there a preposed complementizer in complements of verbs of thinking and/or knowing? (Skirgård et al., 2023)
Feature GB422: Is there a postposed complementizer in complements of verbs of thinking and/or knowing? (Skirgård et al., 2023)

PP 85A Order of Adposition and Noun Phrase (Dryer, 2013b)
ADJ 87A Order of Adjective and Noun (Dryer, 2013a)
REL 90A Order of Relative Clause and Noun (Dryer, 2013d)

Table 10: WALS and Grambank chapters we used

A.2 Parser Configuration

To parse templates and assign them to compati-
ble artificial languages (ALs), we adapt the NLTK
CCGChartParser (Bird et al., 2009). We disable
type raising, an operation available in Combinatory
Categorial Grammar (CCG) (Steedman, 1996), and
instead implement the permutation rule described
by Briscoe (1997, 2000), which is part of General-
ized Categorial Grammar (GCG) (Wood, 2014).

The NLTK CCGChartParser allows us to enforce
parsing constraints: placing a comma, period, or
underscore before a grammar argument disables
composition, crossing, or substitution, respectively.
We extend this by introducing a new symbol “@”
to block permutation.

In our grammar definitions, we limit permutation
to categories that function as verb functors (i.e.,
those involving S). We also constrain subject and
object markers so that they only combine with NPs
by disabling composition in the definitions of the
NPSUBJ and NPOBJ categories.

GCG enables flexible word orders via permuta-
tion, which can cause overlap between word orders,
for instance, OSV structures appearing in SOV
datasets, or VSO in VOS datasets. To maintain
clearer distinctions between word orders, we dis-
able permutation for verbs when parsing templates
for OSV, SOV, VOS, and OVS languages, except in
cases where a relativizer category (REL) is present.

We provide an example of the SVO grammar
that corresponds to English in Table 8.

B Information relevant to responsibility
checklist

B.1 Model Details
We used exactly the same model hyperparame-
ters as Kuribayashi et al. (2024) for Transformer,
LSTM, and RNNs (see Table 11). These models
are trained with the Fairseq toolkit (Ott et al., 2019).
We did not apply any subword tokenization, in con-
trast to Kuribayashi et al. (2024), as we disregard
morphological number agreement between subjects
and verbs. The whole model training and evalu-
ation will be completed with approximately 150
GPU hours.

B.2 Artifacts
Table 9 shows all the artifacts we used, which fol-
low the original intended use. Specifically, NLTK
is used for language analysis, fairseq is used for
model training, and the linguistic database is used
for accessing language statistics. Table 10 shows
the exact chapters/features of linguistic databases
we used.
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Fairseq
model

share-decoder-input-output-embed True
embed_dim 128
ffn_embed_dim 512
layers 2
heads 2
dropout 0.3
attention_dropout 0.1
#params. 462K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training
batch size 2,048 tokens
tokens-per-sample 128 tokens
sample-break-mode none
epochs 10

(a) Transformer.

Fairseq
model

share-decoder-input-output-embed True
embed_dim 128
hiden_size 512
layers 2
dropout 0.1
#params. 3,547K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training
batch size 2,048 tokens
tokens-per-sample 128 tokens
sample-break-mode none
epochs 10

(b) LSTM.

Fairseq
model

share-decoder-input-output-embed True
embed_dim 64
hiden_size 64
layers 2
dropout 0.1
#params. 49K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training
batch size 2,048 tokens
tokens-per-sample 128 tokens
sample-break-mode none
epochs 10

(c) RNN.

Table 11: Hyperparameters of LMs
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