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Abstract

Machine-generated text detection is critical for
preventing misuse of large language models
(LLMs). Although LLMs have recently ex-
celled at mimicking human writing styles, they
still suffer from factual hallucinations mani-
fested as entity-relation inconsistencies with
real-world knowledge. Current detection meth-
ods inadequately address the authenticity of the
entity graph, which is a key discriminative fea-
ture for identifying machine-generated content.
To bridge this gap, we propose a fact-aware
model that assesses discrepancies between tex-
tual and factual entity graphs through graph
comparison. In order to holistically analyze
context information, our approach employs hi-
erarchical feature extraction with gating units,
enabling the adaptive fusion of multi-grained
features from entity, sentence, and document
levels. Experimental results on two public
datasets demonstrate that our approach out-
performs the state-of-the-art methods. Inter-
pretability analysis shows that our model can
capture the differences in entity graphs between
machine-generated and human-written texts.

1 Introduction

LLMs (Touvron et al., 2023; OpenAI, 2024) have
the ability to understand and generate human lan-
guage, powering applications such as intelligent
assistants (Dong et al., 2023), smart customer
service (Kolasani, 2023), and machine transla-
tion (Wang et al., 2023). However, as LLM-
generated text increasingly mimics human writ-
ing, concerns about their misuse have grown, in-
cluding the creation of fake news (Sun et al.,
2024), spam (Roy et al., 2024), and content pla-
giarism (Dehouche, 2021). Such misuse could ex-
acerbate existing social, political, and security chal-
lenges, highlighting the need for effective machine-
generated text detectors to help mitigate potential
harm.
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Rapper Nipsey Hussle dead after a shooting near his Los Angeles clothing store

Actor Nipsey Hussle has died from injuries suffered in a shooting near his 
clothing store in Inglewood a Los Angeles police spokesman said Monday…
… Hussle whose real name is Nipsey Hussle Turner was well known for his 
associations with hiphop artist Kendrick Lamar…
… Hussle had been filming the MTV show All About the Washingtons 
which follows the lives of a close group of friends in West Oakland 
California. He had appeared on Empire, Empire Records and Sisterhood of 
Hip Hop according to … 
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Figure 1: An example of machine-generated fake news.
We can observe that some relationships between entities
exist in machine-generated text but not in Wikipedia.
Entities highlighted in yellow, green, and blue represent
direct, indirect, and no relationships with Hussle in
Wikipedia, respectively.

The machine-generated text detection task that
we studied is a binary classification task that dis-
tinguishes machine-generated text from human-
written text. Previous research has primarily fine-
tuned Transformer (Vaswani et al., 2017)-based
models, such as RoBERTa (Liu, 2019), GPT-
2 (Radford et al., 2019), and XLNet (Yang, 2019),
to generate a document-level feature representation
for classification. Some studies argue that simply
fine-tuning these models does not capture text’s
fine-grained features. Therefore, they propose to
extend the fine-tuning approach by learning entity
consistency in the text (Zhong et al., 2020; Liu
et al., 2023). They observe that human-written text
tends to repeat the same entities across consecu-
tive sentences, while machine-generated text often
introduces new entities without revisiting earlier
ones. Thus, they build an entity graph based on the
co-occurrence of entities to learn this difference.
Although these methods perform better than simple
fine-tuning, they still face two limitations:

(1) Factuality. As LLMs’ memory capacity in-
creases, this phenomenon of inconsistent contex-
tual entities will be easily improved. Therefore,
new strategies need to be found. Human-written
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texts inherently preserve factual accuracy in entity
relationships through verifiable real-world ground-
ing. In contrast, machine-generated texts often suf-
fer from entity-relation distortions, which is an arti-
fact of LLM factuality hallucination that produces
semantically plausible but factually ungrounded
connections (Rawte et al., 2023; Alkaissi and Mc-
Farlane, 2023; Huang et al., 2025). As shown
in Figure 1, although the machine-generated text
appears coherent, some entities may not have a
real-world connection. We analyze 5,000 pairs of
human-written and machine-generated news docu-
ments with the same title. Figure 2 shows the statis-
tical results for the number of entity relationships
that coexist in the documents and Wikipedia. We
can see that human-written texts have a higher rela-
tionship consistency count. Therefore, one promis-
ing approach is to consider whether the relation-
ships between entities in the text correspond to real-
world connections, as this could help distinguish be-
tween human-written and machine-generated text.
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Figure 2: Statistical analysis about relationship consis-
tency. The x-axis is the value of the consistency count
and the y-axis indicates probability density.

(2) Integrity. Fine-tuned LLMs have input
length restrictions, such as RoBERTa-base’s maxi-
mum input length of 512 tokens. Existing methods
can only capture text and entity information within
this limited range, which means that any text ex-
ceeding the limit will be discarded. We posit that
capturing more textual information will help the
model better understand the context and build a
more complete entity graph, which in turn aids in
identifying machine-generated text.

Based on the aforementioned analysis, we pro-
pose a Fact-Aware Multi-Level machine-generated
text detection model, FAML. (1) To effectively cap-
ture discrepancies between textual and factual en-
tity graph relationships, we propose an entity graph
comparison module. The process begins with align-
ing the nodes in two entity graphs. We compare the
differences between the two graphs and obtain the
entity comparison features. Notably, the degree of

discrepancy in edge relationships is directly linked
to the divergence in feature values. (2) To fully har-
ness contextual information, we propose a multi-
level architecture encompassing entity, sentence,
and document levels. After extracting multi-level
features, a learnable gating mechanism dynami-
cally regulates hierarchical information flow, en-
abling progressive feature fusion from local entity
patterns to global document semantics.

The main contributions of this work can be sum-
marized as follows: (1) We are the first to consider
real-world entity relations in machine-generated
text detection. The observed entity-relation incon-
sistency emerges as a potential avenue for future
exploration since it reflects the factuality halluci-
nation problem in LLMs. (2) Our proposed model
achieves machine-generated text detection by fact-
aware entity graph comparison module and hierar-
chical multi-level fusion architecture, enabling en-
tity relationship consistency verification and com-
prehensive contextual awareness. (3) Extensive
experiments on three public datasets validate the
effectiveness of our approach, which outperforms
other methods.

2 Related Works

2.1 Machine-generated Text Detection

Machine-generated text detection has received con-
siderable attention and many methods have been
proposed to solve it. These methods can be cate-
gorized into watermarking, statistical, and super-
vised algorithms. Watermarking algorithms add
token-level watermarks to machine-generated text
for detection (Peng et al., 2023; Kirchenbauer et al.,
2023). Statistical algorithms compare the statisti-
cal differences between human-written text and
machine-generated text in linguistic characteristics,
including n-gram frequency (Yang et al., 2023),
token log probability (Venkatraman et al., 2023;
Mitchell et al., 2023; Shi et al., 2024), and perplex-
ity (Xu and Sheng, 2024).

Most supervised methods fine-tune Transformer-
based models and can only extract coarse-grained
feature representations of text. Zhong et al. (2020)
propose a graph-based model to encode entity con-
sistency information into text representation for
classification. On this basis, Liu et al. (2023) utilize
contrastive learning to improve model performance
in low-resource situations. Jawahar et al. (2022)
combine knowledge graphs to identify manipulated
human-written texts whose entities were replaced
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by GPT-2. Our work focuses on detecting machine-
generated text within a supervised learning frame-
work. Unlike existing approaches, our method
delves into the relationships between entities within
textual and factual entity graphs, leveraging fine-
grained feature analysis to distinguish between
human-written and machine-generated content.

2.2 Fact Verification

Fact verification involves determining whether a
claim is true or false based on supporting evi-
dence, which may include text (Jiang et al., 2020;
Park et al., 2021), tables (Wang et al., 2021), and
knowledge graphs (Kim et al., 2023). Vedula
and Parthasarathy (2021) integrate the entity-
relationship structure of knowledge graphs with re-
trieved textual content to enhance fact verification.
Hu et al. (2021) construct directed heterogeneous
graphs comprising topics, sentences, and entities,
comparing entity representations with knowledge-
based entity representations. Similarly, Zou et al.
(2023) build a heterogeneous graph that incorpo-
rates claims, entities retrieved from knowledge
graphs, and factual texts to support fact verification.

The key difference between our approach and
fact verification methods is the nature of the task.
Rather than assessing the truthfulness of machine-
generated or human-written text, our method fo-
cuses on verifying whether the entity relationships
described in the text align with those in the knowl-
edge graph. In contrast, fact verification methods
primarily emphasize extracting entity feature repre-
sentations from the knowledge graph, paying less
attention to the relationships between entities in the
claim.

3 Methodology

This section provides a detailed explanation of our
proposed approach. As illustrated in Figure 3, our
method, FAML, comprises two main modules: fea-
ture extraction and feature fusion. Given a docu-
ment, we first perform multi-level feature extrac-
tion: At the document and sentence levels, we use
RoBERTa to extract initial representations. At the
entity and fact levels, we construct a textual en-
tity graph and further obtain a factual entity graph
through entity linking and relationship checking.
Entity features are extracted from both graphs us-
ing graph neural networks. Next, we learn the
differences between textual and factual entity fea-
tures via a comparison network, hierarchically fuse

multi-level features using gating units, and concate-
nate the two feature sets for classification.

3.1 Feature Extraction
3.1.1 Document and Sentence Representations
Pre-trained LLMs have excellent text understand-
ing and representation capabilities. Thus, given a
document x = [s1, s2, ..., sn], where si indicates
i-th sentence, n is the number of sentences, we em-
ploy pre-trained RoBERTa to extract the document
initial representation hCLS ∈ Rd and the sentence
initial representation matrix Hini

s ∈ Rn×d.

3.1.2 Graph Construction
Next, we seek to analyze the edge differences be-
tween the entity graph of the given document and
the corresponding entity graph from the knowledge
base. The steps to construct textual and factual
graphs are as follows: (1) We employ a named
entity recognition and relation extraction model,
REBEL (Cabot and Navigli, 2021), to parse enti-
ties and their relationships in the document. Tak-
ing the document as input, we get a set of rela-
tion triplets < subject, relation, object > from
REBEL and construct a textual entity graph. Each
entity is regarded as a node in the graph, and there
is an edge between two nodes with a relationship.
(2) To verify the existence of entities in the knowl-
edge base, we use the entity linking tool TAGME1

to map entities to Wikipedia and remove any enti-
ties from the textual entity graph that fail to estab-
lish a link. (3) We construct a factual entity graph
using the nodes that are successfully linked. For
these entities, we query Wikipedia to determine if a
relationship exists between them. If a relationship
is found, an edge is added between the correspond-
ing entity nodes in the factual entity graph.

To distinguish the textual entity graph from the
factual entity graph, we define the textual graph
as Gt = ⟨Vt, Et⟩ and the factual graph as Gf =
⟨Vf , Ef ⟩, where Vt and Vf are the same set of entity
nodes, Et and Ef are corresponding sets of edges.

3.1.3 Entity Representation
Graph Convolutional Neural Networks
(GCNs) (Kipf and Welling, 2016) are capa-
ble of capturing and integrating information from
neighboring nodes into node features, facilitating
the learning of global representations. After
constructing the textual and factual entity graphs,
we employ multi-layer GCNs to extract node

1https://sobigdata.d4science.org/group/tagme/
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Martin Jones stopped 29 
shots, and Joe Pavelski scored 
his 16th of the season and 
100th point of the 
season. …Milan Lucic scored 
the Oilers' lone goal, and 
Cam Talbot made 28 saves in 
his second straight game in 
goal. …The Oilers went 
ahead at 14:14 of the first 
period, on a power play, 
when Milan Lucic found 
himself in alone and beat 
Jones … Edmonton cut the 
lead in half 5:45 into the 
second, when Lucic banked a 
shot off Jones and into …
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Figure 3: The overview of our proposed model FAML.

feature representations from both graphs. The node
representations are initialized using pre-trained
Word2Vec vectors trained on a subset of the
Google News dataset2. If an entity node consists
of a span of words, we calculate the average of
the vectors for these words to serve as the entity’s
initial embedding. Thus, initial feature matrices
of entities are denoted as H ∈ Rm×d, where
m denotes the number of nodes, and d is the
dimension. For convenience of representation, we
remove t in the following calculation process of
the textual entity graph.

Given G = ⟨V, E⟩, we transform the edge set E
to an adjacency matrix A ∈ Rm×m, where Aij =
1 if an edge exists between two nodes. Then, entity
representations are updated by two-layer GCNs.
The calculations are as follows:

H1 = σ(ÂHW1) (1)

H2 = σ(ÂH1W2) (2)

where Â = D̃− 1
2 ÃD̃− 1

2 is the normalized sym-
metric weight matrix (Ã = A + Im, D̃ii =∑

j Ãij , where Im is the identity matrix). H1 ∈
Rm×d and H2 ∈ Rm×d are the hidden feature ma-
trices of all nodes in the first and second layer,
respectively. W1 and W2 are layer-specific train-

2https://code.google.com/archive/p/word2vec/

able weight matrices. σ is an activation function,
e.g., the GELU function.

For the factual entity graph, the calculation of
two-layer GCNs is similar to Equation 1 and Equa-
tion 2. Finally, we obtain textual entity representa-
tion Ht ∈ Rm×d and factual entity representation
Hf ∈ Rm×d.

3.2 Feature Fusion

After acquiring features from the fact, entity, sen-
tence, and document layers, we need to integrate
them to create a more comprehensive representa-
tion effectively. On the one hand, we derive fact-
aware entity difference features by comparing the
fact layer’s features with those of the entity layer.
On the other hand, coarse-grained features pro-
vide a global perspective but lack detail, while fine-
grained features concentrate on specific elements.
Therefore, when considering the full-text data, we
utilize a multi-level feature fusion module to en-
hance the strengths of the multi-granular features
across the entity, sentence, and document layers.

3.2.1 Entity Comparison
Based on our previous analysis, human-written
texts generally maintain factual accuracy, while
machine-generated texts often present non-existent
relationships between entities due to hallucination
issues. Consequently, even though the entity nodes
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of Gt and Gf are the same and share the same initial
embeddings, the final representations, Ht and Hf ,
will differ due to the varying edge relationships. We
believe that fact-aware differences in entity repre-
sentation are more apparent in machine-generated
texts than in human-written ones. Therefore, we
employ a comparison function to evaluate the dis-
crepancies between entity pairs.

Hdiff = (Ht −Hf )Wdiff (3)

hdiff = maxpooling(Hdiff ) (4)

where Wdiff is a transformation matrix. hdiff ∈
Rd is the comparison feature representation across
all entities.

3.2.2 Entity-to-Sentence Fusion
The first step in fusing entity-to-sentence features
is to apply average pooling to the entity features
within each sentence. We use average pooling for
two main reasons: (1) Each sentence contains only
a few entities, so average pooling helps retain more
comprehensive entity information; (2) Compared to
maximum pooling, which requires extracting entity
features from each sentence for separate calcula-
tions, average pooling can be processed in parallel.
The group average pooling calculation proceeds as
follows:

He2s =
Ae2sHt

ϵ+
∑m

j=1A
e2s
:,j

(5)

where He2s ∈ Rn×d, each row in He2s repre-
sents the entity pooling feature corresponding to
a sentence, Ae2s ∈ Rn×m is an adjacency matrix,
Ae2s

ij = 1 denotes i-th sentence has j-th entity.∑m
j=1A

e2s
:,j denotes to sum each row of the matrix,

and ϵ is a small non-zero number to prevent the
denominator from being zero.

Next, we utilize a gating unit to fuse the entity
feature corresponding to each sentence with its
initial feature.

gs = sigmoid([He2s;H
ini
s Ws]Wgs) (6)

He
s = gs ⊙He2s + (1− gs)⊙Hini

s (7)

where Ws and Wgs are weight matrices, ⊙ de-
notes Hadamard product, sigmoid is utilized to
control the value of each element in [0,1].

3.2.3 Sentence-to-Document Fusion
We treat the sentences in the document as nodes
and construct a fully connected graph. After enrich-
ing the sentence representation with entity features,

we update the representations of all sentences using
a Transformer encoder. This encoder preserves the
order of the sentences while learning global sen-
tence representations. It consists of a multi-headed
self-attention mechanism and a fully connected
feed-forward network. For the i-th head, the self-
attention calculation process is as follows:

Hs
i = softmax(

(He
sW

Q
i )(H

e
sW

K
i )T√

d′
)(He

sW
V
i )

(8)
where WQ

i , WK
i , and WV

i are weight matrices
for the i-th head, d′ = d/h is the dimensionality of
each head feature representation, h is the number
of heads. Multi-headed features are concatenated
as H′

s = He
s + [Hs

1;H
s
2; ...;H

s
h]W

O, where WO

is a weight matrix to be learned.
The fully connected feed-forward network con-

sists of two linear transformations with a non-linear
activation function in between, that is FFN(x) =
σ(xW1)W2, where σ is ReLU function. Both the
two blocks use a residual connection followed by a
normalization layer:

Hatt
s = norm(FFN(norm(H′

s)) + norm(H′
s))
(9)

hS = maxpooling(Hatt
s ) (10)

where hS indicates the updated sentence-level rep-
resentation.

Then, we utilize another gating unit to fuse sen-
tence and document features.

gd = sigmoid([hS ;hCLSWd]Wgd) (11)

hD = gd ⊙ hS + (1− gd)⊙ hCLS (12)

where Wd and Wgd are learnable weight matrices.
hD is the undated document representation that
fused multi-level features.

3.2.4 Prediction and Model Learning
Finally, we concatenate hD and the entity compari-
son vector hdiff to make prediction:

ŷ = softmax (σ([hD;hdiff ]Wl1)Wl2) (13)

where Wl1 and Wl2 are parameters of classifica-
tion layer, σ is ReLU function. The loss function
is devised to minimize the cross-entropy value:

L = −y log (ŷ)− (1− y) log (1− ŷ) (14)

where y is the ground truth, with 1 representing
machine-generated text and 0 representing human-
written text.
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4 Experiments

4.1 Datasets

To evaluate the effectiveness of the proposed ap-
proach, FAML, we conduct experiments on two
public datasets. The GROVER dataset is a news-
style dataset (Zellers et al., 2019). It includes
human-written texts sourced from RealNews, a
large corpus of news articles compiled from Com-
mon Crawl. The machine-generated texts, on the
other hand, are produced by Grover-Mega, a power-
ful Transformer-based model. The GPT-2 dataset,
introduced by OpenAI3, follows a WebText-style
format. Human-written texts are sourced from Web-
Text, while machine-generated texts are created
using GPT-2 XLM-1542M (Radford et al., 2019),
which is trained on a corpus gathered from popu-
lar web pages. The SemEval dataset (Wang et al.,
2024) is used for machine-generated text detection
in subtask A. The machine-generated text models
include davinci-003, ChatGPT, Cohere, Dolly-v2,
BLOOMz, and GPT-4. In the training set, valida-
tion set, and test set, we randomly sampled 500
texts generated by each model in each source from
the original datasets.

The statistics of the three datasets are presented
in Table 3 and Table 4 in Appendix A. HWT
and MGT refer to human-written and machine-
generated texts, respectively.

4.2 Baselines

To validate the effectiveness of our approach,
we choose three categories of baseline mod-
els: statistics-based, knowledge-based, and
Transformer-based models, which are listed as fol-
lows: (1) GLTR (Gehrmann et al., 2019) is a
statistical model that analyzes the top-k tokens
based on their rankings in the predicted proba-
bility distributions generated by GPT-2 medium.
(2) DetectGPT (Mitchell et al., 2023) is a sta-
tistical method that leverages the difference in a
model’s log probabilities before and after text per-
turbations. (3) CompareNet (Hu et al., 2021) is
a knowledge-based model for fake news detec-
tion that constructs a directed topic-sentence-entity
graph and evaluates news articles against a knowl-
edge base. (4) XLNet (Yang, 2019), GPT-2 (Rad-
ford et al., 2019) and RoBERTa (Liu, 2019) are
pre-trained Transformer-based models fine-tuned
on the two datasets. (5) FAST (Zhong et al.,

3https://github.com/openai/gpt-2-output-dataset

Method
GROVER GPT-2 SemEval

ACC F1 ACC F1 ACC F1
GLTR 0.6040 0.5182 0.7784 0.7691 0.83 0.83

DetectGPT 0.6142 0.5018 0.7939 0.7002 0.8491 0.8460
CompareNet 0.5851 0.5306 0.6112 0.6103 0.7056 0.7042

XLNet 0.8156 0.7493 0.9091 0.9027 0.8451 0.8429
GPT-2 0.8274 0.8003 0.8913 0.8839 0.8743 0.8731

RoBERTa 0.8970 0.8963 0.9110 0.9104 0.871 0.8708
FAST 0.9270 0.9108 0.9357 0.9222 0.8767 0.8648
COCO 0.9275 0.9110 0.9418 0.9307 0.8893 0.8893

USTC-BUPT 0.6666 0.4 0.5 0.3333 0.8376 0.8334
FAML(ours) 0.9340 0.9339 0.9551 0.9550 0.9116 0.9116

Table 1: Performance on the test set of three datasets.

2020) is a Transformer-based model that combines
RoBERTa with GCNs. FAST establishes connec-
tions between entity node pairs within and across
sentences to capture co-occurrence patterns. (6)
COCO (Liu et al., 2023) is an enhanced version
of FAST, incorporating contrastive loss to bolster
the model’s robustness in low-resource environ-
ments. (7) USTC-BUPT (Guo et al., 2024) is the
second-ranked model from the competition on Se-
mEval dataset, which is a fine-tuned RoBERTa
model with category loss and domain classification
loss. The implementation details of our approach
and baselines are in Appendix B and Appendix C,
respectively.

4.3 Performance Comparison
Table 1 presents the results of the baselines and our
proposed model on three datasets. We observe that
the proposed FAML outperforms all the baselines
across all metrics in three datasets.

There are numerous similar trends in the three
datasets. Transformer-based methods generally
outperform statistics-based and knowledge-based
methods. Statistical methods focus on limited,
overly compressed features and depend on pre-
trained token probabilities without fine-tuning the
entire model. In contrast, Transformer-based meth-
ods show significant improvements as training data
increases, while statistical methods exhibit minimal
gains. Although CompareNet effectively captures
entity consistency between text content and the
knowledge base, its text features are encoded using
LSTM, which tends to underperform in compari-
son to Transformer models. This limitation may
affect CompareNet’s overall performance.

Compared to pure fine-tuning of LLMs such
as XLNet, GPT-2, and RoBERTa, models like
FAST, COCO, and FAML demonstrate superior
detection performance through the fine-tuning
paradigm. This enhancement occurs because
pure fine-tuning of LLMs mainly captures coarse-
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grained features, while FAST, COCO, and FAML
refine this paradigm by incorporating fine-grained
feature extraction. This added layer of granular-
ity significantly enriches the detection features,
which boosts overall performance. USTC-BUPT
performs differently across the three datasets. On
the GROVER and GPT-2 datasets, USTC-BUPT
makes significant prediction errors. It performs ad-
equately on the SemEval dataset, but still falls short
compared to the pure fine-tuning RoBERTa. We an-
alyze the reason for this phenomenon, noting that
the domain classification loss designed by the au-
thor (0 for the training set and 1 for the validation
set) is more beneficial for addressing the out-of-
distribution issues of the training and validation
sets (that is, the SemEval dataset). In contrast, this
domain loss may hinder the model’s training effec-
tiveness for independent and identically distributed
datasets.

FAST and COCO emphasize the connections
between entities within and across sentences but
overlook the authenticity of entity relationships.
FAML surpasses FAST and COCO, demonstrating
that analyzing machine-generated text characteris-
tics from the perspective of entity relationships is
an effective approach.

4.4 Ablation Analysis
To evaluate the effectiveness of each compo-
nent of our FAML model, we conduct the ab-
lation study by removing each component from
the entire model. (1) FAML(document, D)
is our backbone model, focusing solely on
document-level features extracted from RoBERTa.
(2) FAML(document+diff, DF) concatenates
document-level and entity comparison features,
where entity-level and sentence-level features
are not fused. (3) FAML(document+sentence,
DS) calculates a global representation by fus-
ing document-level and sentence-level features
without accounting for entity information. (4)
FAML(document+sentence+entity, DSE) is our
FAML model without entity comparison fea-
ture. (5) FAML(document+sentence+entity+diff,
DSEF) is the complete model presented in this
paper.

As shown in Figure 4, each component of FAML
contributes to improving the model’s overall perfor-
mance. The addition of entity comparison features
enhances the performance of both D and DSE on
three datasets, highlighting the benefit of incorpo-
rating factual information in detecting machine-

GROVER GPT-2 SemEval0.70
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Figure 4: Ablation study of FAML on three datasets in
terms of binary classification accuracy.

Fusion Units
GROVER GPT-2 SemEval

ACC F1 ACC F1 ACC F1
Gating 0.9340 0.9339 0.9551 0.9550 0.9116 0.9116

Concatenation 0.8670 0.8668 0.9412 0.9411 0.8563 0.8541
Add&Norm 0.9176 0.9174 0.9320 0.9318 0.8898 0.8897

Table 2: Performance of FAML w.r.t different fusion
units.

generated text. Furthermore, integrating entity-
level and sentence-level features leads to further im-
provements, demonstrating that fusing multi-level
fine-grained features is more effective than relying
solely on coarse-grained document features. The
results details are in Appendix D.

4.5 Different Fusion Units

In this section, we compare the effects of various
feature fusion units on model performance. Ta-
ble 2 presents the results of comparing the gating
unit, concatenation method, and Add&Norm. Gat-
ing units are utilized in our method (Equations 6,
7, 11, 12), with the information flow of features
regulated by calculating gating coefficients. The
concatenation method involves replacing the gating
unit by concatenating two features (represented as
[; ] in Equation 6). Add&Norm consists of adding
the two features and subsequently applying layer
normalization (see Equation 9). The design of
our gating unit yields the best performance for the
model. Compared to the direct concatenation and
Add&Norm methods, our gating unit acquires adap-
tive gating coefficients through learning, effectively
managing the fusion process between coarse and
fine granular features.

4.6 Case Studies

As shown in Figure 5, we conduct a case study by
presenting an example from the GROVER test set
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Burns lifts Sharks past Oilers 3-2 for 2nd win in 11 games
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… chases Edmonton Oilers' Connor McDavid (97) during the second period 
of an NHL hockey game Thursday, April 4, 2019, in Edmonton, Alberta. 
Edmonton Oilers' Leon Draisaitl (29) celebrates a goal against the San Jose 
Sharks during the second period of an NHL hockey game Thursday, April 4, 
2019, in Edmonton, Alberta. ...San Jose Sharks' Barclay Goodrow (23) is 
stopped by Edmonton Oilers goalie Anthony Stolarz (32) as Andrej Sekera (2) 
tries to defend during the first period …

Edmonton Oilers Connor McDavid 

San Jose Sharks

Barclay Goodrow

Andrej Sekera

Edmonton Oilers Connor McDavid 

San Jose Sharks

Barclay Goodrow

Andrej Sekera

Leon Draisaitl 

Edmonton Alberta

Anthony Stolarz

… Martin Jones stopped 29 shots, and Joe Pavelski scored his 16th of the 
season and 100th point of the season. …Milan Lucic scored the Oilers' lone 
goal, and Cam Talbot made 28 saves in his second straight game in 
goal. …The Oilers went ahead at 14:14 of the first period, on a power play, 
when Milan Lucic found himself in alone and beat Jones … Edmonton cut 
the lead in half 5:45 into the second, when Lucic banked a shot off Jones and 
into the net. …

Joe Pavelski Martin Jones 

Milan Lucic Edmonton Oilers

San Jose Sharks

Cam Talbot 

Edmonton

Joe Pavelski Martin Jones 

Milan Lucic Edmonton Oilers

San Jose Sharks

Cam Talbot 

Edmonton

Our Model: [0.9953, 0.0047] RoBERTa: [0.9126, 0.0874] Our Model: [0.0018, 0.9982] RoBERTa: [0.1174, 0.8826]

Anthony StolarzLeon Draisaitl 

Edmonton Alberta

Figure 5: A case study of our approach. Continuous words in orange indicate entity nodes extracted by REBEL and
can be linked to the knowledge base. Bold black lines indicate edges that exist in both the text entity graph and the
fact entity graph. Numbers in orange and blue indicate the predicted probabilities for the human-written text and the
machine-generated text, respectively.
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(a) Human-written news
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(b) Machine-generated news

Figure 6: Entity comparison features hdiff of human-
written news and machine-generated news. The x-axis
is the dimension of the feature vector.

that compares human-written news with machine-
generated news sharing the same title. Our model
correctly predicted the labels of both documents.
We can observe that although the contents of the
machine-generated news appear coherent, some
entity relationships are absent in the knowledge
base. In contrast, the textual entity graph of the
human-written news is a subgraph of the factual
entity graph. Some relationships are not men-
tioned in the human-written news but exist in the
knowledge base. Therefore, the entity features de-
rived from the textual and factual entity graphs in
human-written news will differ, but the difference
is smaller than that found in machine-generated

text. We visualize the entity comparison features
hdiff of the two news articles learned by our model
in Figure 6. The entity comparison feature in
human-written news has more zero values, indi-
cating that the difference between its textual and
factual entity feature is small. Conversely, the fea-
ture values for machine-generated news are larger.
This finding aligns with the analysis presented in
Figure 5. These observations demonstrate that our
model can effectively distinguish between human-
written and machine-generated text.

5 Conclusions

In this paper, we introduce FAML, a novel fact-
aware neural network designed to detect machine-
generated text by leveraging multi-level features.
We investigate the distinctions between machine-
generated and human-written text, with a partic-
ular focus on the presence of entity relationships.
We first extract fact-level, entity-level, sentence-
level, and document-level features using GCNs,
Transformer encoders, and the RoBERTa model.
These features are then fused, progressing from
fine-grained to coarse-grained representations. En-
tity comparison features are incorporated further
to enhance the document representation for the fi-
nal prediction. Experimental results demonstrate
that the components of our model collectively con-
tribute to performance improvements, with the full
model achieving substantial superiority over state-
of-the-art baselines across three datasets.
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Limitations

In this work, we investigate if adopting a factual
perspective can enhance the accuracy of identify-
ing machine-generated text. However, some limita-
tions remain in the application of this work. First,
the quality of the extracted entities and relation-
ships in the textual entity graph is limited by the
performance of the entity relationship extraction
model. There are instances where the extraction
of entities and relations is incomplete or inaccu-
rate, preventing the entity graph produced by the
model from fully representing the entity relation-
ship characteristics of the text. Incorrect entities
and relations can disrupt the model’s learning pro-
cess, so exploring more robust models in the future
may help address this issue. Second, since the
Wikipedia API limits request frequency and con-
current connections, a DBpedia knowledge base
containing Wikipedia data needs to be built locally
during training. This knowledge base contains lim-
ited information, which may result in incomplete
queries for the factual entity graph. Entity linking
can also lead to incomplete entity mappings. How-
ever, appropriate incomplete queries may enhance
the model’s generalization performance. In the
future, we can explore improved methods for utiliz-
ing knowledge bases to aid decision-making. Third,
our method is limited to detecting hallucinations of
inconsistent entity relations while excluding other
hallucinations, such as logical inconsistencies or
factual errors unrelated to entities. Forth, as re-
search into knowledge graph-assisted training and
reasoning for large language models continues, the
problem of factuality hallucination might gradu-
ally diminish. This may reduce the effectiveness of
the fact-awareness strategy we propose. As large
language models evolve, this process will require
continuous adjustments to our strategy to keep pace
with new developments.
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A Statistics of the datasets

Dataset
GROVER GPT-2

Train Val Test Train Val Test
#HWT 5,000 2,000 4,000 25,000 5,000 5,000
#MGT 5,000 1,000 4,000 25,000 5,000 5,000
Total 10,000 3,000 8,000 50,000 10,000 10,000

Table 3: Statistics of the GROVER and GPT-2 datasets.

Train Val Test
Source Wikipedia Wikihow Reddit wikipedia wikihow Reddit Outfox

davinci-003 500 500 500 0 0 0 500
ChatGPT 500 500 500 0 0 0 500
Cohere 500 500 500 0 0 0 500

Dolly-v2 500 500 500 0 0 0 500
BLOOMz 0 0 0 500 500 500 500

GPT-4 0 0 0 0 0 0 500
#HWT 6,000 1,500 3,000
#MGT 6,000 1,500 3,000
Total 12,000 3,000 6,000

Table 4: Statistics of the SemEval dataset.

B Experimental Settings

We utilize the pre-trained RoBERTa to extract the
initial representations of sentences and fine-tune
the parameters during training to obtain document-
level representations. The optimizer used for model
training is AdamW (Loshchilov, 2017). We set the
learning rate to 1e-5 and the batch size to 16. The
dimensions of the fact-level, entity-level, sentence-
level, and document-level representations are 128.
The number of heads and layers in the Transformer
encoder is 4 and 6, respectively. We conduct exper-
iments on 5 different seeds and report the average

test results. The knowledge base for querying en-
tity relationships uses DBpedia4, which contains
labels, wikilinks, and wikipedia-links data. The
REBEL model we used is the large version5. In
our experiments, all models fine-tuning RoBERTa
employ RoBERTa-Large. Compared to RoBERTa-
Base, RoBERTa-Large offers enhanced expressive-
ness and generalization capabilities. Table 5 dis-
plays the experimental results of RoBERTa-Base
and RoBERTa-Large on two datasets. RoBERTa-
Large significantly outperforms RoBERTa-Base
on the Grover dataset but shows only a slight im-
provement on the GPT-2 and SemEval datasets.
This discrepancy may stem from differences in the
datasets: Grover contains news data with domain-
specific features, while GPT-2 and SemEval con-
sists of web page data. As a general language
model, RoBERTa benefits from larger parameters
and more pre-training data, which enhances gen-
eralization, particularly for domain-specific tasks.
On the web page dataset, RoBERTa-Base already
performs well, and the main advantage of the larger
model—deeper model layers—has limited impact,
resulting in less improvement. We train and do
experiments on one NVIDIA A100 GPU on one
Ubuntu-based server. The maximum training epoch
is 30, and we apply early stopping when the vali-
dation loss stopped decreasing for 7 epochs. Our
model has the similar model complexity with base-
lines, like FAST and COCO. The total budgets for
training, validating, and testing the model on the
GROVER, GPT-2, and SemEval datasets are 2.8
hours, 14.4 hours, and 2.4 hours, respectively.

Model
GROVER GPT2 SemEval

ACC F1 ACC F1 ACC F1
Base 0.8290 0.8021 0.9081 0.9015 0.8625 0.8623
Large 0.8970 0.8963 0.9110 0.9104 0.871 0.8708

Table 5: Compariation results between RoBERTa Base
and Large versions.

C Details of the baseline models

• GLTR: we follow the settings of (Guo et al.,
2023) and select the number of tokens in the
Top-10, Top-100, Top-1000, and 1000+ ranks
from the GPT-2 medium predicted probability
distributions as features for training a logistic
regression classifier.

• DetectGPT: we follow the settings of Liu
4https://downloads.dbpedia.org/repo/dbpedia/generic/
5https://huggingface.co/Babelscape/rebel-large
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et al. (2023) and use T5-3B to perturb texts,
and Pythia-12B for scoring in the model. And
finally train a logistic regression classifier for
predictions.

• CompareNet: we follow the settings of the
original paper except for the dimensions of en-
tity embedding and node embedding, which
are 50 and 64, respectively. To ensure a fair
comparison, we exclude entity description in-
formation from the entity features.

• XLNet, GPT-2, RoBERTa: we fine-tune the
XLNet-base, GPT-2 small, RoBERTa-base
and -large, following the same fully connected
layer classifier as ours.

• FAST: we largely follow the settings of the
original paper and remove the next sentence
prediction score used to weigh sentences.

• COCO: we follow the settings of the original
paper and reproduce the results based on the
author’s open source code6.

• USTC-BUPT: we follow the settings of the
original paper and adopt the same classifier as
ours. The hyperparameter λ that balances the
predictor loss and the domain classifier loss is
searched in [0.1, 0.5, 1], and the best result is
finally achieved when λ = 0.1.

D Results Details of Ablation Analysis

Model
GROVER GPT2 SemEval

ACC F1 ACC F1 ACC F1
FAML 0.9340 0.9339 0.9551 0.9550 0.9116 0.9116
DSE 0.9227 0.9226 0.9433 0.9432 0.8986 0.8983
DS 0.9078 0.9078 0.9363 0.9361 0.892 0.8914
DF 0.9003 0.8996 0.9365 0.9363 0.8775 0.8770
D 0.8970 0.8963 0.9110 0.9104 0.871 0.8708

Table 6: Result Details of Ablation Analysis.

E Discussion on the GNN Model Used

Considering that the GCN model is straightforward,
we aimed to explore the impact of other GNN mod-
els on overall model performance by using Graph
Attention Networks (GAT) (Veličković et al., 2018)
instead of GCN to see if it can enhance the model’s
performance. The experimental results show that
the model’s performance deteriorated after adopt-
ing GAT, and the training did not converge. We
analyzed the reasons and concluded it was due to

6https://github.com/YichenZW/CohMGT-Detection

the instability of fine-tuning LLM and GAT joint
training. The entity and fact graphs we constructed
are not big in scale and are simple in structure. For
this type of graph data, GCN’s learning capability
is adequate. Meanwhile, GAT involves numerous
attention calculations, which increase the model’s
complexity and heighten its susceptibility to over-
fitting. Furthermore, all related baselines utilize
GCN. After thorough consideration, we opted for
GCN instead of GAT.
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