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Abstract

Recent advances in Large Language Models
(LLMs) have demonstrated remarkable per-
formance in Contextual Question Answering
(CQA). However, prior approaches typically
employ elaborate reasoning strategies regard-
less of question complexity, leading to low
adaptability. Recent efficient test-time scal-
ing methods introduce budget constraints or
early stop mechanisms to avoid overthinking
for straightforward questions. But they add hu-
man bias to the reasoning process and fail to
leverage models’ inherent reasoning capabili-
ties. To address these limitations, we present
T2: Think-to-Think, a novel framework that
dynamically adapts reasoning depth based on
question complexity. T2 leverages the insight
that if an LLM can effectively solve similar
questions using specific reasoning strategies,
it can apply the same strategy to the original
question. This insight enables the adoption
of concise reasoning for straightforward ques-
tions while maintaining detailed analysis for
complex problems. T? works through four key
steps: decomposing questions into structural el-
ements, generating similar examples with can-
didate reasoning strategies, evaluating these
strategies against multiple criteria, and apply-
ing the most appropriate strategy to the original
question. Experimental evaluation across seven
diverse CQA benchmarks demonstrates that T2
not only achieves higher accuracy than base-
line methods but also reduces computational
overhead by up to 25.2%.

1 Introduction

Large language models (LLMs) have demonstrated
impressive capabilities in Contextual Question An-
swering (CQA) tasks (Trivedi et al., 2023; Press
et al., 2023), but their reasoning approaches often
lack adaptability to question complexity. Current
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CQA systems typically employ either direct an-
swer generation or elaborate step-by-step reason-
ing for all questions, regardless of difficulty (Wei
et al., 2022; Huang et al., 2024; Min et al., 2024).
This one-size-fits-all approach has an accuracy-vs-
efficiency delimma. Directly generating answers
for all questions will deteriorate the performance on
difficult questions, which require multi-hop reason-
ing. Elaborated reasoning for all questions creates
an efficiecy challenge: models frequently generate
reasoning chains that are excessively verbose, con-
taining redundant steps that do not contribute to
finding the correct answer.

Existing analysis reveals that these redundant
reasoning paths can unnecessarily extend the length
of reasoning chains multiple times beyond what
is required. Such as exploring multiple solution
approaches when only one is needed (Ji et al.,
2025), or verifying simple facts with elaborate ex-
planations (Muennighoff et al., 2025). For exam-
ple, when asked “What is the capital of France?”,
models often generate lengthy discussions about
France’s history and geography before providing
the straightforward answer “Paris.” This compu-
tational inefficiency is particularly concerning as
model deployment costs continue to rise. Recent
studies on reasoning efficiency (Yang et al., 2025;
Zeng et al., 2025) confirm that blindly increasing
reasoning chain length can actually harm perfor-
mance on simpler tasks. Various attempts have
been made to address this through adding a bud-
get or stop mechanism to test-time scaling (TTS)
methods (Wei et al., 2022; Huang et al., 2024) to
stop thinking early, but these approaches introduce
a human bias to the reasoning process (Yuan et al.,
2023) and fail to leverage the model’s inherent rea-
soning abilities.

Hence, the fundamental challenge is to develop a
reasoning mechanism that can dynamically adjust
its computational effort based on question com-
plexity, which means providing concise reasoning
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for straightforward questions while maintaining de-
tailed analysis for complex problems. Therefore,
we present T2, a think-to-think framework for ef-
ficient TTS strategy. T2 leverages a key insight:
if an LLM can effectively solve similar questions
using specific reasoning strategies, it can apply
comparable strategies to the original question. The
process involves four key steps: (1) Decomposing
the original question into its structural elements.
For example, given the question:

[Given Reference Documents]
“Which is taller, the Eiffel Tower or the
Empire State Building?”

T? would identify this as a comparative question in-
volving measurement between two specific places
as “Which is [adj], [place 1] or [place 2]7”. (2)
Creating a diverse set of similar example ques-
tions with the same question structure, each paired
with supporting documents and potential reasoning
strategies. Each reasoning strategy breaks down
similar questions into simpler steps using funda-
mental reasoning skills (e.g., decomposing similar
question “Which is taller, Building A or Building
B?” into subquestions about individual heights con-
nected by deductive reasoning for comparison). (3)
Evaluating these reasoning strategies using multi-
ple criteria to select the most appropriate strategy
for the original question. (4) Applying the selected
reasoning strategy to the original question while
filtering irrelevant information.

By learning from similar examples, the model
develops a more nuanced understanding of when
detailed reasoning is necessary and when a more
direct approach is sufficient. This allows T? to
balance accuracy and efficiency without relying on
pre-determined reasoning templates.

We evaluate T? across seven diverse CQA
datasets ranging from simple factual queries to
complex multi-hop reasoning tasks. Our results
demonstrate that T2 achieves superior accuracy
(up to a 21.3% increase) compared to other TTS
approaches while reducing computational require-
ments by up to 25.2%. These efficiency gains are
particularly clear for simpler questions where re-
dundant reasoning steps are eliminated. While
for complex questions, T? maintains the reason-
ing depth required for accuracy without exploring
unnecessary paths.

Our contributions include:

» We introduce T2, a framework that enables lan-
guage models to dynamically select appropriate

reasoning strategies through similar examples,
balancing efficiency and thoroughness based on
question complexity.

* We develop a multi-criteria selection method that
evaluates potential reasoning strategies based on
coverage and uniqueness, ensuring the most suit-
able approach is applied to each question.

* We demonstrate through extensive experiments
across diverse CQA benchmarks that our method
reduces computational requirements by up to
25.2% with superior accuracy.

2 Related Work

Contextual QA. In addressing contextual QA,
recent works have explored multi-round retrieval
or reasoning approaches, including query rewrit-
ing for subsequent retrievals (Khattab et al., 2022;
Ma et al., 2023; Shao et al., 2023; Jiang et al.,
2023), alternating between retrieval and reasoning
steps (Trivedi et al., 2023), and employing multi-
round self-asking techniques (Press et al., 2023).
They all rely on LLMs’ reasoning abilities. We
also discuss the application scope in Appendix B.1.

Test-Time Scaling. Recent approaches to en-
hancing LLM reasoning capabilities focus on in-
creasing computational resources during infer-
ence (Brown et al., 2024; Chen et al., 2024), termed
test-time scaling. These methods includes major-
ity voting (Wang et al., 2022), weighted aggrega-
tion (Li et al., 2023), best-of-N (Lightman et al.,
2023), Tree-of-Thoughts (Yao et al., 2023), and
Monte Carlo Tree Search variants (Wu et al., 2024;
Zhang et al., 2024a; Zhao et al., 2024). Besides,
ol model (Jaech et al., 2024) and several follow-
up works (Guo et al., 2025; Qwen, 2024; Gem-
ini, 2025a; Min et al., 2024; Huang et al., 2024)
increase the thinking depth to improve the perfor-
mance. But they all apply fixed scaling strategies
to all questions. Some adaptive thinking methods
like AdoT (Xu et al., 2024) and DAST (Shen et al.,
2025) design difficulty measurement to categorize
the question based on its difficulty, whereas they in-
troduce human bias and fail to leverage the model’s
inherent reasoning abilities. Our T? framework
builds upon this paradigm while addressing these
key limitations.

3 T?: Think-to-Think Framework

In this section, we present T2: Think-to-Think, an
approach that enables language models to adapt
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Figure 1: Overview of our T2. (a) direct prompt or Chain-of-Thought (CoT), which adopts the same reasoning
strategy regardless of question complexity. (b) Adaptive-of-Thought, which designs a question complexity evaluator
to pre-categorize all questions, which might bring human bias in the evaluator design process. (¢) our T2. Instead
of pre-categorizing questions into different complexity sets, T? generates multiple similar examples for different
inputs adaptively and selects the best reasoning strategy for answering.

their reasoning strategies based on question com-
plexity. Figure 1 provides an overview of our ap-
proach. We begin by describing the overall archi-
tecture and workflow of T? before delving into each
component in detail.

3.1 Question Decomposition

Given a document D and a question @), we first
analyze the question’s structure to understand its
underlying pattern. This allows us to later gener-
ate similar questions that require same reasoning
strategy. The question structure identification pro-
cess involves decomposing the question into fixed
structural elements and variable entities that could
be substituted.

We first tokenize the question () as a sequence
of tokens Q = (q1,q2, ..., qm). We then classify
each token into one of two categories: structural
tokens that form the question’s framework, and
replaceable entities that could be substituted with
alternatives. We define a classification function
with fine-tuned RoBERTa, detailed in Appendix D.
Based on this classification, we partition the ques-
tion tokens into two sets:

ey
2

P = {q; | if g; is a replaceable entity},
Qs = {q: | if ¢; is a structural token},

where P represents the set of replaceable entities

(which we call entity placeholders), and Q) g rep-
resents the set of structural tokens that form the
question’s framework.

For each identified entity placeholder p; in P,
we assign a semantic type (e.g., person, location,
date). This creates a set of typed entities:

T={(p1,7), (P2, 72)s > (ks Tk)},  (3)

where each pair (p;, 7;) consists of a placeholder
entity p; and its corresponding type 7;.

By combining the structure tokens (g with the
typed placeholders in T', we create a question tem-
plate. For example, if Q) is “Which is taller, the
Eiffel Tower or the Empire State Building?”, the
function would identify “taller”, “Eiffel Tower”,
and “Empire State Building” as replaceable enti-
ties of type adj and place. The resulting template
would be “Which is [adj], [place 1] or [place 2]?”,
where the bracketed terms are typed placeholders.

3.2 Similar Examples Generation

Once we have extracted the question structure, we
generate similar document-question-answer pairs
that follow the same question structure but with
different entities.

Reasoning Skills Taxonomy. We build on estab-
lished cognitive science literature (Bartha, 2013;

3733



Bordalo et al., 2024) to define a taxonomy of 7 fun-
damental reasoning skills S that humans commonly
employ when solving problems (e.g., Deductive, In-
ductive'). Each skill represents a distinct cognitive
approach to processing information and drawing
conclusions.

Question Generation. For each placeholder in
the question structure, we generate alternative enti-
ties of matching types. We prompt an LLM to sug-
gest contextually appropriate substitutes for each
entity type 7;. This produces a collection of candi-
date similar questions Qsim that share the structural
pattern of the original question but contain different
entities.

To ensure high-quality examples, we implement
a validation process. We prompt the same LL.M
to evaluate the similarity between each candidate
question and the original question structure:

sim(Q,4) > 6, G € Qsim, 4)

where 0 € [1,10] is a threshold parameter. Only
questions exceeding this threshold are retained, re-
sulting in a filtered set of similar questions Qgim.

Reasoning Strategy Construction. For each
similar question Q;,, € Qsim, We decompose it
into a sequence of subquestions:

i @@, ®
where each subquestion ngr’nK) represents a dis-
crete reasoning step and K is the number of sub-
questions. Here the K is not a fixed constant pa-
rameter. This variation occurs because we delib-
erately allow the language model to determine the
appropriate number of subquestions based on the
specific complexity and structure of each original
question. And the connections between subques-
tions are characterized by specific reasoning skills
from our taxonomy. This decomposition allows us
to construct a comprehensive reasoning strategy:

% - (Q(lvl)

SZ: (81178721"'787}()7 (6)
where each 3}; € S is the reasoning skill required
to transition from subquestion QSHT ) to Qéfnlf +),

Reference Document Generation. For each sub-

. k
question ngr’n), we generate a document segment

d}; containing the precise information needed to

' Appendix A shows the complete taxonomy of reasoning
skills with their description and example applications.

answer that subquestion. The complete reference
document for question Q% . is then constructed as:
D?ef:{dzla 9 ZK} (N
For example, given a similar question like
“Which is taller, A or B?”, the decomposition might
yield subquestions: ‘“What is the height of A?”,
“What is the height of B?”, and “Which height is
greater?”’. The reasoning strategy would connect
these using deductive reasoning, and the reference
document would provide the necessary height in-
formation for both entities.

The complete collection of similar examples is
represented as:

F:{( zefa éimvsi)}zj‘vzh (8)

where N is the total number of similar examples.
This diverse set covers various reasoning strategies
of different complexity levels, allowing our system
to later select the most appropriate reasoning ap-
proach for original questions. Detailed examples to
show how subquestion and skills correspondence
can be found in Appendix A.1.

3.3 Multi-Criteria Matching

When presented with the original question ¢ and
documents D, we need to determine which reason-
ing strategy would be most effective. We select
the most relevant example from our similar collec-
tion I" using a multi-criteria matching process that
considers both reasoning skill requirements and
structural similarity.

Skill Uniqueness Scoring. Recognizing that
some reasoning skills are more specialized than
others, we weight skills by their rarity in our ex-
ample collection. For each reasoning skill s € S,
we define freq(s) as the number of examples in I’
that include skill s in their reasoning paths. The
uniqueness score of a skill is:

©)

freq(s) + 1

a(s)zln( Ntl )

where N is the total number of examples in our
collection. This logarithmic formulation assigns
higher weights to skills that appear less frequently,
capturing the intuition that specialized reasoning
skills deserve special consideration.

3734



Skill Coverage Assessment. For each example
in our collection, we calculate how well its reason-
ing path covers reasoning skills:

cover(s’,S) = I ’2|8|

This coverage metric quantifies what proportion
of the required reasoning skills are present in the
example’s reasoning strategy.

(10)

Integrated Selection Score. We compute a com-
prehensive selection score for each remaining ex-
ample, and the optimal example is selected as:

L
i* = argmax | cover(s’, S) + a(sh) |,
s v+ Yo

=1
an
where L is the length of the reasoning strategy s°.
This score balances how well the example covers
the required reasoning skills and how uniquely it
captures specialized reasoning approaches.

3.4 Reasoning Strategy-Guided Answering

The final component of T? uses the selected exam-
ple to guide the reasoning process for answering
the original question. Algorithm 1 outlines this
process.

The “ExtractRelevantSegment” function uses
LLM to identify portions of the document D that
are most relevant to applying a particular reasoning
skill. This focuses the model’s attention on infor-
mation appropriate to each step of the reasoning
process. The “FormatPrompt” function combines
the original question, the focused document seg-
ments, the selected reasoning strategy, and the ex-
ample document-question-answer pair into a com-
prehensive prompt. This prompt instructs the lan-
guage model to answer the original question by
applying the reasoning skills in the selected strat-
egy, using the example as a demonstration of the
reasoning approach.

This methodology enables adaptive reasoning
that scales with question complexity. For simple
questions, T? selects examples with a straightfor-
ward reasoning strategy, avoiding unnecessary com-
putational overhead. For complex questions, it se-
lects examples with a more sophisticated reasoning
strategy that guides the model through the neces-
sary steps to arrive at the correct answer. Impor-
tantly, this adaptation occurs without parameter
tuning or multiple reasoning attempts, requiring
only a single forward pass through the language
model.

4 Experiments

4.1 Experimental Setups

Datasets. We evaluate our approach on seven QA
datasets from diverse domains. SQuAD (general-
domain questions from Wikipedia) (Rajpurkar
et al., 2018), HotpotQA (multihop questions span-
ning multiple paragraphs) (Yang et al., 2018),
BioASQ (biomedical queries requiring specialized
knowledge) (Tsatsaronis et al., 2015), NewsQA
(news-related passages) (Trischler et al., 2017),
GAOKAO (exam-oriented dataset with academic
coverage) (Zhang et al., 2024b), HQA (historical
questions focusing on chronology and figures) (Ho-
sen et al., 2023), and TriviaQA (Wikipedia-based
trivia) (Joshi et al., 2017). Appendix B summarizes
dataset sizes and domains.

Reasoning Strategies and Metrics. We com-
pare our T? framework against slow-thinking
and quick-thinking baselines. Slow-thinking ap-
proaches include: zero-shot CoT and few-shots
CoT, proactiveCoT (proCoT) (Deng et al.,
2023), Self-Consistency (Wang et al., 2022),
Tree of Thoughts (ToT) (Yao et al., 2023), and
Monte Carlo Tree Search (MCTS) (Zhao et al.,
2024). Quick-thinking methods include: few-shot
prompting and direct prompting without explicit
reasoning steps. For evaluation, we use ROUGE-L
as our metric across all datasets.”

Large Language Models. We use two quick-
thinking LLMs (Qwen2.5-32B-Instract (Yang
et al., 2024), and GPT-40 (Hurst et al., 2024;
Guo et al., 2025)) and several slow-thinking LLMs
(GPT-01/3/4 series (Jaech et al., 2024), QwQ-32B-
Preview (Qwen, 2025), Claude-3.7 (Anthropic,
2025), Gemini-2.5-Pro (Gemini, 2025b)). Unless
otherwise specified, hyperparameters are set to the
default values for each model. No domain-specific
fine-tuning and no target-designed prompt are ap-
plied, ensuring a fair and consistent comparison.
More detailed implementation and all prompts can
be found in Appendices D and E.

4.2 Results

Table 1 compares ROUGE-L on seven QA bench-
marks. The upper half lists quick-thinking mod-
els evaluated with several slow-thinking frame-

*We recognize GenAl can generate the correct answer,
but with different literalness. Hence we use ROUGE-L here
instead of resulting in a misleadingly low Exact Match (EM)
rate. We also report EM performance in Appendix F.
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Algorithm 1 Reasoning Path-Guided Answering

Require: () (original question), D (document), i* (selected example index), I' (example collection)
Ensure: A (final answer)
1. (DY, QL AL sV) I[i*]

ref? @sims Asim> > Retrieve selected example

2: Diocus < 0 > Initialize focused document segments

3: for £ = 1 to |s"| do > For each skill in the reasoning path

4: text, «— ExtractRelevantSegment (D, sz*) > Extract relevant text for skill sz*

5 Drocus = Drocus U {texty} > Add to focused segments

6: end for

7: Prompt < FormatPrompt(Q, Drocus, 8° , Q% , A% ) > Construct guidance prompt

8: A < LLM(Prompt) > Generate answer with guided reasoning

9: return A

Model SQuAD HotpotQA  NewsQA Gaokao HQA TriviaQA BioASQ

Quick-Thinking Models w/ Reasoning Strategies

QOwen2.5-32B-Instruct
w/ vanilla (quick) 73.41 55.32 50.83 29.52 35.92 40.73 56.33
w/ few-shots (quick) 74.56 56.23 51.67 30.33 36.87 41.57 57.17
w/ zero-shot CoT (slow) 76.23 57.41 52.89 30.92 37.65 42.31 58.12
w/ few-shot CoT (slow) 77.08 58.15 53.62 31.37 38.01 42.79 58.58
w/ self-consistency (Wang et al., 2022) 75.31 56.76 52.27 30.57 37.12 41.92 57.57
w/ proCoT (Deng et al., 2023) 77.12 58.07 53.57 31.42 38.03 42.83 58.62
w/ ToT (Yao et al., 2023) 78.47 59.11 54.31 31.96 38.66 43.46 59.36
w/ MCTS (Zhao et al., 2024) 78.52 58.97 54.25 32.04 38.73 43.51 59.42
w/ T? (ours) 81.86 67.11 61.27 34.06 40.31 43.92 65.02

e 7 e
w/ vanilla (quick) 78.52 60.02 55.32 34.51 41.11 49.01 60.51
w/ few-shots (quick) 79.86 61.06 56.17 35.36 42.06 50.07 61.37
w/ zero-shot CoT (slow) 81.27 62.38 57.25 36.12 4291 50.89 62.35
w/ few-shot CoT (slow) 82.05 62.97 57.81 36.58 43.32 51.38 62.83
w/ self-consistency (Wang et al., 2022) 80.56 61.61 56.62 35.62 4246 50.42 61.81
w/ proCoT (Deng et al., 2023) 82.12 63.02 57.86 36.66 43.36 51.46 62.87
w/ ToT (Yao et al., 2023) 83.21 64.06 58.67 37.22 44.07 52.26 63.72
w/ MCTS (Zhao et al., 2024) 83.35 64.18 58.19 37.31 45.15 52.38 64.89
w/ T? (ours) 85.06 66.16 60.92 37.57 45.27 53.92 66.97
Slow-Thinking Models

ol-mini 85.81 70.91 63.22 42.66 49.22 58.56 68.42

QwQ-32B-Preview 86.87 71.86 63.92 43.23 49.62 59.16 69.02

DeepSeek-R1 87.62 72.72 64.41 43.47 50.27 60.02 70.72

ol 88.22 73.37 65.11 44.06 51.07 60.86 71.36

o04-mini 88.72 73.86 65.57 44.32 51.61 61.11 71.82

04-mini-high 88.91 74.07 65.81 44.52 51.86 61.27 72.02

Claude-3.7-sonnet-thinking 89.11 74.21 66.01 44.61 52.01 61.47 72.22

o3 89.41 74.61 66.32 45.01 52.11 61.81 72.62

Gemini-2.5-Pro 90.27 75.46 67.11 45.76 53.07 62.68 73.57

QwQ-32B + T? (ours) 92.12 77.61 68.61 47.42 54.71 64.22 75.21

Table 1: ROUGE-L on seven QA datasets. We regard vanilla model and few-shot method as quick-thinking methods.
And the other five (including ours) are slow-thinking methods. They can all be applied to quick-thinking models to
improve reasoning ability.

works. The lower half gathers the strongest slow-
thinking models. We also report the performance
of Qwen?2.5-32B-Instruct + T2 and QwQ-32B-
Preview + T2 to show comparison with slow-
thinking models. The experimental results show
that by comparison with other thinking strategies,
our T? could help quick-thinking model achieve
better performance. And compared with other slow-

thinking models, adding our T? can also help model
improve the performance.

Besides, we analyze the inference time re-
quirements across all baseline methods. Table 2
presents the average inference time (in seconds)
for all methods across our experiments using both
Qwen2.5-32B and QwQ-32B models. The results
demonstrate that while vanilla and few-shot ap-
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Avg. Inference Time Reduction

Model Time (s) vs. MCTS

QOwen2.5-32B 23.17 -70.6%
w/ few-shots 25.43 -67.8%
w/ CoT 43.26 -45.2%
w/ few-shots CoT 68.21 -13.6%
w/ self-consistency 65.31 -17.2%
w/ proCoT 58.76 -25.5%
w/ ToT 72.48 -8.1%
w/ MCTS 78.92 -
w/ T2 (ours) 34.52 -56.3%

OwQ-32B 27.35 -69.9%
w/ few-shots 29.81 -67.1%
w/ CoT 51.42 -43.1%
w/ few-shots CoT 79.63 -12.1%
w/ self-consistency 76.74 -15.3%
w/ proCoT 72.95 -19.4%
w/ ToT 84.37 -6.9%
w/ MCTS 90.58 -
w/ T2 (ours) 45.03 -50.3%

Table 2: Average inference time comparison across
methods. Our T? approach achieves a significant re-
duction in computational cost compared to MCTS while
maintaining superior accuracy.

proaches are indeed faster, they achieve substan-
tially lower accuracy as shown in our previous ex-
periments. Our T2 approach achieves an optimal
balance between computational efficiency and per-
formance, reducing inference time by 56.3% com-
pared to MCTS with Qwen2.5-32B and 50.3% with
QwQ-32B. This significant reduction in computa-
tional cost, while maintaining superior accuracy
as demonstrated in our previous experiments, ad-
dresses one of the key challenges identified in our
introduction.

Additionally, we conduct several analysis exper-
iments detailed as follows.

4.2.1 T? Enhance the Reasoning Skills Hit
Rate while Reducing the Error

HotpotQA supplies gold supporting sentences for
every question, hence we use these to evaluate rea-
soning quality. For a model output that mentions a
set P, of sentences and a gold set G, we record a
Hitif P, O G (all required facts retrieved) and an
Error if P; Z G (at least one spurious fact added).
Thus Hit measures completeness, Error measures
precision, and the two are inversely related: longer
chains tend to raise Hit but also raise Error. Figure
2(left) shows that quick-thinking frameworks give
low Hit and moderate Error, while slow-thinking
methods improve Hit at the cost of higher Error.
Our T? strikes the best balance, achieving the high-

Skill Type Uniform Ours Improvement
Deductive 72.3%  75.8% +3.5%
Inductive 68.7%  73.2% +4.5%
Abductive 74.1%  76.3% +2.2%
Cause & Effect 70.5%  T4.1% +3.6%
Analogical 63.8%  T1.5% +7.7%
Critical Thinking  69.2%  72.8% +3.6%
Decompositional ~ 61.4%  69.7% +8.3%

Table 3: Performance comparison between uniform and
our matching strategies.

est Hit and the lowest Error on Qwen2.5-32B, con-
firming that adaptive path length yields the most ac-
curate multihop reasoning. The detailed calculation
of Hits and Errors can be found in Appendix G.1.

4.2.2 T2 Tends to Get Correct Answers
Immediately without Retrace

A response is said to retrace if the model announces
a provisional conclusion and later back-tracks on
it inside the same output (e.g., “So the answer is
X... wait, that seems wrong—Ilet me revise. .. the
answer is Y”). Obviously, as retrace brings extra
computing cost, it would be better for a model to
ensure a lower retrace rate while maintaining the
same accuracy. Concretely, we scan the CoT for
either (i) <answer> markers that appear more than
once, or (ii) lexical repair cues such as “sorry,” “ac-
tually,” or “let me rethink,” followed by a different
answer span,; if either pattern occurs, the example
counts as a retrace. Figure 2 (right) shows that,
taking Qwen2.5-32B as LLM, slow-thinking meth-
ods retrace more on NewsQA and HQA, whereas
quick-thinking methods seldom retrace but miss
clues, hurting performance. Our T? keeps both
metrics low—matching the speed of quick thinking
and the accuracy of slow thinking—demonstrating
that adaptive path length minimises wasted reason-
ing. The detailed calculation of Hits and Errors can
be found in Appendix G.2.

4.2.3 T2 Costs Fewer Tokens to Achieve
Superior Performance

To evaluate the efficiency of our T?, we com-
pare four reasoning approaches: (1) Qwen2.5-
32B w/ self-consistency, a typical slow-thinking
method, (2) QwQ-32B-Preview, another slow-
thinking model, (3) Qwen2.5-32B w/ T2, and (4)
QwQ-32B w/ T2, our adaptive reasoning meth-
ods. Figure 3 shows that our method reduces token
consumption by 25.2% compared to QwQ-32B-
Preview, and by 14.8% compared to Qwen2.5-32B
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Figure 3: Results of average token length on each
dataset. SC is the abbreviation for Self-Consistency.

w/ self-consistency, while maintaining competitive
accuracy. These findings highlight that our method
achieves an optimal trade-off between computa-
tional efficiency and reasoning quality. A full com-
parison, including token usage and performance
across datasets, is provided in Appendix I.

4.3 Similar Examples Quality Analysis

Our Matching Strategy Can Expose More Di-
verse Reasoning Skills. The effectiveness of our
framework relies not only on identifying appropri-
ate reasoning skills but also on how these skills
are matched during the example selection. Hence,
we examine the impact of our multi-criteria reason-
ing skills matching strategy compared to a naive
uniform sampling approach. Table 3 presents the
results of our experiment against uniform sampling
across different reasoning skill types. Our approach
consistently outperforms uniform sampling across
all skill categories, with particularly notable im-
provements for less frequent reasoning types such
as decompositional reasoning (+8.3%) and analog-
ical reasoning (+7.7%). This confirms our hypoth-

esis that the strategic balancing of skill demon-
strations enhances the model’s ability to leverage
diverse reasoning patterns. The distribution of each
reasoning skill can be found in Appendix C. Abla-
tion study of multi-criteria matching strategy can
be found in Appendix H.

Accuracy of Reasoning Skills Results in Cor-
rectness of Answers. We examined the correla-
tion between the accuracy of selected reasoning
skills and the correctness of final answers using
the HotpotQA dataset. We conducted the exper-
iment on two models: Qwen2.5-32B-Instruct w/
T? and QwQ-32B-Preview w/ T2. The analysis,
shown in Figure 5, reveals a strong positive correla-
tion between skill accuracy and answer correctness.
Higher skill accuracy corresponds to higher answer
correctness, with an approximate 5-6% increase
in correctness for every 5% improvement in skill
accuracy. These results demonstrate that accurately
selecting the correct reasoning skills is essential for
generating correct answers, especially in complex
multi-hop reasoning tasks.

We also discuss the impacts of question structure
(J.1), impacts of numbers of similar examples (J.3),
impacts of various generated methods (J.4), im-
pacts of threshold of similarity in generation (J.5),
impacts of examples domain bias and structural
bias (J.6), and human evaluation (J.7) in Appendix.

4.4 Case Study

Figure 4 shows an short version of example to show
effectiveness of our T2. By explicitly providing
the model-specific reasoning path, the model can
generate the correct answer with an appropriate rea-
soning chain of thought. The detailed case studies
can be found in Appendix K.
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[Reference Documents]
Question: In what city was the subject of the film
Nowhere Boy born?

Proper Reasoning Chain:

1. Decompositional: Find the (a) film subject, (b)
born place

2. Deductive: Nowhere Boy is about John
Lennon

3. Deductive: John was born in Liverpool

Quick Thinking Model's Wrong Answer:

The subject of Nowhere Boy was born in London.

Model with our FReM's Correct Answer:

Since Nowhere Boy is a film about John Lennon (Doc 2) and Doc 1
confirms that John was born in Liverpool. We deduce the answer is
Liverpool.

Figure 4: Case study to show effectiveness of our T2 framework. There are three proper reasoning skills should be
adopted to answer the question based on given documents. The red, orange, and green answers represent responses
under quick thinking, slow thinking, and ours, respectively.
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Figure 5: Results on relationship between reasoning
skills’ accuracy and overall performance.

5 Conclusion

In this paper, we introduced T?: Think-to-Think, a
novel framework that dynamically adapts reasoning
depth based on question complexity for contextual
question answering tasks. Unlike prior approaches
that employ fixed reasoning strategies regardless
of question difficulty, T? enables models to learn
appropriate reasoning strategies from similar ex-
amples, leading to more efficient processing while
maintaining accuracy. Our experimental results
across seven diverse CQA benchmarks confirm that
T2 not only achieves higher accuracy than baseline
methods but also reduces computational overhead
by up to 25.2%. These improvements demonstrate
the value of adaptability in reasoning processes,
suggesting that as language models continue to
evolve, approaches like T? that optimize both ac-
curacy and computational efficiency will become
increasingly important for developing more intelli-
gent systems that can effectively allocate computa-
tional resources based on task demands.

Limitations

While T?: Think-to-Think demonstrates promis-
ing results across various CQA benchmarks, we
acknowledge several limitations of our approach:
First, the effectiveness of T2 relies on the avail-
ability of high-quality example reasoning strategy
for similarity matching. In domains with limited
annotated examples or highly novel questions, the
framework may struggle to identify appropriate
reasoning patterns, potentially defaulting to less
optimal strategies. Besides, our current implemen-
tation focuses primarily on textual reasoning tasks.
Extending T? to multimodal reasoning contexts
(e.g., visual question answering) would require ad-
ditional architectural modifications to handle di-
verse input modalities while maintaining compu-
tational efficiency. Despite these limitations, we
believe T represents a significant step toward more
adaptive and efficient reasoning systems that can in-
telligently allocate computational resources based
on question complexity.

Ethical Considerations

We ensure that all experiments are conducted us-
ing publicly available, ethically sourced datasets,
adhering to privacy and intellectual property guide-
lines. We acknowledge the potential for biases in
data and are committed to evaluating and mitigat-
ing any such biases in T?.
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A Full Reasoning Skills

Defined by (Bartha, 2013; Bordalo et al., 2024),
reasoning can best be defined as the basic action
of thinking in a sensible and rational way about
something. Reasoning is the ability to assess things
rationally by applying logic based on new or exist-
ing information when making a decision or solving
a problem. Based on their conclusion, Tables 5 and
6 show the reasoning skills for answering a certain
question.

A.1 Extended Explanation of Sub-Questions
and Reasoning Skills

Subquestions serve as atomic reasoning operations
that systematically decompose complex questions
into manageable components. Each subquestion
corresponds to a specific cognitive task that must
be completed to progress toward answering the
original question. This decomposition allows the
model to focus on discrete information pieces se-
quentially while applying appropriate reasoning
skills at each step. Consider the question: “Which
is taller, the Eiffel Tower or the Empire State Build-
ing?” Table 4 shows the decomposition process.
This structured approach reduces cognitive load
by isolating individual reasoning steps and creates
explicit intermediate reasoning states that can be
verified independently.

B Datasets

In this work, we evaluate our method on seven
widely used question answering datasets. Each
dataset presents distinct characteristics, ranging

from the type of questions asked to the domain in
which they are applied. Below, we provide a brief
overview of each dataset.

SQuAD consists of over 100,000 question-
answer pairs derived from a set of Wikipedia ar-
ticles. The task is to find the span of text that
answers the question. SQuAD is widely used for
evaluating machine reading comprehension mod-
els. The dataset includes two versions: SQuAD 1.1,
which contains answerable questions, and SQuAD
2.0, which also includes unanswerable questions,
making it more challenging. We use 2.0 version
here.

HotpotQA is a large-scale, multi-hop question
answering dataset that requires reasoning across
multiple supporting facts. The dataset includes over
113,000 question-answer pairs spanning various do-
mains, where answers cannot be found in a single
sentence or passage but require combining infor-
mation from several documents. The questions
in HotpotQA require a more complex reasoning
process compared to typical single-hop datasets.

BioASQ is a biomedical question answering
dataset that provides information from scientific
articles, primarily in the domain of biomedicine.
It includes both factoid and complex questions
that require understanding of scientific literature.
BioASQ focuses on answering clinical, biomedical,
and molecular biology-related questions using both
structured and unstructured data sources.

NewsQA is a dataset designed for reading com-
prehension tasks. It consists of over 100,000
question-answer pairs derived from news articles.
The challenge of NewsQA lies in answering ques-
tions about real-world events from unstructured
news stories, requiring models to handle various
linguistic phenomena such as coreference, reason-
ing, and implicit understanding.

GAOKAO is a dataset derived from the Chinese
college entrance exam, also known as the "Gaokao".
It contains questions related to various subjects,
including Chinese literature, mathematics, and En-
glish. The questions in GAOKAO require both
general knowledge and reasoning to answer. This
dataset is specifically designed for the Chinese ed-
ucation system and is widely used in academic and
educational research in China.

HQA is a human-annotated dataset specifically
designed for complex, open-domain question an-
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Subquestion Reasoning Skill Purpose
"What is the height of the Eiffel Tower?" Deductive Establishes first measurement
"What is the height of the Empire State Building?" Deductive Establishes second measurement

"Which height value is greater?"

Cause and Effect

Determines the final answer

Table 4: Example of question decomposition with associated reasoning skills

Type of Reasoning

Detailed Description

Example

Deductive

Deductive reasoning occurs when generalized state-
ments apply to specific cases. These generalized
statements are established and already proven, mak-
ing specific cases easy to deduce. For example, all
humans are mortals. Bill is a human, so Bill must be
mortal. In this example the generalized, but proven,
statement, “all humans are mortals” is what drives
the reasoning.

Document: All shapes with three sides are
triangles. A certain figure here has exactly
three sides.

Question: What is this figure called?
Answer: It is a triangle. All shapes with three
sides are triangles, and this figure has three
sides. So it must be a triangle.

Inductive

Inductive reasoning is similar to deductive reason-
ing in that they both draw a conclusion based on
a statement. However, in inductive reasoning, the
statement is likely but has not been proven. For
example, roses usually bloom in spring. In spring,
one can count on there being roses. Again, the dif-
ference is that this is likely but not proven to be
100%.

Document: Every spring for the past ten
years, wild roses in Green Valley have
bloomed in late March. This spring is about
to begin in Green Valley.

Question: Will the wild roses bloom in late
March this year?

Answer: It is likely they will bloom in late
March, because they usually do, but it is not
guaranteed.

Abductive

Abductive reasoning is the act of making a conclu-
sion based on what you already know. For example,
if you see a plate of food still hot, but half-eaten,
you can make the conclusion that the person eating
that food is probably returning soon.

Document: You notice a half-eaten sandwich
and a still-hot cup of coffee on a café table.
The seat feels warm, and a jacket is draped
over the chair.

Question: Has the person who was sitting
here left permanently, or are they coming
back soon?

Answer: It is likely they just stepped away
for a moment and will return, because the
food and drink are still warm and their jacket
remains on the chair.

Cause & Effect

Cause and effect reasoning is that if x happens then
y will happen as a result. This is extremely persua-
sive when making a speech or trying to get some-
one to take action to cause an effect. For example,
a politician may say that if they are elected, then
poverty will decrease. This is using cause and effect
reasoning in a real-world situation.

Document: Meteorologists predict heavy rain
this evening, with warnings that streets may
flood if the rainfall continues.

Question: Will the roads become dangerous
as a result of this weather?

Answer: Yes. If heavy rain continues, roads
will likely flood and become slippery, causing
drivers to have less control of their vehicles.

Table 5: (1/2) Full list of reasoning skills used in the reasoning path construction.

swering. It contains questions that require deep
contextual understanding and can involve reason-
ing across long documents. The dataset includes
various types of questions and answers across di-
verse domains, and it was created to test models’
ability to perform reasoning tasks in realistic, open-
ended settings.

TriviaQA

is a large-scale dataset that focuses on

answering trivia questions, where each question
is associated with a corresponding set of support-
ing documents. TriviaQA contains over 650,000
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question-answer pairs sourced from trivia websites
and requires models to retrieve relevant informa-
tion from the documents and answer based on the
provided facts. The dataset has questions span-
ning various topics such as history, geography, and
general knowledge.

B.1 Application Scope and Limitations

Our research specifically focuses on Contextual
Question Answering (CQA) tasks, which represent
a distinct reasoning paradigm from other complex
reasoning domains (like math or code). The pro-



Type of Reasoning

Detailed Description

Example

Analogical

Analogical reasoning is the use of a comparison
between two things to persuade that there must be
more in common if they already share something.
For example, if X, y, and z all share this trait, then
they must also share other traits. The foundation
of this type of reasoning is perfect for speeches
and comparisons in the real world. If there are
connections between x and y already, then they
must have several other things in common as well.

Document: Many leading technology com-
panies emphasize continuous learning and
adaptability. For instance, Google, Microsoft,
and Amazon all invest in regular training pro-
grams and encourage innovation among em-
ployees. Their similar approach to fostering
a culture of growth has been linked to their
strong performance in rapidly changing mar-
kets.

Question: Can we infer that a company that
promotes continuous learning will also likely
be successful in adapting to market changes?
Answer: Yes. Since Google, Microsoft, and
Amazon all share a culture of continuous
learning and, as a result, demonstrate high
adaptability and market success, it is reason-
able to conclude by analogy that a company
which also promotes continuous learning is
likely to develop similar strengths.

Critical Thinking

Critical thinking occurs when you take all of the
facts and develop a conclusion based on an analysis.
This could happen subconsciously or intentionally,
depending on the situation. For example, in the real
world, critical thinking could be about your rela-
tionships. You could see a behavior you don’t like
about someone and have to think critically about
whether or not you will choose to spend more time
with this person. This is using critical thinking to
develop reasoning in a real-world application.

Document: Over the past few months, Sam
has repeatedly cancelled plans at the last
minute and rarely communicated afterward.
Question: Should you invest time in a close
friendship with Sam?

Answer: No. Sam’s consistent behavior of
last-minute cancellations suggests a pattern
of unreliability, which may negatively affect
the trust needed in a close friendship.

Decompositional

Decompositional reasoning happens when the dif-
ferent parts of the reasoning are broken down into
smaller pieces and analyzed for how they contribute
to the whole. The intent of this is to make the rea-
soning easier to understand and allow for analyzing
how the parts equal the whole. For example, in
order to understand the function of the human body,
you would have to analyze each bone and organ to
see how they all work together. Additionally, in
the real world, an argument could be broken down
into several smaller parts in order to analyze the
effectiveness of the argument as a whole.

Document: A smartphone’s quality can be un-
derstood by breaking it down into three parts:
its design, performance, and battery life. The
design covers the build and user interface;
performance looks at processing speed and
software efficiency; battery life shows how
long the device operates on a single charge.
Question: Can we conclude that the smart-
phone provides a good overall user experi-
ence?

Answer: Yes. If the design is appealing, the
performance is robust, and the battery life is
long, then the smartphone is likely to offer a
good overall experience.

Table 6: (2/2) Full list of reasoning skills used in the reasoning path construction.

posed approach is designed to address efficiency
challenges in general CQA tasks, where models
often generate unnecessarily verbose reasoning for
simple questions—particularly relevant for practi-
cal applications with constrained computational re-
sources. We acknowledge that our method may not
be directly applicable to highly structured reason-
ing domains such as mathematics, programming,
and algorithmic reasoning, where approaches like
Tree of Thought (ToT) and Monte Carlo Tree
Search (MCTS) have demonstrated strong perfor-
mance. This limitation stems from the fundamen-
tal differences between CQA tasks (which involve
flexible reasoning patterns in natural language) and

formal domains (which follow well-defined rules
with constrained, sequential reasoning paths). Ad-
ditionally, creating similar example questions for
these structured domains presents significant chal-
lenges, as their solution spaces typically benefit
from systematic exploration techniques rather than
our adaptive reasoning approach.

C Distribution of Reasoning Skills in
Each Dataset

Table 7 demonstrates the distribution of seven rea-
soning skills in different datasets. The variance in
skill distribution highlights why our multi-criteria
matching approach is crucial. Without it, high-
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frequency skills like deductive reasoning would
dominate the demonstrations, while valuable but
less common skills like abductive reasoning would
be underrepresented.

D Implementations

D.1 For PLM Usage

We use a simple pretrained language model
RoBERTa from Huggingface for detecting named
entities or key numbers in the question to obtain the
question structure. This classification task involves
processing the input question to identify whether
it contains a named entity or key number and as-
signing a type to the detected entity. The model
performs this task by outputting binary labels (en-
tity: Yes/No) first, and then the associated entity
types (e.g., Person, Location, Date, Organization,
Number, etc.).

This model is fine-tuned with a simple classifi-
cation layer that detects whether a named entity or
key number is present in the question with NERe-
trieve dataset’ (Katz et al., 2023). This process
leverages the model’s pre-trained knowledge, with
minimal fine-tuning specifically focused on the en-
tity detection and classification task.

The hyperparameters used for fine-tuning the
PLM are listed in Table 8. The batch size is set to
128. The learning rate is set to 2 x 107°. AdamW
is used as the optimizer. A dropout rate of 0.1 is
applied to prevent overfitting during fine-tuning.

D.2 Why Choose PLM?

While modern LLMs can generate similar ques-
tion decompositions in a zero-shot manner, our
fine-tuned encoder approach offers several advan-
tages. The computational cost of our fine-tuned
RoBERTa model is negligible compared to prompt-
ing an LLM (approximately 0.1% of inference
time), making it highly efficient for decomposi-
tion tasks. Additionally, the fine-tuned encoder
ensures consistent identification of structural ele-
ments, which is crucial for generating diverse yet
structurally similar questions.

To validate our approach, we conducted ad-
ditional experiments comparing: (1) our fine-
tuned RoBERTa-based approach, (2) off-the-shelf
NER models (RoBERTa), and (3) zero-shot LLM
prompting for question decomposition. Table 9

3https://github.com/katzurik/NERetrieve?tab=
readme-ov-file

presents the impact of different decomposition
methods on the final performance across datasets.

We also conducted both automatic and human
evaluations of the decomposition quality. For au-
tomatic evaluation, we used GPT-4 to assess the
structural accuracy, element boundary precision,
and template usability of decompositions generated
by each method on a scale of 1-5. For human eval-
uation, we measured exact match, relaxed match,
and structural correctness. Tables 10 and 25 present
these results.

In our experiments, we used Qwen3-0.6B (600M
parameters) as our zero-shot LLM, which is com-
parable in size to our fine-tuned RoBERTa model
(approximately 400M parameters). This allows for
a fair comparison where performance differences
can be attributed to the approach rather than simply
model scale advantages.

These results demonstrate that while all methods
produce comparable final performance, our fine-
tuned approach provides superior boundary detec-
tion for template elements (4.82 vs. 4.27 GPT-4
rating), higher exact match scores in human eval-
uation (87.6% vs. 78.9%), and minimal computa-
tional overhead while maintaining consistency.

D.3 For LLM Usage

For LLM usage, We use two quick-thinking
LLMs (Qwen2.5-32B-Instract (Yang et al., 2024),
and GPT-40 (Hurst et al., 2024; Guo et al.,
2025)) and several slow-thinking LLMs (GPT-
01/3/4 series (Jaech et al., 2024), QwQ-32B-
Preview (Qwen, 2025), Claude-3.7 (Anthropic,
2025), Gemini-2.5-Pro (Gemini, 2025b)). For
ToT implementation, we follow the original pa-
per’s approach (Yao et al., 2023) with a breadth-
first search strategy and a maximum depth of 3. For
MCTS, we implement the standard UCT algorithm
with 10 simulations per decision point. For syn-
thetic QA generation, we set a maximum output
length of 4,096 tokens. When deciding which sim-
ilar example to use, we follow our multi-criteria
matching (Section 3.3) to pick the most relevant
chain of skills. Unless otherwise specified, hyper-
parameters stay at default values for each model.
No domain-specific fine-tuning and no targeted de-
signed prompt are applied, ensuring a fair and con-
sistent comparison. All inferences are based on
vLLM framework.
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Skill Type SQuAD HotpotQA NewsQA GAOKAO HQA TriviaQA BioASQ

Deductive 0.31 0.22 0.28 0.15 0.42 0.18 0.25
Inductive 0.23 0.18 0.15 0.12 0.13 0.21 0.19
Abductive 0.05 0.12 0.08 0.21 0.09 0.15 0.11
Cause & Effect 0.12 0.15 0.13 0.22 0.08 0.19 0.14
Analogical 0.08 0.13 0.09 0.07 0.11 0.12 0.16
Critical Thinking 0.14 0.16 0.18 0.14 0.13 0.09 0.10
Decompositional 0.07 0.04 0.09 0.09 0.04 0.06 0.05

Table 7: Distribution (%) of reasoning skills across benchmark datasets, showing the proportion of questions
requiring each skill type.

Parameter Value

Model RoBERTa

Full Name FacebookAI/x1lm-roberta-large-finetuned-conll@3-english
Batch Size 128

Learning Rate 2e-5

Optimizer AdamW

Dropout Rate 0.1

Evaluation Metric Accuracy

Table 8: Implementation parameters for named entity detection and classification.

Decomposition Method SQuAD HotpotQA NewsQA Gaokao HQA TriviaQA BioASQ

Fine-tuned RoBERTa (Ours)  85.06 66.16 60.92 37.57  45.27 53.92 66.97
RoBERTa 84.89 65.87 60.63 37.21 4498 53.77 66.58
Zero-shot LLM prompting 84.72 65.69 60.41 37.06  44.83 53.61 66.42

Table 9: Impact of question decomposition method on final performance across datasets.

Decomposition Method Structural Accuracy Element Boundary Precision Template Usability
Fine-tuned RoBERTa (Ours) 4.78 4.82 4.71
RoBERTa 4.63 4.41 4.52
Zero-shot LLM prompting 4.56 4.27 4.38

Table 10: GPT-4 evaluation of decomposition quality (scale 1-5).

Decomposition Method Exact Match Relaxed Match Structural Correctness
Fine-tuned RoBERTa (Ours) 87.6% 94.3% 96.2%
RoBERTa 81.4% 93.2% 95.7%
Zero-shot LLM prompting 78.9% 92.8% 94.9%

Table 11: Human evaluation of decomposition quality.

E Inference Prompts evaluating how well each example’s question aligns
with original one.
The primary task is to generate synthetic question-
answer pairs with a reasoning path, reflecting prede-
fined reasoning skills. Table 12 shows our prompts. Table 14 shows the question answering prompts
Table 13 shows the helper language model for  for model.
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Prompt:

You are a language model that generates synthetic question-answer (QA) pairs with reasoning paths.
Your task is to generate a QA pair based on the following question. Additionally, you should
provide a clear, step-by-step reasoning path that corresponds to a predefined reasoning skill.

The predefined reasoning skills are:[REASONING SKILLS NAME+DESCRIPTION+EXAMPLES].
Your reasoning path should include clear substeps for each step of the thought process.

Example 1:

Given Documents: [REFERENCE DOCUMENTS]

Input Question: "Who invented the telephone?"

Step-by-step Reasoning Path:

1. Identify the key entity: "telephone” (deductive)

2. Identify that the question is asking for the inventor of a significant historical device (decompositional)
3. Recall the historical context of the invention of the telephone. (deductive)

4. The inventor is Alexander Graham Bell. (cause & effect)

Generated Answer: "Alexander Graham Bell invented the telephone in 1876."

Reasoning Skill Used: deductive, decompositional, deductive, cause & effect.

Example 2: ...

Example 3: ...

Notes:

Please make sure that the reasoning path is clear and includes each substep in the thought process.
The output should follow this structure: "Step-by-step reasoning," followed by the conclusion.

Each reasoning skill corresponds to a specific domain of knowledge.

Table 12: Prompt to Generate Similar Examples with Reasoning Paths.

Prompt:

You are given an original question: [ORIGINAL QUESTION]

You also have a synthetic question: [SYNTHETIC QUESTION]

Your task is to decide how similar the synthetic question is in structure and complexity, compared to the original.
Please provide a brief explanation of your reasoning. Then, assign a score from 1 (completely different) to 10 (very
similar).

Example: Original Q: "Who discovered penicillin?"

Synthetic Q: "Which scientist found the mold that led to antibiotics?"

Explanation: Both questions ask about a discoverer of a major medical breakthrough. The second question focuses
on the mold (penicillin), so it is structurally similar and retains the core inquiry about a discovery.

Score (1-10): 8

Notes: - Provide a short justification.

- Avoid rewriting or changing the question.

- Keep the final output concise, ending with the numeric score.

Table 13: Prompt for Evaluating Alignment of Synthetic Questions with the Original.

Prompt:

You are given:

- The original question: [Q]

- A document or context: [D]

- A selected reasoning path: [R]

- The specific skills used in the reasoning path: [S]

Your goal is to produce a final answer by combining the relevant information from [D] with the guided reasoning
steps from [R]. Follow these instructions:

1. Review the Reasoning Path

Read each step in [R] carefully. Identify which parts of [D] or background knowledge support each step.

2. Apply the Skills

If [S] includes certain reasoning skills (e.g., deduction), make sure to explicitly use them when combining evidence
from [D].

3. Generate a Clear Answer

Compose a concise final answer that directly addresses [Q]. You may outline your chain of thought, but keep the
explanation aligned with [R].

4. Maintain Accuracy

If [R] instructs a specific substep (e.g., numerical calculation or bridging multiple facts), follow it precisely, citing
the relevant parts of [D].

Notes:

- Do not contradict the provided reasoning path.

- Cite relevant text from [D] if needed, but avoid unnecessary repetition.

- End with a concise, standalone final answer.

Table 14: Prompt for Question Answering.
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Model SQuAD HotpotQA  NewsQA Gaokao HQA TriviaQA BioASQ

Quick-Thinking Models w/ Reasoning Strategies (Exact Match)

Owen2.5-32B-Instruct

27.15 12.61 19.47 23.82 40.88
28.13 13.06  20.19 24.58 41.76
28.49 1329  20.37 24.89 41.93
29.32 13.86  21.02 25.58 42.717
29.81 14.12 2151 26.04 43.28
29.76 14.21 21.57 26.08 43.33

Slow-Thinking Models (Exact Match)

w/ vanilla (quick) 55.23 31.69
w/ few-shots (quick) 56.42 32.35
w/ self-consistency (Wang et al., 2022) 57.08 32.81
w/ proCoT (Deng et al., 2023) 58.65 33.81
w/ ToT (Yao et al., 2023) 59.83 34.67
w/ MCTS (Zhao et al., 2024) 59.87 34.53
w/ T? (ours) 62.65 39.98
GPT-40
w/ vanilla (quick) 59.87 35.31
w/ few-shots (quick) 61.09 36.04
w/ self-consistency (Wang et al., 2022) 61.63 36.42
w/ proCoT (Deng et al., 2023) 62.89 37.29
w/ ToT (Yao et al., 2023) 63.77 37.94
w/ MCTS (Zhao et al., 2024) 63.94 38.13
w/ T? (ours) 65.17 39.51
ol-mini 65.82 42.89
QwQ-32B-Preview 66.67 43.57
DeepSeek-R1 67.38 44.04
ol 67.92 44.57
04-mini 68.36 44.97
04-mini-high 68.54 45.18
Claude-3.7-sonnet-thinking 68.67 45.27
03 68.89 45.48
Gemini-2.5-Pro 69.69 46.08
QwQ-32B + T2 (ours) 71.32 47.87

35.08 21.87  29.51 36.52 50.68
3543 22,18  29.88 36.87 51.21
35.94 22.28 30.26 37.52 52.31
36.42 22.53 30.75 38.12 52.94

36.83 2279 31.08 38.28 53.14
37.01 22.89  31.23 38.42 53.27
37.14 22.97 31.32 38.56 53.41
37.34 23.19 3137 38.78 53.74
37.97 23.51 32.01 39.43 54.45

39.17 24.63  33.28 40.39 55.81

Table 15: Exact Match (EM) scores on seven QA datasets.

F Performance with Exact Match Metric

Generally, Open QA datasets use Exact Match as
their metrics for evaluation. But in generative Al
system, the models can generate correct answers
but with different literalness (e.g., “San Francisco”
and “The San Francisco City” and “SF U.S.”).
Hence we use ROUGE-L as metric in our over-
all performance evaluation. Besides, we also report
our experimental results on EM in Table 15.

G Calculation of Proposed Metrics
G.1 Hits and Errors

Hits Metric Calculation. To evaluate the qual-
ity of reasoning and fact retrieval in the generated
outputs, we employ the Hits metric based on the
gold supporting sentences provided in HotpotQA.
For each question g, let P, represent the set of sen-
tences mentioned in the model’s reasoning process
and G, denote the set of gold supporting sentences.
We calculate the Hits metric as follows:

ZqEQ 1[Pq = Gq]
Q|

where 1[] is an indicator function that equals
1 when the condition is satisfied and O otherwise,

Hits =

(12)
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and |@Q| is the total number of questions in the
evaluation set. This formulation is similar to recall
in traditional information retrieval, measuring the
proportion of questions for which all required facts
were successfully retrieved.

Errorss Metric Calculation. For the Error met-
ric, we adopt the False Discovery Rate (FDR) for-
mulation:

quQ 1P, € G
quQ(l[Pq 2 Gol +1[P; € Gy))
(13)

This represents the proportion of spurious facts
(false positives) among all retrieved facts, consis-
tent with the FDR calculation as FP/(TP+FP).

These complementary metrics create a natural
trade-off: longer reasoning chains tend to improve
Hits by including more supporting facts but of-
ten at the expense of increasing Error through the
introduction of irrelevant information. An ideal
reasoning process would maximize Hits while min-
imizing Error, indicating that the model precisely
identifies all necessary supporting facts without
including extraneous information.

Error =

G.2 Retrace Rate

We define a response as exhibiting a retrace when
the model initially states a provisional conclusion
and subsequently revises it within the same output.
This occurs in patterns such as “So the answer is
X... wait, that seems wrong—let me revise... the
answer is Y.” To systematically identify retraces,
we analyze the Chain-of-Thought (CoT) reasoning
for two specific patterns: (i) multiple occurrences
of <answer> markers, or (ii) lexical repair cues
(e.g., “sorry,” “actually,” “let me rethink”) followed
by a different answer span. If either pattern is
detected, we count the example as containing a
retrace.
The Retrace Rate is calculated as:

> _qeq Lretrace detected in g

Q|

(14)

where 1[] is an indicator function that equals

1 when a retrace is detected and O otherwise, and

|Q| is the total number of questions in the evalua-

tion set. This metric quantifies the proportion of

responses where the model explicitly revises its

reasoning path, providing insight into the model’s

self-correction capabilities during the reasoning
process.

Retrace Rate =

Method HotpotQA NewsQA HQA
Random 324 38.7 19.2
Coverage Only 41.6 46.3 27.8
Uniqueness Only 49.2 54.5 35.7
Full Approach 67.1 61.3 40.3

Table 16: Ablation study results showing the impact
of different components in our selection approach. We
report ROUGE-L (%) on three benchmark datasets.

H Ablation Study

To validate the effectiveness of our multi-criteria
matching approach, we conducted ablation stud-
ies by systematically removing or modifying key
components of our selection mechanism.

Impact of Selection Components. We evaluated
four variants of our selection approach: (1) using
only skill coverage without uniqueness weighting,
(2) using only skill uniqueness without coverage
assessment, (3) using random selection from ex-
amples passing the similarity threshold, and (4)
our full approach. The experiments are conducted
on Qwen2.5-32B as LLM. Table 16 shows perfor-
mance across test sets.

Results demonstrate that while both skill cov-
erage and uniqueness contribute positively to per-
formance, their combination in our full approach
produces the strongest results across all datasets,
yielding improvements of 25.5% over using only
individual components.

I Efficiency Analysis

This section provides a comprehensive analysis
of the computational efficiency of our proposed
Flexible Reasoning Method (T?) in comparison to
other reasoning approaches. We analyze both token
consumption and performance across seven diverse
question answering datasets.

I.1 Token Consumption Analysis

Table 17 presents the average token consumption of
different reasoning approaches across seven CQA
datasets. The token length directly correlates with
the computational resources required and inference
time. Our results indicate that T? consistently re-
duces token consumption while maintaining or im-
proving performance compared to other reasoning
methods.
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Model SQuAD BioASQ HotpotQA NewsQA GAOKAO HQA  TriviaQA
Qwen2.5-32B w/ SC  1372.18 1726.32 1485.87 2201.65 1957.93 1580.43  1742.41
_Qwen2.5-32Bw/T? 116142 140152 133071 181228  1581.14  1415.18 158242
QwQ-32B-Preview 1617.42 2012.33 1823.49 2648.12 2284.80  1972.37 2119.88
QwQ-32B w/ T? 1285.36  1467.85 1450.75 1855.89 1699.45 1465.68  1605.56

Table 17: Average token consumption across seven CQA datasets for different reasoning approaches.

1.2 Efficiency-Performance Trade-off

Table 18 presents a comprehensive comparison of
computational efficiency and performance across
all seven datasets. We report the average to-
ken length, relative token reduction, and ROUGE-
L scores to illustrate the efficiency-performance
trade-off.

L.3 Dataset-specific Efficiency Gains

As shown in Figure 6, the efficiency gains of T2
vary across datasets. The token reduction ranges
from 10.5% to 18.8% when applied to Qwen2.5-
32B (compared to self-consistency), and from
20.6% to 31.6% when applied to QwQ-32B (com-
pared to QwQ-32B-Preview). Notably, datasets
requiring more complex reasoning (like NewsQA
and GAOKAO) show greater efficiency improve-
ments, suggesting that T? is particularly effective
at streamlining the reasoning process for complex
questions.

L4 Detailed Efficiency-Performance Analysis

Table 19 provides a detailed analysis of both token
consumption and performance for each dataset and
model combination. This comparison highlights
how T2 maintains or improves performance while
reducing computational costs.

L.5 Efficiency Analysis by Question
Complexity

To better understand T?’s efficiency gains, we cat-
egorize questions by complexity and analyze to-
ken reduction. As shown in Table 20, T? achieves
greater token reduction for complex questions re-
quiring multi-step reasoning, showcasing its adap-
tive nature.

1.6 Time Efficiency

Beyond token reduction, we also measure the ac-
tual inference time across different models and rea-
soning approaches. Table 21 presents the average
inference time per question, demonstrating that T2

reduces computational time while maintaining high
performance.

In summary, our comprehensive efficiency anal-
ysis demonstrates that T? reduces token con-
sumption and inference time across diverse CQA
datasets while maintaining or improving perfor-
mance. The efficiency gains are particularly pro-
nounced for complex questions requiring multi-
step reasoning, highlighting T?’s ability to adapt its
reasoning approach based on question complexity.

J Impacts of Similar Examples

J.1 Impacts of Question Structure

Our framework decomposes each question into a
structure plus replaceable elements. We hypoth-
esize that questions with more placeholders bene-
fit more from T2’s selection mechanism, because
these questions allow a wider range of possible
similar examples. Conversely, simpler questions
with fewer placeholders may not need advanced
reasoning paths.

We categorize questions into three buckets based
on the number of placeholders in Q): Low (0-1
placeholders), Medium (2-3 placeholders), and
High (4+ placeholders). Table 22 shows the perfor-
mance across these groups for SQuAD and HQA
to show impacts on general and domain-specific
scenarios.

As seen in Table 22, questions with more place-
holders (High) see the largest gap between T2 and
either baseline. This suggests that, for complex
questions, enumerating and reusing relevant skill
chains is particularly helpful. On simpler ques-
tions (Low), T2 still improves performance but by
a smaller margin, as fewer placeholders limit the
search space for alternative question structures.

J.2 Impacts of Similar Examples Structure

We show the “skeleton” QA pairs that preserved
reasoning structure while replacing all content-
specific terms with placeholders in Figure 7 (for
original one) and Figure 8 (for structure-only one).
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Model Avg. Token Length Token Reduction Avg. ROUGE-L

Qwen2.5-32B w/ SC 1723.83 - 50.07
Qwen2.5-32B w/ T2 1469.24 14.8% vs. SC 56.22

- QwQ-32B-Preview 206834 - 6338
QwQ-32B w/ T? 1547.22 25.2% vs. QwQ 68.56

Table 18: Efficiency-performance trade-off across seven CQA datasets. Token reduction is calculated relative to the
baseline model (SC: Self-Consistency).

B Qwen2.5-32B w/ SC
2500 oy Qwen2.5-32B w/ T?
|
|

Token Consumption Reduction by FReM Across Datasets
QwQ-32B-Preview
QwQ-32B w/ T?

SQuAD BioASQ HotpotQA NewsQA GAOKAO HQA
Datasets

2000

N
a
o
o

Average Token Length
S
o
o

500

TriviaQA

Figure 6: Token consumption reduction by T? across different datasets. The percentage values indicate the relative
reduction compared to the baseline models (Qwen2.5-32B w/ SC and QwQ-32B-Preview).

Model SQuAD BioASQ HotpotQA NewsQA
Token ROUGE-L Token ROUGE-L. Token ROUGE-L Token ROUGE-L

Qwen2.5-32B w/ SC  1372.18 75.31 1726.32 57.57 1485.87 56.76 2201.65 52.27
Qwen2.5-32B w/ T?  1161.42 81.86 1401.52 65.02 1330.71 67.11 1812.28 61.27
QwQ-32B-Preview  1617.42 86.87 2012.33 69.02 1823.49 71.86 2648.12 63.92
QwQ-32B w/ T? 1285.36 92.12 1467.85 75.21 1450.75 717.61 1855.89 68.61

GAOKAO HQA TriviaQA Average
Token ROUGE-L Token ROUGE-L. Token ROUGE-L  Token ROUGE-L

Qwen2.5-32B w/ SC  1957.93 30.57 1580.43 37.12 1742.41 41.92 1723.83 50.07
Qwen2.5-32B w/ T?  1581.14 34.06 1415.18 40.31 1582.42 43.92 1469.24 56.22
QwQ-32B-Preview ~ 2284.80 43.23 1972.37 49.62 2119.88 59.16 2068.34 63.38
QwQ-32B w/ T? 1699.45 4742 1465.68 54.71 1605.56 64.22 1547.22 68.56

Model

Table 19: Detailed comparison of token consumption and performance (ROUGE-L) across all datasets. Lower token
count with higher ROUGE-L indicates better efficiency-performance trade-off.

Original QA Pair

Q: How does the melting point of sodium compare to potassium?
A: I'll approach this systematically:

1. First, I’ll recall the melting point of sodium, which is 97.8°C.

2. Next, I'll recall the melting point of potassium, which is 63.5°C.
3. Comparing these values: 97.8°C > 63.5°C

4. Therefore, sodium has a higher melting point than potassium.

Figure 7: Our original generated similar example.
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Question Complexity Qwen2.5+SC Qwen2.5+T? Token Reduction

Simple (1-step) 1283.45 1157.82 -9.8%
Moderate (2-3 steps) 1687.31 1391.65 -17.5%
Complex (4+ steps) 2201.73 1758.24 -20.1%
Question Complexity QwQ-32B QwQ-32B + T2 Token Reduction
Simple (1-step) 1584.21 1262.35 -20.3%
Moderate (2-3 steps) 2041.57 1492.18 -26.9%
Complex (4+ steps) 2579.24 1887.14 -26.8%

Table 20: Token consumption analysis by question complexity. T? achieves greater efficiency gains for more
complex questions.

Model Avg. Inference Time (s) Time Reduction
Qwen2.5-32B w/ SC 65.31 -
Qwen25-32Bw/T? 3452 ____ A% _
QwQ-32B-Preview 76.74 -
QwQ-32B w/ T? 45.03 -41.3%

Table 21: Average inference time per question across datasets. T? reduces computational time while maintaining
high performance.

Group SQuAD HQA

Few-shots Self-Cconsistency ~T?  Few-shots Self-Cconsistency T2
Low 78.5 79.1 80.2 42.7 43.3 44.6
Medium 76.4 78.2 79.5 41.5 43.0 45.1
High 75.9 78.7 80.1 40.2 42.9 46.2

Table 22: ROUGE-L by question complexity. We compare quick-thinking (Few-shots) and slow-thinking (Self-
Consistency), and our T2,

Structure-Only Version

Q: How does [PROPERTY] of [ENTITY_A] compare to [ENTITY_B]?

A: I’ll approach this systematically:

1. First, I’ll determine the [PROPERTY] of [ENTITY_A], which is [VALUE_A].
2. Next, I’ll determine the [PROPERTY] of [ENTITY_B], which is [VALUE_B].
3. Comparing these values: [COMPARISON_OPERATION]

4. Therefore, [CONCLUSION_STATEMENT].

Figure 8: Structure-only version of our generated similar example.

J.3 Impacts of Similar Example Numbers

We vary the size M = |I'|. Figure 9 illustrates
the performance on HotpotQA (left) and NewsQA
(right) as M increases. We observe an initial boost
in ROUGE-L scores before M = 20, but perfor-
mance plateaus or slightly decreases beyond a cer-
tain point. After increasing examples to M = 80,
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Figure 9: Impact of the number of similar examples on ROUGE-L scores for HotpotQA (left) and NewsQA (right).

Method ROUGE-L Variation  Noise
Qwen2.5 w/ ours
Random Fill 49.8 High Medium
Guided Fill 52.6 Low Low
Template Variation 61.3 High Low

Table 23: Comparing different example construction
methods on NewsQA.

the performance rapidly decreases. We conclude
that too many examples can introduce irrelevant
or redundant paths, making selection harder. In
practice, we find that generating a moderate pool
is enough to cover essential patterns, especially if
the examples are diverse and accurate.

J.4 Impacts of Example Generation Methods

Then, we consider how we synthesize reference ex-
amples. We experiment with different approaches
for filling the placeholders on HotpotQA with
qwen2.5-32B:

* Random Fill: Pick random words or entities of
the same type (e.g., any person) from a large
corpus.

* Guided Fill: Use an LLM or curated list to pick
semantically relevant or thematically consistent
entities for each placeholder.

* Template Variation: Generate minor para-
phrases or new question stems while retaining
the same skill sequence.

Table 23 shows that template variation produces
more coherent examples, with 2-4% gains over
purely random fill. This highlights the importance
of a well-structured synthetic process: random re-
placements might yield too many off-topic or con-
tradictory examples, while guided replacements
and paraphrasing keep the examples relevant, im-
proving the final answer selection.

Model HotpotQA HQA
Qwen2.5+SC 56.76 37.12
Qwen2.5+T? 67.11 40.31
Qwen2.5+mis domain 65.96 39.85
Qwen2.5+structure only 63.96 38.85
QwQ 71.86 49.62
QwQ+T? 77.61 54.71
QwQ-+mis domain 77.03 54.26
QwQ-+structure only 74.03 53.66

Table 24: Performance on mis-domain and structure-
only models. ROUGE-L is the reported performance
metric.

J.5 Impacts of Example Generation
Threshold

We analyze the impact of varying the threshold 0
on the synthesis quality of the generated questions.
The threshold ¢ controls how similar the synthe-
sized questions ngn are to the original question @),
by using a helper language model to assess their
alignment (in Sec.3.3). Figure 10 shows finding
a trade-off between question similarity and gener-
alization is much more important. As ¢ increases,
the similarity to the original question improves but
at the cost of generalization. Conversely, when ¢
is lowered, the model generalizes better but the
quality of the synthesized questions decreases.

J.6 Impacts of Examples Domain Bias and
Structural Bias

In addition, we investigate the effects of domain
and structural biases in similar examples. Specif-
ically, we assess how varying the domain of the
similar examples influences model performance.
As shown in the Table 24 (“+mis domain”), transi-
tioning from a general domain to a historical one
results in improved performance compared to using
self-consistency alone. Furthermore, we evaluate
the impact of removing key information from the
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Figure 10: Impact of the question synthesis scope.

similar examples, leaving only the reasoning struc-
ture. Table 24 (“+structure only”) demonstrates
that even when only the examples’ structure® is
provided, the model can still generate appropriate
responses, highlighting the effectiveness of struc-
tural guidance.

J.7 Impacts of Similar Examples Quality

To evaluate the quality of similar examples gen-
erated by our framework, we conducted a com-
prehensive human evaluation study. We randomly
selected 1000 query-reference pairs from the Hot-
potQA dataset and recruited three Ph.D. students
specializing in NLP to assess the quality of syn-
thetic references. The evaluation was conducted
blind, with evaluators unaware of which model
generated each reference.

Evaluation Dimensions. References were rated

on a scale of 1-10 across four key dimensions:

e Accuracy: Factual correctness and absence of
hallucinations or contradictions

* Relevance: Degree to which the reference ad-
dresses the specific query requirements

* Completeness: Thoroughness in covering all
necessary information and reasoning steps

* Coherence: Logical structure, clarity of expres-
sion, and overall readability

Model Comparison. We evaluated synthetic
references generated by two foundation models:
Qwen2.5-32B-Instrucut and QwQ-32B-Preview,
both with our framework. Table 25 presents the
average scores across all evaluators and samples.
Results show both models produced high-quality
references. The highest scores were observed in
the Relevance category, indicating that references
effectively addressed the specific queries. The eval-
uation exhibited strong inter-annotator agreement
with a Fleiss’ kappa coefficient of 0.79, indicating
substantial agreement among the three evaluators.

*We show the example structure in Appendix J.2.

This suggests the evaluation results are reliable and
consistent across different human judges.

K Detailed Case Studies

Figure 11 and 12 show the two different cases from
HotPotQA and SQuAD. The two case studies il-
lustrate distinct reasoning strategies for question
answering. In the HotpotQA case, the task requires
multi-step reasoning by integrating evidence from
multiple documents. A response based solely on
pattern matching might output wrong “London’
and an overthinking answer may include unnec-
essary details before arriving at the correct conclu-
sion, the best approach is a concise, step-by-step
explanation that clearly connects the film to John
Lennon and his documented birthplace.

In contrast, the SQuAD case involves single-step
reasoning where the answer is directly available
from the text. The document states that the Eiffel
Tower was constructed in 1889, so the correct an-
swer is deduced by simply extracting this fact. Al-
though a pattern matching response may correctly
state “1889” and an overcomplicated explanation
might unnecessarily discuss other numerical de-
tails, the ideal answer succinctly identifies the key
fact and deduces that the construction year is 1889
using clear, deductive reasoning.

>
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Models w/ T? Accuracy Relevance Completeness Coherence Overall

Qwen2.5-32B-Instrucut 8.8 8.6 8.1 8.1 8.4
QwQ-32B-Preview 8.4 8.3 7.9 8.2 8.4

Table 25: Human evaluation scores for synthetic references generated by different models (scale: 1-10).

# HotpotQA Case Example with Multihop Thinking

Document 1:

John Lennon, the iconic musician and member of The Beatles, was born in Liverpool, England.

Document 2:

Nowhere Boy is a film that explores the early life of John Lennon, highlighting his formative years and influences.
Question:

In what city was the subject of the film Nowhere Boy born?

Proper Reasoning Chain:

1. Identify the Subject: Recognize that Nowhere Boy is about John Lennon. (Deductive)

2. Extract Key Fact: From Document 1, note that John Lennon was born in Liverpool, England. (Deductive)
3. Conclude: Therefore, the subject of the film was born in Liverpool. (Decompositional)

1) Quick Thinking Model’s Wrong Answer:
Answer: The subject of Nowhere Boy was born in London.

3) Model with Our T?’s Correct Answer:
Answer: Since Nowhere Boy is a film about John Lennon (Document 2) and Document 1 confirms that John Lennon
was born in Liverpool, we deduce that the subject of the film was born in Liverpool.

Figure 11: HotpotQA Case Example with Multiple Answer Versions and Explicit Reasoning Chain.

# SQuAD Case Example with Single-Step Thinking

Document:

The Eiffel Tower is a wrought-iron lattice tower located on the Champ de Mars in Paris, France. It was constructed in
1889 as the entrance to the 1889 World’s Fair. The tower stands approximately 324 meters tall and is one of the most
recognized structures in the world.

Question:

In what year was the Eiffel Tower constructed?

Proper Reasoning Chain (using Deductive):
1) Deduction: Based on clear statement, we deduce that the construction year is 1889 (Deductive).

1) Quicking Thinking Model’s Correct Answer
Answer: 1889.

2) Slow Thinking Model’s Correct Answer :

Answer: After reading the passage, I noticed several numbers such as 324 (the tower’s height) and 1889. While I
considered whether the height might play a role in determining the construction year, I ultimately realized that the
passage explicitly states “constructed in 1889.” Thus, despite the extra details, the correct construction year is 1889.

3) Model with Our T?’s Correct Answer using the Specific Reasoning Chain:
Answer: Since the document clearly states that the Eiffel Tower was constructed in 1889, we deduce—by directly
extracting and applying this fact—that the construction year is 1889.

Figure 12: SQuAD Case Example with Single-Step Thinking and Multiple Answer Versions.
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