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Abstract

Transformer encoders are critical for a
wide range of Natural Language Processing
(NLP) tasks, yet their compute–efficiency
remains poorly understood. We present the
first comprehensive empirical investigation
of compute-optimal pretraining for encoder
transformers using the Masked Language
Modeling (MLM) objective. Across hundreds
of carefully controlled runs we vary model
size, data size, batch size, learning rate, and
masking ratio, with increasing compute budget.
The compute-optimal data-to-model ratio of
Transformer encoder models is 10 to 100
times larger than the ratio of auto-regressive
models. Using these recipes, we train
OptiBERT, a family of compute-optimal
BERT-style models that matches or surpasses
leading baselines—including ModernBERT
and NeoBERT—on GLUE and MTEB while
training with dramatically less FLOPS.

1 Introduction

In the last few years, considerable effort has
been devoted to improve decoder-only (Vaswani
et al., 2023; Radford et al., 2018; Grattafiori
et al., 2024; Groeneveld et al., 2024; DeepSeek-AI
et al., 2024) Large Language Models (LLMs)
trained to perform Next Token Prediction (NTP).
In contrast, encoder-only models (Devlin et al.,
2019; Liu et al., 2019a) trained with the
Masked Language Modeling (MLM) objective
have received comparatively less attention, despite
being the backbone of a wide range of applications,
including retrieval augmented generation (Lewis
et al., 2020; Ram et al., 2023), toxicity detection
(Hartvigsen et al., 2022; Ji et al., 2023; Jiang et al.,
2024) and recommendation systems (Karpukhin
et al., 2020; Khattab and Zaharia, 2020). The
encoder literature (Li et al., 2023; Morris and
Rush, 2024; Sturua et al., 2024) has primarily
focused on fine-tuning BERT based models (Devlin
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Figure 1: The performance on MTEB of current
SOTA models NeoBERT4096 (Breton et al., 2025) and
ModernBERTlarge(Warner et al., 2024) taken from
Breton et al. 2025 and our compute-optimal BERT
family (OptiBERT) in orange triangles as a function
of the compute C measured in FLOPS.

et al., 2019; Liu et al., 2019a; He et al., 2020;
Conneau et al., 2019) to improve the quality of
their embeddings. However, these models rely
on aging backbones, with BERT and RoBERTa
now over five years old. Recent work has shifted
towards updating the pretraining of the underlying
architectures (Breton et al., 2025; Warner et al.,
2024), incorporating modern techniques inspired
by decoder-only models (Grattafiori et al., 2024;
DeepSeek-AI et al., 2024). However, these efforts
rely on ad hoc choices, lacking a systematic
understanding of their scaling behavior.

Such an understanding has been central to the
progress of decoder-based models, where scaling
behavior is well characterized: larger models
trained on more data consistently achieve lower
training loss and better downstream performance.
To avoid costly exhaustive empirical sweeps,
researchers have developed scaling laws, which
express performance as a function of model and
dataset size. These laws are especially useful
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for identifying compute-optimal configurations.
A compute-optimal setting corresponds to the
best trade-off between model size and dataset
size to maximize performance under a fixed
compute budget. Most studies (Kaplan et al.,
2020; Hoffmann et al., 2022; DeepSeek-AI et al.,
2024) have focused on describing such relations
for auto-regressive LLMs trained with NTP, which
is very different from the MLM of BERT-based
models. A notable exception is the study by
Urbizu et al. 2023a, however they focus on
the low-resource regime and their analysis only
considers three model scales, restricting a realistic
extrapolation to more general trends and larger
scales.

In this work, we conduct a comprehensive
investigation of scaling laws for encoder-only
Transformer models trained with MLM. First we
examine the relation of learning rate and batch size
(Fig. 2). Then we study the optimal scaling strategy
for data and model on a fixed compute budget
(Fig. 3 and 4). We discover that encoder-only
models have a more ‘data-hungry’ behavior
compared to decoder-only models and that the
current decoder-only laws do not apply to encoders
(see Fig. 5). In Section 4.3, we further show
that this data hungriness does not depend on the
masking ratio of the MLM objective (Clark et al.,
2020).

Based on such laws, we confirm that the
current state-of-the-art (SOTA) BERT-like models
(Warner et al., 2024; Breton et al., 2025) are
sub-optimal and over-trained. As shown in Fig. 1,
we are able to train a family of compute-optimal
BERT (OptiBERT) that achieve/surpass the
performance of SOTA with 50 to 1000 times less
compute. Our aim is to lay the groundwork for
future compute-optimal scaling of backbone BERT
models.

2 Method

Inspired by studies done for decoder-only models
(DeepSeek-AI et al., 2024; Kaplan et al., 2020;
Hoffmann et al., 2022) we aim to find the optimal
scaling relation between data and model size under
a certain compute budget.

Data. All models are trained on the Fineweb_edu
dataset. This corpus is English only and contains
over 1 trillion tokens, which is significantly
larger than our longest training (∼ 350B tokens).

Therefore we do not create a validation set since
we are in the infinite data regime and the training
loss is an unbiased estimator of the validation loss
(Hoffmann et al., 2022).

The size of the dataset D is defined as the
number of total training tokens seen by a model
during the full training. The corpus is tokenized
by RoBERTa’s Byte Pair Encoding (BPE) and the
maximum sequence length is fixed at 1024 tokens.

Model. The model is a bidirectional attention
Transformer (Vaswani et al., 2023) with some
notable improvements/updates such as Rotary
Positional Embeddings (RoPE) (Su et al., 2024;
Grattafiori et al., 2024) and Gated Linear Units
(Shazeer, 2020). See Appendix A for the detailed
description of our architecture. Let N be the
number of non-embedding parameters of the
model, and FN the non-embedding parameters
FLOPS/token. In our study, ‘the model size’ is
characterized by FN (DeepSeek-AI et al., 2024)
which for transformer encoder models is given by

FN = 6 · (12 · d2nlayer) + 12 · nlayer s d

= 6 ·N + 12 · nlayers d (1)

where s is the maximum sequence length, d
the model’s dimension and nlayer number of
transformer blocks. The first term of Eq. (1)
corresponds to the 2 FLOPS per parameter
required during the forward pass of each matrix
multiplication, and 4 FLOPS per parameter during
the backward pass, totaling 6 FLOPS per parameter
(N ). The second term captures the cost of the
attention mechanism, which involves two matrix
multiplications: the computation of attention scores
via QK⊤, and the application of these scores to the
value matrix V . These operations are proportional
to the sequence length and model’s dimension.
A detailed derivation of Eq. (1) is provided in
Appendix B.

Compute C. Throughout our analysis/experiments
we will use the relation:

C = FND (2)

which was introduced in (DeepSeek-AI et al.,
2024). Unlike the C = 6ND estimation of
(Kaplan et al., 2020; Hoffmann et al., 2022), Eq. (2)
is more accurate because the second term in Eq. (1)
takes into account the computational overhead of
the attention operation. At low scales, this overhead
is significant and cannot be neglected.
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In section 4 we study the trade-off between
dataset size D to model size FN given by

RFN
(C) = D/FN . (3)

which we label data-to-model ratio. The ratio offers
insights on the scaling ability of BERT-like models
and we compare such findings with current SOTA
encoder models (Breton et al., 2025; Warner et al.,
2024) and known scaling results of decoder models
(Hoffmann et al., 2022; Grattafiori et al., 2024).

Objective. We adopt the standard BERT-style
pretraining scheme based on the Masked Language
Modeling (MLM) objective. Following NeoBERT
(Breton et al., 2025), 20% of tokens in each input
sequence are replaced with the special [MASK]
token. Unless otherwise specified, all scaling
experiments are conducted with a fixed masking
rate. In Section 4.3, we investigate how the optimal
masking percentage M varies with increasing
compute.

Evaluation. We use training loss as the primary
performance indicator for scaling. However, to
assess transfer to downstream tasks, we also
evaluate on benchmark suites. As GLUE (Wang
et al., 2018) is largely saturated, we focus on
MTEB (Muennighoff et al., 2022; Enevoldsen et al.,
2025), while still reporting GLUE results for the
models introduced in Section 5.

MTEB is a benchmark which measures the
quality of text embeddings, requiring models to
output a single representation per sequence of
tokens. NeoBERT shows that MLM-pretrained
encoders with naive1 zero-shot poolings perform
poorly without contrastive finetuning. Instead
of adopting their full finetuning pipeline, we
adopt a simpler alternative: an attentive pooling
head trained using a supervised contrastive
loss (InfoNCE (Conneau and Kiela, 2018)) on
MNLI and SNLI training datasets. Despite
its simplicity, this method achieves competitive
results, underscoring the effectiveness of our
pretraining. Appendix D provides further
implementation details.

Methodology. All scaling experiments are based
on the Meta Lingua codebase (Videau et al., 2024)
and follow a common methodology. Given a set
of interdependent variables (e.g., batch size and
learning rate, or FN and D) and a set of constraints

1[CLS] or mean-pooling

Po
w

er
la

w
a
·C

α

Var. a α

ℓr 1e(1.84 ± 1.2) −0.24 ± 0.07
bs 1e(1.24 ± 1.2) 0.24 ± 0.07

†FN 1e(0.22 ± 0.39) 0.46 ± 0.02
†D 1e(−0.22 ± 0.39) 0.54 ± 0.02

†RFN
1e(−0.44 ± 0.78) 0.08 ± 0.04

⋆FN 1e(1.80 ± 2.14) 0.42 ± 0.09
⋆D 1e(−1.80 ± 2.14) 0.58 ± 0.09

⋆RFN
1e(−3.59 ± 4.28) 0.16 ± 0.18

◦L − E 1e(2.5 ± 0.3) −0.125 ± 0.025

Pa
ra

m
et

ri
c

L̂
(F

N
,
D
)

E = 1e(−0.36 ± 0.3)
A = 1e(2.55 ± 0.3), α = 0.326 ± 0.04
B = 1e(2.26 ± 0.4), β = 0.236 ± 0.05

Table 1: Summary of fitted scaling laws for
different variables: lr learning rate, bs batch size, FN

non-embed parameters FLOPS/token, D total tokens,
RFN

data-to-model ratio, L training loss and L̂(FN , D)
Eq. (4). † denotes results derived in Section 4.1, ⋆ in
Section 4.2 and ◦ from Fig.7.

(e.g., fixed compute C), we sample hundreds of
valid parameter configurations. Each configuration
is trained, and the final training loss, smoothed
by averaging over 10 steps, is recorded. We then
fit either a power law, a parabolic curve, or a
parametric function to the runs and record the
respective coefficients in Table 1.

3 Optimal learning rate and batch size

Method. We use Sobol sampling to select model
size, total training tokens, learning rate, and batch
size, as it ensures more uniform coverage of the
four-dimensional space than random sampling,
which can lead to uneven clustering. The sampled
ranges are: 82M to 2.1B FN , 250M to 10B
total tokens D, learning rates between 5 × 10−4

and 10−2, and batch sizes from 216 to 220. For
each sampled FN value, we select the architecture
whose non-embedding parameter FLOPS per
token most closely matches the sampled value.
Details of the matching procedure are provided
in Appendix C.

Among the 512 sampled experiments, we select
the top k = 1 points whose loss is minimal within
a sliding window of size [0.81C,C]. We then fit
a power law to these selected points to obtain the
optimal learning rate and batch size with respect to
compute C shown in Fig. 2.

Results. We note that the fits for learning rate and
batch size have a large variance. This variability
reflects the existence of multiple (lr, bs) pairs
yielding similar performance for a fixed compute
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Figure 2: Optimal Learning Rate and Batch size. (a, c) Scatter plot of learning rate vs compute C for all training
runs (resp. batch size vs compute C). We take a sliding window of size [0.81C,C] and compute the lowest loss
(bestloss) of the window. The loss of each point within the window is normalized by the bestloss. The log of
this ratio determines Performance (the color/size of each point). Lower is better. The black line shows the fitted
power-law relationship for top-1 performing runs. (b, d) Same plot as (a,c) but restricted to the top-k=1 run in each
sliding window of C. The best learning rate follows the scaling law lr ∼ 69 × C−0.24 (black line), whereas the
batch size follows bs ∼ 17.38× C 0.24. Blue annotations mark extrapolated predictions for optimal lr and bs for
C = 3.0e21, which is the compute of NeoBERT (Breton et al., 2025).

(see Appendix E and Fig. 8), a phenomenon also
reported in Li et al. 2024; DeepSeek-AI et al. 2024.
There is no single best learning rate and batch size
combination, but a range of admissible values in a
relatively wide parameter space all yielding similar
results. Hence any learning rate and batch size
pair taken according to the scaling laws mentioned
above will yield good results. Nonetheless, as
compute increases, optimal training requires larger
batch sizes and smaller learning rates, which is an
expected behavior for the AdamW optimizer (Li
et al., 2024).

4 Optimal data to model ratio

In this section we study how the data-to-model
ratio, RFN

= D/FN scales with compute. To this
end we sample 8 logarithmically spaced FLOPS
values ranging from 5e16 to 2.9e19. For each
value we Sobol sample 16 to 21 data-to-model
ratios RFN

ranging from 1 to 1002. To extract the
compute-optimal RFN

(C) we take two approaches,
we fit a parabolic loss for every C (Section 4.1) or
a parametric one (Section 4.2).

2except for the last iso-flop run where we restricted the
range from 1 to 30

4.1 Parabolic fitting

Method. We fit a parabolic loss curve per FLOPS
as shown on the leftmost panel of Fig. 3. For
each such curves we take the run with the best
training loss, i.e. the run closest to the minimum
of the parabola, to obtain the optimal configuration.
To which we then fit a power law FN = aCα and
D = bCβ shown in Fig. 3b and Fig. 3c respectively.
We thus obtain the optimal ratio on how to scale
model size and dataset with compute.

Results. For small FN (i.e., smaller models),
loss curves are unstable and noisy. As
compute increases, the fits become smoother and
the parabolas broaden, with reduced curvature.
Indicating that the training becomes less sensitive
to the data-to-model ratio. However, suboptimal
ratios can still lead to divergence. Across compute
budgets from 1017 to 1022, we find the optimal
ratio lies between 10 and 20. For comparison,
decoder-only scaling laws typically use ratios
≲ 3 (Kaplan et al., 2020; Besiroglu et al., 2024;
DeepSeek-AI et al., 2024) with some exceptions
such as Llama-3 (Dubey et al., 2024) and MiniCPM
(Hu et al., 2024) which use a ratio of 7 and 32
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Figure 3: IsoFLOPS.(a) For each compute value C we fit a parabola. Compute values are shown at the edges of the
plot. (b) From (a), we select the lowest training loss run for a fixed C. We then fit a power law (black line) and
extrapolate to get the optimal FN Non-Embed Parameters FLOPS/tokens with respect to C. (c) Same as in (b) but
we fit a power law and extrapolate to get the optimal Total Tokens D with respect to C. The blue lines illustrate an
extrapolation point for C = 3e21 which is approx. the compute of NeoBERT (Breton et al., 2025). The final data to
model ratio for a fixed C is RFN

= D/FN ∼ 0.36C 0.08.

respectively. On the other hand, NeoBERT has
RFN

≃ 1400, which is far from optimal.

4.2 Parametric loss fitting
Method. Although this approach derives
equivalent results as the parabolic fitting, using
the parametric loss we can extrapolate the training
loss for any FN and D and can therefore predict
behaviors at larger computes. We use the same
samples as in Section 4.1, but we fit the parametric
loss introduced in Hoffmann et al. 2022 which we
recall here:

L̂(FN , D) = E +
A

Fα
N

+
B

Dβ
. (4)

However, instead of using L-BFGS algorithm as in
Hoffmann et al. 2022 to minimize the Hubert loss:

min
θ

∑

runs i

Hubδ

(
log L̂(FN

(i), D(i))− logL(i)
)

,

(5)
we take inspiration from Besiroglu et al. 2024 and
use the BFGS algorithm instead, with δ = 10−3 to
be less sensitive to outliers. L(i) is the training
loss of the run i and θ are all the coefficients
A,B,E, α, β of the parametric loss.

Results. A summary of the fitted coefficients and
their variance is given in Table 1, the uncertainty
was estimated by bootstrapping the samples 4000
times. The resulting curves are shown in Fig. 4.
Note that contrary to the parabolic approach from
Fig. 3 the fit remains good even for the last two
profiles. The right panel of Fig. 4 shows an
extrapolation of the parametric loss.

We now want to calculate the optimal
data-to-model ratio from the fitted coefficients.

From Eq. (4) enforcing a constant compute
C = FND, we write the parametric loss as only
a function of FN i.e L̂(FN , D) ≡ L̂(FN , C/FN ).
Optimizing the loss with respect to FN , yields the
optimal FN : FN (C) = n · Cη, where

n =

(
Aα

Bβ

) 1
α+β

and η =
β

α+ β
. (6)

Identically, the compute-optimal dataset size is
given by D(C) = 1

n · C1−η. The data-to-model
ratio is then given by

RFN
(C) =

D

FN
=

1

n2
C1−2η . (7)

Fig. 5 plots the ratio with 80% confidence
intervals, alongside the prediction from Chinchilla
(Besiroglu et al., 2024). We can see that encoder
models require 10-100× more data, or equivalently,
10-100× less parameters, than decoder models
at fixed compute, consistent with prevailing
assumptions in current research.

Finally, we verify experimentally whether small
scale runs predict the behavior of large scale
runs. The small scale runs correspond to the best
performing models in Fig. 3a, ensuring that each
point reflects a compute-optimal configuration.
Since we do not expect the training loss L to reach
zero, but to saturate at the incompressible value E,
we fit a power law to L−Emin and L−Emax, where
Emin and Emax denote the bounds of the 95%
confidence interval for E. In Fig. 7, we confirm that
the training loss of a 1B parameter model trained
optimally on 350B tokens is predicted by such
scaling law. Hopefully, this allows future studies to
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Figure 4: Parametric Fit. (a) The iso-gamma profiles obtained from the fitted the parametric loss function given in
Eq. (4) are plotted (with dashed lines) against the experimental results from our scaling runs. Compared to Fig. 3,
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Figure 5: Optimal data-to-model ratio for encoder
models (in blue) and for decoder models (in red).
Shaded regions represent 80% confidence intervals.
The black point corresponds to the training setup of
NeoBERT, which is clearly far from optimal.

select compute-efficient pretraining configurations
without resorting to costly grid searches.

4.3 Scaling laws of masking percentage

The Next Token Prediction (NTP) of decoders
computes a loss on 100% of the input tokens. In
contrast, MLM computes a loss only on the masked
percentage M of tokens. Hence, the model receives
gradient updates only from MD tokens during
pretraining. Therefore, one may think that NTP
scaling laws may hold for MLM if we consider
the effective dataset size D′ = MD (Clark et al.,
2020). This could indeed help explain the order
of magnitude discrepancy between the optimal
data-to-model ratios of decoder models (∼ 3)

compared to Section 4 (∼ 10 - 100).

Method. To investigate this hypothesis we trained
128 models with Sobol sampled data-to-model
ratios (from 1 to 100) and masking ratios (from
0.05 to 0.95) at 3 different compute budgets
(1017, 3.2 · 1017 and 1018). Since the training loss
directly depends on the masked percentage M -the
hyperparameter under investigation- it cannot serve
as a fair evaluation metric. Therefore, all models
are finetuned and evaluated on MTEB(eng, v2) to
enable consistent comparisons across runs.

Results. Fig. 6 shows that larger compute
budgets seem to favor larger masking rates, with
rates as high as 80% reaching astonishingly good
downstream performance. Secondly, we see no
evidence of a relationship between the masking
ratio and the data-to-model ratio. Rejecting the
hypothesis mentioned above, that the scaling laws
of MLM simply behave as those of NTP on a
re-scaled dataset.

5 OptiBERT

Current state-of-the-art BERT-style models are
trained with very large data-to-model ratios
RFN

, NeoBERT uses approximately (1400),
ModernBERT (810), DeBERTa-V3 (230) and
NomicBERT (1100). Our analysis in Section 4
concludes that RFN

should range from 10 to 100
for our compute budget. Hence current SOTA
models are significantly over-trained, as can be
seen in Fig. 5.

Therefore we re-train a NeoBERT equivalent
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Figure 7: Evolution of training loss with compute
The black line is the power law fitted on low-scale runs
(red) with 95% confidence interval. The training loss
of high-compute run (green) is perfectly predicted by
scaling law. E is the coefficient in the parametric loss
Eq. (4) given in Table 1.

architecture 3 on 1.3B, 13B, and 130B tokens
reducing compute by factors of 2000, 200, and
20. We keep the same hyperparameters (batch
size and learning rate) since we observe in Fig. 2
that they are optimal. We refer to these variants
as OptiBERTneo and report results on MTEB(eng,
v1) in Table 2 and on GLUE in Table 3. Results
on MTEB(eng, v2) are provided in Table 5
in Appendix D.3. Our analysis focuses on
Table 2 since the models are comparable, and the
performance differences across MTEB versions is
minimal.

Furthermore, we evaluate each of the 8
compute-optimal models in Fig. 3 (dubbed
OptiBERT) on the MTEB(eng, v1) benchmark and
show their average score in Fig. 1. In Table 2 and
3 we give only the detailed values of the 8th model
i.e. the most compute-expensive one to compare

328 layers, 768 hidden dimension and 12 attention head

with the performance of OptiBERTneo.

5.1 Results

Our study of compute-optimality, in Section 4,
showed that the training loss of OptiBERT models
scales with compute. Figure 1 confirms that
such scaling also applies to downstream MTEB
performance. Indeed, our largest compute-optimal
model, OptiBERT239M , trained on 41B tokens,
surpasses both NeoBERT and ModernBERT on
the MTEB benchmark while requiring 50 times
less compute. To put this in perspective, NeoBERT
was trained for 6000 H100 GPU hours (∼ 1 year)
whereas our OptiBERT239M was trained in only 64
H100 GPU hours (∼ 3 days).

Table 2 further supports the claim that
current SOTA BERT-like models are over-trained.
OptiBERTneo variants have the same model size
and hyperparameter choices as NeoBERT but vary
dataset size. The model trained on 130B tokens
which is 20 times less than NeoBERT surpasses
both NeoBERT and ModernBERT in MTEB score.
Counter-intuitively, this shorter pre-training leads
to stronger downstream performance at a fraction
of the cost.

Note, however, that OptiBERT models
underperform for Clustering, Retrieval and
Reranking tasks compared to the SOTA models.
The gap in performance could be as a result of
context length: our models have a maximum
sequence length of 1024, compared to 4096 for
NeoBERT and 8192 for ModernBERT. Further
extending the sequence length could close this gap
but this is out of the scope of our current study.

Finally, Table 3 reports the GLUE performance
of our models with their 95% confidence
intervals computed by bootstraping 1000 GLUE
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Model Params Tokens Compute Class. Clust. PairClass. Rerank. Retriev. STS Summ. Avg.

ModernBERTlarge 352M 2.019T 4.9e21 62.4 38.7 65.5 50.1 23.1 68.3 27.8 46.9
NeoBERT4096 198M 2.1T 2.9e21 61.6 40.8 76.2 51.2 31.6 74.8 30.7 51.3

OptiBERTneo 198M 1.3B 1.9e18 59.2 29.7 70.0 45.0 18.3 73.7 28.8 46.4
OptiBERTneo 198M 13B 1.9e19 65.9 32.1 74.7 47.7 21.6 78.1 30.0 50.0
OptiBERTneo 198M 130B 1.9e20 67.5 33.4 77.0 48.5 25.4 81.1 30.2 51.9

OptiBERT239M 239M 41B 7.0e19 67.5 36.1 75.8 48.1 23.3 79.7 30.0 51.5

Table 2: MTEB scores on MTEB(eng,v1). Baseline scores on ModernBERT and NeoBERT were retrieved from
Table 4 of (Breton et al., 2025). Note these models have a context sequence length of 8192 and 4096 respectively
whereas our runs are only 1024. Params refers to non-embedding parameters N (see Eq. (1)). Tokens denote the
total number of training tokens the model has seen. Compute measure the amount of FLOPS required to pretrain
the model.

Model Params Tokens Compute MNLI QNLI QQP RTE SST MRPC CoLA STS Avg.

ModernBERTlarge 352M 2.019T 4.9e21 90.8 95.2 92.7 92.1 97.1 91.7 71.4 92.8 90.5
NeoBERT1024 198M 2.0T 2.9e21 88.9 93.9 90.7 91.0 95.8 93.4 64.8 92.1 88.8

OptiBERTneo 198M 1B 1.9e18 77.9 ↑ 78.7
↓ 76.9 84.7 ↑ 86.1

↓ 83.5 87.4 ↑ 87.9
↓ 86.9 68.4 ↑ 74.7

↓ 62.1 89.2 ↑ 92.1
↓ 86.5 85.8 ↑ 89.3

↓ 81.9 28.5 ↑ 36.8
↓ 21.0 86.2 ↑ 87.7

↓ 84.6 76.0 ↑ 79.2
↓ 72.9

OptiBERTneo 198M 13B 1.9e19 85.2 ↑ 86.0
↓ 84.4 91.0 ↑ 91.9

↓ 90.0 89.8 ↑ 90.2
↓ 89.4 81.4 ↑ 86.6

↓ 75.8 92.1 ↑ 94.3
↓ 89.8 90.6 ↑ 94.2

↓ 87.0 56.6 ↑ 64.3
↓ 48.1 90.1 ↑ 91.3

↓ 88.7 84.6 ↑ 87.4
↓ 81.6

OptiBERTneo 198M 130B 1.9e20 89.0 ↑ 89.6
↓ 88.5 93.7 ↑ 94.5

↓ 92.7 90.1 ↑ 91.1
↓ 88.4 88.7 ↑93.1

↓ 84.5
94.6 ↑ 96.2

↓ 92.7 92.4 ↑95.5
↓ 89.1

64.6 ↑71.9
↓ 57.6

92.0 ↑92.9
↓ 91.0

88.1 ↑90.6
↓ 85.6

OptiBERT239M 239M 41B 7.0e19 86.6 ↑ 87.2
↓ 85.8 92.1 ↑ 93.0

↓ 91.2 90.3 ↑ 90.7
↓ 89.9 83.2 ↑ 88.4

↓ 77.6 92.6 ↑ 94.6
↓ 90.3 91.0 ↑ 94.2

↓ 87.7 59.6 ↑ 66.4
↓ 50.8 90.8 ↑ 91.9

↓ 89.4 85.8 ↑ 88.3
↓ 82.8

Table 3: GLUE scores on the validation set. Baseline scores were retrieved from Table 3 of NeoBERT (Breton
et al., 2025), from Table 5 of ModernBERT (Warner et al., 2024). Params (N ) refers to non-embedding model
parameters. Tokens denote the total number of training tokens the model has seen. Compute measures the amount
of FLOPS required to pretrain the model. The mean scores of our models are shown with their 95% confidence
intervals obtained by bootstraping 1000 times the GLUE evaluations over 5 different seeds.

evaluations over 5 different seeds. Based on
such intervals we can observe that the GLUE
benchmark is saturated with fluctuations so
large that we cannot significantly differentiate
the performance of the top 3 models in the
table. OptiBERTneo’s performance is in the range
(85.6, 90.6) which includes both ModernBERT’s
90.5 and NeoBERT’s 88.8 scores. Hence why our
analysis is mainly based on MTEB performance
instead of GLUE.

6 Related Work

BERT-based Models. Encoder models are a
leaner and cheaper alternative to decoder models;
requiring significantly lower training costs whilst
remaining powerful tools for language modeling
tasks such as semantic similarity, information
retrieval, clustering, and classification (Cer et al.,
2018; Muennighoff et al., 2022). Since the
introduction of BERT, a wide range of encoder
models (Devlin et al., 2019; Liu et al., 2019a;
He et al., 2020, 2021; Conneau et al., 2019) have
been developed and serve as backbones for various
NLP tasks. Since then, research on encoder
models has focused on either finetuning existing

backbones by large-scale contrastive learning or
improving the pretraining and architecture of such
backbones. GTE (Li et al., 2023), CDE (Morris
and Rush, 2024), Jina Embeddings (Sturua et al.,
2024), DPR (Karpukhin et al., 2020), Contriever
(Izacard et al., 2021), Sentence-BERT (Reimers
and Gurevych, 2019) and LaBSE (Feng et al., 2020)
are some of the models focused on finetuning,
whilst ModernBERT (Warner et al., 2024) and
NeoBERT (Breton et al., 2025) focus on the
pretraining by increasing dataset size to trillions of
tokens and architectural improvements. However
in our study we have shown that blindly increasing
data can be extremely inefficient and does not result
in significant gains. Much better performance can
be obtained at a fraction of the cost by increasing
data and model size in tandem, while keeping a
data-to-model ratio RFN

around 10 to 100.

Scaling Laws. Neural scaling laws describe
how model performance improves with increased
compute, data, and parameter size. First introduced
by Hestness et al. 2017 and subsequently developed
for decoder models (Kaplan et al., 2020; Hoffmann
et al., 2022; DeepSeek-AI et al., 2024), they
have since been extended to other architectures,
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including Mixture-of-Experts (Ludziejewski et al.,
2024, 2025; Abnar et al., 2025; Liew et al., 2025)
and, more recently, encoders (Ivgi et al., 2022;
Urbizu et al., 2023a; Fang et al., 2024). Urbizu
et al. (2023a) explore scaling laws for BERT in
the low-resource regime and observe very different
trends from decoder-based laws. However, their
study is limited to three model sizes. Our work
established broader and more predictive scaling
laws for large scale pretraining. Consistently with
the results from Urbizu et al. 2023a we find that
decoder-based laws do not generalize to encoders.
We have seen that encoders are 10 to 100 times
more data-hungry than decoders and resp. 10 to
100 times more parameter-efficient than decoders.

Hyperparameter Estimation. Beyond model and
dataset size, pretraining performance also depends
on hyperparameters such as learning rate, batch
size, optimizer settings (Ali et al., 2023; Hägele
et al., 2024; DeepSeek-AI et al., 2024; Porian
et al., 2024) and the masking percentage of the
MLM objective (Wettig et al., 2022; Ankner et al.,
2023). Inspired by Porian et al. 2024 and Hägele
et al. 2024, we have kept the scheduler fixed
to a cosine decay, systematically exploring only
the learning rate and batch size to understand
their effect under a fixed compute budget as in
DeepSeek-AI et al. (2024). Secondly, Wettig
et al. 2022 showed that BERT’s original 15%
masking4 is not always a good choice. They
suggest that larger models benefit from a higher
masking. Following their results we have trained
the majority of our experiments with 20% masking.
In section 4.3 of the paper we saw that larger
compute budgets favor larger masking ratios with
optimal masking ratios ranging from 20% to 50%.

7 Ethical Considerations

We acknowledge that our experiments required
significant computational resources which we
estimate a total of 4700 H100 GPU-hours. Code
optimizations yielded 300 TFLOP/s per GPU on
average. Our largest run with the same compute
as NeoBERT completed in 2600 H100 GPU-hours,
compared with NeoBERT’s 6000. By identifying
compute-optimal configurations, we hope that our
findings can lower the environmental and financial
costs of future pretraining.

480% of tokens are replaced with [MASK], 10% with a
random token and the remaining 10% are unchanged.

8 Limitations

Our study adopts a fixed dataset for all scaling
experiments. While FineWeb-edu is a high-quality
English corpus, prior work (DeepSeek-AI et al.,
2024) has demonstrated that both the choice and
quality of the dataset can significantly influence the
conclusions drawn from scaling law analyses. As
such, the generality of our findings may not extend
to low-quality corpora or low-resource language
regimes. Investigating how the data-to-model
ratio evolves with increasing compute under such
conditions has been studied in Urbizu et al. 2023b
but remains an important direction for future
research.

Furthermore, our study focuses on a limited
set of hyperparameters: learning rate, batch size,
and masking ratio, while holding others fixed.
Additional factors such as the choice of optimizer,
learning rate scheduler, tokenizer, and architectural
design can significantly influence performance. For
instance, we fix the width-to-depth ratio5 to 64,
following BERT-base, though prior work suggests
that model performance can be sensitive to this
ratio (Levine et al., 2020).

We focus on scaling behavior with respect to
training loss, but provide limited downstream
evaluation. A more comprehensive study of
downstream task performance across compute
budgets could help identify emergent capabilities
in transformer encoders trained with the MLM
objective (Wei et al., 2022; Zhang et al., 2020).

Finally, both GLUE and MTEB benchmarks
require a finetuning stage before evaluation. In
GLUE, this involves task-specific finetuning, while
in MTEB, a contrastive learning finetuning to
pool the embeddings per token into sentence
embeddings. Without such a step the models would
get a bad performance because the MLM objective
does not correspond to that of downstream tasks.
However, this additional finetuning step makes it
difficult to isolate the impact of pretraining alone.

Moreover, for larger size models (>1B) our
simple finetuning with SNLI and MNLI is too
restrictive as the datasets would be too small
compared to the parameters of the model. This
would result in overfitting, which would not give a
fair evaluation of the pretraining.

5the width-to-depth ratio is the model’s hidden dimension
over the number of layers
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Marek Cygan, Piotr Sankowski, Kamil
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A Architecture/Implementation Details

In this section, we explain the architectural
details, data processing, optimization strategy, and
pretraining procedure that are shared across all
experiments. Unless otherwise specified, these
settings remain fixed and serve as the reference
configuration for all reported results.

Transformer Block. Our architecture follows
recent design choices introduced in NeoBERT
(Breton et al., 2025) and ModernBERT (Warner
et al., 2024). Each transformer block consists of a
self-attention block followed by a feed-forward
network employing a Gated Linear Unit with
Swish activation (SwiGLU) (Shazeer, 2020). The
hidden dimension of the SwiGLU is set to 2/3
of the model dimension to match the number of
learnable parameters of a standard feed-forward
block. Finally, all bias terms are removed from the
model.

Normalization. We use a pre-norm Transformer
architecture (Xiong et al., 2020) with Root Mean
Square Layer Normalization (RMSNorm) (Zhang
and Sennrich, 2019). Since all biases are removed
from the network, RMSNorm is sufficient to
stabilize training while being more computationally
efficient and parameter-light than standard layer
normalization (Ba et al., 2016). To further improve
stability, we apply an additional RMSNorm layer
directly after the token embedding layer, before the
Transformer blocks (Takase et al., 2023).

Data. All models are trained on the Fineweb_edu
dataset (Penedo et al., 2024). We apply sequence
packing without padding and restrict attention to
tokens within the same sequence. Rotary Positional
Embeddings (RoPE) are used for position encoding
(Su et al., 2024), and tokenization is performed
with the RoBERTa Byte Pair Encoding (BPE)
tokenizer (Liu et al., 2019b), using a vocabulary of
50,265 tokens. The maximum sequence length is
fixed at 1024 tokens. The total batch size varies
according to the scaling law regime detailed in
Section 3.

Optimization. We use the AdamW optimizer
(Loshchilov and Hutter, 2017) with a fixed weight
decay of 0.1, β1 = 0.9, β2 = 0.95, and gradient
clipping with a threshold of 1. The learning rate is
linearly warmed up over a fixed number of steps
and subsequently decayed to 10% of its peak value
following a cosine schedule. To maintain consistent

warmup across different training regimes, the
warmup phase covers 10% of the total training
steps, constrained between 500 and 50,000 steps.

Efficiency. We adopt FlexAttention (Dong et al.,
2024), sequence packing and torch.compile to
maximize computational efficiency (Ansel et al.,
2024). Code is based on Meta Lingua (Videau et al.,
2024).

B Details on the non-embed parameters
FLOPS/tokens FN

We recall Eq. 1, which expresses the number of
FLOPs per token attributed to non-embedding
parameters:

FN = 6 · (12 · d2 nlayer) + 12 · nlayersd

= 6N + 12 · nlayers d ,

where d is the model dimension, nlayer the number
of transformer layers, and s the maximum sequence
length.

The cost of a matrix multiplication is 2FLOPS
(addition, multiplication) during a forward pass
and 4FLOPS during a backward pass. The first
term accounts for the cost of forward and backward
passes through the model’s non-embedding
parameters N . Each transformer layer contains
four (d× d) projections for attention (Q, K, V , O)
and three (d×dFFN) projections in the feed-forward
network, with dFFN = 2

3 · 4d. This results in
12d2 FLOPS per layer per pass, and 6 total passes
(forward and backward over both attention and
feed-forward), yielding 6 · 12d2nlayer = 6N .

The second term represents the attention
overhead, as discussed in DeepSeek-AI et al.
(2024). Each token attends to s others, leading
to s2 attention scores per layer. Each dot product
between d-dimensional queries and keys requires
2d FLOPs, with an additional 2d for applying the
values. The total is thus 4d FLOPs per pair in the
forward pass and 8d in the backward pass, or 12d
FLOPs in total. Repeating this across nlayer layers
and normalizing by s tokens gives the second term,
12nlayersd.

C Details on the matching algorithm

When performing scaling laws, we need to create a
wide variety of encoder architectures with different
randomly sampled FN counts where FN is the
non-embed parameter FLOPS/token count. For
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a given FN there can be multiple architectures,
because we can ’play’ with a few key variables:

• The hidden dimension d, i.e. the width of the
model

• The number of layers nlayer, i.e. the depth of
the model

• The number of key-value heads nkv heads

• The number of query heads nq heads

• The inner dimension dffn of the GLU blocks

The choice whether an architecture is more deep
or more wide depends on such variables. However
there are certain combinations (1 layer deep model
with a huge dimension) that do not make sense.
Therefore we impose the following hard constraints
to the sampling of the above variables:

1. The hidden dimension d has to be a
multiple of the number of query heads
nq heads. Hence, instead of sampling d
and nq heads we will sample nq heads and an
integer dimension-per-head ratio rdim/head

and subsequently define d = rdim/head ·
nq heads. This constraint is imposed by the
functioning of the multi-head-attention block.

2. The inner dimension dffn of the GEGLU
blocks is kept fixed at

dffn = 256 ·
⌈
2/3 · 4d
256

⌉
. (8)

The ratio of 2/3 is chosen to keep the
parameter count of a GEGLU block equal
an equivalent MLP feed-forward block. The
constant expansion factor of 4 is chosen inline
with common best practice for transformer
architectures.

As well as a couple of soft constraints

3. The width-to-depth ratio r1 = d/nlayer is kept
close to 64. This value was chosen to stay
close to the original dim-per-layer ratio of
BERT. We must set it to some typical value
to keep runs comparable since this ratio has
some influence on the performance of the
encoder (Levine et al., 2020).

4. The ratio of query heads to key-value heads
r2 = nq heads/nkv heads is kept as low as

possible, i.e. close to 1. Similarly, this
ratio controls the behavior of the attention
mechanism and hence must also be regulated
to keep different runs comparable.

5. The non-embed parameter FLOPS per token
count (calculated via Eq.1) of the sampled
architecture must match as closely as possible
to the target FN count.

Each soft constraint is applied by minimizing
the following score over all possible variable
combinations:

score =5| log(FN )− log(FN target)|

+ 0.05
|r1 − 64|

64
+ 0.05|r2 − 1| , (9)

where FN target is the desired non-embed parameter
FLOPS/token count, r1 = d/nq head and r2 =
nq heads/nkv heads.

D MTEB and GLUE benchmark

D.1 GLUE hyperparameters
We follow the exact finetuning procedure described
in the NeoBERT’s Appendix C Breton et al.
2025 We search over learning rates {5e-6,
6e-6,1e-5,2e-5,3e-5} and batch sizes {4,8,16,32}
and weight-decay {1e-2, 1e-5} and epochs {2, 10}.
In Table 4 are the hyperparameters that yielded the
best GLUE score per task.

D.2 Fine-tuning task before MTEB
The recent Massive Text Embedding Benchmark
(MTEB) (Muennighoff et al., 2022) and
its subsequent second iteration (MTEBv2)
(Enevoldsen et al., 2025) are more complete and
challenging benchmarks to measure the quality of
the embeddings.

However, MTEB evaluates sentence embedding
models, i.e. models which output a single
embedding for a chunk of text, unlike transformer
encoder models trained with MLM which produce
an embedding per token. Hence, to evaluate
on MTEB we need to teach the encoder model
how to pool the embeddings of all tokens into
a single meaningful embedding. A multitude of
techniques (Li et al., 2023; Sturua et al., 2024;
Morris and Rush, 2024) have been developed to
turn encoders into strong sentence embedders, but
in order to keep the focus on the quality of the
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Model Task bs lr wd ep

OptiBERTneo MNLI 16 3e−5 1e−5 2
QNLI 16 2e−5 1e−2 10

1.3B tokens QQP 16 3e−5 1e−5 2
RTE 8 6e−6 1e−2 10
SST 4 6e−6 1e−2 10

MRPC 8 3e−5 1e−5 10
CoLA 4 2e−5 1e−5 10
STSB 8 3e−5 1e−5 10

OptiBERTneo MNLI 32 3e−5 1e−5 2
QNLI 4 1e−5 1e−2 10

13B tokens QQP 16 2e−5 1e−2 2
RTE 8 2e−5 1e−2 10
SST 16 3e−5 1e−5 10

MRPC 32 2e−5 1e−2 10
CoLA 4 1e−5 1e−2 10
STSB 16 3e−5 1e−2 10

OptiBERTneo MNLI 32 1e−5 1e−2 2
QNLI 16 6e−6 1e−5 10

130B tokens QQP 8 6e−5 1e−2 2
RTE 8 5e−6 1e−2 10
SST 16 5e−6 1e−5 10

MRPC 16 1e−5 1e−5 10
CoLA 4 5e−6 1e−5 10
STSB 4 5e−6 1e−2 10

Table 4: Batch size (bs), learning rate (lr), weight decay
(wd) and epochs (ep) used for fine-tuning OptiBERT
models of different dataset sizes on GLUE tasks.

MLM pretraining we adopt the simplest finetuning
which was introduced by SimCSE (Gao et al.,
2021).

We add an attentive pooling head at the
end of the encoder and we finetune the model
end-to-end on MNLI and SNLI datasets following
the supervised SimCSE prescription. The MNLI
and SNLI datasets consists of triplets (xi, x+i , x

−
i )

where xi and x+i are ‘positive’ pairs, i.e. sequences
containing similar information, whereas (xi, x

−
i )

are ‘negative’ pairs, i.e. sequences which
may appear similar but contain incompatible
information. Each sequence is passed through the
model to obtain embeddings (hi, h+i , h

−
i ) and the

model is finetuned using a contrastive InfoNCE
loss

L = − log
esim(hi,h

+
i )/τ

∑B
j=1

(
esim(hj,h

+
j )/τ + esim(hj ,h

−
j )/τ

)

(10)
where B is the batch size, i.e. the number of triplets
in a forward pass. As in SimCSE we finetune for 3
epochs over MNLI and SNLI.

D.3 MTEB(eng,v2)
Table 2 reports results on MTEB(eng, v1) to enable
comparison with NeoBERT and ModernBERT,

which use this version. For completeness and
to align with the recent convention of reporting
MTEB(eng, v2) scores, we also provide results in
Table 5 for future reference.

E Learning rate vs Batch size plots

Fig. 8 plots the relation between learning rate
and batch size for a fixed compute budget for
different runs. We observe that there are multiple
runs with different (lr, bs) pairs that have good
performance. There is more of an ’area’ optimality
rather than a specific point. This wide range of
optimal hyperparameters combinations, instead of
a single unique optimum, explains the noisiness of
the fit in Fig. 2.
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Model Params Tokens Compute Class. Clust. PairClass. Rerank. Retriev. STS Summ. Avg.

OptiBERTneo 198M 1.3B 1.9e18 64.6 37.9 70.0 39.3 21.7 73.3 24.7 47.4
OptiBERTneo 198M 13B 1.9e19 70.1 39.1 74.7 41.0 24.4 77.8 26.2 50.5
OptiBERTneo 198M 130B 1.9e20 71.5 39.0 77.0 41.1 29.1 81.0 29.4 52.6

OptiBERT17M 17M 870M 1.3e17 62.9 37.8 65.9 38.9 18.0 70.0 25.4 45.6
OptiBERT17M 17M 2B 3.2e17 63.5 38.3 67.4 39.3 20.1 71.7 25.1 46.5
OptiBERT38M 38M 2.5B 7.5e17 66.1 37.1 70.7 39.1 16.2 72.9 26.3 46.9
OptiBERT28M 28M 4.7B 1.2e18 65.6 37.6 69.4 39.9 17.9 73.7 28.5 47.5
OptiBERT76M 76M 7.6B 4.2e18 69.1 39.3 72.9 40.5 21.5 75.6 28.6 49.6
OptiBERT120M 120M 10B 1e19 70.1 38.6 73.6 40.4 26.3 77.8 28.6 50.8
OptiBERT182M 182M 23B 3.0e19 71.3 38.9 76.7 40.9 21.5 78.7 27.5 50.8
OptiBERT239M 239M 41B 7.0e19 71.9 37.9 75.8 40.7 26.3 79.4 28.7 51.6

Table 5: MTEB(eng, v2) scores. Params refers to non-embedding parameters N (see Eq. (1)). Tokens denote the
total number of training tokens the model has seen. Compute measure the amount of FLOPS required to pretrain
the model.
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Figure 8: Learning rate vs Batch size for a fixed compute. From left to right we increase compute C (value
shown above each plot). In black circle we depict the predicted compute optimal according to the scaling law in
Fig.2. The runs are binned into a (4× 4) grid and the colors show the log(loss).
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