BacktrackAgent: Enhancing GUI Agent with Error Detection and
Backtracking Mechanism

Qinzhuo Wu, Pengzhi Gao, Wei Liu, Jian Luan
MiLM Plus, Xiaomi Inc
{wuginzhuo, gaopengzhi, liuwei4@, luanjian}@xiaomi.com

Abstract

Graphical User Interface (GUI) agents have
gained substantial attention due to their im-
pressive capabilities to complete tasks through
multiple interactions within GUI environments.
However, existing agents primarily focus on en-
hancing the accuracy of individual actions and
often lack effective mechanisms for detecting
and recovering from errors. To address these
shortcomings, we propose the BacktrackAgent,
a robust framework that incorporates a back-
tracking mechanism to improve task comple-
tion efficiency. BacktrackAgent includes veri-
fier, judger, and reflector components as mod-
ules for error detection and recovery, while also
applying judgment rewards to further enhance
the agent’s performance. Additionally, we
develop a training dataset specifically designed
for the backtracking mechanism, which consid-
ers the outcome pages after action executions.
Experimental results show that BacktrackAgent
has achieved performance improvements in
both task success rate and step accuracy on
Mobile3M and Auto-UI benchmarks. Our data
and code will be released upon acceptance.

1 Introduction

Graphical User Interface (GUI) agents (Hong
et al., 2024; Ma et al., 2024) have demonstrated
remarkable capabilities to perform tasks within
digital environments. Early advancements (Zhang
etal., 2023, 2024a; Yan et al., 2023) were primarily
based on general Vision-Language Models (VLM)
such as GPT-4V and GPT-40 (OpenAl, 2023).
Since then, numerous GUI agent-specific datasets
and models (Rawles et al., 2023a; Baechler et al.,
2024; You et al., 2024; Chai et al., 2024) have been
developed. These agents are specifically designed
to handle tasks involving graphical elements like
buttons, text boxes, and images. By utilizing
advanced perception and reasoning capabilities,
these agents have the potential to transform task

Previous Works

SFT Pl —> a1 —> PZ > - T Pt —> Q¢

al G
@
BacktrackAgent backtrack (&
0 0
% gxecute’| Pt
@
O backtrack @@
1 Slp1
P =k % “executs| Pe+ 1
1“5 Execute o
1
' —> Backtrack ' @
1 @ Error Detection ! a? >p2 L >a,
\ O Error Recove[y’/I execute [t+1

Figure 1: Previous works often struggle to recover from
errors, whereas BacktrackAgent utilizes a backtracking
mechanism to recover from erroneous pages.

automation, improve accessibility, and optimize
workflows across various applications.

Current GUI agents face several challenges
when completing tasks, as they primarily focus
on achieving single-step accuracy and struggle to
recover from errors. As shown in Figure 2, a task
may require more than ten actions to complete,
and one incorrect action can result in the failure
of the entire task. Most studies rely on supervised
fine-tuning (SFT) using annotated page navigation
datasets, which replicate successful cases while
neglecting the understanding of error cases. Some
studies based on preference optimization, such as
DigiRL (Bai et al., 2024) and DistRL (Wang et al.,
2024d), generate numerous negative examples that
are paired with positive examples, as illustrated by
(ay, a,lf) in Figure 1. These methods encourage
generated actions to avoid negative examples,
aligning them with desired sampling preferences.
However, preference optimization-based methods

4250

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 4250-4272
November 4-9, 2025 ©2025 Association for Computational Linguistics

Task

i

L B

Golden Actionﬁ;r a1 g7 %2 az \‘77114

Golden Page p; P, Py P,
Action a} a} a;
Page P} P}

{ —> Golden Action '
1 > Explore Action !
| —> Backtrack I
! — Equivalent Page,

Wrong: enter the

“order” Page “matcha latte”

Wrong: choose Correct: choose
“black tea latte™

@ ﬁ I'd like to order a large cup of black tea latte, with extra Tahitian vanilla syrup, delivered to my home. |

Wrong: add the Wrong: change Wrong: browsing Correct: select "Checkout™

number to 2" type to “venti" on “option" page instead of “Shopping Bag"

Figure 2: A ten-step GUI trajectory for ordering coffee. The red arrow indicates that the current page is identified as
an error page, requiring a backtrack to the previous page in order to regenerate the necessary action. Action a; is an
abbreviation for "click(delivery,[375,740][704,1032])". The detailed information is summarized in Figure 6.

depend heavily on the quality and sufficiency
of the sampled data. They do not consider the
outcomes of executing actions, making it difficult
to determine whether the current page deviates
from the task, as well as to recover from any errors.

To address this issue, we propose Backtrack-
Agent, a framework designed to incorporate a
backtracking mechanism that enhances task com-
pletion. BacktrackAgent consists of four compo-
nents: generator, verifier, judger, and reflector. The
generator creates and executes actions based on the
current task and GUI environment. The verifier and
judger act as error detection modules, determining
whether the current state requires backtracking.
The reflector functions as an error recovery module,
refining the actions based on the judgments and
guiding the agent back to a state that is most likely
to lead to successful task completion. The rewards
from the verifier and judger are utilized to further
improve the agent’s capabilities. The contribution
of this paper can be summarized as follows:

* We propose BacktrackAgent, a framework
that integrates a backtracking mechanism,
which employs a verifier and a judger as
error detection modules, along with a reflector
acting as the error recovery module.

* We construct judgment and reflection datasets
based on the Mobile3M (Wu et al., 2024)
and Auto-UI (Zhang and Zhang, 2024) bench-
marks that explicitly consider the correctness

and effectiveness of action executions.

* Experimental results show that BacktrackA-
gent achieves improvements in task success
rate and step accuracy on Mobile3M and Auto-
UI benchmarks, and outperform the current
SOTA methods MobileVLM (Wu et al., 2024)
and ReachAgent (Wu et al., 2025).

2 Related Work

GUI Agent. The rapid development of Large
Language Models (LLMs) and Vision Language
Models (VLMs) has created a strong foundation
for developing GUI agents that can interact within
digital environments (Liu et al., 2024a; Lin et al.,
2024; Gou et al., 2024). However, handling
complex multi-step tasks remains a significant
challenge (Liu et al., 2024b; Koh et al., 2024;
Wang et al., 2025a). Many studies have explored
various methods to improve the reasoning abilities
of agents (Shen et al., 2024; Putta et al., 2024).
For example, EXACT (Yu et al., 2025) and SWE-
SEARCH (Antoniades et al., 2024) utilize Monte
Carlo Tree Search (MCTS) (Silver et al., 2016)
methods to enhance the decision-making processes.
WebPilot (Zhang et al., 2025) generates a high-
level plan for a task and continuously reflects on
and refines that plan during the reasoning process.
These methods heavily depend on the capabilities
of VLMs like GPT-40, neglecting whether the
action executions align with the overall task goals.

4251

Mobile-Agent-E (Wang et al., 2025b) introduces
an Action Reflector to verify action outcomes
and update the Tips and Shortcuts of the task.
ReachAgent (Wu et al., 2025) decomposes the
task into subtasks and prioritizes the successful
completion of these subtasks. InfiGUIAgent (Liu
et al., 2025) reflects on whether the action results
match expectations and generates a summary.
Although these approaches utilize action execution
outcomes as high-level guidance for the task, they
still struggle with detecting and recovering from
errors. In contrast, BacktrackAgent explicitly
incorporates a backtracking mechanism to observe
the outcomes of action executions, allowing it to
detect and recover from error states effectively.

Reinforcement Learning. Reinforcement learn-
ing (RL) techniques have been widely used to
improve GUI agents (Chai et al., 2025). DigiRL
(Bai et al., 2024) and DistRL (Wang et al., 2024d)
assign rewards to trajectory to help the agent align
better with human preferences. ReachAgent (Wu
et al., 2025) samples step-level pairwise responses
by utilizing Direct Preference Optimization (DPO).
IPR (Xiong et al., 2024) and UI-TARS (Qin et al.,
2025) incorporate step-level supervision when
training agents. BacktrackAgent directly uses the
results from the error detection module as rewards
to enhance the performance of the GUI agent. See
Appendix B for more related works.

3 Methodology

3.1 Problem Formulation

The goal is to simulate human behavior by per-
forming multiple rounds of interactions with the
GUI pages to complete a given task, called task
X. Starting from the initial page P, the agent
observes the current GUI page Py at each time step
t to generate an action a; that progresses towards
completing the task. After executing a;, the GUI
environment updates, resulting in a new page P 1.
The sequence of executed actions is represented
as a = {a1,aq,...,a,}, while the sequence of
corresponding GUI pages is represented as P =
{P1,Pg,...,Pat1}. The agent must ensure that
the transitions between the GUI pages successfully
lead to the completion of task X.

3.2 BacktrackAgent

BacktrackAgent consists of four main modules:
Generator, Verifier, Judger, and Reflector, which
work together to complete task X. Figure 3

illustrates the inference process of BacktrackAgent
at the ¢-th time-step:

1. In each interaction step, the Generator gen-
erates the current action a; based on task X,
the GUI page Py, and the history action list
At — {a17 ceey at_l}.

2. During error detection, a generated action a! is
executed resulting in a new page P11, where
1 represents the i-th reflection at time step .
The Verifier and the Judger assess whether
al is valid and contributes to completing task
X. Their evaluation considers the action a,
the pages before and after execution (P and
Pi+1), as well as the relevant background
information (task X and previous actions
a.;). The Verifier is a rule-based module
that ensures that the action a! is executable
and effective. The Judger is a model-based
module that assesses whether executing action
a! leads to an error page and if it improves the
likelihood of achieving the task goal.

3. If both the Verifier and the Judger confirm that
al is correct, the agent considers it the final
action at time-step ¢ and proceeds to time-
step t+1. Otherwise, the agent goes to the
Reflector for error recovery.

4. During error recovery, the Reflector updates
the action a} to a/™! based on all reflected
actions at time step ¢, as well as the pages
before and after executing the action.

BacktrackAgent repeats the above 2 ~ 4 steps at
each time step until a! is judged as correct or i
exceeds the max number of reflections. A step-by-

step reasoning process refers to Appendix E.

3.3 Modules

Generator Given a task X, the generator gen-
erates action a; based on the GUI page P, the
extracted candidate action space, and the history
actions a; as follow:

a; = Generator(X, Py, Acts(Py),ay),

where Acts(P¢) denotes a list of all possible actions
that can be performed on P;. Note that a; also
belongs to Acts(Py).

Verifier After the generator generates a;, the
agent simulates executing that action to update the
page from Py to P;;;. The verifier checks the
effectiveness of a; based on two principles:

e The action must be valid and executable,
falling into these categories: {click, scroll, in-

4252

Task X:
I'd like to order a large cup of black tea
latte, with extra Tahitian vanilla syrup,
delivered to my home.

Action History a, :
ay , click("delivery™)
a, , click("search")
ag , input(“input",
“black tea latte")

Reflect History at Step t :
a?, click("ExtraLargeCup")
at, click("StepperAdd")

al, scroll("Customize",

P, : ScreenShot

XML document

ActionSpace (Py) :

click("StepperReduce™)
click("LargeCup™)
click("resetRecipe")

click("IngredientButton™)

click("BackButton™)
click(*StepperAdd™)
click("ExtraLargeCup™)
click("addToCart*)

a, , click("search") i1 dfwn) - scroll("Customize”, “up") scroll("Customize”, "down")
as , click("addToCart") a", SCTO!IILEpg)uStolee s «=w | SCroll("Customize”, “left") scroll(“Customize", “right")
f
I e e U et
[X 7 N 2 ~
A N4 A \
\ \
_____________ v Ao, a;_, — -
__________________________ I i N Action
[R —] .Features] [E .]
Step t, i-th reflect : P = [B5 Execution
t .
GUI Trajector l
T itimes backtrack %#/

ai reflect

actions

N Task
|E { Action History
Action Space
es

I
|
I
|
I
I
I
I
I
I
I
I
I
Screenshot
il |
I
I
I
I
I
I
I
|
I
|
|

/

Featur N /
A T TR T St T ;’egfyl Judge ~-- 3. Error Recovery |-~
! \ Y Rules by VLM
i| X a<w Py || Judger ! |[oX' ace, Py i) B N
I at P ! :at,m,aé, Py i ‘Verifier Judger‘ f !
|)
| - Judgement)! | o ! connect | Gy, o Ml ay !
: ‘Verlfer o J{T‘Reflector}*m : |- o !
I g | Judgement Result } o |
\ P 00 | New GUI Trajectory J!|
|
]

Error Detectioio / _ Error Recover /
~ <

7/

Step t+1, generate

/
“\[2. Action Generation }

o 4. NextStep |-_-7

\
~{ 2. Error Detection]-”

Figure 3: The overview of BacktrackAgent. The left part shows the detailed process of an action a! being judged as
an error by the error detection module and reflected by the error recovery module. The right part shows the pipeline
of the agent generating GUI trajectories through action generation, error detection, and error recovery modules.

put, complete}, and include properly formatted
elements and parameters. Refer to Figure 2 for
examples.

e Upon executing an action, the environment
should change as a result, except in cases where
the task is complete. The verifier compares the
pages P and Py, 1; if they are identical, the action
is considered ineffective.

py = Verifier(Py, Pyi1, at),

where py = 1 indicates that the action is valid, and
py = 0 indicates that it is not.

Judger With page Py, action a;, and page P41,
the judger assesses whether executing this action
contributes to the successful completion of task X.
The judger functions as a binary classifier defined
as follows:

p{ = Judger(X, Py, Acts(Py), ac, ar, Pyy1),
where pg = 1 indicates that the action is valuable,
and p/ = 0 indicates that it is not. The prompt
template for the judger is shown in Appendix C.

Reflector The BacktrackAgent decides whether
to modify the action based on the results from
both the verifier and the judger. During the i-th
rewriting process, if either the verifier or the judger
determines that the action is ineffective or does
not contribute to completing the task, the reflector

generates a new action a! as follows:
ai'=Reflector(X, Py, Acts(Py),a-q,a>", P),

where a~* denotes all attempted actions atgi =
{ay,a,...,al} at time step t. The prompt template
for the reflector is shown in Appendix C. Back-
trackAgent repeats the "verifier-judger-reflector"
phase until both the verifier and the judger agree
that the action is effective, or until the maximum
number of rewrite iterations is reached.

3.4 Action Execution

The process of performing the action a; and updat-
ing the GUI page from Py to P is referred to as
Actual Execution. However, for certain manually
annotated datasets, we cannot reproduce the GUI
environment and obtain page P that arises from
executing a non-golden answer a;. To address this
issue, we identify the possible execution results
of a; on page P, such as drawing arrows for
scroll actions and marking element boxes and
input text for input actions. This process is called
Simulated Execution. These annotated pages are
then provided to the error detection and recovery
modules to demonstrate the effects and potential
impacts of the actions. As illustrated in Figure 4,
after executing the click("ExtralargeCup") action,
the actual execution updates the cup type on the
GUI page to an extra large cup. In contrast, the

4253

Actual
Execution

}rr.. Simulated
. Execution

af, click(ExtraLargeCup)| . -
ag, scroll(down) .
at*, scroll(up) =) QD

Figure 4: The action result pages generated by actual
execution and simulated execution.

simulated execution marks the bounding box of the
"ExtralLargeCup" element in red. For more details
on action execution, refer to Appendix A.6.

3.5 Training

We begin by using the multi-round page navigation
task datasets to perform supervised fine-tuning
of the VLM and to obtain the generator model.
Next, we apply the generator model to the task
datasets to create the training datasets for the
judger and reflector models. All three models, the
generator, judger, and reflector, are trained using
cross-entropy loss as follows:

Lg==)> logP(a;[X,Py,Acts(Py),ac),

X,Pt,ACtS(Pt),a<ta aia Pit+1)7

t

L I—Zlog P(p{’i
t

Ly :_ZIOg P(ai™|X,P,Acts(Py),ay,
t

at<Za aia i—f—l)'

Similar to value-based reinforcement learning
methods such as DigiRL and DistRL, we score the
actions generated by the generator and reflector
at each step and use them to further reinforce the
model. We directly use the results of the error
detection module as the action rewards to feedback
to the generator and reflector. The verifier loss and

judger loss are defined as follows
Lyerifier = 1 — pf, and »Cjudger = P(p{ = 0)

The final loss £ is a combination of the cross-
entropy loss, the verifier loss, and the judger loss:

L= Eg + Blﬁveriﬁer + 62£judgera
where 31 and (35 are hyperparameters.

Dataset Train Test
Chain Step Chain Step

Mobile3M 53,832 259,725 2,689 12,922
Auto-UI 106,645 988,518 | 55,780 450,924
Dataset — Judger - - Reﬂector :

Positive Negative | Positive Negative
Mobile3M 259,725 27,463 | 51,945 27,463
Auto-UI 988,512 311,148 | 197,702 311,148

Table 1: The statistics of datasets.

4 Dataset Construction

4.1 Datasets

We utilize the Mobile3M (Wu et al., 2024, 2025)
and Auto-UI (Zhang and Zhang, 2024) datasets.
They are two largest public mobile control datasets,
containing page navigation tasks that require multi-
round interactions to complete. Mobile3M in-
cludes a total of 53,832 tasks with 259,725 action
steps, while Auto-UI comprises 106,645 tasks
and 988,518 action steps. These data are used
to train our generator. Each task consists of a
task instruction and a corresponding chained GUI
trajectory, which includes a sequence of GUI pages
and actions.

4.2 Datasets for Judger and Reflector

To enhance the model’s capability to detect and
recover from error states, we utilize the training
splits of Mobile3M and Auto-UI as seed datasets
to construct SFT data for the Judger and Reflector.
First, for each task in the training set, we employ
the Generator to regenerate actions at the step
level. Next, we simulate the execution of the
generated actions on the current page to produce
the subsequent page. We construct two datasets
based on these actions and page information.

Judgment dataset The judger’s input consists of
four parameters: task X, the current GUI page Py,
the current action a;, and the subsequent GUI page
Pi+1. The output is a binary classification result
indicating whether a; is effective in furthering the
task completion on the current page. Since AutoUI
is a chain-structured dataset and does not provide
the complete XML document or images of the GUI
environment, it is challenging to determine the
resulting page after executing an incorrect action.
We use simulated execution page as the subsequent
page P¢1. Since Mobile3M is a graph-structured
dataset and contains complete information on GUI
pages, we use the actual execution page as Py ;.

4254

Auto-UI Mobile3M
Model Method | Task Level Step Level | Task Success Task Level Acc Step Level Acc
Accuracy Accuracy Rate Both IoU Text TIoU Text
GPT-40 FewShot 15.16 55.38 - - - - 19.44 17.06
MobileVLMgeperate FewShot 5.99 44.06 - - - - 1.75 10.60
Qwen-VL SFT 16.97 68.75 35.77 20.58 30.13 2622 | 73.38 72.14
Auto-Ulypified SFT 24.79 75.13 33.40 18.40 29.60 2220 | 73.26 70.88
MobileVLM SFT 25.53 77.36 39.78 22.68 34.03 28.43 | 76.20 74.08
Qwen2-VL SFT 21.56 72.26 44.81 2748 34.88 30.87 | 81.87 80.64
ReachAgentsiaget SFT 24.89 74.54 45.33 2748 37.82 3131 | 83.34 8147
ReachAgentsgage2 SFT+RL 25.28 74.81 46.52 29.79 3875 33.06 | 83.32 81.77
BacktrackAgent SFT+RL 29.72 78.04 54.11 33.51 4325 36.67 | 84.94 83.24

Table 2: Main Result(%) on Auto-UI and Mobile3M benchamrks. - denotes less than 1%.

We construct a judgment dataset with incorrect
actions generated by the generator and the golden
answer from the original dataset. An effective
generated action need to satisfy both the IoU and
text metrics, as described in Section 5.1.

Reflection dataset The reflector must have two
essential abilities: it should be able to correct any
incorrect actions and preserve the correct actions
that may be misjudged without making changes.
After training the generator and judger using the
original dataset and the judgment dataset, we utilize
these two models to regenerate actions and judge
their effectiveness. We then extract 100% of the
ineffective actions and 20% of the effective actions
to construct the reflection dataset.

The statistics of the original, judgment, and
reflection datasets are summarized in Table 1. The
detailed judgment and reflection data construction
process is shown in Appendix D.

5 Experiment

5.1 Benchmarks and Metrics

We use the official test sets of Mobile3M and Auto-
UI to evaluate BacktrackAgent for comparison.
There is no overlap between the training and testing
datasets. We use three metrics for evaluation.

o Task Success Rate evaluates GUI trajectories at
the task level. When a GUI trajectory contains the
final page in the golden answer, it is considered
as navigating to the key page and successfully
completing the task.

o Task Level Accuracy evaluates whether each
GUI trajectory is consistent with the golden trajec-
tory. Only when all actions in the GUI trajectory
match the golden answer is it considered a task-
level match. IoU and Text metrics use bounding
box parameters and text parameters to compare the

generated actions with the golden actions.

e Step Level Accuracy evaluates whether each
generated action is consistent with the golden
action at the step level.

5.2 Parameters and Baselines

BacktrackAgent uses Qwen2-VL-7B as the back-
bone model. The Generator, Judger, and Reflector
were trained for 2 epochs in the SFT version. The
Generator and Reflector were further trained for 2
epochs in the RL version. To ensure a fair compari-
son, all baselines and variants of BacktrackAgent
maintain consistent hyperparameters.

We compare our approach with the following
strong baselines: GPT-40, Auto-Ul, Qwen-VL,
Qwen2-VL, MobileVLM, and ReachAgent. Ex-
cept for GPT-4o, all baselines use the backbone
model with 7B parameters. For more details on
parameters and baselines, refer to Appendix A.3
and A.4.

5.3 Main results

The main experimental results are shown in Tables
2. We can observe that:

e For the Mobile3M benchmark, at the task level,
BacktrackAgent improves the task success rate by
7.59% and the task level accuracy by 3.72%. We
attribute this to the backtracking mechanism with
the judge, verifier, and reflector. BacktrackAgent
achieves better performance by learning to detect
and recover from erroneous pages.

e Compared with the DPO-based ReachAgent,
BacktrackAgent improves the step-level IoU accu-
racy and text accuracy by 1.64% and 1.47%, respec-
tively. This proves that the explicit backtracking
can better capture the agent’s errors and further
improve the agent’s performance compared to the
pre-sampled paired positive and negative data.

4255

Model Task Success Task Level Acc Step Level Acc
Rate Both IoU Text | IoU Text
Backtrack Mechanism
BacktrackAgent w/o Judger & Verifier & Reflector 48.46 29.56 3890 33.06 | 83.22 81.72
BacktrackAgent w/o Judger 48.79 2990 39.20 3332|8335 81.84
BacktrackAgent w/o Verifier 53.66 3299 4273 36.30 | 84.75 83.12
BacktrackAgent 54.11 33.51 43.25 36.67 | 84.94 83.24
A Backtrack Mechanism 5.65 395 435 361 1.72 1.52
A Judger 5.32 361 405 335 | 159 1.40
A Verifier 0.45 052 052 037 | 0.19 0.12
RL Mechanism
BacktrackAgent w/o RL 52.18 32.58 41.61 3548 | 84.67 82.84
BacktrackAgent 54.11 33.51 43.25 36.67 | 84.94 83.24
A RL 1.93 093 164 1.19 | 0.27 0.40
Execution Method

BacktrackAgent w/o Backtrack 48.46 29.56 38.90 33.06 | 83.22 81.72
BacktrackAgent-Simulate Execution 49.16 28.93 39.01 3254 | 83.16 81.43
BacktrackAgent 54.11 33.51 43.25 36.67 | 84.94 83.24
A Backtrack with Simulate Execution 0.70 -0.63 0.11 -0.52 | -0.06 -0.29
A Backtrack with Acutal Execution 5.65 395 435 361 1.72 1.52

Table 3: Ablation study (%) on the Backtracking Mechanism, the Reinforcement Learning (RL) Mechanism, and
Eexecution Methond. Here, Simulate/Actual means that the Judger and Reflector obtain the next page P} 1 by

actually/simulating execution action at, respectively.

e For the Auto-UI benchmark, BacktrackAgent
outperforms the SOTA baseline in both step-level
and task-level. The improvement of BacktrackA-
gent proves that our framework and backtracking
mechanism can generally improve task completion
abilities on different datasets. For more detailed
results on Auto-UI, please refer to Appendix G.

5.4 Ablation Study

To better evaluate the effect of each module, we
conducted several ablation experiments. As shown
in Table 3, we can see that:

e The backtracking mechanism improves the
task success rate by 5.65% and the accuracy at both
task-level and step-level by more than 3.5% and
1.5%, respectively. This is because backtracking
helps the agent better align the action execution
results with the task goals, enabling the agent to
detect and correct errors.

e Compared with the verifier, the judger con-
tributes more to performance improvement. This
is because while the verifier can accurately detect
invalid actions and correct these unnecessary errors,
as the agent’s performance improves, the probabil-
ity of generating invalid actions decreases, resulting
in a relatively small overall improvement.

e The reinforcement learning improves the

performance in all indicators, especially in task
success rate and task-level accuracy, which are
improved by 1.93% and 0.93% respectively. The
two additional losses help the agent better align
with the preferences of the verifier and judger,
thereby improving its ability to complete tasks.

e The backtracking mechanism trained with the
actual execution page outperformed the one trained
with the simulated execution page. Compared with
the 5.65% increase in task success rate caused by
the actual page, the simulated page only achieved a
0.7% increase in this metric and caused a decrease
in task-level and step-level accuracy. The reason
is that the actual execution page provides a more
accurate representation of the execution results,
which enables the error detection module to more
effectively identify deviations from the task goal.

5.5 Stability and Applicability Analysis

Stability To explore whether BacktrackAgent
can stably maintain its performance advantage
under different parameters, we conducted repeated
experiments. For the training phase, we retrained
the agent twice from the backbone model with
different seeds. For the testing phase, we repeated
the test 10 times, randomly sampling 80% of the
test samples each time. The box plots in Figure

4256

© Model
[BacktrackAgent-ReTest
[0 BacktrackAgent-ReTrain

L

e

Performance Improvement (%)

0

e (o)
s R curd
135\45““65 \eve e

ext \ \oV \ Text
N € el
s rep € 1ep-

oV T
evel ve
Y s g

Figure 5: Box plot shows the performance improvement
(%) of repeated experiments compared to ReachAgent
on multiple metrics.

Dataset Mobile3M Auto-UI
Execution Simulated | Actual | Simulated
Speed Ratio 0.451x 0.517x 0.482x
Total 2.172 1.938 1.374
Generator 0.979 1.002 0.663
Judger 0.803 0.806 0.296
Verifier 0.003 0.003 0.004
Reflector 0.129 0.127 0.179
Action Execution 0.258 - 0.232

Table 4: Effiency(s/step) of BacktrackAgent. The speed
ratio is the ratio of the time required for a step with the
entire agent to the time required with just the Generator.

5 show the performance improvement of these
experiments compared to the SOTA ReachAgent.
BacktrackAgent’s task success rate is 7.59% higher
than ReachAgent, and the performance fluctuation
caused by the resampled test set and retrained
Agent is less than 1.2%. Since the step-level
accuracy is already over 80%, there is limited
room for further improvement. However, Back-
trackAgent’s step accuracy has still improved by
1.62% and 1.47%, and the fluctuation in repeated
experiments is less than 0.2%. This shows that
our BacktrackAgent is reliable and stable. More
experimental data can be found in Appendix H.

Time Efficiency Table 4 presents the average
time taken by each module of the BacktrackAgent
during inference. The inference efficiency of
the agent utilizing the backtracking mechanism
is approximately 50% of that of other agents that
rely solely on a generator. The judger requires
more time than the reflector because only the
wrong actions need to be rewritten. Simulated

Error Detection

Precision Recall F1
Mobile3M | 75.12% 43.58% 55.16%
Auto-UI 80.01% 48.04% 60.04%
Error Recovery
Both IoU OCR
Mobile3M | 38.93% 49.90% 43.39%
Auto-Ul 31.24% 31.43% 31.61%

Table 5: Accuracy (%) of error detection and recovery
modules of BacktrackAgent.

Error Detection

Actually Error Actually Correct
Judge as Error 8.48% 2.81%
Judge as Correct 10.98% 77.73%
Error Recovery of “Judge as Error” Data
Actually Error Actually Correct
Correctly Recover 2.37% 2.03%
Failed to Recover 6.11% 0.78%

Table 6: Distribution of error detect and recover
modules on Mobile3M dataset.

action execution takes about 0.25 seconds, as a
new screenshot needs to be saved, while the speed
of real action execution depends on the GUI envi-
ronment itself. Overall, although the backtracking
mechanism reduces inference speed, it remains
valuable due to its significant contribution to the
agent’s ability to complete tasks effectively.

Performance of the Error Detection and Re-
covery Modules Table 5 shows the accuracy
of BacktrackAgent in detecting and recovering
from errors. Recall measures how many wrong
actions are successfully detected by the agent, and
Precision measures whether the actions detected
as wrong are indeed wrong. On Mobile3M,
BacktrackAgent can detect 43.58% of error actions
and guarantee the accuracy of 75.12% of all
detected errors. The error recovery module can
correct 38.93% of these detected actions. On Auto-
UI, BacktrackAgent achieves better error detection
performance but worse error recovery performance.
Refer to Appendix F for case study.

Table 6 analyzes the distribution of all generated
results of Mobile3M after error detection and
recovery. We can see that the error detection
module judged 11.29% of the generated results
as errors. Among them, 8.48% of the actions
were indeed wrong, and 2.81% of the actions were
misjudged by the error detection module. For the

4257

Accuracy Click Scroll Input Complete
IoU Text | IoU Text | IoU Text

Percentage 79.24% 15.10% 4.84% 26.06%

ReachAgent 82.09 83.12 | 71.25 55.07 | 92.80 88.80 91.82

BacktrackAgent | 83.52 84.46 | 72.40 55.33 | 91.20 86.80 95.02

A 143 134 | 1.15 026 | -1.60 -2.00 3.20

Table 7: Statistical results of different types of actions.

8.48% of wrong actions the model successfully
recovered 2.37%, leaving 6.11% unrecovered. For
the 2.81% of misjudged actions, the error recovery
module incorrectly modified 0.78%. Overall, the
performance of the BacktrackAgent is improved
through error detection and recovery mechanisms.

Action Types Analyze From Table 7, we can
see that: 1) The scroll action is most likely
to be generated incorrectly. Even if the agent
successfully selects the scroll action, it is difficult to
generate the direction correctly. This is because the
agent generating a scroll action usually means there
are no available elements in the current page and
needs to explore other pages, and this exploration
action may not be unique. 2) Compared with
ReachAgent, BacktrackAgent improves accuracy
in click, scroll, and complete actions, but decreases
in input actions. This is because the page changes
after the input action are not obvious. In addition,
the keywords of the input action are more likely to
be changed to words that appear in the task when
backtracking. However, the probability of input
actions in GUI tasks is low (4.84%), so the overall
performance of the agent is still improved.

6 Conclusion

In this paper, we introduce BacktrackAgent, a
framework that utilizes a backtracking mechanism
to enhance the task completion capabilities of GUI
agents. Our framework incorporates two error
detection modules: verifier and judger, along with
a recovery module: reflector, which explicitly
handles the backtracking process following an er-
roneous action. Additionally, the rewards from the
verifier and judger are integrated to further improve
BacktrackAgent’s performance. The experimental
results show that BacktrackAgent increases the
task success rate by 7.59%. It also enhances
the accuracy at both the task and step levels by
3.72% and 1.64%, respectively. By explicitly
incorporating the backtracking mechanism, Back-
trackAgent demonstrates superior performance

in task completion. We hope that this agent
framework will serve as a valuable resource for
error detection and recovery tasks, contributing to
future research in the community.

Limitations

Despite the great progress made by Backtrack-
Agent, it still has some limitations that may be
addressed in future updates. When performing
the GUI tasks, our framework requires extra error
detection and recovery modules, which reduces
the agent’s reasoning speed by 50%. However,
the substantial contribution of the backtracking
mechanism to task completion gives us confidence
in its potential for future improvements.

Ethics Statement

This paper is conducted in accordance with the
ACM Code of Ethics. The Mobile3M and Auto-
UI datasets utilized in this research are publicly
available. Our dataset for judger and reflector has
been constructed using publicly available platforms
and data sources, which ensures that there are no
privacy issues or violations. All data used in our
research is obtained following legal and ethical
standards, and we do not collect any personally
identifiable information. We will open-source all
training and test data once the paper is accepted.

References

Antonis Antoniades, Albert Orwall, Kexun Zhang,
Yuxi Xie, Anirudh Goyal, and William Wang. 2024.
Swe-search: Enhancing software agents with monte
carlo tree search and iterative refinement. Preprint,
arXiv:2410.20285.

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir
Zubach, Hassan Mansoor, Vincent Etter, Victor
Carbune, Jason Lin, Jindong Chen, and Abhanshu
Sharma. 2024. Screenai: A vision-language
model for ui and infographics understanding. In
Proceedings of the Thirty-Third International Joint
Conference on Artificial Intelligence, IJCAI-24,
pages 3058-3068. International Joint Conferences
on Artificial Intelligence Organization. Main Track.

4258

https://arxiv.org/abs/2410.20285
https://arxiv.org/abs/2410.20285
https://doi.org/10.24963/ijcai.2024/339
https://doi.org/10.24963/ijcai.2024/339

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane
Suhr, Sergey Levine, and Aviral Kumar. 2024.
Digirl: Training in-the-wild device-control agents
with autonomous reinforcement learning. Preprint,
arXiv:2406.11896.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao,
Liang Liu, Dingyu Zhang, Peng Gao, Shuai Ren,
and Hongsheng Li. 2024. Amex: Android multi-
annotation expo dataset for mobile gui agents.
Preprint, arXiv:2407.17490.

Yuxiang Chai, Hanhao Li, Jiayu Zhang, Liang Liu,
Guozhi Wang, Shuai Ren, Siyuan Huang, and
Hongsheng Li. 2025. A3: Android agent arena for
mobile gui agents. Preprint, arXiv:2501.01149.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie,
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
2024. Navigating the digital world as humans do:
Universal visual grounding for gui agents. Preprint,
arXiv:2410.05243.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao
Dong, Ming Ding, and Jie Tang. 2024. Cogagent:
A visual language model for gui agents. Preprint,
arXiv:2312.08914.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram
Duvvur, Ming Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried.
2024. VisualWebArena: Evaluating multimodal
agents on realistic visual web tasks. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 881-905, Bangkok, Thailand. Association for
Computational Linguistics.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained models
and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314-21328.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092—1097.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan
Yang, Shiwei Wu, Zechen Bai, Weixian Lei, Lijuan
Wang, and Mike Zheng Shou. 2024. Showui: One
vision-language-action model for gui visual agent.
Preprint, arXiv:2411.17465.

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu
Lai, Hanchen Zhang, Hanlin Zhao, Iat Long Iong,
Jiadai Sun, Jiaqi Wang, Junjie Gao, Junjun Shan,
Kangning Liu, Shudan Zhang, Shuntian Yao, Siyi
Cheng, Wentao Yao, Wenyi Zhao, Xinghan Liu,
Xinyi Liu, Xinying Chen, Xinyue Yang, Yang Yang,
Yifan Xu, Yu Yang, Yujia Wang, Yulin Xu, Zehan
Qi, Yuxiao Dong, and Jie Tang. 2024a. Autoglm:
Autonomous foundation agents for guis. Preprint,
arXiv:2411.00820.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu,
Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang
Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang,
Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun,
Minlie Huang, Yuxiao Dong, and Jie Tang. 2024b.
Agentbench: Evaluating LLMs as agents. In
The Twelfth International Conference on Learning
Representations.

Yuhang Liu, Pengxiang Li, Zishu Wei, Congkai
Xie, Xueyu Hu, Xinchen Xu, Shengyu Zhang,
Xiaotian Han, Hongxia Yang, and Fei Wu. 2025.
Infiguiagent: A multimodal generalist gui agent
with native reasoning and reflection. Preprint,
arXiv:2501.04575.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi
Ke, Boyi Liu, and Zhaoran Wang. 2024c. Reason
for future, act for now: A principled architecture for
autonomous llm agents. In Forty-first International
Conference on Machine Learning.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024.
CoCo-agent: A comprehensive cognitive MLLM
agent for smartphone GUI automation. In Findings
of the Association for Computational Linguistics:
ACL 2024, pages 9097-9110, Bangkok, Thailand.
Association for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information
Processing Systems, 36:46534-46594.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin
Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. 2023. Lever: Learning to verify language-to-
code generation with execution. In International
Conference on Machine Learning, pages 26106—
26128. PMLR.

4259

https://arxiv.org/abs/2406.11896
https://arxiv.org/abs/2406.11896
https://arxiv.org/abs/2407.17490
https://arxiv.org/abs/2407.17490
https://arxiv.org/abs/2501.01149
https://arxiv.org/abs/2501.01149
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://doi.org/10.18653/v1/2024.acl-long.50
https://doi.org/10.18653/v1/2024.acl-long.50
https://arxiv.org/abs/2411.17465
https://arxiv.org/abs/2411.17465
https://arxiv.org/abs/2411.00820
https://arxiv.org/abs/2411.00820
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2501.04575
https://arxiv.org/abs/2501.04575
https://doi.org/10.18653/v1/2024.findings-acl.539
https://doi.org/10.18653/v1/2024.findings-acl.539

OpenAl. 2023. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

Pranav Putta, Edmund Mills, Naman Garg, Sumeet
Motwani, Chelsea Finn, Divyansh Garg, and Rafael
Rafailov. 2024. Agent q: Advanced reasoning
and learning for autonomous ai agents. Preprint,
arXiv:2408.07199.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang,
Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li,
Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye
Li, Jiale Yang, Yu Miao, Woyu Lin, Longxiang
Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao,
Kai Cai, Chuang Li, Yaowei Zheng, Chaolin Jin,
Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen,
Zhaojian Li, Haihua Yang, Haifeng Liu, Feng Lin,
Tao Peng, Xin Liu, and Guang Shi. 2025. Ui-tars:
Pioneering automated gui interaction with native
agents. Preprint, arXiv:2501.12326.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy Lillicrap. 2023a. Android in the
wild: A large-scale dataset for android device control.
Preprint, arXiv:2307.10088.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy Lillicrap. 2023b. Android in the
wild: A large-scale dataset for android device control.
arXiv preprint arXiv:2307.10088.

Huawen Shen, Chang Liu, Gengluo Li, Xinlong
Wang, Yu Zhou, Can Ma, and Xiangyang Ji. 2024.
Falcon-ui: Understanding gui before following user
instructions. Preprint, arXiv:2412.09362.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate
& rank: A multi-task framework for math word
problems. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages
2269-2279.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Processing

Systems, 36:8634-8652.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484-489.

Student. 1908. The probable error of a mean.
Biometrika, pages 1-25.

Haoyu Wang, Tao Li, Zhiwei Deng, Dan Roth, and Yang
Li. 2024a. Devil’s advocate: Anticipatory reflection
for llm agents. arXiv preprint arXiv:2405.16334.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang,
Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. 2024b. Mobile-agent-v2: Mobile

device operation assistant with effective navigation
via multi-agent collaboration. arXiv preprint
arXiv:2406.01014.

Lu Wang, Fangkai Yang, Chaoyun Zhang, Junting
Lu, Jiaxu Qian, Shilin He, Pu Zhao, Bo Qiao, Ray
Huang, Si Qin, Qisheng Su, Jiayi Ye, Yudi Zhang,
Jian-Guang Lou, Qingwei Lin, Saravan Rajmohan,
Dongmei Zhang, and Qi Zhang. 2025a. Large action
models: From inception to implementation. Preprint,
arXiv:2412.10047.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang,
Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang,
Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin.
2024c. Qwen2-vl: Enhancing vision-language
model’s perception of the world at any resolution.
arXiv preprint arXiv:2409.12191.

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao,
Jun Wang, and Kun Shao. 2024d. Distrl: An
asynchronous distributed reinforcement learning
framework for on-device control agents. Preprint,
arXiv:2410.14803.

Zhenhailong Wang, Haiyang Xu, Junyang Wang,
Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
Heng Ji. 2025b. Mobile-agent-e: Self-evolving
mobile assistant for complex tasks. Preprint,
arXiv:2501.11733.

Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang.
2025. Reachagent: Enhancing mobile agent via page
reaching and operation. Preprint, arXiv:2502.02955.

Qinzhuo Wu, Weikai Xu, Wei Liu, Tao Tan, Liujian
Liujianfeng, Ang Li, Jian Luan, Bin Wang, and
Shuo Shang. 2024. MobileVLM: A vision-language
model for better intra- and inter-UI understanding.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 10231-10251,
Miami, Florida, USA. Association for Computational
Linguistics.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu,
Xun Wang, Ke Wang, Cheng Li, Wei Peng, and
Sujian Li. 2024. Watch every step! LLM agent
learning via iterative step-level process refinement.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
15561572, Miami, Florida, USA. Association for
Computational Linguistics.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin,
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, Zicheng Liu, and
Lijuan Wang. 2023. Gpt-4v in wonderland: Large
multimodal models for zero-shot smartphone gui
navigation. Preprint, arXiv:2311.07562.

Keen You, Haotian Zhang, Eldon Schoop, Floris
Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. 2024. Ferret-ui: Grounded
mobile ui understanding with multimodal llms. In

4260

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2408.07199
https://arxiv.org/abs/2408.07199
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2412.09362
https://arxiv.org/abs/2412.09362
https://arxiv.org/abs/2412.10047
https://arxiv.org/abs/2412.10047
https://arxiv.org/abs/2410.14803
https://arxiv.org/abs/2410.14803
https://arxiv.org/abs/2410.14803
https://arxiv.org/abs/2501.11733
https://arxiv.org/abs/2501.11733
https://arxiv.org/abs/2502.02955
https://arxiv.org/abs/2502.02955
https://doi.org/10.18653/v1/2024.findings-emnlp.599
https://doi.org/10.18653/v1/2024.findings-emnlp.599
https://doi.org/10.18653/v1/2024.emnlp-main.93
https://doi.org/10.18653/v1/2024.emnlp-main.93
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://doi.org/10.1007/978-3-031-73039-9_14
https://doi.org/10.1007/978-3-031-73039-9_14

Computer Vision — ECCV 2024: 18th European
Conference, Milan, Italy, September 29—October 4,
2024, Proceedings, Part LXIV, page 240-255, Berlin,
Heidelberg. Springer-Verlag.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng,
Michel Galley, Jianfeng Gao, and Zhou Yu. 2024.
Exact: Teaching ai agents to explore with reflective-
mcts and exploratory learning. arXiv preprint
arXiv:2410.02052.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng,
Michel Galley, Jianfeng Gao, and Zhou Yu.
2025. Exact: Teaching ai agents to explore with
reflective-mcts and exploratory learning. Preprint,
arXiv:2410.02052.

Zhuosheng Zhan and Aston Zhang. 2023. You only
look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin
Chen, Zebiao Huang, Bin Fu, and Gang Yu. 2023.
Appagent: Multimodal agents as smartphone users.
Preprint, arXiv:2312.13771.

Jiwen Zhang, Jihao Wu, Teng Yihua, Minghui Liao,
Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.
2024a. Android in the zoo: Chain-of-action-thought
for GUI agents. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pages
12016-12031, Miami, Florida, USA. Association for
Computational Linguistics.

Yadong Zhang, Shaoguang Mao, Wenshan Wu, Yan
Xia, Tao Ge, Man Lan, and Furu Wei. 2024b.
Enhancing language model rationality with bi-
directional deliberation reasoning. arXiv preprint
arXiv:2407.06112.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu,
and Volker Tresp. 2025. Webpilot: A versatile
and autonomous multi-agent system for web task
execution with strategic exploration. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 39, pages 23378-23386.

Zhuosheng Zhang and Aston Zhang. 2024. You only
look at screens: Multimodal chain-of-action agents.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 3132-3149, Bangkok,
Thailand. Association for Computational Linguistics.

A Experiment Settings

A.1 Datasets

Mobile3M is a pre-trained dataset collected on 49
third-party real-world apps using a breadth-first
exploration method. Mobile3M collects data in
a random exploration manner and constructs the
GUI Trajectory of each APP in the form of a
graph. This allows us to obtain various possible
next pages for every GUI Page, depending on the
actions taken, resulting in diverse GUI trajectories.
ReachAgent filters GUI trajectories and annotation
tasks from Mobile3M and reconstructs them into a
page navigation dataset. Mobile3M traverses and
executes each action in the action space of each
GUI page when it is built, and marks the equivalent
pages. Therefore, we can get the actual execution
results from Mobile3M. If a generated action is
not in the action space, we regard it as an invalid
action.

Auto-UI cleans and extracts data from AITW
dataset (Rawles et al., 2023b), including 5 different
types of tasks, General, GoogleApps, Install, Sin-
gle, and WebShopping. These five types of tasks
are quite different, so the agent trained on the five
subsets separately performs better than the unified
model trained on all five subsets, as shown in Table
2. Here, since the Auto-UI dataset does not contain
the complete XML document of the GUI page or
the mobile environment image, it is difficult for us
to obtain the result page after executing a wrong
action on the GUI page, so we use the simulated
execution page as the result of the action execution.

Hyperparameter SFT RL
epoch 2 2
batch size 2 1
learning rate le-5 le-5
warmup ratio 0.1 0.1
max sequence length | 8192 8192
max new tokens 512 512
GPUs 8 8
num workers 128 128
optimizer Adam | Adam
deepspeed ZeRO3 | ZeRO2
max reflection times 3 3
B1 - 0.1
B2 - 0.1

Table 8: Hyperparameters.

4261

https://arxiv.org/abs/2410.02052
https://arxiv.org/abs/2410.02052
https://arxiv.org/abs/2312.13771
https://doi.org/10.18653/v1/2024.findings-emnlp.702
https://doi.org/10.18653/v1/2024.findings-emnlp.702
https://doi.org/10.18653/v1/2024.findings-acl.186
https://doi.org/10.18653/v1/2024.findings-acl.186

3 Examples of GUI Trajectory Pairs

Task1: Search for today’s gold price.
*#**Generate GUI Trajectory:****
Click(box1, "Search Box")
Input(box2, "Gold Price")
Click(box3, "Search Button")
*#**Golden GUI Trajectory:****
Click(box1, "Search Box")
Input(box2, "Today’s Gold Price")
Click(box3, "Search Button")

Task2: Set the display mode to night mode.
+Generate GUI Trajectory:™***
Click(box1, "Personal Center")
Click(box?2, "Setting")

Click(box3, "Display Mode")

Click(box4, "Night Mode")

*#**Golden GUI Trajectory:****
Click(box1, "Personal Center")
Click(box3, "Display Mode")

Click(box4, "Night Mode")

Task3: Add Black Tea Latte to cart.
+Generate GUI Trajectory:™***
Click(box1, "Search Box")
Input(box2, "Black tea Latte")
Click(box3, "Black tea Latte")
Click(box5, "Add to Cart")
*#**Golden GUI Trajectory:****
Click(box1, "Search Box")
Input(box2, "Latte")

Click(box4, "Black tea Latte")
Click(box5, "Add to Cart")

A.2 Metrics

We evaluate the model performance at two levels:
step level and task level. At the step level, we
evaluate whether the generated action is correct in
each time step. At the task level, we assess whether

a GUI trajectory meets the requirements of the task.

e Step Level Accuracy: Following ReachAgent,
we use IoU accuracy to evaluate the intersection
ratio between the bounding boxes in the generated
and golden actions, allowing a 14% error. Text
accuracy evaluates whether the text in the generated
action is consistent with that in the golden action,
requiring F1 to be greater than 0.8.

e Task Level Accuracy: Task accuracy requires
that each action in the GUI trajectory exactly
matches the predetermined correct sequence.

e Task Success Rate: Task Success Rate indi-
cates whether the GUI trajectory navigates through
the essential pages and completes the specified
operations of the task. Following ReachAgent,
if the GUI reaches the key page via a different
route or continues to navigate after completing the
task, we still consider the task to be successfully
completed.

The table above shows 3 examples of GUI
trajectory pairs. In Task 1, the second step shares
the same bounding box but different text, so this
step matches on the IoU metric but not on the Text
metric. In Task 2, the agent’s actions from the
second step onwards are not completely consistent
with the ground truth, so only one of the three
steps is a step-level match. In Task 3, the second
step matches on the IoU metric but not on the
Text metric, and the third step matches on the Text
metric but not on the IoU metric.

Therefore, their step-level metrics can be calcu-
lated as follows:

e Step Level Accuracy-loU: (3+1+3)/(3+3+4)

e Step Level Accuracy-OCR: (2+1+3)/(3+3+4)

In addition, all three tasks successfully reached
the final page of the golden answer. However, Task
1 is completely consistent with the golden answer
only on IoU metric. The remaining two tasks are
not completely consistent with the golden answer
on both IoU and Text metrics. Therefore, their
task-level metrics can be calculated as follows:

e Task Success Rate: 3/3

e Task Level Accuracy-Both: 0/3

e Task Level Accuracy-loU: 1/3

e Task Level Accuracy-OCR: 0/3

A.3 Parameters

The hyperparameters are presented in Table 8.
BacktrackAgent uses Qwen2-VL-7B as the back-
bone model. We use 8 80GB Nvidia A100 GPUs
for fine-tuning. Here, 2 epochs of fine-tuning
typically cost 25 hours on Mobile3M and 97 hours
on Auto-UI The learning rate is 1le-5. The agent’s
max length is 8192. 37 and (2 is 0.1. The
maximum number of reflections for each step is
3. For the SFT version, the Generator, Judge,
and Reflector were trained for 2 epochs on the
Mobile3M and Auto-UI datasets, respectively. For
the RL version, the generator and reflector were
further trained for 2 epochs with the new loss
function. To ensure fair comparisons, we maintain
consistent hyperparameters across all the baselines
and the ablations of BacktrackAgent.

4262

For the Mobile3M dataset, the generator first
trained for 2 epochs on 259,725 data with a batch
size of 2. The judger and the reflector were trained
for 2 epochs in the constructed dataset as described
in Section 4.2. Then, the generator and the reflector
were further finetuned for 2 epochs with additional
loss from the error detection module with a batch
size of 1. During testing, the max reflection time is
set to 3.

For the Auto-UI dataset, We fine-tune Backtrack-
Agent on 5 subsets respectively. Similarly, we
fine-tuned the generator, judger, and reflector for 2
epochs. Then, we further reinforced the generator
and reflector for 2 epochs.

A.4 Baselines

We compare our proposed BacktrackAgent with the
following baselines: GPT-40, Auto-UI, Qwen-VL,
Qwen2-VL, MobileVLM, and ReachAgent.

* GPT-40 (OpenAl, 2023) is a large available
VLM and has been widely used in the devel-

opment of agents (Yu et al., 2025; Zhang et al.,
2025).

* Qwen-VL (Bai et al., 2023) is a large-scale
vision-language model with open weights. It
is used as the backbone model for multiple
mobile Al agents.

* Qwen2-VL (Wang et al., 2024c¢) is an im-
proved version of Qwen-VL. It can understand
images of different resolutions and has the
ability of complex reasoning and decision-
making.

* Auto-UI (Zhan and Zhang, 2023) is a GUI
agent that focuses on action history and future
action plans

* MobileVLM (Wu et al., 2024) uses a large
number of randomly explored pages from
Mobile3M for two-stage pre-training, which
improves its ability to understand the elements
within a page and the relationships between

pages.

* ReachAgent (Wu et al., 2025) is a GUI agent
that focuses on page reach and page operation
subtasks. It further enhances the model’s
task completion abilities by building pairwise
responses based on the DPO method.

For in-context learning like GPT-40, we provided
them with several few-shot examples. For other

baselines, we use the same training dataset to
supervise fine-tune them for two epochs.

A.5 Verifier’s Rules

As described in Section 3.3, we have formulated
two very general rules in Verifier that should be ap-
plicable to a variety of different GUI environments.

For Rule 1, we require that the action be
complete and executable. Regardless of the GUI
platform (Mobile, Desktop, Web) and the format in
which the action is organized (Action, API, Code),
an executable action should be the foundation of a
valid GUI interaction.

For Rule 2, we require that the page will change
after the action is executed. This rule ensures that
the operation can truly affect the GUI environment
and is generally applicable across different GUI
environments.

Considering the generality of these two rules,
we believe they can be extended to various GUI
environments.

A.6 Execution Methods

As shown in Figure 4, there are two execution meth-
ods: Simulated Execution and Actual Execution.

In Simulated Execution, actions are visualized
directly on the current GUI page. Click actions are
indicated by marking the corresponding element
box in red, while scroll and input actions are repre-
sented with arrows and text positioned accordingly.
Although the resulting visual representation does
not reflect real execution, making the authenticity
of Simulated Execution relatively low, it can be
easily applied to any APP and dataset without
requiring additional setup.

In contrast, Actual Execution involves collecting
data by traversing and exploring all possible actions
for each unique page within the APP. This process
results in constructing a graph where unique pages
serve as nodes. During the inference process, the
closest unique page can be identified based on
the current device state, allowing the generator to
determine the corresponding next page for each
action. Since this method is based on actual
execution, it provides a higher level of authenticity.
However, when a new APP emerges, it requires
time to explore and identify valid pages.

In summary, when supporting a new APP, Simu-
lated Execution can be implemented immediately,
whereas Actual Execution requires a thorough
exploration of the APP’s valid pages.

4263

{image}

The actions you can use are:
{action space}

You need to complete the following task:
{task}

The completed actions are as follows:
{history actions }

Judgment: Please analyze whether the next action is helpful to further complete the task based on the

current status and completed actions.
Next action: {next action}

The page changes caused by executing the action are as follows:

{image}

Final judgment (whether the next action is helpful to complete the task): (Yes or No)

Table 9: The prompt for the judger in the BacktrackAgent. The grey text indicates the page information and history

actions to be filled in.

{image}

The actions you can use are:
{action space}

You need to complete the following task:
{task}

The completed actions are as follows:
{history actions}

Reflection: This is not your first attempt to generate the next action. The previous attempts to generate
the next action have all failed. Here are some previously generated next actions:

{next actions }

The page changes caused by executing the action are as follows:

{image}

Please note that you are currently in the middle stage of the trajectory. First, you need to analyze the
current state, completed actions, and tasks, and compare them with the previous attempts at the next
action. Then, you need to generate a new action that is different from all previously generated next

actions.

Table 10: The prompt for the reflector in the BacktrackAgent.

{image}

The actions you can use are:
{action space}

You need to complete the following task:
{task }

The completed actions are as follows:
{history actions}

Table 11: The prompt for the agent’s basic generator.
The grey text indicates the page information and history
actions to be filled in.

B Releated Work

Existing works (Wang et al., 2024a; Zhang et al.,
2024b; Liu et al., 2024c; Yu et al., 2024) utilize
different prompts to enable the agent to determine
when to reflect on its actions. However, these
approaches heavily rely on the capabilities of the
core LLMs. Furthermore, the outputs generated
by these models are difficult to control, making
it challenging to enhance specific skills such as
judgment and reflection. In this section, we will
discuss other reflection/verifier/backtracking mech-
anisms used in LL.M-agents and their similarities
and differences with BacktrackAgent.

4264

Reflection. Some past works have adopted reflec-
tion for self-improvement, improving generation
through self-evaluation during reasoning (Madaan
et al.,, 2023). Reflection (Shinn et al., 2023)
leverages verbal reinforcement to teach agents
to learn from past mistakes. Specifically, after
performing an action, it observes the state of the
current environment, generates feedback in the
form of a text summary, and provides it to the
agent as additional context when generating the
next action. Similarly, Mobile-Agent-v2 (Wang
et al., 2024b) adopts a reflection agent to observe
the screen state before and after the decision
agent’s operation to determine whether the current
operation is effective, so as to avoid falling into a
loop of invalid operations. Mobile-Agent-E (Wang
et al., 2025b) generate plans and shortcuts for GUI
tasks and continuously reflect and update these
hints during reasoning. These methods use VLMs
such as GPT-40 and GPT-4V as core models, and
formulate different prompts to encourage the model
to analyze the results of previous actions. They rely
heavily on the ability and performance of the core
model, the quality of the prompts, and they also
have difficulty in encouraging action execution to
be consistent with the overall task goal.

Verifier. Previous work has demonstrated the
effectiveness of verifiers in the fields of math
question answering and code generation. For math
question answering tasks (Cobbe et al., 2021; Shen
et al., 2021), models can execute mathematical
expressions to avoid generating malformed results
or using variables not mentioned in the question.
For code generation tasks (Li et al., 2022; Chen
et al., 2022, 2023), models simulate the execution
of generated code with test cases or self-generated
unit tests to detect and fix errors in the program.
Some work uses methods such as reinforcement
learning or scoring models (Le et al., 2022; Niet al.,
2023) to further improve existing generation based
on feedback or scoring of execution results.

A main reason why verifiers are effective on
these tasks is that both mathematical expressions
and codes are executable, and the results after exe-
cution reflect the quality of generation. Similarly,
in GUI scenarios, the interactive actions generated
by the agent at each step are executable and the
results of the execution can be observed. The
changes in the GUI page can also reflect whether
the generated actions are relevant to the task and
effective.

The setting of BacktrackAgent is closer to
LEVER [10], which trains a judger separately
and judges the results before and after the model
execution to guide the backtrack mechanism. The
judger and the rule-based verifier jointly judge
whether the generated actions are consistent with
expectations and helpful for task completion.

Backtrack Mechanism. Some works further uti-
lize backtracking algorithms to explicitly intervene
in the reasoning process. Mobile-Agent-v2 (Wang
et al., 2024b) detects whether the current action is
wrong or invalid and regenerates these incorrect
actions. Neither wrong nor invalid actions are
recorded in the action history to prevent the agent
from tracking these operations. WebPliot (Zhang
et al., 2025) uses an MCTS-based approach to
explore the action space of Web tasks. It uses the
maximum backpropagation (MVB) mechanism to
prioritize the most promising paths for the MCTS
backpropagation step.

Our BacktrackAgent adopts a rule-based verifier
and a model-based judger to jointly guide the
backtracking mechanism. It observes the changes
before and after the page execution at each GUI
step and provides the agent with the reflected action
history of the current step to avoid falling into an
infinite backtracking loop.

C Prompt

Here, we give the prompt for action generation in
Table 11, the prompt for the judgment module in
Table 9, and the prompt for the reflection module
in Table 10.

We fill in the prompt with the example in Figure
3. The inputs of the generator, judger and reflector
are shown in below three tables respectively. As
can be seen from the tables, the input of the
generator needs to fill the current GUI page, the
action space of the current GUI page, the history
action list and the given task. The input of the
judger still needs the action to be judged and the
next page generated by the execution of that action
based on the input of the generator. The input of
the reflector still requires all the actions generated
by multiple reflections and the next page generated
by the execution of the last generated action based
on the input of the generator.

4265

An example input of the generator.

image_path: .../Starbucks0_10 5 2 3 6-

screen.png

The actions you can use are:
click("IngredientButton",[953,637][1068,752])
click("BackButton",[46,150][138,242])
click("StepperReduce",[790,1329][872,1411])
click("StepperAdd",[964,1329][1046,1411])
click("MediumCup",[44,1556][363,1820])
click("LargeCup",[382,1556][698,1820])
click("ExtralargeCup",[717,1556][1036,1820])
click("Hot",[44,1930][1036,2059])
click("Ice",[382,1963][698,2059])
click("Lightlce",[717,1963][1036,2059])
click("resetRecipe"”,[46,2126][362,2253])
click("addToCart",[385,2126][1034,2253])
scroll("Customize",[0,1474][1080,2400],"up")
scroll("Customize",[0,1474][1080,2400],"down")
scroll("Customize",[0,1474][1080,2400],"left")
scroll("Customize",[0,1474][1080,2400],"right")

You need to complete the following task:

I’d like to order a large cup of black tea latte,
with extra Tahitian vanilla syrup, delivered to
my home.

The completed actions are as follows:
click("delivery_entry",[375,740][704,1032])
click("search",[530,748][783,841])
input("input”,[46,242][848,346],"blact tea
latte")

click("search",[894,230][1034,346])
click("addToCart",[953,709][1022,778])

click("Lightlce",[717,1963][1036,2059])
click("resetRecipe",[46,2126][362,2253])
click("addToCart",[385,2126][1034,2253])
scroll("Customize",[0,1474][1080,2400],"up")
scroll("Customize",[0,1474][1080,2400],"down")
scroll("Customize",[0,1474][1080,2400],"left")
scroll("Customize",[0,1474][1080,2400],"right")

You need to complete the following task:

I’d like to order a large cup of black tea latte,
with extra Tahitian vanilla syrup, delivered to
my home.

The completed actions are as follows:
click("delivery_entry",[375,740][704,1032])
click("search",[530,748][783,841])
input("input",[46,242][848,346],"blact tea
latte")

click("search",[894,230][1034,346])
click("addToCart",[953,709][1022,778])

Judgment: Please analyze whether the next
action is helpful to further complete the task
based on the current status and completed
actions.

Next action:
scroll(“Customize",[0,1474][1080,2400],“down")
The page changes caused by executing the
action are as follows:
image_path:.../StarbucksO_10_5_2 3_6-
down-screen.png

Final judgment (whether the next action is
helpful to complete the task): (Yes or No)

\

An example input of the judger. An example input of the reflector.

image_path:.../Starbucks0_10_5_2_3_6-
screen.png

The actions you can use are:
click("IngredientButton",[953,637][1068,752])
click("BackButton",[46,150][138,242])
click("StepperReduce",[790,1329][872,1411])
click("StepperAdd",[964,1329][1046,1411])
click("MediumCup",[44,1556][363,1820])
click("LargeCup",[382,1556][698,1820])
click("ExtraLargeCup",[717,1556][1036,1820])
click("Hot",[44,1930][1036,2059])
click("Ice",[382,1963][698,2059])

image_path: .../Starbucks0_10_5_2_3_6-

screen.png

The actions you can use are:
click("IngredientButton",[953,637][1068,752])
click("BackButton",[46,150][138,242])
click("StepperReduce",[790,1329][872,1411])
click("StepperAdd",[964,1329][1046,1411])
click("MediumCup",[44,1556][363,1820])
click("LargeCup",[382,1556][698,1820])
click("ExtralargeCup",[717,1556][1036,1820])
click("Hot",[44,1930][1036,2059])
click("Ice",[382,1963][698,2059])

4266

click("Lightlce",[717,1963][1036,2059])
click("resetRecipe"”,[46,2126][362,2253])
click("addToCart",[385,2126][1034,2253])
scroll("Customize",[0,1474][1080,2400],"up")
scroll("Customize",[0,1474][1080,2400],"down")
scroll("Customize",[0,1474][1080,2400],"left")
scroll("Customize",[0,1474][1080,2400],"right")

You need to complete the following task:

I’d like to order a large cup of black tea latte,
with extra Tahitian vanilla syrup, delivered to
my home.

The completed actions are as follows:
click("delivery_entry",[375,740][704,1032])
click("search",[530,748][783,841])
input("input”,[46,242][848,346],"blact tea
latte")

click("search",[894,230][1034,346])
click("addToCart",[953,709][1022,778])

Reflection: This is not your first attempt
to generate the next action. The previous
attempts to generate the next action have all
failed.

Here are some previously generated next
actions:
click("ExtralargeCup",[717,1556][1036,1820])
click("StepperAdd",[964,1329][1046,1411])
scroll(“Customize",[0,1474][1080,2400],“down")

The page changes caused by executing the
action are as follows:

image_path: .../Starbucks0_10_5_2_3_6-
down-screen.png

Please note that you are currently in the middle
stage of the trajectory. First, you need to
analyze the current state, completed actions,
and tasks, and compare them with the previous
attempts at the next action. Then, you need to
generate a new action that is different from all

previously generated next actions.

D The Judgment and Reflection Dataset
Construction

In this section, we introduce how to generate
judgment and reflection datasets. Taking a step
from Figure 6 as an example, the input and output
of the original golden answer are:

Input: X, ag, ActionSpace(Psg), Ps.

n.n

Output: scroll ("Customize", "up")

Assume that the generator generates a new
action, "click ("StepperAdd")", when regenerating
this input. The evaluation index considers this
action to be incorrect. Then, for the above two
actions, we can construct two judgment data.

7

****Case 1****

Input: X, ag, ActionSpace(Pg), Pg.
Next action: scroll ("Customize", "up")
Final judgment: (Yes or No)

Output: Yes

****Case 2****

Input: X, ag, ActionSpace(Pg), Pg.
Next action: click ("StepperAdd")
Final judgment: (Yes or No)

Output: No

Since the amount of data that does not require
reflection is much larger than the data that needs
reflection, we randomly select all negative data
and 20% of positive data to construct the reflection
dataset. The reflection data formed by the above
two judgment examples are as follows:

kkdkk(Cgge | Hk**

Input: X, ag, ActionSpace(Pg), Pg.
Previous reflection list:

n.on

scroll ("Customize", "up")
You need to generate a new action.

n.on

Output: scroll ("Customize", "up")

****Case 2****

Input: X, a~g, ActionSpace(Pg), Pg.
Previous reflection list:

click ("StepperAdd")

You need to generate a new action.

non

Output: scroll ("Customize", "up")

Here, during testing, the agent can perform
multiple reflections until a satisfactory action is
generated. When constructing the relection dataset,
if the actions generated by the generator multiple
times do not meet the evaluation metric, we will
provide all of them to the reflector as a history
reflection action list.

4267

Task @ ﬁ I'd like to order a large cup of black tea latte, with extra Tahitian vanilla syrup, delivered to my home. |
o . T
O —
P B 150
P e === pec
4 - = —
@l s ¥ B B e e
Golden Action O Ve Qg T o T T LTy
Golden Page p, P, P Py Py
Action a} as
Page P} 12 Pio
(TSIt T [} o
1 —> Golden Action | —_ S— :
1 — Explore Action ! e
| —> Backtrack i ;]
! — Equivalent Page; — = : o
_____________) 2@ - I o - - - T N E—r1 — e ——

Wrong: enter the
“order” Page

Wrong: choose Correct: choose
“matcha latte™

“black tea latte”

Wrong: add the Wrong: change Wrong: browsing Correct: select "Checkout
number to "2" type to "venti" on “option" page instead of “Shopping Bag"

Id Action Element Name Id Action Element Name
a; click(10) DeliveryEntry ao click(14) Payment
a, click(5) Search s STATUS_TASK_COMPLETE
as input(2, “black tea latte”) InputBox al click(26) Order
a, click(3) SearchButton al click(5) matcha latte
as click(6) AddToCart a} click(5) black tea latte
ag scroll(20,“up”) Customize al click(4) StepperAdd
a, click(25) StepperAdd a? click(7) ExtraLargeCup
ag click(30) AddToCart a} scroll(33,“up”) Customize
aq click(19) ShoppingBag a} click(21) Checkout

Figure 6: The complete 10-step GUI trajectory for a task. Green boxes represent the pages that need to be reached,
and green circles represent the operations that need to be done. Orange arrows are the actions in the golden flow.
Blue arrows are the actions in other GUI trajectories. Both the orange and blue flows can complete the task.

Input: X, a¢, ActionSpace(Ps), Pg.
Previous reflection list:

click ("StepperAdd")

click ("ExtraLargeCup")

scroll ("Customize", "down")

You need to generate a new action.

Output: scroll ("Customize", "up")

E A Step-by-Step Inference Process with
Backtrack Mechanism

Figure 6 shows the complete action execution
process of the GUI trajectory in Figure 2. Here
we provide a step-by-step reasoning process with
backtracking for this example as follows:

1. On the Starbucks homepage, BacktrackAgent
decides to click the Order button.

P; -> click ("Order") -> P}

After observing the action execution result page,
the error detection module found that the agent
went to the order page without selecting coffee and
decided to start the backtrack.

The error recovery module reflects the action of
the current step and decides to click the delivery
entry button.

P1 -> click ("DeliveryEntry") -> Py

After discovering that the agent has entered the
delivery entry page, the error detection module
considers this action to be correct and decides to
proceed to the next step.

2. On the delivery entry page, the generator

4268

decides to click the Search button.

[Py -> click ("Search") -> Pg]

The error detection module believes that entering
the search page helps complete the task and
proceeds to the next step.

3. On the search page, the agent decides to
click the matcha latte button in the recommendation
column.

P3 -> click ("matcha latte") -> P}

The error detection module finds that the agent
has entered the product page of Matcha Latte and
starts to backtrack. The reflector rewrites the
current action to input the "black tea latte" in the
search box.

P3 -> input ("InputBox", "black tea latte")
-> P4

The error detection module adopts this action
and goes to step 4.

4. After entering "black tea latte", the agent
clicks the search button. The error detection
module also considers this action to be correct.

[P4 -> click ("SearchButton") -> P]

5. On the search results page for "black tea latte",
the agent clicks the add button for the product. The
error detection module decides to go directly to
step 6.

[Ps5 -> click ("AddToCart") -> Pg]

6. On the product page for “black tea latte,” the
agent first clicks the plus icon in the number of
cups.

The error detection module finds that the current
action selects two cups of coffee when the task
requires one. The reflector rewrites the current
action and decides to select the extra-large cup.

BacktrackAgent finds that the extra-large cup is
inconsistent with the task, and the action still needs
to be rewritten. The agent chooses to slide up this
time.

Pg -> click ("StepperAdd") -> P1

Pg -> click ("ExtraLargeCup") -> P2

non

Pg -> scroll ("Customize", "up") -> P

The agent confirms that there are no parameters
on the previous product page that need to be
modified by the agent. It needs to browse the
parameter page to find the new parameters. The
action is correct, go to step 7.

7. On the parameter page, the BacktrackAgent
clicks the Add button for Tahitian vanilla syrup.
The error detection module passes this action.

[P7 -> click ("StepperAdd") -> Pg

8. After selecting the parameters, the agent
decides to continue swiping up to browse more
parameters.

The error detection module finds that all param-
eters of the "black tea latte" have been customized
and there is no need to continue browsing. The
error recovery module changes the current action
to add to the shopping cart.

non

Pg -> scroll ("Customize", "up") -> P}

Pg -> click ("AddToCart") -> Pg

9. BacktrackAgent decides to click the shopping
bag button. The error detection module sees that it
has reached the checkout page and goes to step 10.

[Pg -> click ("ShoppingBag") -> P19

10. BacktrackAgent clicks the payment button.
The error detection module passes this action.

[P1g -> click ("Payment") -> Py,]

11. BacktrackAgent believes that the task
has been completed and generates the special
token "STATUS_TASK_COMPLETE" to end the
reasoning process.

[P11 -> STATUS_TASK_COMPLETE

4269

a0e P
< o mvam

memRen
ams

— o sa0n

ReachAgent ‘ Ry

axm

© samEao

© HBHRAINS 150

e] o o © I-1-Out Burger

BacktrackAgent oy

o xm

° sERETD

00000

© RIS 15

@ LR
[%}] G o

ReachAgent

BacktrackAgent

Stuck in
“Address Collection”

@

& I OutBurger
91140 8 o UEAD 9114 0 8 o UEAD

sce 4 1a08 a0 o
mevan < o mman < [Smann
+0n Q9 oo ~
MRS anmzanes
= i G ansa - D
E—ifs (ammm) Q)
5 Bomwre> 2N
Z o0
o mamsr e .
—
P
TR o s
© R RHEEATETIRS.
© RREARBHETFIORD
5134 0 & UE40

“Browsing History”

Figure 7: Two cases of generated GUI chain by BacktrackAgent and ReachAgent.

F Case Study

Here we provide two cases of errors during eval-
uvation (See Figure 7). We can see that the
ReachAgent predicts several steps correctly but
if one action is wrong, the agent would fail the
task. In contrast, when BacktrackAgent mistakenly
enters the "Address Collection" page and browses
on the "Browsing History", it can detect the
error and recover to the correct track, and finally
complete the task.

The step-by-step case is described as follows,
given the task "Find a route to a nearby restaurant.",
agent observes that the current page is the home
page of BaiduMap APP.

In step 1, the agent successfully clicked on the
route search and navigated to the search page.

In the step 2, the agent first mistakenly went to
the collection page. The error detection module
discovered the error, and the error recovery module
revised the action to the input "nearby restaurants"
and navigated to the search results page.

In the step 3, the agent clicks on a restaurant and
gets the route to that restaurant.

In step 4, the agent considers the task completed
and decides to exit.

Here, we provide the detailed inference process
in the box below.

4270

Model Task Level Step Level
Overall General Google Install Single WebShop | Overall General Google Install Single WebShop

GPT-40 15.16 1.1 10.73 3.03 46.81 7.96 55.38 47.06 5230 49.12 80.28 46.42
Auto-Ulypified - - - - - - 74.52 68.24 71.37 76.89 84.58 70.26
Auto-Ulgeparate - - - - - - 75.13 65.94 7645 77.62 81.39 69.72
Qwen-VL 16.97 12.28 1296 17.32 38.17 6.35 68.75 62.11 67.13 75.68 73.08 64.12
Qwen2-VL 21.56 16.51 13.16 2253 47.89 11.31 72.26 67.50 67.70 7845 76.54 70.74
MobileVLMpified 25.07 18.31 24.68 23.19 4595 12.99 75.81 69.58 7472 7987 81.24 71.70
MobileVLMgeparate | 25.53 19.68 2539 2280 47.14 13.02 77.36 70.26 76.86 78.86 87.06 71.42
ReachAgentypified 24.89 19.89 2474 23.89 48.70 9.38 74.54 70.27 7494 80.76 77.17 69.02
ReachAgentseparate | 25.28 22.22 24.68 22.61 46.26 12.99 74.81 70.16 7486 7941 76.26 71.70
Generator 25.83 18.10 20.87 26.07 53.29 12.38 75.36 68.85 73.16 80.61 80.44 71.88
BacktrackAgent 29.72 22.60 2346 2733 58.79 15.14 78.04 71.58 75775 8211 82.61 74.78

Table 12: Main Result(%) on AutoUI dataset. "separate" means that this baseline is trained on five subsets of
Auto-UlI, while "unified" means that the baseline is trained on the entire Auto-UI dataset as a whole. - means that
Auto-UI only provides official accuracy at the step level, and does not provide test results for us to calculate the

accuracy at the task level.

Step 1:

Action: click("Route Search")
Execute the Action
Observation: The search page
Error Detection: Correct

Step 2:

Action: click("Address Collection")
Execute the Action
Observation: The collection page
Error Detection: Wrong

Error Recovery: input("Endpoint", "
restaurant")

Execute the Action
Observation: The search result page of
nearby restaurant

Error Detection: Correct

nearby

Step 3:

Action: click("Parking Lot")

Execute the Action

Observation: The route to the Lake View
Restaurant’s parking lot

Error Detection: Correct

Step 4:
Action: Complete

\

G Additional Experiment of Main Results

This section provides detailed experimental data on
Auto-UI. From Table 12 we can see,

e BacktrackAgent outperforms the SOTA base-
line in General, Install, Single, and WebShop splits.
Unlike MobileVLM, we did not pre-train Qwen2-
VL with additional data to achieve this result.

In addition, we only used simulated execution
pages to train the Judger and Reflector. The
improvement of BacktrackAgent over Qwen2-VL
and Generator proves that our framework and
backtracking mechanism can generally improve
task completion abilities on different datasets.

e BacktrackAgent performs slightly better than
the SOTA baseline in General, Install and WebShop
splits, and slightly worse in Google and Single
splits.

e Compared with the backbone model Qwen2-
VL, BacktrackAgent significantly outperforms it
in every split. This proves the effectiveness of our
framework and backtracking mechanism.

The above experimental results show that Back-
trackAgent achieves comparable results to the
SOTA Agent MobileVLM, while BacktrackAgent
is still significantly better than our baseline Qwen?2-
VL. This is because:

e Unlike MobileVLM, we did not use additional
data to pre-train Qwen2-VL.

e We only used simulated execution pages to
train Judger and Reflector, since Auto-UI did not
provide actual execution results. The ablation
experimental table above also verifies that the
actual execution strategy is significantly better than
the simulated execution strategy.

H Statistically Significant Experiment

To ensure that we observed statistically significant
differences between BacktrackAgent and other
SOTA Agents, we performed statistical signifi-
cance tests, as shown in Table 13.

e For the test data, we conducted 10 repeated
experiments on the test set, randomly sampling
80% of the test examples each time.

4271

Task Success Task Level Acc Step Level Acc
Model Method Rate Both IoU Text IoU Text
ReachAgent SFT 45.33 27.48 37.82 31.31 83.34 81.47
ReachAgent SFT+RL 46.52 29.79 38.75 33.06 83.32 81.77
BacktrackAgent Original Agent 54.11 33.51 43.25 36.67 84.94 83.24
A +7.59 +3.72 +4.50 +3.61 +1.62 +1.47
10 repeated tests, each with 80% of the test dataset
Repetition 1 54.30 33.19 43.14 36.45 84.94 83.21
Repetition 2 54.21 33.84 43.61 37.19 84.95 83.24
Repetition 3 53.23 32.96 42.72 36.45 84.80 83.12
Repetition 4 55.32 33.66 43.70 37.05 85.04 83.33
Repetition 5 53.74 33.33 42.72 36.68 84.78 83.15
Repetition 6 54.07 33.84 43.84 36.91 85.11 83.36
Repetition 7 54.77 34.31 43.56 37.38 85.03 83.44
Repetition 8 54.16 33.24 43.00 36.68 84.88 83.25
Repetition 9 53.84 33.10 43.10 36.12 84.92 83.13
Repetition 10 53.60 33.01 42.63 36.12 84.79 83.09
BacktrackAgent 11 Tests’ Avg. 54.124+0.57 | 33.45+0.42 43.21+0.42 36.70+0.41 | 84.93+0.11 83.23+0.11
A +7.60 +3.66 +4.46 +3.64 +1.61 +1.46
p-value 4.119e-19 9.425e-16 3.363e-17 5.997e-16 | 6.897e-20 4.768e-19
2 additional BacktrackAgents trained with different seeds

Retrained 1 53.7 32.73 42.51 36.18 84.87 83.14
Retrained 2 53.85 33.25 434 36.67 85.11 83.31
BacktrackAgent 3 Agents’ Avg. | 53.89+0.21 | 33.16+0.40 43.05+0.48 36.51+0.28 | 84.97+0.12 83.23+0.09
A +7.37 +3.37 +4.30 +3.45 +1.65 +1.46
p-value 4.184e-7 1.242e-4 9.752e-5 2.981e-5 2.045e-5 7.759%e-6

Table 13: Main Result(%) on Mobile3M dataset. The top part is the results of the SOTA model ReachAgent, which
also includes two-stage SFT and RL. The middle part is the evaluation results of 10 samplings on the test set using
the original BacktrackAgent. The bottom is 2 additional BacktrackAgents trained with different seeds, which are
used together with the original BacktrackAgent to calculate the overall performance. The overall evaluation metric is
mean+SD (54.12+0.57), where mean represents the mean of multiple tests and SD represents the standard deviation.
A represents the difference between the mean and ReachAgent, i.e., the performance improvement. The p-value is

calculated using T-test (Student, 1908).

e For BacktrackAgent itself, we retrained the
agent twice from the backbone model with different
seeds, using the same training data and model
parameters as BacktrackAgent, including stage 1
SFT and stage 2 RL.

We conducted these experiments to verify that
BacktrackAgent has statistically significant perfor-
mance differences compared to SOTA Agents. The
experimental results are shown in the Table 13.
From the table, we can see that:

e The 10 experiments sampled on the test set
have high significant p-values (p < 5.9%10-16) on
all evaluation metrics, confirming that there is
a significant difference in performance between
BacktrackAgent and the SOTA model.

e The two versions of BacktrackAgent retrained
with different seeds, together with the original
BacktrackAgent, also achieved significant p-values
(p < 1.3*10-4) on all evaluation metrics, which also
proves that the agent performance is significant and
reproducible.

e From the observation data, it can be seen that
for the Task Success Rate, BacktrackAgent has
achieved a 7.59% improvement over ReachAgent,
and the fluctuation caused by both the resampled
test set and the retrained Agent on performance is
less than 1.2%. This is enough to prove that the
performance achieved by BacktrackAgent is statis-
tically significant and has good stability. Similarly,
for the Step-level Accuracy, the fluctuation caused
by different repetitions is less than 0.2% when
the agent achieves a performance improvement of
1.62% and 1.47%. This is because the step-level
accuracy itself exceeds 80%, and there is little room
for improvement. But the agent’s performance on
this metric is also stable.

e The consistency across repetitions also shows
that our improvements are reliable and not random.

4272

