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Abstract

LLM:s often adopt an assertive language style
also when making false claims. Such “overcon-
fident hallucinations” mislead users and erode
trust. Achieving the ability to express in lan-
guage the actual degree of uncertainty around
a claim is therefore of great importance. We
find that “verbal' uncertainty” is governed by a
single linear feature in the representation space
of LLMs, and show that this has only moder-
ate correlation with the actual “semantic uncer-
tainty” of the model. We apply this insight and
show that (1) the mismatch between semantic
and verbal uncertainty is a better predictor of
hallucinations than semantic uncertainty alone
and (2) we can intervene on verbal uncertainty
at inference time and reduce confident hallu-
cinations on short-form answers, achieving an
average relative reduction of ~30%.

1 Introduction

Despite their remarkable capability in utilizing
their internal knowledge, LLMs often suffer from
hallucinations, stating or implying facts that are
not supported by either their input or by their train-
ing data (Ji et al., 2022; Xiao and Wang, 2021;
Bang et al., 2023; Xiong et al., 2023; Bang et al.,
2025). The issue is exacerbated when models pro-
duce hallucinations using language that suggests
high confidence. Such overconfidence can cause
users to rely too heavily on these responses (Zhou
et al., 2024a; Kim et al., 2024), possibly resulting
in harm, loss of trust in the model, or both.

* Equal Contribution
T Work done during Internship at Meta FAIR
In this paper, we employ the term ‘verbal’ to mean
‘pertaining to words rather than meaning or substance,” as
opposed to ‘spoken rather than written’ (refer to Merriam-
Webster’s definitions: https://www.merriam-webster.
com/dictionary/verbal). Readers may substitute ‘verbal
uncertainty’ with ‘expressed uncertainty’ throughout the text
if they find it preferable.
The code is available at https://github.com/
facebookresearch/verbal_uncertainty_feature_
calibration.
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Figure 1: Framework Illustration. We discover a lin-
ear verbal uncertainty feature (VUF) controlling model
uncertainty expression, and apply this insight to: (1)
Detect hallucinations arising from the miscalibration
between high semantic uncertainty (SU) and low ver-
bal uncertainty (VU); (2) Mitigate hallucinations by
intervening on activations along the VUF at inference,
aligning VU more with SU. For example, when asked
"What is the 29th largest city in England?", the model
initially answers "It’s Bournemouth" (high SU and low
VU). After VUF intervention, VU is improved to better
align with SU, and the response becomes "Hmm, maybe
Bournemouth?" — a nuanced expression of uncertainty.

While enhancing a model’s ability to generate
accurate knowledge is important, models inevitably
have knowledge gaps. In such cases, it is important
for models to express uncertainty about their knowl-
edge or altogether abstain from answering (Tomani
et al., 2024; Feng et al., 2024; Zhou et al., 2023;
Zhang et al., 2024b). We refer to this expression as
"verbal uncertainty (VU)" (see § 2.2). When faced
with questions close to their knowledge boundary,
they should qualify their answers with expressions
such as: “I am not sure but ...”, and when the answer
is squarely beyond such a boundary, they should re-
ply: “I don’t know”. However, LLMs lack reliable
mechanisms to convey their intrinsic confidence
in the correctness of generated content using the
degree of doubt expressed in their outputs (Zhou
et al., 2024b).

Our work begins with the analysis of the model
representation space. We show that, similarly to re-
fusal (Arditi et al., 2024) and other behaviours (Zou
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et al., 2023), the degree of uncertainty expressed
by a model is mediated by a single direction, which
we call the “Verbal Uncertainty Feature” (VUF).
Specifically, we show that the hidden states of input
questions answered with low and high VU can be
linearly separated. This allows us to use contrastive
pairs (Burns et al., 2023; Panickssery et al., 2023)
to identify a single difference-in-means direction
that can be intervened upon to control model ex-
pression of uncertainty.

Leveraging our findings, we study hallucinations
through the lens of uncertainty features. We high-
light the misalignment between VU and the un-
certainty about what meaning to convey in model
outputs, i.e., semantic uncertainty (SU), contribut-
ing to hallucinations (Fig. 1). We propose a novel
hallucination detection method by incorporating
VU and SU, outperforming detection methods that
rely solely on SU. Next, we propose a mitiga-
tion method, Mechanistic Uncertainty Calibration
(MUQC), that steers LLM activations along VUF to
calibrate VU with SU.

We demonstrate that MUC effectively reduces
confident hallucinations, achieving an average rel-
ative reduction of 29.6% in short-form QA tasks.
It also induces nuanced expressions of uncertainty
and achieves a 28.4% improvement in the align-
ment between verbal and semantic uncertainties.

Our main contributions are therefore threefold:

1. We discovered that verbal uncertainty is me-
diated by a single direction in representation
space, i.e., a linear Verbal Uncertainty Fea-
ture (VUF) (§ 3).

2. We detect hallucinations arising from the
misalignment between high semantic and low
verbal uncertainty by integrating both types
of uncertainty (§ 4.1).

3. We introduce Mechanistic Uncertainty Cali-
bration (MUC), an inference-time interven-
tion mechanism using VUFs to calibrate
verbal uncertainty with semantic uncertainty,
thereby mitigating hallucinations (§ 4.2).

We also introduce methods to quantify VU and
metrics that help characterize the calibration be-
tween the two uncertainties without requiring the
model to output numerical confidence estimates.
Overall, this work contributes to a better under-
standing of LLMs, shows how to reduce hallucina-
tions and make LL.Ms more trustworthy.

2 Background and Motivation

The miscalibration of semantic and verbal uncer-
tainty triggers overconfident hallucinations. To
bring the discussion into a quantitative framework,
we introduce some definitions and measures.

2.1 Semantic Uncertainty

Semantic Uncertainty (SU) refers to the intrinsic
uncertainty of an agent in the semantic meaning
expressed by a statement. It reflects the confidence
level of a model’s prediction, focusing on its mean-
ing and disregarding paraphrastic variations (Lin
et al., 2022; Kadavath et al., 2022; Mielke et al.,
2022). We measure SU as Semantic Entropy (Kuhn
et al., 2023) computed as follows: Given a question,
we first sample multiple answers, cluster them into
semantically equivalent groups, and then compute
the entropy over these clusters.

2.2 Verbal Uncertainty

Verbal Uncertainty (VU) quantifies the degree of
doubt a speaker expresses about a proposition P, ei-
ther explicitly or implicitly (e.g., "I doubt...", "Pos-
sibly..."). We formally define it as the complement
of the subjective probability a listener would asso-
ciate with P, conditioned on the utterance U and
contextual information C":

VU(U |C)=1-Pr(P|UC) (1)

In the specific case of short-form QA, this defi-
nition can be instantiated with U being the answer
given by an agent in response to a question C. An-
swer U; is more verbally uncertain than U; if a
listener would conclude that proposition P is more
probable based on answer Uy than Uy :

Pr(P|Us, C) > Pr(P|U, C) 2)
where, e.g.:

* P: "Bournemouth is the 29th largest city in
England"

» (' "What is the 29th largest city in England?"

e U;: "Hmm, maybe Bournemouth"

e Us: "Bournemouth"

We follow recent work in expression decisive-
ness quantification and employ "LLM-as-a-Judge"
to measure VU (Yona et al., 2024; Zheng et al.,
2023). Specifically, we sample multiple answers
for each question and prompt an auxiliary evalu-
ator LLM to directly assign a VU score to each
answer. The VU for a question is the average
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Figure 2: Evidence of verbal-semantic uncertainty
miscalibration. This plot presents the Kernel Density
Estimation (KDE) for samples from TriviaQA, catego-
rized into four classes. These classes are based on the
correctness of the answers generated by Llama3.1 and
the consistency in abstaining. Miscalibration is indi-
cated by high Semantic Entropy (proxy for SU) & low
VU in hallucinated answers (red), and low SU & high
VU in consistently abstained answers (blue).

VU score of all answers. > This approach has

been shown to produce reliable uncertainty esti-
mates that are highly correlated with human judg-
ments of perceived assertiveness (Yona et al., 2024;
Fagen-Ulmschneider, 2023). To further validate
the robustness of "LLM-as-a-Judge", we compute
sentence embedding cosine similarities with pre-
defined prototypical uncertainty expressions and
find a high correlation with VU scores returned by
LLMs (see Appendix E.2 for details).

2.3 Hallucinations arise from Miscalibration
between Semantic and Verbal Uncertainty

Ideally, VU aligns with SU to faithfully express
uncertainty in the semantic meaning of model out-
puts. However, observations indicate that the two
uncertainties are not always correlated, resulting
in hallucinations. In this section, we quantitatively
investigate and demonstrate the miscalibration be-
tween semantic and verbal uncertainty by analyz-
ing samples from TriviaQA using Llama3.1-8B *.

Following Kossen et al. (2024); Farquhar et al.
(2024), for each question, we generate a response
using a low temperature (0.1) to obtain the most
likely answer, and then sample multiple responses
using a high temperature (1.0). We categorize
the samples into two primary groups based on
the VU level of the most likely answer: Those
that include abstentions (abstained) and those that
do not (complying). We further subdivide these
categories. For complying responses, we assess

3See Appendix A for the prompt and Appendix C.2 for the
human evaluation of VU estimation.
4See Appendix D for examples and additional LLM.

whether the answers are hallucinated or correct
(hallucinated/correct). For abstained, we determine
if the model consistently refuses (i.e., all samples),
or if it complies at least once among the multiple
sampled answers (“partly abstained”) .

Fig. 2 shows that abstained responses have high
VU, which is expected. Consistently abstained
ones have low SU, but this is not a problematic mis-
match, rather an artifact of using semantic entropy
as a proxy for SU: these are cases where the model
“knows that it does not know” and handles them
appropriately. There is, however, a large segment
of complying answers with high SU and low VU
that are hallucinations ®: This is the focus of our
intervention. We show in § 4.1 that combining pre-
dictions of VU and SU helps detect hallucination.
Moreover, we show in § 4.2 that modulating VU
to better reflect SU is crucial to prevent confident
hallucinations and optimize the trade-off balance
between hallucinations and false abstention.

2.4 Semantic Space of LLM

Recent research suggests that language models rep-
resent features or concepts as linear directions in
their activation space (Mikolov et al., 2013; Boluk-
basi et al., 2016; Elhage et al., 2022; Park et al.,
2023; Ferrando et al., 2024). These features in-
clude harmlessness (Wolf et al., 2024; Arditi et al.,
2024), truthfulness (Marks and Tegmark, 2023; Li
et al., 2024), sentiment (Tigges et al., 2023), and
language (Bricken et al., 2023). Building on this,
we investigate the linear representation of VU to
validate its representation and control its level.

3 Verbal Uncertainty Feature (VUF)

In this section, we show that verbal uncertainty is
mediated by a single direction.

3.1 Feature Extraction

To identify the verbal uncertainty features (VUFs)
in the model’s residual stream activations, we adopt
the difference-in-means technique (Belrose, 2023),
which has been shown to effectively disentangle
key feature information (Panickssery et al., 2023;
Arditi et al., 2024; Yu et al., 2024b).

We collect question-answer pairs where
the model generates high-VU answers
(x €  Duncertain) and low-VU answers

SThe MANOVA results indicate significant differences in
4 groups with p-values < 0.0001.

®There are outlier hallucinations with low SU. For a de-
tailed analysis, please refer to Appendix D.5.
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(a) Llama-3.1-8B-Instruct

Layer O Layer 5 Layer 9 Layer 14 Layer 18 Layer 23 Layer 27 Layer 31
(b) Mistral-7B-Instruct-v0.3
Layer 0 Layer 5 Layer 9 Layer 14 Layer 18 Layer 23 Layer 27 Layer 31
(c) Qwen2.5-7B-Instruct
Layer 0 Layer 4 Layer 8 Layer 12 Layer 16 Layer 20 Layer 24 Layer 27

Figure 3: Visualization of verbalized certain (blue) vs. uncertain (pink) query representations exacted from selected
layers of (a) Llama-3.1-8B-Instruct, (b) Mistral-7B-Instruct-v0.3, and (c) Qwen2.5-7B-Instruct on TriviaQA, NQ-
Open, and PopQA. Please refer to Appendix E for the visualization of representations extracted from all layers.
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Figure 4: Compare VUFs exacted from differ-
ent datasets from Llama-3.1-8B-Instruct, Mistral-7B-
Instruct-v0.3, and Qwen2.5-7B-Instruct

(x € Deiertain), selected as the top/bottom
N pairs by VU score (computed via LLM-as-
a-Judge in § 2.2 with Llama3.1-70B-Instruct).
Answers are generated using an uncertainty-
eliciting prompt (provided in Appendix A.1). We
then calculate the L2-normalized difference in
mean last-token residual stream activations h()(z)
of each layer [ for these two question sets:

f‘gzj :E$NDuncenain [h(l) (x>] - IEx"/Dcertain [h(l) (',I;)]
3)

l (1 (1
riy = /00 @)

3.2 Discovery of Linear Verbal Uncertainty
Features

To empirically demonstrate the VUFs explained
above, we adopt three closed-book short-form QA
datasets: TriviaQA (Joshi et al., 2017), NQ-Open
(Kwiatkowski et al., 2019), and PopQA (Mallen
et al., 2022); and consider the following models:
Llama3.1-8B-Instruct (Dubey et al., 2024), Mistral-
7B-Instruct-v0.3 (Jiang et al., 2023), and Qwen2.5-
7B-Instruct (Yang et al., 2024) 7.

"For simplicity, we will refer to them as Llama3.1, Mistral,
and Qwen2.5, respectively.
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Figure 5: Mean model-generated answer verbal uncer-
tainty on three QA datasets with varying degrees of
inference-time VUF intervention (modulated by the in-
tervention intensity «).

Visualization We extract the activations of the
last token for each question at each layer from
Duncertain and Deertain and project them into a 2D
space using PCA. Fig. 3 shows linear separabil-
ity of certain/uncertain clusters, starting from the
middle layers. This strongly indicates that r&% rep-
resents a meaningful linear direction that reflects
the VU level of questions in hidden states. We refer

to rgzj as VUFs.

Effective Layer Selection To identify the effec-
tive layers of VUFs, we analyze VUFs obtained
from each layer of three different models. We
measure the cosine similarity of distinct VUFs
extracted from TriviaQA, NQ-Open, and PopQA
datasets, respectively. The results presented in Fig.
4 show a high cosine similarity between VUFs
from different datasets, particularly in the middle
and subsequent layers. This pattern is aligned with
visualization and consistent across all models and
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datasets we examined. Observations from both vi-
sualization and similarity across datasets indicate
that reliable VUFs are best extracted from the mid-
dle to the last layers.

Causal Validation We validate the causal con-
nection between VUFs and the model’s VU by ana-
lyzing the generation behavior as we modulate the
strength of the corresponding feature through sim-
ple linear interventions. Inspired by Li et al. (2024),
we intervene on model activations of all tokens by
steering them along a set of VUF directions.

For each layer [, we extract VUs r&% € Rdmodet,
Specifically, the VU feature vector rg% serves as
a directional guide for steering activations, as de-
scribed in the equation below:

WO (z) « hO(z) + o x ) (5)
where « is the intensity of intervention, and rgl)J
is the verbal uncertainty feature at layer [. The re-
sults presented in Fig. 5 show that adding VUFs to
model activations (« > 0) increases the VU of the
model outputs. Conversely, removing VUFs from
activations (a < 0) decreases this uncertainty. As
the intensity of VUFs (|a|) gets stronger, the VU
scores exhibit greater changes. This trend remains
consistent across all models and datasets we stud-
ied. This shows the potential of VU calibration in
model generation. We will further explore how to
leverage this phenomenon in §4.2.

Interestingly, while Qwen2.5 exhibits a similar
trend, it is significantly less sensitive than Llama3.1
and Mistral. This is due to the VUF normalization.
Qwen embeddings have larger norms, resulting in
longer distances between clusters.

To address potential circularity concerns from
using LLM in both VUF extraction and VU evalu-
ation, we validate our findings with an alternative
VUF extraction method, detailed in Appendix E.5.

VUFs are Consistent Across Different Datasets
To investigate the generalization of VUF across
datasets, we use VUFs extracted from TriviaQA to
control the VU level of other datasets: NQ-Open
and PopQA. Figure 6 shows that adding or remov-
ing TriviaQA VUPFs increases or decreases the VU
of model outputs for these datasets. These two
findings indicate that VUFs are consistent across
different datasets, suggesting that a universal VUF
can be derived and utilized in our experiments fur-
ther in the paper. Similar results using other VU
scores are provided in Appendix E.4.
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Figure 6: Causal Validation on NQ-Open and PopQA
with the VUF extracted from the OOD dataset TriviaQA.

Therefore, once we identify the appropriate lay-
ers for each model, these selections remain consis-
tent across different datasets, eliminating the need
to repeat the selection process for other datasets.

4 Verbal Uncertainty and Hallucination

Hallucinations arise from a miscalibration between
VU and SU, where the model fails to express its
high uncertainty in its generated output. Taking
advantage of this miscalibration, we can detect
hallucinations (§ 4.1). Furthermore, we mitigate
confident hallucinations by calibrating these two
uncertainties using VUFs discovered in § 3 (§ 4.2).

4.1 Hallucination Detection with Semantic
and Verbal Uncertainty

We propose to detect hallucinations by leveraging
both verbal and semantic uncertainties. Our ap-
proach utilizes a simple logistic regression model to
predict the presence of hallucinations. We demon-
strate that combining VU with SU significantly
enhances the detection performance.

Measuring Semantic Entropy (our proxy for SU)
requires generating multiple samples and running
auxiliary models (Farquhar et al., 2024). We there-
fore consider training Uncertainty Probes for uncer-
tainty quantification (Kossen et al., 2024) to ensure
cost-efficiency. These probes are linear models
trained on the hidden states of LLMs to predict
numerical uncertainty values. The hidden states
are extracted from the last token of the question
and sourced from multiple layers within the LLM 3.
During testing, the input to the logistic regression
model consists of predicted verbal and semantic
uncertainties obtained from two regressor probes.’

8Please refer to Appendix F.1 for implementation details.
“Probes trained as binary classifiers over thresholded con-
tinuous values perform similarly, see Appendix F.2.
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Llama Mistral Qwen
AUROC ACC | AUROC ACC | AUROC ACC

Semantic ~ 79.21 81.1 71.51 74.6 72.18 72.0

Dataset Feature

TriviaQA Verbal 72.1 80.1 68.20 72.4 72.8 72.7
Combined  79.71 80.8 72.99 74.6 74.71 72.7

Semantic ~ 65.29 70.7 64.47 62.1 56.74 53.6

NQ-Open Verbal ~ 54.04 712 65.26 62.5 61.85 60.7
Combined  66.02 70.3 68.96 64.8 62.36 58.7

Semantic ~ 71.16 81.2 66.03 71.1 53.44 71.7

PopQA Verbal 62.30 81.0 71.13 71.7 75.66 76.2
Combined  75.66 81.1 73.82 75.7 75.43 76.0

Table 1: Detection Results based on Uncertainty for
Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, and
Qwen2.5-7B-Instruct.

Our method
Calculated Probe-Predicted
AUROC ACC | AUROC ACC | AUROC ACC AUROC ACC
TriviaQA  66.85 66.0 64.83 535 79.71 80.8 73.53 80.1
NQ-Open  54.07 53.9 56.29 49.3 66.02 70.3 57.15 71.3
PopQA 70.17 65.6 59.33 449 75.66 81.1 74.76 81.0

Dataset SEP EigenScore

Table 2: Detection Results on Llama-3.1-8B-Instruct.
‘Calculated’ means that the SE feature is computed after
sampling multiple answers, ’Probe-Predicted’” means
that SE is as predicted by a probe that takes as input
the embeddings of the last token of the question, and
therefore does not require sampling.

To evaluate hallucination detection, we fol-
low Kossen et al. (2024); Orgad et al. (2024) and
adopt the area under the receiver operating char-
acteristic curve (AUROC) as the main metric. We
also use accuracy (ACC) as a reference metric.

Baselines We adapt SEP (Kossen et al., 2024)
that trains a probe to predict binarized seman-
tic entropy based on hidden states. We employ
the sentence-form and token-before-generating
settings and classify abstained samples as non-
hallucinated. Additionally, we replace the semantic
entropy in SEP with Eigenscore (Chen et al., 2024).

Result Tab. 1 shows that incorporating VU along-
side SU improves detection performance for all
models. The accuracy when using probe-predicted
uncertainties is similar to that obtained when using
calculated SU (Tab. 2). This is important because
it means that it is possible to predict a high risk of
hallucination already after the prefill stage of de-
coding, before starting autoregressive generation.

4.2 Hallucination Mitigation via
Inference-time Mechanistic Uncertainty
Calibration

In § 3, we observed the existence of universal VUFs
extracted from the middle layers to the last, which
enable us to modulate the VU degree in model
responses. Building on the insights, we propose
Mechanistic Uncertainty Calibration (MUC). This

method leverages VUFs to calibrate VU with SU.
For each layer [, we extract VUF from the last to-
ken of question, r&% € R%model . We then modulate
the influence of these features through straightfor-
ward linear interventions on all tokens in detected
hallucinated responses. Specifically, r&% serves as

a directional guide for steering activations:

r® (z) « h(l)(:c) + () * r&% (6)

where the magnitude of intervention is the gap be-
tween min-max normalized SU and VU 1°:

asu(z) = clip(su() porm —vu(z), 0, maxy) (7)

We show the existence of universal VUFs that
can be pre-computed, reducing computation over-
head. Our method leverages the model’s under-
utilized inherent ability to express nuanced uncer-
tainty, enhancing its management and communica-
tion of confidence levels.

Evaluation Metrics To evaluate the hallucina-
tion level and the calibration of verbal and semantic
uncertainties, we use the following metrics:

* Overall Hallucination Rate: The proportion of
samples where the model provides an answer
not entailed by golden answer without refusal.

* Confident Hallucination Rate: The propor-
tion of samples not entailed by the golden
answer with a low VU below a predefined
threshold. The threshold is identified by mini-
mizing the sum of squared distances from VU
to the threshold (Kossen et al., 2024).

* Correctness Rate: The proportion of samples
entailed by the golden answer.

» Refusal Rate: The proportion of samples re-
fusing to answer the question.

* VU/SU Disagreement Rate: The proportion of
samples where SU and VU disagree, meaning
one is above the threshold while the other is
below. A lower disagreement rate suggests
that the two uncertainties are well-calibrated.

* Correlation Coefficient: The correlation co-
efficient between SU and VU measures the
strength and direction of the linear relation-
ship between two uncertainties.

* VU for Incorrect answer: The average of VU
for incorrect responses. VU should be rela-
tively high, indicating that the model is less
confident in its incorrect outputs.

10please refer to Appendix G.1 for details
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Hallucination Rate| VU/SU . VU for VU for
Dataset | Conf./Overall Conf. Overall Correct. Rate | Refusal Rate Disagree. Rate | Correlationt Incorrect T Correct
before after after before  after | before after | before after before after | before after | before after
Llama3.1-8B
TriviaQA 233 19.0 21.2 71.3 70.6 54 8.2 | 21.50 21.40 059 0.63 | 050 0.55| 0.16 0.16
NQ-Open 40.2 26.2 32.7 50.7 47.7 9.1 19.6 | 35.10 18.90 038 0.69 | 037 054 | 0.17 0.24
PopQA 33.7 21.6 232 23.5 21.0 42.8 558 | 50.70 44.70 005 034 | 061 073| 0.17 0.20
Average 324 22.3 25.7 48.5 46.4 19.1 279 | 35.80 28.30 034 055 | 049 061 | 0.17 0.20
Mistral-7B
TriviaQA 30.2 19.7 26.8 67.9 67.0 1.9 6.2 27.50 16.80 046 0.66 | 0.19 0.39 0.04  0.05
NQ-Open 522 40.8 46.9 41.7 39.4 6.1 13.7 | 46.80 19.80 024 0.58 | 023 040 | 0.07 0.10
PopQA 58.2 26.7 325 26.4 239 154  43.6 | 50.80 28.50 0.15 053 | 030 0.64 | 0.07 0.15
Average 46.9 29.1 354 453 434 7.8 21.2 | 41.70 21.70 028 0.60 | 020 0.50 | 0.06 0.10
Qwen2.5-7B
TriviaQA 37.9 234 34.4 58.6 58.1 35 7.5 | 27.10 22.20 057 059 | 043 051 | 0.14 0.14
NQ-Open 61.6 46.8 56.5 304 30.1 8.0 13.4 | 4450 32.50 031 038 | 039 046 | 0.18 0.19
PopQA 44.8 33.6 38.3 18.1 16.4 37.1 453 | 46.80 43.00 008 022 | 069 0.75| 021 0.21
Average 48.1 34.6 43.1 35.7 349 162  22.1 | 39.50 32.60 032 039 051 057 | 017 0.18
Llama3.1-70B

TriviaQA 12.1 10.1 11.8 87.0 86.8 0.9 14 75 71 071 0.80 | 029 035| 0.06 0.07
NQ-Open 35.7 323 34.0 60.8 59.5 35 6.5 21.1 15.1 049 073 | 027 036 | 0.08 0.09
PopQA 414 28.0 35.2 44.6 424 140 224 | 222 14.8 0.59 075 | 048 0.62 0.17 0.18
Average 29.7 23.5 27.0 64.1 62.9 6.1 10.1 | 169 12.3 060 076 | 035 044 | 0.10 0.11

Table 3: Mitigation Results for Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, Qwen2.5-7B-Instruct, and Llama-
3.1-70B-Instruct. ‘Before’ represents the original generation and ‘after’ represents the generation after Mechanistic
Uncertainty Calibration. The original generation is always confident, so there is no difference between ‘Confident’

and ‘Overall’.

Setting Conf. Hallu. Disagree. Corr:t VU for VU for Setting Conf. Hallu. Disagree. Corr:t VU for VU for
Rate | Rate | Incorrectt correct Rate | Rate | Incorrect? correct
TriviaQA TriviaQA
w/ calculated Us 19.0 21.4 0.63 0.55 0.16 before 233 21.5 0.59 0.5 0.16
wi predicted Us 223 135 0.86 0.49 0.20 w/ Rand 20.1 224 0.59 0.5 0.17
NQ-Open w/ VUF 19.0 214 0.63 0.55 0.16
w/ calculated Us 26.2 18.9 0.69 0.54 0.24 NQ-Open
w/ predicted Us 28.5 25.1 0.65 0.48 0.26 before 40.2 35.1 0.38 0.37 0.17
PopQA w/ Rand 35.2 26.7 0.45 0.38 0.17
w/ calculated Us 21.6 447 0.34 0.73 0.20 w/ TriviaQA VUF 26.2 19.6 0.70 0.54 0.24
w/ predicted Us 29.7 423 0.41 0.59 0.39 w/ VUE 262 189 0.69 0.54 0.24
PopQA
before 337 50.7 0.05 0.61 0.17
Table 4: Ablation Study Results for Llama-3.1-8B- w/ Rand 2838 476 0.16 0.63 0.18
Instruct, showing the impact of replacing calculated WITRQAVLE 22 0o Py

uncertainty values with values predicted by probes on
the hidden state of the last token of the question.

* VU for Correct answer: The average of VU
for correct responses. This serves as a ref-
erence metric to ensure that VU for correct
answers is relatively stable.

Result We compare results before and after ap-
plying MUC with calculated uncertainties in Tab. 3.
MUC significantly reduces confident hallucina-
tions at the cost of a small decrease in Correctness
Rate !'. The decrease in VU/SU Disagreement
Rate and increase in Correlation Coefficient show
improved calibration between VU and SU across
models and datasets. While VU for incorrect an-

"The correctness rate decreases when the correct answer
has high SU and MUC leads to an abstention. This drop stems
from noise in measuring SU, as diverse additional information
in sampled answers can lead to a high calculated semantic
entropy (see Appendix G.3 for an example). Different trade-
offs between hallucination and correct rate can be obtained by
varying the intervention strength, with the optimal trade-off
being application-dependent (see Appendix G.4 for details).

Table 5: Ablation Study Results for Llama-3.1-8B-
Instruct when the VUF from TriviaQA, NQ-Open, and
PopQA datasets is replaced with: (1) VUF extracted
from TriviaQA only, applied to intervene on NQ-Open
and PopQA samples. (2) random vectors, applied to
intervene on three datasets.

swers increased significantly, indicating reduced
confidence, VU for correct answers remained rela-
tively unchanged after calibration '2. The consis-
tent trend across different models and sizes high-
lights the approach’s generality and effectiveness.

As shown in Tab. 4, using probe-predicted un-
certainties for mitigation yields somewhat worse
but comparable results to calculated uncertainties.
It suggests probes can effectively predict uncertain-
ties and reduce hallucinations.

To demonstrate the generality across datasets,

"2The increase in VU for correct answers is not necessarily
wrong, as it stems from the cases where the model is semanti-
cally uncertain despite the answer being correct.
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we apply VUFs derived from TriviaQA with cal-
culated uncertainties to mitigate hallucinations in
NQ-Open and PopQA. Tab. 5 shows a decrease in
hallucination rate, supporting the finding in § 3.2
that VUFs are consistent across datasets and can
effectively control VU levels in other datasets.

To prove the importance of VUF in MUC, we
perturb activations with random vectors with the
same « and value range as the VUF when the hallu-
cination detector triggers. Tab. 5 shows that while
random perturbations slightly improve the baseline,
intervening on the VUF direction is significantly
more effective.

5 Related Work

We discuss relevant work on linear feature discov-
ery and model steering in § 2.4. Here we present
related work on other aspects of this work.

5.1 Uncertainty in LLMs

Recent advances in LLMs have broadened uncer-
tainty estimation research, addressing challenges in
open-ended generation (Huang et al., 2024; Duan
et al., 2024). Some methods focus on token-level
uncertainty, like predictive confidence or entropy,
but they do not capture the uncertainty in seman-
tic meaning. Resampling-based methods address
this limitation, leveraging self-consistency across
multiple responses (Duan et al., 2024; Zhang et al.,
2024a; Farquhar et al., 2024; Wang et al.; Malinin
and Gales, 2020; Chen et al., 2024; Gao et al.,
2024). Other works focus on the verbal uncer-
tainty expressed by models. Mielke et al. (2022)
defines the verbalized expression of confidence as
"linguistic confidence" and manually annotates re-
sponses by confidence level. Tomani et al. (2024)
introduces the concept of "in-dialogue uncertainty"
by counting predefined hedge words.

5.2 Hallucination Detection and Mitigation

Detection Studies have demonstrated that model
uncertainty can serve as an indicator for identifying
hallucinations (Farquhar et al., 2024; Chen et al.,
2024; Zhang et al., 2023; Xiao and Wang, 2021).
Other works have explored using the internal states
of LLMs for detection (Azaria and Mitchell, 2023;
Ji et al.; Snyder et al., 2023; Kadavath et al., 2022).
Additionally, some studies have focused on build-
ing annotated datasets and fine-tuning hallucination
detectors on them (Ji et al., 2024; Gu et al., 2024;
Mishra et al., 2024; Li et al., 2023a; Muhlgay et al.,

2024; Varshney et al., 2023; Yang et al., 2023). To
the best of our knowledge, ours is the first work to
show the effectiveness of combining VU and SU
for hallucination detection.

Mitigation One approach to mitigating halluci-
nations is generating more faithful and factual an-
swers include model editing (Daheim et al., 2023;
Ji et al., 2023a), decoding rectification (Rebuffel
et al., 2022; Chuang et al., 2023; Shi et al., 2023;
Li et al., 2023b), mechanistic fine-tuning (Yu et al.,
2024a; Wu et al., 2024), re-ranking (Gu et al., 2024)
and variants of the Chain-of-Thought approach in-
volving verification or reflection (Dhuliawala et al.,
2023; Lei et al., 2023; Ji et al., 2023b; Wang et al.,
2023). Alternative methods for improving the trust-
worthiness involve the use of abstention and con-
trolled stopping mechanisms (Cheng et al., 2024;
Duan et al., 2024; Tomani et al., 2024; Feng et al.,
2024; Zhang et al., 2024b). These works aim to
completely refrain from answering the question
when the model is uncertain, thereby reducing the
likelihood of hallucinations.

Unlike abstention which involves refusing to an-
swer in the face of uncertainty, we aim to incorpo-
rate the uncertainty in the output text form. With
similar motivation, Band et al. (2024) trains models
to verbally convey the probability that their claims
are correct; Stengel-Eskin et al. (2024) fine-tunes
the model based on user feedback regarding the
perceived correctness of answers. Our work does
not involve fine-tuning, additional system prompt
design, or sampling methods required by previous
mitigation works.

6 Conclusion and Future Work

We address the critical issue of hallucinations with
overconfidence in LLMs. We demonstrate that
an underlying issue contributing to hallucinations
is the misalignment between models’ intrinsic se-
mantic uncertainty (SU) and their expressed verbal
uncertainty (VU). We discover the existence of a
VU Feature (VUF), a single direction in the repre-
sentation space that governs the VU. We leverage
these insights in two applications: (1) A halluci-
nation detection method integrating SU and VU,
outperforming methods relying solely on SU; (2)
A mitigation method, Mechanistic Uncertainty Cal-
ibration (MUC), aligning VU with the model’s SU
by steering activations along the VUF direction
during inference. Our findings suggest that LLMs
can benefit from a more nuanced expression of
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uncertainty. Empirical results demonstrate a sig-
nificant reduction in hallucinations and improved
alignment, thereby enhancing the trustworthiness
and reliability of LLM outputs. Future work could
enhance VUF’s generalizability across LLM archi-
tectures and extend its use to long-form QA tasks.
Exploring how models represent uncertainty from
factors like underspecified questions, controversial
topics, and ethical dilemmas would be valuable.

Limitations

While our discovery of the Verbal and Semantic
Uncertainty Framework (VUF) and the proposed
method show promise in reducing hallucinations
by calibrating uncertainty, there are several lim-
itations to consider. Firstly, our investigation is
based on short-form (sentence-length) QA datasets,
which may not fully capture the complexity of real-
world scenarios. Additionally, although we have
demonstrated improvements in uncertainty calibra-
tion, the method’s reliance on predefined probes
and scores may limit its adaptability to unforeseen
contexts or novel queries. Lastly, our approach
primarily focuses on enhancing the model’s inter-
nal mechanisms for expressing uncertainty, which
does not necessarily lead to correcting hallucinated
answers. Future work should address these aspects
to develop a more comprehensive solution for miti-
gating hallucinations in LLMs.
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A Prompts

A.1 Answer Generation Prompt

Prompt to generate an answer for the given ques-
tion.

Answer Generation Prompt Please answer the fol-
lowing question.

Question: {question}

Answer:

To calculate the verbal uncertainty of a question,
we encourage LLM to express uncertainty.

Answer Generation Prompt for Verbal Uncer-
tainty

Answer the following question using a succinct (at
most one sentence) and full answer. If you are un-
certain about your answer to the question, convey
this uncertainty verbally by precisely hedging this
answer.

A.2 LLMe-as-a-Judge Accuracy Prompt

Prompt for LLM-as-a-judge of accuracy, which
asks to compare the golden answers and the pre-
dicted answer:

Prompt for Accuracy Judge We are assessing the
quality of answers to the following question: {ques-
tion} The following are expected answers to this
question: {golden answers} The proposed answer
is: {predicted answer} Within the context of the ques-
tion, does the proposed answer mean the same as any
of the expected answers? Respond only with yes or
no. Response:

A.3 LLMe-as-a-Judge Decisiveness Prompt

Prompt to output a decisiveness score between 0
and 1 for the question and candidate answer.

Verbal Uncertainty Judge Prompt

You will be given a question and a proposed answer
generated by a language model.

Your task is to output a decisiveness score: a num-
ber in [0,1] representing how certain the language
model is about the truthfulness of its generated an-
swer, judged solely based on the provided answer.
You should pay special attention to the usage of any
hedging modifiers in the original answer, used to con-
vey uncertainty in the truthfulness of the answer. A
score close to 1.0 indicates that the model is very
certain about the truthfulness answer. And a score
close to 0.0 means that the model is highly uncertain,
and the answer likely contains some hedging expres-
sions. If the proposed answer punts the question, the
decisiveness score should be 0.0.

Here are some examples:

Question: criminal minds episode where jj becomes
a profiler.

Proposed answer: I think JJ officially becomes a
profiler in Criminal Minds season 6, episode 2.
Decisiveness score: 0.8

Question: criminal minds episode where jj becomes
a profiler.

Proposed answer: JJ officially becomes a profiler in
Criminal Minds season 6, in either the first or second
episode.

Decisiveness score: 0.5

Question: criminal minds episode where jj becomes
a profiler.

Proposed answer: I'm not really sure about this, but
I think the episode in which JJ officially becomes
a profiler in Criminal Minds may be episode 2 in
season 6.

Decisiveness score: 0.6

Question: criminal minds episode where jj becomes
a profiler.

Proposed answer: I don’t know which episode you’re
referring to.

Decisiveness score: 0.0

B Datasets

To empirically demonstrate the VUFs explained
above, we adopt three closed-book short-form QA
datasets: TriviaQA (Joshi et al., 2017), NQ-Open
(Kwiatkowski et al., 2019), and PopQA (Mallen
et al., 2022).

TriviaQA '3 consists of over 650,000 question-
answer-evidence triples, including 95,000 question-
answer pairs from trivia enthusiasts. Each question
is supported by an average of six evidence docu-
ments. We use the RC version and sample 10,000
instances from the training set and 1,000 from the
validation set for validation and 1,000 from the
validation set for testing.

NQ-Open '* is an open-domain QA benchmark
derived from Natural Questions, focusing on En-

13https: //huggingface.co/datasets/mandarjoshi/
trivia_ga

14https: //huggingface.co/datasets/
google-research-datasets/ng_open
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glish Wikipedia content. We sampled 10,000 in-
stances from the training set and 1,000 from the
validation set for validation and testing.

PopQA '3 features 14,000 entity-centric QA
pairs generated from Wikidata tuples. It includes
annotations for subject and object entities, relation-
ship types, and Wikipedia page views. We sampled
10,000 instances for training, 1,000 for validation,
and 1,000 for testing.

C Uncertainty Calculation

C.1 Experimental Details

We adhere to the generation settings in the previous
paper (Kossen et al., 2024; Farquhar et al., 2024)
when calculating semantic uncertainty. We input
a question into the language model and sample 10
sequences, using a temperature of 1 with nucleus
sampling (P = 0.9) and top-K sampling (K = 50).
Additionally, we generate a single sequence at a
low temperature (0.1) to estimate the model’s most
likely answer to the query, which aids in assessing
potential hallucinations. The generation process is
conducted using a GPU H100.

C.2 Human Evaluation for LLLM-as-a-Judge

We conduct a human evaluation on the judgment
of verbal uncertainty, and found high correlations
between human annotators and the LLM judge in
deciding the answer’s verbal uncertainty. In partic-
ular, we randomly sampled 50 pairs of TriviaQA
questions and their Llama-3.1-70B-generated an-
swers. 4 authors of this paper then manually an-
notated an integer decisiveness score on a scale
of 1 to 5, where 1 means highly uncertain an-
swers and 5 means highly certain ones (see be-
low for the full prompt provided to the human
annotators). We found a strong Spearman cor-
relation between the average human-judged de-
cisiveness and Llama-judged decisiveness scores
(p = 0.804,p < 2.07 x 10712), as well as a
strong inter-annotator judgement correlation (p =
0.729,p < 3.16 x 1079).

15https://huggingface.co/datasets/akariasai/
PopQA

Dataset ) Abstained Complying
Consistently Partly Hallucinated Correct
Abstained  Abstained
TriviaQA 14 6.7 20.3 71.6
NQ-Open 32 9.0 28.3 59.5
PopQA 31.0 24.9 17.2 26.9

Table 6: Proportion of four types of responses: cor-
rect, hallucinated, partly abstained, and consistently
abstained.

Verbal Uncertainty Judge Instruction for Human
Annotators

You will be given a question and a proposed answer
generated by a language model.

Your task is to output an integer decisiveness score
on a scale of 1 to 5 representing how certain the lan-
guage model is about the truthfulness of its generated
answer, judged solely based on the provided answer.
You should pay special attention to the usage of any
hedging modifiers in the original answer, used to con-
vey uncertainty in the truthfulness of the answer. A
score of 5 indicates that the model is very certain
about the truthfulness of the answer. And a score of 1
means that the model is highly uncertain, and the an-
swer likely contains some hedging expressions. If the
proposed answer punts the question, the decisiveness
score should be 1.

Here are some examples:

Question: criminal minds episode where jj becomes
a profiler.

Proposed answer: 1 think JJ officially becomes a
profiler in Criminal Minds season 6, episode 2.
Decisiveness score: 4

Question: criminal minds episode where jj becomes
a profiler.

Proposed answer: I'm not really sure about this, but
I think the episode in which JJ officially becomes
a profiler in Criminal Minds may be episode 2 in
season 6.

Decisiveness score: 3

Question: criminal minds episode where jj becomes
a profiler.

Proposed answer: I don’t know which episode you’re
referring to.

Decisiveness score: 1

\.

D Miscalibration between Semantic and
Verbal Uncertainties

D.1 Proportion

Tab. 6 shows the proportion of four types of ques-
tions classified by the level of SU and VU for
Llama-3.1-8B-Instruct.

Each example includes the following compo-
nents:

* Question: The query or prompt being ad-
dressed.

* Answer to be Evaluated: The most likely
response under assessment for its level of hal-
lucination.
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¢ Golden Reference: The correct and verified

D.2

answer to the question.

Semantic Entropy: A measure of the vari-
ability or uncertainty in the responses.

Sampled Responses: A collection of ten re-
sponses, each marked with a semantic cluster
index. Responses sharing the same index be-
long to the same semantic group, indicating
they have similar meanings or interpretations.

Consistently Abstained Examples

Question: Which TV creatures ate Blue
String Pudding?

Answer to be Evaluated: I’m not aware of
any information about TV creatures eating

Blue String Pudding.
Golden Reference: ['The Soup Dragon’,
’Clangers’, Iron Chicken’, ’The

Iron Chicken’, ’Soup Dragon’, ’'THE

CLANGERS’, "The Clangers’]

¢ Semantic Entropy: 0.00
* Sampled Responses:

— 0TIam sorry, but I don’t have information
about TV creatures eating Blue String
Pudding.

— 0 I’m not aware of any information about
TV creatures eating blue string pudding.
This may be a specific reference

— 0 I don’t have information about the TV
creatures eating Blue String Pudding.

— 0 I’'m not aware of any specific TV show
that features a scene where a creature
eats Blue String Pudd

— 0 Idon’t have information about the TV
creatures that ate Blue String Pudding.
Can you provide more

— 0 I am sorry, but I do not have infor-
mation about TV creatures that ate Blue
String Pudding.

— O Iam sorry, I do not have information on
TV creatures eating blue string pudding.
Can I help you?

— 0 I’'m not aware of the specific context or
show you’re referring to.

— 0 I’'m sorry, but I am not aware of a spe-
cific answer that relates to a type of TV
creature

— 0 Ido not have information on which TV
creatures ate Blue String Pudding.
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D.3 Partly Abstained Examples

* Question: The opera The Tsar Sultan con-

tains what famous musical piece?

Answer to be Evaluated: The opera "The
Tsar Sultan" is a work by Nikolai Rimsky-
Korsakov. However, I am unable to verify if
it contains a famous musical piece.

Golden Reference: [ The Flight of the Bum-
ble Bee’, ’The flight of the bumble bee’,
"Flight of the Bumble-bee’, *The flight of
the bumblebee’, *The Flight of the Bum-
blebee’, "Flight of the Bumblebee (Rimsky-
Korsakov)’, ’Flight of the Bumble Bee’,
’Flight of the bumble bee’, *Flight of the bum-
blebee’, *Flight of the Bumblebee’]

* Semantic Entropy: 2.30

* Sampled Responses:

— 0 The opera "The Tsar Sultan" is by
Nikolai Rimsky-Korsakov. "Song of
the Valkyries" or "Song of the Dutch-
man" are not well known famous musical
pieces by this opera.

— 1 The Tsar Sultan is an opera composed
by Nikolai Rimsky-Korsakov. It contains
the famous musical piece "Song of the
Invisible One" and "Song of the Fisher-
man," but the most well-known piece in
this opera is (hallucinated)

— 2 The Tsar Sultan is an opera by Nikanor
Villamil, composed in 1836.

— 3 The famous musical piece from the
opera 'The Tsar Sultan’ is the famous
aria "Kalmusinkoy". (hallucinated)

— 4 The opera "The Tsar Sultan" was writ-
ten by Niccolo Jommelli.

— 5 The Tsar Sultan, an opera by Giuseppe
Verdi, contains the famous musical piece
"Song of the Flea" however it could be
that you are referring to the 1862 French
opera "The Tsar and the False (halluci-
nated)

— 6 The opera "The Tsar Sultan" contains
the famous musical piece "I Puritani"” is
not correct, I believe you are referring
to the Opera "The Tsar Sultan" actually
refers to the opera "Il Turco in Italia



— 7 The Tsar Sultan is a 19th-century D.4 VU-SU miscalibration in larger LLM

French opera by Niccolo Paganini’s stu- In addition to Llama-3.1-8B-Instruct, we also inves-

dent and composer, Michele Carrara.  jo,e the VU-SU miscalibration in Llama-3.1-70B-
However, I couldn’t find information  y,qer. The rate of consistently abstained samples
about a famous piece from The Tsar Sul- ¢ 7ero As shown in Fig. 7, similar patterns of
tan opera. miscalibration (high SU & low VU) in hallucinated

— 8 The opera "The Tsar Sultan" con-  answers are observed across different LLM sizes.
tains the famous musical piece "Carmen
Suite" is not correct but it does contain a
famous piece called "Song of the Dutch
Sailors".(hallucinated)

— 9 The opera "The Tsar Sultan” by Nikolai
Rimsky-Korsakov contains the famous
musical piece "Flight of the Bumblebee".
(correct)

Complying Abstained

N
o

Correct
Hallu,

Partly
Abstained

H
G

20

ge
I
2
<

Semantic Entropy

0.0 0.8 1.0

Vglzbal lj';certgiﬁnty
¢ Question: When did McDonald’s sell 1 mil-

lion burgers? Figure 7: This plot presents the Kernel Density Estima-

tion (KDE) for samples from TriviaQA, categorized into
four classes. These classes are based on the correctness
of the answers generated by Llama-3.1-70B-Instruct
and the consistency in abstaining. Miscalibration is in-
dicated by high Semantic Entropy (proxy for SU) & low
VU in hallucinated answers (red).

¢ Answer to be Evaluated: I am unable to ver-
ify when McDonald’s sold 1 million burgers.

* Golden Reference: ['By 1965’]

* Semantic Entropy: 1.42 D.5 “Hallucinations’ with Low SU

* Sampled Responses: Some samples with low SU are labeled as halluci-
nations and can be categorized into several cases:

— 0 McDonald’s sold its one millionth (1) The labeling is correct:

burger in 1955 (hallucinated)

— 1 I'm sorry, but I am unable to verify e The generated content is consistently halluci-
when McDonald’s sold nated (Example 0)

* The answer being evaluated is hallucinated
(temperature=0.1), but the sampled responses
are correct (temperature=1.0). (Example 1)

— 2 However, I need more information
about which McDonald’s you are refer-
ring to.

— 0 McDonald’s first sold 1 million burgers (2) The labeling is wrong:
in 1954 (hallucinated)

— 3 McDonald’s is a fast-food chain that
has been selling burgers for many (hallu-
cinated)

* The golden answer itself is incorrect in the
dataset. (Example 2)

* The generated answer is similar, but not iden-
tical, to the correct answer. (Example 3)

* The generated answer matches the correct an-
swer, but the language model’s judgment is

— 1 Iam unable to verify when McDonald’s
sold 1 million burgers.

— 4 McDonald’s was founded by brothers incorrect. (Example 4)
Richard and Maurice McDonald and ini-
tially operated a Example 0 - Consistent Hallucination
— I 'm not aware of a specific date when oy, eqtion: What is a third divided by a half?

McDonald’s sold 1 million * Answer to be Evaluated: 1/2 (half) = 0.5

— 0 McDonald’s achieved this milestone 3/0.5=6

on April 15, 1955 (hallucinated)  Golden Reference: [’ Two-thirds’]
— 1 I am unable to verify when McDonald’s * Semantic Entropy: 0.0

first sold 1 million burgers. * Sampled Responses:
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— 0 To find the answer, we need to divide — 0 Quinine. The first synthetic organic

3 by 0.5. chemical dye, mauveine, was discovered

3+05=6 by William Perkin in 1856 as a byproduct

So the answer is 6. of his search for the synthetic form of
— 0 To find the answer, we need to divide quinine.

3 by 0.5 (half). — 0 The answer is quinine. Mauveine was

3-05=6 discovered by William Henry Perkin in

1856, and it was a byproduct of his at-

— 0 To solve this, we need to perform the ) o
tempts to synthesize quinine

calculation:
3 (third) / 0.5 (half) — 0 The answer to the question is quinine.
Since a third is 1/3 and a half is The first synthetic organic chemical dye,

mauveine, was discovered in 1856 as a
byproduct of the search for the synthetic
form of quinine

— 0 To find the answer, we need to perform
the following calculation:
3 (third) / 0.5 (half)
3/05=6

— 0 To find the answer, you need to divide
3 by 0.5 (half).
3/05=6
So, the answer is

— 0 Quinine.

— 0 The answer is quinine. Mauveine was
discovered in 1856 by William Henry
Perkin, who was attempting to synthesize
quinine.

— 0 The answer is quinine. Mauveine, the
first synthetic organic chemical dye, was
discovered in 1856 by William Henry

— 0 To find the answer, we need to divide
3 (the third) by 0.5 (the half).

3+05=6 Perkin as a byproduct of his search for
— 0 To find the answer, we need to divide a the synthetic form
third by a half.

— 0 The first synthetic organic chemical

A third is 1/3, and a half is 1/2. dye, mauveine, was discovered in 1856

To divide as a byproduct of the search for the syn-
— 0 To find the answer, we need to perform thetic form of quinine.
the division. — 0 Quinine. The discovery of mauveine,
1/2 (a half) = 0.5 a synthetic organic chemical dye, was a
3 (a third) + 0.5 byproduct of the search for a synthetic
— 0 To find the answer, divide 3 by 0.5. form of quinine in the 1850s by French
3-05=6 chemist
— 0 To solve this problem, we need to fol- — 0 The first synthetic organic chemical
low the order of operations (PEMDAS): dye, mauveine, was discovered in 1856
1. Divide a half (1/2) into the fraction 3: as a byproduct of the search for the syn-
thetic form of quinine.
Example 1 - Hallucination, but other sampled — 0 The answer to the question is Quinine.

responses are consistently correct.

Example 2 - Wrong Golden Reference
* Question: The first synthetic organic chem-

ical dye, mauveine, was discovered in 1856 * Question: The scientific term fission means?
as a byproduct of the search for the synthetic * Answer to be Evaluated: The scientific term
form of what? "fission" means the process of splitting or di-
* Answer to be Evaluated: Quinoline. viding a nucleus of an atom into two or more
¢ Golden Reference: [’Chinin’, ’Quinine’, smaller nuclei, often accompanied by the re-
’Chinine’, ’Kinine’, ’Qualaquin’, ’Coco- lease of a large amount of energy.
Quinine’, *Aflukin’, ’Quinnine’, ’Quinine * Golden Reference: [’Split (album)’, *Split
powder’, ’ATC code PO1BCO1’, ’Legatrin’] (disambiguation)’, ’Split (song)’, ’Split’,
* Semantic Entropy: 0.0 "Split (single)’]
» Sampled Responses: * Semantic Entropy: 0.0
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¢ Sampled Responses:

— 0 The scientific term ’fission’ means

the process by which an atomic nucleus
splits into two or more smaller nuclei,
along with the release of a large amount
of energy.

0 The scientific term "fission" refers to
the process by which an atomic nucleus
splits into two or more smaller nuclei,
along with the release of a large amount
of energy.

0 The scientific term "fission" refers to
the process of splitting or division of
a nucleus of an atom into two or more
smaller nuclei, often accompanied by the
release of energy

0 The scientific term ’fission’ refers to a
process in which an atomic nucleus splits
into two or more smaller nuclei, along
with the release of a significant amount
of energy.

0 The scientific term "fission" means the
process of splitting or dividing into two
or more parts, often used to describe the
splitting of an atom or a cell.

0 The scientific term "fission" means the
process of splitting or dividing some-
thing, typically into two or more smaller
parts. This term is commonly used in
various scientific fields, such

0 The scientific term "fission" refers to a
process in which an atomic nucleus splits
into two or more smaller nuclei, along
with the release of a significant amount
of energy.

0 The scientific term "fission" refers to a
type of nuclear reaction where an atomic
nucleus splits into two or more smaller
nuclei, often accompanied by the release
of a large amount

0 The scientific term ’fission’ refers to
the process by which an atomic nucleus
splits into two or more smaller nuclei,
often releasing a significant amount of
energy in the process.

0 The scientific term "fission" means
the process by which an atomic nucleus
splits into two or more smaller nuclei, re-
leasing a large amount of energy in the
process.

Example 3 - Incomplete Golden Reference

* Question: Plovers or dotterels are a type of
birds classed as a?

* Answer to be Evaluated: Plovers or dotterels
are a type of birds classed as Charadriiformes.

* Golden Reference: ["Waders’, *Waders
(footwear)’, "Fishing wader’]

* Semantic Entropy: 0.0

* Sampled Responses:

— 0 Charadriiformes is the answer.
Charadriiformes is an order of small
to medium-sized wading birds that in-
cludes plovers, dotterels, oystercatchers,
avocets, stilts, and lapwings, among
others.

— 0 Plovers or dotterels are a type of birds
classed as Charadriiformes.

— 0 The answer to the question is "wad-
ing birds" or more specifically "shore-
birds". However, in taxonomy, Plovers
or dotterels are classed as "charadriiform
birds" or more specifically "charadriids"
or "plover-like shorebirds".

— 0 Plovers or dotterels are a type of birds
classed as a shorebird.

— 0 Plovers or dotterels are a type of birds
classed as Charadriiformes.

— 0 Plovers or dotterels are a type of birds
classed as Charadriiformes, but more
specifically they belong to the family
Charadriidae.

— 0 Shorebirds.

— 0 Plovers or dotterels are a type of birds
classed as shorebirds.

— 0 The answer is Shorebirds.

— 0 Plovers or dotterels are a type of birds
classed as Charadriiformes.

Explanation: Waders are part of the Charadri-
iformes order and include families such as
Scolopacidae (sandpipers, snipes) and Charadri-
idae (plovers, lapwings).

Example 4 - Judge LLM error

* Question: What is the name of the yacht
that won the Royal Yacht Squadron’s regatta
around the Isle of Wight in 1851 and lent its
name to a famous sports prize?

* Answer to be Evaluated: The yacht that won
the Royal Yacht Squadron’s regatta around the

3786



Isle of Wight in 1851 and lent its name to a
famous sports prize is the "America".

¢ Golden Reference: ['The United States of
America’, *United States Of Amerca’, ...]

* Semantic Entropy: 0.0

» Sampled Responses:

— 0 The yacht that won the Royal Yacht
Squadron’s regatta around the Isle of
Wight in 1851 and lent its name to a fa-
mous sports prize is the *America’ yacht.

— 0 The yacht that won the Royal Yacht
Squadron’s regatta around the Isle of
Wight in 1851 and lent its name to a
famous sports prize is "America". The
America’s Cup

— 0 The yacht that won the Royal Yacht
Squadron’s regatta around the Isle of
Wight in 1851 and lent its name to a fa-
mous sports prize is "America."

— 0 The yacht that won the Royal Yacht
Squadron’s regatta around the Isle of
Wight in 1851 and lent its name to a fa-
mous sports prize is "America".

— 0 The yacht you are referring to is the
’America’. It won the Royal Yacht
Squadron’s regatta around the Isle of
Wight in 1851, and its victory led to the
establishment

— 0 The answer is America’.

— 0 The answer is the "America". The
yacht *America’ was the first to suc-
cessfully complete the Royal Yacht
Squadron’s regatta around the Isle of
Wight in 1851.

— 0 The yacht you’re referring to is "Amer-

ica".

— 0 The yacht that won the Royal Yacht
Squadron’s regatta around the Isle of
Wight in 1851 and lent its name to a fa-
mous sports prize is the America.

— 0 The yacht that won the Royal Yacht
Squadron’s regatta around the Isle of
Wight in 1851 and lent its name to a fa-
mous sports prize is *America’.

E Verbal Uncertainty Feature (VUF)
E.1 Selected Layers for VUF

Based on the visualization and consistency across
different datasets discussed in § 3.2, we have se-
lected the following layers for each model:

* Llama-3.1-8B-Instruct: Layers 15 to 31
* Mistral-7B-Instruct-v0.3: Layers 15 to 31

* Qwen2.5-7B-Instruct: Layers 16 to 27

E.2 Cosine Similarity between VUFs from
different verbal uncertainty scores.

In addition to LLM-as-a-Judge method outlined
in § 2.2, we experiment with alternatives: embed-
ding similarities with uncertainty expressions. We
generated short lists of expressions of subjective
uncertainty (e.g., "I don’t know") and universal un-
certainty (e.g., "It is not known"), denoted as ESU
and EUU scores. We use NV-Embed-v2 (Lee et al.,
2024), a generalist embedding model, to embed
the generated answers and two types of uncertainty
expressions separately.

To compare each verbal uncertainty score out
of LLM-Judge, ESU, and EUU, we construct
Duncertain and Deepiain. using each method. We
then follow the steps outlined in § 3.1 and calcu-
late the VUFs as described in Equation 3. We run
our experiments on each of the three datasets sepa-
rately using the Llama-3.1-8B-Instruct model. Fig.
11 illustrates the cosine similarity of VUFs from
each layer of examples obtained with different VU
scores. We observe a high correlation between the
three different scores for VUFs in the middle and
subsequent layers. These results demonstrate that
our observations are consistent regardless of the
choice of verbal uncertainty score.

Prototypical Expressions of Subjective Uncer-
tainty (ESU)

* I’'m not entirely sure, but...

* That’s a tough one; let me think for a moment.

* I’d have to double-check on that.

* My answer might not be entirely accurate,
but...

* I’m still considering the possibilities.

* I’'m not confident in my answer, but I’ll give
it a shot.

* This is just an educated guess, but...

* I’ve heard conflicting information on this
topic.

* My knowledge on this subject is limited.

* I’m not up-to-date on the latest developments.

* I'm starting to get out of my depth here.

* This is a bit beyond my expertise.

* I’'m not familiar with that specific aspect.

* My understanding is incomplete.
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Figure 8: Visualization of verbalized certain vs. uncertain query representations from Llama-3.1-8B-Instruct for
three datasets: TriviaQA, NQ-Open, and PopQA.

* I’d need more context to provide a better an- * No clear answer presents itself.

SWer. * I’d rather defer to someone else’s expertise.
* I’'m really not sure about this one. * I’'m uncertain and unwilling to guess.
* My answer would be purely speculative. * Too many variables make it hard to answer.
* I've never encountered this situation before. * [ lack sufficient information to respond.
* I’m not aware of any definitive answer. * Any answer I gave would be unsatisfactory.
* The data on this topic is inconclusive. * Frankly, I'm baffled.

* To be honest, I'm stumped.

* I’m having trouble finding a clear answer.

* My response would be a wild guess.

* I’'m completely out of my element here.

* [ wouldn’t want to hazard a guess.

* Your guess is as good as mine.

* I wouldn’t even venture a guess.

* It’s impossible for me to say.

* There’s too much ambiguity to provide an an-
swer.

* I’'m at a complete loss.

* I simply don’t know.

* No idea, sorry.

* Not a clue.

* I’'m clueless on this one.

* No answer comes to mind.

» That’s outside my area of expertise.

* I’d rather not speculate.

* More research is needed to answer that.

* I'm still learning about this topic.

* There’s no clear consensus on this issue.

* My answer would be unreliable.

e [ wouldn’t trust my own judgment on this.

* I’ve got nothing concrete to offer.

Prototypical Expressions of Universal Uncer-
tainty (EUU)

* I’'m not entirely sure about this.

* The answer is unclear at this time.

* More research is needed to determine the an-
SWer.

* This is still an open question.

* There’s an ongoing debate about this topic.

* It’s difficult to say for certain.

* [ couldn’t find any reliable sources on this.

* The information available is limited.

* We don’t have enough data to make a conclu-
sion.

* This is a complex issue with no easy answer.

* I’'m not aware of any definitive answer.

* The answer may depend on various factors.

* This is a topic of ongoing investigation.

* There’s no straightforward answer to this ques-
tion.

* Different perspectives offer varying insights.

* The situation is more nuanced than it seems.

* We need more context to provide an accurate
answer.
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* The answer might be subjective and dependent
on interpretation.

* There’s no clear consensus on this matter.

* Further analysis is required to determine the
answer.

» Unfortunately, we can’t provide a definitive
answer.

» The question is too broad to give a specific
answer.

* There are many variables at play here.

* We’re dealing with incomplete information.

* The answer could go either way, depending
on assumptions.

* This is a highly speculative area of inquiry.

* We’re venturing into uncharted territory here.

* The data is inconclusive, and further study is
needed.

* There’s significant disagreement among ex-
perts.

* No clear pattern or trend emerges from the
data.

* Honestly, we just don’t know yet.

* The answer remains elusive despite our best
efforts.

* This is a mystery waiting to be solved.

* We’re stumped — more investigation is re-
quired.

* There’s too much uncertainty to give a confi-
dent answer.

e Our current understanding is insufficient to
answer this question.
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Figure 9: Visualization of verbalized certain vs. uncertain query representations from Mistral-7B-Instruct-v0.3 for
three datasets: TriviaQA, NQ-Open, and PopQA.

* We’re pushing the boundaries of human
knowledge here.

* The question itself is still being refined.

* A definitive answer may never be possible.

* We’re in unexplored territory, and caution is
advised.

* Could you rephrase the question? It’s unclear
what you’re asking.

* I’'m having trouble understanding the context
of your question.

* This question appears to be based on a false
assumption.

* The question is too vague to provide a mean-
ingful answer.

* We need to clarify some terms before proceed-
ing.

* The question seems to be self-contradictory.

* [ think there may be a misunderstanding here.

* Could you provide more background informa-
tion on this question?

* This question doesn’t seem to make sense in
the given context.

* Nobody knows, and it’s unlikely we’ll ever
find out (the ultimate cop-out!)

* Nobody knows.

* This question does not make any sense.

* That’s an impossible question to answer.
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Figure 10: Visualization of verbalized certain vs. uncertain query representations from Qwen2.5-7B-Instruct for

three datasets: TriviaQA, NQ-Open, and PopQA.
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Figure 11: Cosine Similarity between VUFs from different VU scores on different datasets for Llama-3.1-8B-

Instruct model.

E.3 Cosine Similarity between VUFs from
different LLLM-as-a-Judge models.

Continuing the discussion on LLM-as-a-Judge
method for quantifying VU, we experiment with
alternatives: use Mixtral-8x7B-Instruct-v0.1 and
Qwen2.5-72B-Instruct as an LLM-as-a-Judge
model. Fig. 12 illustrates the cosine similarity
of VUFs from each layer of examples obtained
with VU scores using different LLM-as-a-Judge
models. We observe a high correlation between the
three different scores for VUFs in the middle and
subsequent layers. These results demonstrate that
our observations are consistent regardless of the
choice of verbal uncertainty score.

E.4 Cosine Similarity between VUFs from
different datasets.

To further support our observation that VUFs
are consistent across datasets, we present cosine
similarity between VUFs obtained from different
datasets using different verbal uncertainty scores
in Fig. 13. We run experiments using the Llama-
3.1-8B-Instruct model.

E.5 Causal Validation with Alternative
Methods of VUF Extraction

It is in principle possible that the LLM that labels
the samples used for determining the VUF and the
LLM used to measure the VU score after the in-
tervention actually measure some other consistent
property of the text that is not VU. To exclude this
possibility, we extracted VUF directions also us-
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Figure 13: Cosine Similarity between VUFs from different datasets using different VU scores for Llama-3.1-8B-

Instruct model.

ing a very different method, based on measuring
the mean cosine similarity with prototypical expres-
sions of verbal uncertainty in a sentence embedding
space obtained from an unrelated, encoder-only
model introduced in Appendix E.2.

Figure 14 presents the causal validation with
the VUF extracted based on the ESU score instead
of LLLM-as-a-Judge. Similar to Figure 5, adding
ESU-derived VUFs to model activations increases
the VU (as judged by LLM) of the model outputs.
Conversely, removing VUFs from activations de-
creases this uncertainty. These results are based on
the Llama 3.1 8B model and the TriviaQA dataset.

F Hallucination Detection

F.1 Experimental Details for Probe Training

These probes are linear models trained on the hid-
den states of LLMs to predict numerical uncer-
tainty values in a single run. The hidden states
are sourced from multiple layers within the LLM.
We have selected the following layers based on the
performance for each uncertainty:

* VU: Layers 5 to 20 for TriviaQA, 10 to 20 for

Certain Uncertain
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Figure 14: Mean model-generated answer verbal un-
certainty on TriviaQA dataset with varying degrees of
inference-time VUF intervention (modulated by the in-
tervention intensity o). The VUF is exacted via ESU.

NQ-Open, and 5 to 20 for PopQA.

* SU: Layers 10 to 20 for TriviaQA, 10 to 20
for NQ-Open, and 5 to 25 for PopQA.

For calculating metrics, we utilize the NumPy
and NLTK packages.

F.2 Classifier Binarized Uncertainty Probe

Given the hidden state, we train a logistic regres-
sion model (classifier probe) to predict binarized
uncertainty. Instances with low verbal and high
semantic uncertainty are labeled as hallucinations.
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Last Token

Dataset Hidden State Predicted Feature AUROC ACC
Semantic only 66.85 66

Question Verbal only  68.48 70.9

.. Combined - 70.4
TriviaQA Semanticonly 7403 70.9
Answer Verbal only 68.61 69.8

Combined - 74.3

Semantic only 54.07 53.9

Question Verbal only 50.9 58.5

Combined - 74.7

NQ-Open Semanticonly 6132 574
Answer Verbal only 50.64 61.2

Combined - 79.1

Semantic only 70.17 65.6

Question Verbal only 35.96 43.4

Combined - 75.8

PopQA Semanticonly 6991 67.8
Answer Verbal only  34.21 39.4

Combined - 77.9

Table 7: Detection Results for Classifier Binarized Un-
certainty Probe on Llama-3.1-8B-Instruct.

As shown in Tab. 7, verbal uncertainty helps to
improve the detection performance. The “Semantic
only” is the long-form setting of the SEP (Kossen
et al., 2024) as the baseline. This work ignores the
refusal cases and automatically classifies them as
hallucinated which is not aligned with our defini-
tion.

G Hallucination Mitigation via
Mechanistic Uncertainty Calibration
MUCO)

G.1 Experimental Details for Mitigation

For the experiments in this work, we combine the
VUFs extracted from three datasets together and
construct Deeriain and Dypcertain as samples with
VU Score < 0.05 and > 0.9 respectively.

We calculate semantic entropy (SE) to measure
semantic uncertainty. The maximum of SE is the
entropy of a uniform distribution, maxgFE = InN,
is the number of samples used in the SE calcula-
tion. The minimum SE is 0. So su(z)norm =
su(z)/lnN. The maximum of VU is 1.0, and the
minimum is 0. We set maz, = 1.0 for Llama-3.1-
8B-Instruct, max, = 0.4 for Mistral-7B-Instruct-
v0.3, max, = 3.0 for Qwen2.5-7B-Instruct, and
max, = 4.0 for Llama-3.1-70B-Instruct across
three datasets.

G.2 Case Study for Mitigation

In this section, we present examples of answers,
highlighting the differences between the original

15Since we cannot get the combined probabilities of two
uncertainties, we cannot get the AUROC score.

generated responses and those after our mitigation
method. Each example includes the question posed,
the golden answer, the initial response generated
by the LLM, and the response after inference-time
uncertainty calibration.

Example with different calibration degrees (al-
phas)

* Question: Manhattan Island is bounded by
three rivers, the Hudson, the East and which
other?",

* Golden Answer: Harlem River

* Original Generated Response: The other
river is the Harlem River.

* Response after Calibration with alpha=0.14
I’m uncertain about the third river, but I can
provide some information: Manhattan Island
is bounded by three rivers, the Hudson and the
East, with the Harlem River being the third
river, however, it is sometimes considered a
strait.

* Response after Calibration with alpha=0.70
I’m not certain about the third river, but I can
provide some information: Manhattan Island
is bounded by three rivers, the Hudson, the
East, and the Harlem River.

* Response after Calibration with alpha=1.4
Unfortunately, I am unable to verify the name
of the third river.

G.3

* Question: "Which horse won the 2013 En-
glish Grand National at Aintree?"

* Golden Answer: ["Aurora’s Encore", "Auro-
ras Encore"]

* Semantic Entropy: 1.83

» Sampled Responses before Calibration:

— "The horse that won the 2013 English
Grand National at Aintree was named
Auroras Encore. The Irish-bred and
trained horse, ridden by Daryl Jacob,
won the race with a time of 10 minutes
and 3 seconds."

— "The horse that won the 2013 English
Grand National at Aintree was named
Auroras Encore. The horse, trained by
Sue Smith, was ridden by Ryan Mania.
Auroras Encore crossed the finish line
with a winning margin of 5 lengths, mak-
ing it a thrilling victory for the team."

— "The horse that won the 2013 English
Grand National at Aintree was Auroras

Case Study for Decreased Correctness
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Intervention Hallucination Confident Correct

Strength Rate | Hallucination Rate 1
(max_alph) Rate |
0.0 37.9 37.9 58.6
1.0 354 27.3 58.3
3.0 344 234 58.1
5.0 329 18.6 579

Table 8: Results with varying intervention strengths on
TriviaQA using Qwen2.5-7B-Instruct.

Encore. The Irish-bred gelding was rid-
den by jockey Daryl Jacob and trained
by Sue Smith. The win was a remarkable
one as Auroras Encore was a 100/1 long-
shot, making it one of the biggest upsets
in the history of the race."

— "The horse that won the 2013 English
Grand National at Aintree was named
Auroras Encore. This Irish-bred thor-
oughbred, trained by Sue Smith, finished
the grueling race with a time of 10 min-
utes and 5 seconds. Auroras Encore was
ridden by jockey Ryan Mania."

* Response after Calibration: I'm afraid I
don’t have real-time data access, so I can’t
provide the exact winner of the 2013 English
Grand National at Aintree...

G.4 Trade-off between Correctness and
Hallucination

Table 8 presents the results with varying interven-
tion strengths on TriviaQA using Qwen2.5-7B-
Instruct. Increasing the intervention strength re-
duces the hallucination rate while slowly decreas-
ing the correctness rate, highlighting a trade-off
between the two metrics. The average calculated
semantic uncertainty for samples that are initially
answered correctly but later become incorrect is
1.98. The average calculated semantic uncertainty
for samples that remain correct is 0.43. The higher
average in the first case indicates a relationship be-
tween the trade-off and higher semantic uncertainty.
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