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Abstract

Large language models (LLMs) have increas-
ingly been explored as powerful text embed-
ders. Existing LLM-based text embedding
approaches often leverage the embedding of
the final token, typically a reserved special
token such as [EOS]. However, these tokens
have not been intentionally trained to capture
the semantics of the whole context, limiting
their capacity as text embeddings, especially
for retrieval and re-ranking tasks. We pro-
pose to add a new training stage before con-
trastive learning to enrich the semantics of the
final token embedding. This stage employs
bidirectional generative reconstruction tasks,
namely EBQ2D (Embedding-Based Query-to-
Document) and EBD2Q (Embedding-Based
Document-to-Query), which interleave to an-
chor the [EOS] embedding and reconstruct ei-
ther side of Query-Document pairs. Experi-
mental results demonstrate that our additional
training stage significantly improves LLM per-
formance on the Massive Text Embedding
Benchmark (MTEB), achieving new state-of-
the-art results across different LLM base mod-
els and scales.!

1 Introduction

Text embeddings serve as the foundation for many
natural language processing (NLP) tasks by captur-
ing the semantic meaning of text in vector repre-
sentations (Muennighoff et al., 2023; Lewis et al.,
2020). For example, in text retrieval, both queries
and documents are encoded into a shared latent
space, where their relevance is measured by em-
bedding similarity, which in turn places strong de-
mands on embedding quality (Karpukhin et al.,
2020).

Early studies leveraged pre-trained language
models with bidirectional attention, such as BERT

*Corresponding Author.

'Our code is available at https://github.com/
LUMIA-Group/Anchor-Embedding.

(Devlin et al., 2019) and T5 (Raffel et al., 2020),
to generate high-quality text embeddings. These
approaches typically relied on complex multi-stage
training and large-scale annotated pairs (Wang
et al., 2022; Xiao et al., 2024).

More recently, the impressive semantic un-
derstanding capability of large language models
(LLMs) has attracted growing interest in their use
for embedding tasks. Some approaches trans-
form LLMs into text encoders by enabling bidirec-
tional attention (BehnamGhader et al., 2024; Muen-
nighoff et al., 2024), but such architectural modifi-
cations compromise the unification between gen-
eration and embedding. Alternatively, other meth-
ods retain the auto-regressive nature and causal
attention, deriving embeddings from the final to-
ken (e.g., <\'s>or [EOS]) to capture global context,
a practice that has been widely adopted (Li et al.,
2025; Springer et al., 2025). However, during gen-
eral pre-training, these tokens serve merely as se-
quence delimiters, and the model does not learn to
encode contextual semantics into their representa-
tions or to establish meaningful alignment between
relevant texts with them. This greatly limits the
potential of LLMs in embedding tasks.

Motivated by this, we propose a new train-
ing stage before contrastive learning, establish-
ing a two-stage training framework as illus-
trated in Figure 1. For the new stage, we in-
troduce two bidirectional reconstruction tasks,
EBQ2D (Embedding-Based Query-to-Document)
and EBD2Q (Embedding-Based Document-to-
Query), which treat the [EOS] embedding as an
anchor to: 1) aggregate the semantic information
of either the query or the relevant document, and
2) serve as the reference for generating its counter-
part. Specifically, in the EBQ2D task, the output
embedding of the [EOS] token in the query is used
to prompt the model to generate the relevant doc-
ument. This encourages the model to embed the
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Figure 1: The pipeline of our approach. The model is first trained using two bidirectional reconstruction tasks,
followed by contrastive learning. The public E5 data serves as the training corpus for both stages.

semantics of the query and, more importantly, the
implied document-level content within the embed-
ding. Symmetrically, the EBD2Q task uses the
[EOS] embedding of the document to guide the
generation of the corresponding query, training the
model to reason backward from content to intent.
This training stage enhances the model’s ability
to capture implicit semantic relationships between
queries and relevant documents via the output em-
bedding. Following the bidirectional reconstruc-
tion, the second stage fine-tunes the model with
contrastive learning to further improve the quality
of the generated representations.

We apply our framework to several decoder-
only LLMs, including LLaMA-3.1, LLaMA-3.2,
Qwen2.5, and Mistral, with their sizes varying
from 1B to 8B. Experimental results demonstrate
that our proposed bidirectional reconstruction train-
ing consistently improves performance across dif-
ferent models and scales. Notably, our method
achieves new state-of-the-art results on the Mas-
sive Text Embeddings Benchmark (MTEB) (Muen-
nighoff et al., 2023) among models trained solely
on publicly available data. Meanwhile, comprehen-

sive ablation studies further validate the effective-
ness of our proposed training objectives and the
two-stage framework.

In summary, our key contributions are as fol-
lows:

* We highlight a mismatch in the role of the
[EOS] token between general language model
pre-training and embedding tasks.

* We introduce a novel training stage consisting
of two bidirectional generative reconstruction
tasks, EBQ2D and EBD2Q), that encourage
the model to inject semantic alignment into
the [EOS] representation.

* Our approach consistently improves the
quality of embeddings generated by LLMs,
achieving new state-of-the-art results on
MTEB.

2 Related Works

Text embeddings. Text embeddings are vector
representations of natural language text that en-
code its semantic content, which play a pivotal
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role in various natural language processing (NLP)
tasks, such as information retrieval (IR), semantic
similarity estimation, classification, and clustering
(Fujiwara et al., 2023; Karpukhin et al., 2020). As
an example, the first-stage retrieval in an IR sys-
tem leverages embedding similarity to retrieve rel-
evant documents from a large-scale corpus. Apart
from early attempts using latent semantic indexing
(Deerwester et al., 1990) and word-level represen-
tations (Mikolov et al., 2013), modern research on
embedding task utilizes pre-trained language mod-
els, like BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2020), and T5 (Raffel et al., 2020), signif-
icantly outperforming traditional approaches. To
further enhance the performance, advanced meth-
ods like E5 (Wang et al., 2022) and BGE (Xiao
et al., 2024) employ a complex multi-stage train-
ing pipeline consisting of large-scale weakly super-
vised contrastive pre-training and multi-task fine-
tuning. More recently, LLMs have become the new
foundation for text embedding given their supe-
rior capability on semantic understanding (Brown
et al., 2020; Chowdhery et al., 2023; Touvron
et al., 2023). LLM2Vec (BehnamGhader et al.,
2024) enables bidirectional attention and applies
masked language modeling to transform decoder-
only LLMs into text encoders. Muennighoff et al.
(2025) introduce an additional training objective
to preserve generative capabilities, but still require
bidirectional attention. Alternatively, Echo embed-
dings proposed by Springer et al. (2025) avoid ar-
chitecture modifications and allow a unified model
for embedding and generation. After repetition,
the output embedding of the final token is adopted
as the representation of the input text, consistent
with other auto-regressive methods (Li et al., 2025;
Springer et al., 2025; Li et al., 2024a; Wang et al.,
2024).

LLM-based retrieval. LLM-based embedding
models offer a strong backbone for retrieval sys-
tems, facilitating more precise modeling of com-
plex relationships between queries and documents.
Repllama (Ma et al., 2024) fine-tuned LLaMA-2
to function as both a retriever and a reranker, show-
casing the potential of large language models in
retrieval pipelines. Llama2Vec (Li et al., 2024a)
further improved performance by introducing two
pretext tasks, achieving significant gains on the
BEIR (Thakur et al., 2021) benchmark. These
methods similarly adopt the embedding of the final
token as the overall representation of queries and

documents. However, they overlook the discrep-
ancy between the [EOS] token’s role in language
model pre-training, where it functions merely as
a sequence terminator, and its intended use as a
semantic bridge in retrieval tasks, leaving the learn-
ing of more effective and query-document-aligned
[EOS] embeddings an open challenge.

Auto-Reconstruction Methods. Prior works
such as SimLM (Wang et al., 2023), LexMAE
(Shen et al., 2022), RetroMAE (Xiao et al., 2022),
and Condenser (Gao and Callan, 2021) have ex-
plored auto-reconstruction objectives to improve
text embeddings for encoder-based models. To en-
rich the representations, these methods typically try
to recover masked tokens or spans from intermedi-
ate encoder states. They rely on auxiliary decoders
or reconstruction heads that are used during pre-
training but discarded at inference, which often
leads to complex multi-stage training pipelines.

3 Method

In this section, we present our two-stage training
framework. The first stage is a novel training phase
introduced in this work, which incorporates two
bidirectional reconstruction tasks, detailed in Sec-
tion 3.2. The second stage employs contrastive
learning to further refine the representations, as
described in Section 3.3. An overview of the entire
pipeline is illustrated in Figure 1.

3.1 Preliminary

Language models (LMs) have been widely adopted
as powerful embedding models in a variety of NLP
tasks. A decoder-only language model M typically
consists of an input embedding layer Embed(-), L
stacked Transformer decoder blocks Decy(-) with
self-attention modules, and a linear output head
1m_head that projects the final hidden states to
vocabulary logits for next-token prediction.

To obtain the embedding for an input sequence
from LMs, we adopt a widely used approach that
leverages the final hidden state. Specifically, given
an input sequence X = {x1,z2,...,%,}, We ap-
pend the special end-of-sequence token [EOS] to
form the full input. The hidden state at the position
of [EOS] extracted from the final decoder layer is
taken as the sequence embedding, formally defined
as:

€X:f(iﬂl,fﬁg,...,l'n,[EOS])[—l], (1)
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where f(-) denotes the composition of the embed-
ding process and the forward pass through all L
stacked decoder layers, as computed below:

f(-) = Decy(Decyy (.. .Deci (Embed(-)))). (2)

The objective of text retrieval is to find the top-k
documents from a large-scale corpus that are most
relevant to a given query. The semantic relevance
between a query () and a candidate document D is
typically measured by the similarity between their
embeddings, such as cosine similarity or the inner
product, i.e., <eg,ep>.

3.2 Stage I: Bidirectional Reconstruction

We introduce a novel training stage inserted be-
tween general LM pre-training and contrastive
learning. During this stage, the model is supervised
by two dual reconstruction objectives, namely
EBQ2D (Embedding-Based Query-to-Document)
and EBD2Q (Embedding-Based Document-to-
Query), which guide the model to incorporate
counterpart information into the output embedding.
Accurate query-document pairs are used as the
training corpus. The implementation details of
the bidirectional reconstruction are illustrated in
Algorithm 1.

EBQ2D. Given a natural language query, the
EBQ2D objective aims to encourage the model
to generate the relevant document conditioned on
the query embedding. During training, the model
first computes the embedding e¢ from the query
token sequence @ = {qi,...,qn}, as described
in Equation 1. This embedding is then used as
a prefix to condition the generation of document
tokens D = {d1, ..., d,,} under the teacher forc-
ing paradigm. The training objective minimizes
the cross-entropy loss between the predicted and
ground-truth tokens. This reconstruction of doc-
uments via query embedding requires the embed-
ding to capture the explicit semantic meaning of
the query while simultaneously integrating infor-
mation indicative of the relevant document, which
is essential for effectively retrieving relevant docu-
ments in subsequent tasks. Formally, the EBQ2D
loss can be given by:

Lo =—Y logPo(dy | eq,dey).  (3)

t=1

where O denotes the model parameters.
EBD2Q. Complementary to EBQ2D, the
EBD2Q objective guides the model to recover the

Algorithm 1 Bidirectional Reconstruction
Require: Paired data (Q,D); model M =
Im_head o Dec o Embed
1t e < f(Q):ep < f(D)
> Obtain embeddings as in Equation 1
2: Eg < Embed(Q); Ep < Embed(D)
30 D« 1m_head(Dec([eq, Ep]))
> Decode D from eg via teacher forcing
4: ﬁQzD — CE(b, D)
5: Q + 1Im_head(Dec([ep, EQ]))
> DecodeAQ from ep via teacher forcing
6: [,DQQ — CE(Q, Q)
7: return Lgpger = aLQop + (1 —a)Lp2g

underlying user intent from the given document.
The model first encodes the document and uses the
representation of the [EOS] token, denoted as ep,
as the embedding that summarizes the document’s
content. Conditioned on ep, the model generates
the corresponding query auto-regressively, follow-
ing a similar decoding process as in EBQ2D. This
objective encourages the document embedding to
capture high-level abstractions and latent intent sig-
nals necessary to reconstruct the query, enhancing
the bidirectional alignment between queries and
documents. Similarly, the EBD2Q loss is defined
as:

n
Lpog=—Y logPo(q: | ep,qes). (4
t=1

Training Stage I integrates the two tasks within
a multi-task learning framework, where the overall
objective is formulated as a weighted sum of Lg2p
and £ D2Q-

Lstaget = aLop + (1 — ) Lpog &)

where « € [0, 1] is a hyperparameter that controls
the relative importance of the two objectives. As
our experiments show that the performance is not
sensitive to the choice of «, we fix it to 0.2, which
yields slightly better results.

3.3 Stage II: Contrastive Learning

After bidirectional reconstruction training, the
model is fine-tuned on downstream tasks through
contrastive learning. In line with prior work
(BehnamGhader et al., 2024; Springer et al., 2025),
we use a replication of the public portion of the ES
dataset (Wang et al., 2024) as the training corpus
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for fine-tuning. The training process is guided by
the widely used InfoNCE (Izacard et al., 2021) loss
function L:

exp (sim (Q, D+))
& exp (sim (@, D1)) + Z]. exp (sim (Q, Dj_)()6)
In this equation, D denotes the set of negatives,
encompassing both in-batch and hard negatives.
The matching score between a query () and a doc-
ument D is computed using a temperature-scaled
cosine similarity function, defined as:

L=-1o

sim(Q, D) = %cos(eQ,eD) (7

where 7 is a temperature hyperparameter, which is
fixed at 0.05 in our practice.

After our two-stage training, the embeddings
generated by the model are enriched with semantic
information and demonstrate improved alignment
between queries and relevant documents. We re-
fer to these enhanced representations as "Anchor
Embeddings", which also denotes our proposed
method.

4 Experiment

4.1 Basic Settings

Language Models. We apply our two-stage
training framework to five decoder-only LLMs
ranging from 1B to 8B parameters: Meta-LLaMA-
3.2-1B-Instruct, Qwen2.5-1.5B-Instruct, Meta-
LLaMA-3.2-3B-Instruct, Mistral-7B, and Meta-
LLaMA-3.1-8B-Instruct.

Training Datasets and Setup. The public por-
tion of the E5 dataset (Wang et al., 2024), curated
by Springer et al. (2025), serves as the training
corpus for both stages. It comprises roughly 1.5
million samples, with further details on its con-
struction provided in A.1. We train the model
with full-parameter tuning for 2000 steps in Stage
I, and fine-tune it using LoRA for 1000 steps as
done in LLM2Vec (BehnamGhader et al., 2024)
in Stage II. We provide other hyper-parameters in
Appendix A.2.

Benchmark. We evaluate our method on the
Massive Text Embedding Benchmark (MTEB)
(Muennighoff et al., 2023), a collection of 56
datasets covering seven types of embedding tasks:
classification, clustering, pairwise classification, re-
ranking, retrieval, sentence similarity (STS), and
summarization. A comprehensive description of

MTEB is provided in Appendix B.1. Since MTEB
is massive and requires multiple days to evalu-
ate, we conduct ablations on a 15-task subset as
adopted in LLM2Vec, with details provided in Ap-
pendix B.2.

Baselines. Since different models are often
trained on diverse datasets, and many do not dis-
close the specific data used, for a fairer compari-
son and to more accurately assess the impact of
our proposed training strategy, we conduct eval-
uations comparing against models trained solely
on the publicly available data under zero-shot
settings. The compared methods include earlier
encoder-based models, such as Instructor-xl (Su
et al., 2023) (1.5B) and BGE-large-en-v1.5 (Xiao
et al., 2024) (335M). In addition, we compare
against recent state-of-the-art approaches, includ-
ing GritLM (Muennighoff et al., 2024), ES (Wang
et al., 2024), bge-en-icl (Li et al., 2025), and
the fine-tuned Echo embedding (Springer et al.,
2025), all of which are built upon Mistral-7B. For
LLM2Vec (BehnamGhader et al., 2024), we com-
pare against its Bi + MNTP variants built on S-
LLaMA-1.3B, Mistral-7B, and Meta-LLaMA-3-
8B, which achieve the best performance after su-
pervised fine-tuning.

4.2 Main Results

Table 1 presents the performance of our method
(marked as Anchor) compared to baselines trained
solely with contrastive learning, without incorpo-
rating the proposed bidirectional reconstruction
stage. All evaluations are conducted on the MTEB
benchmark, with improvements over the baseline
indicated as subscripts. Table 2 further compares
our method against other state-of-the-art models
on MTEB. Based on these tables, we analyze the
results from the following three perspectives.
Firstly, the bidirectional reconstruction training
consistently improves performance across differ-
ent models and scales. For instance, compared
to the baseline LLaMA-3.2-1B-Instruct model
which is only fine-tuned with contrastive learn-
ing, Anchoryyama-3.2-1B-Instruct @Chieves an aver-
age score of 62.24%, with an absolute improve-
ment of 1.25%. Especially, it shows substan-
tial gains of 2.54% and 1.71% on the retrieval
and re-ranking tasks, respectively. Similarly,
AnchorqQwen2.5-1.5B-Instruct and Anchoryisral7p also
demonstrate clear improvements, further validat-
ing the robustness of our method across different
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Categories — Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg

# of datasets — 15 11 3 12 10 56
LLaMA-3.2-1B-Instruct

Baseline 50.06 54.94 44.38 82.71 72.17 81.27 29.94 60.99

Anchor (ours)  52.6042.54 56.6511.71 44754037 85481277 72471030 82.1040.83 30.871093 62.24.1 25

Qwen2.5-1.5B-Instruct

Baseline 51.66 54.86 43.03 84.41 72.97 82.02 31.89 61.51

Anchor (ours) 53.62+1A96 57.63+2,77 43-19+0.16 85.77+1,36 74.51+1A54 82.74+0,72 31.6170,28 62.86+1A35
LLaMA-3.2-3B-Instruct

Baseline 51.72 56.13 43.40 86.11 74.67 82.73 30.98 62.33

Anchor (ours) 53.664_1,94 57~77+1.64 45.48+2_08 86.534,.()442 75.59+0,92 82.48_0,25 30.81_0,17 63.55+1_22

Mistral-7B

Baseline 54.92 57.98 4497 86.04 75.51 83.14 30.64 63.87

Anchor (ours)  56.8741.95 60.564258 45731076 87.9941.95 75954044 83.52403s8 30.28_036 64.99:1.12
LLaMA-3.1-8B-Instruct

Baseline 55.36 58.92 46.64 86.80 74.80 83.10 29.67 64.06

Anchor (OU.I’S) 57.09+1,73 61.38+2,46 46.0370,61 88.92+2,12 76.17+1,37 83.76+0,66 30-]3+0.46 65.30+1,24

Table 1: Performance on the MTEB benchmark. Baselines are trained only with regular contrastive learning (Stage

).

Categories — Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg
# of datasets — 15 4 11 3 12 10 1 56
Previous work w/ public data only

Instructor-xl 4926 5729 4474 86.62 73.12 83.06 3232 61.79
BGEarge-en-vi.s 5429 60.03  46.08 87.12 7597 83.11 31.61 64.23
GritLMwistrat-70-v1 + public data 53.10 61.30 48.90 86.90 77.00 82.80 29.40 64.70
ESuistral-7b-vi + public data 5278 60.38  47.78 88.47 76.80 83.77 3190 64.56
Echowistral-7b-v1 55.52  58.14 4632 87.34 7743 82.56 30.73 64.68
bge-en-icluisra-7o-vi + ES data (zero-shot) 59.59  56.85  42.61 87.87 7547 8330 29.52 64.67
LLM2Vecs.LLama-1.3B 51.44 5538 4357 86.20 7221 83.58 30.01 61.85
LLM2Vecwmisiral-78 5599 5842 4554 87.99 76.63 84.09 2996 64.80
LLM2Vecwmeta-LLaMA-3-8B 56.63 59.68  46.45 87.80 7592 83.58 30.94 65.01
Anchoryrama-3.1-8B-Instruct 57.09 61.38  46.03 88.92 76.17 83.76 30.13  65.30

Table 2: Performance comparison on the MTEB benchmark with other advanced models. The best results for each
subtask are highlighted in bold, and the second-best results are underlined.

model families. Notably, for larger models such as
Mistral-7B, LLaMA-3.2-3B-Instruct, and LLaMA-
3.1-8B-Instruct, our method continues to yield
consistent gains, with average improvements of
+1.12%, +1.22%, and +1.24%, respectively. This
indicates that our bidirectional reconstruction train-
ing maintains its effectiveness as model size in-
creases, which is essential to achieve superior per-
formance with stronger models.

Secondly, our method establishes a new
state-of-the-art performance on the MTEB. At
the 1B scale, AnchoriimMA-3.2-1B-Instruct and
AnchorQuwen2.5-1.58-Instruct achieve average scores
of 62.24% and 62.86%, respectively, outper-
forming LLM2Vecs 11 ama-1.38 at 61.85%. Like-

wise, Anchormisyal7s attains 64.99%, surpass-
ing not only its contrastive baseline but also
other competitive Mistral-7B-based models such
as LLM2Vec (64.80%), GritLM (64.70%), ES
(64.56%), and Echo (64.68%), thereby confirm-
ing the effectiveness of our method under the
same backbone architecture. At the larger scale,
Anchory 1 aMA-3.1-8B-Instruct T€aches 65.30%, exceed-
ing LLM2Vec with the same 8B scale at 65.01%,
and establishing a new state-of-the-art perfor-
mance. These results validate that our approach
promotes the learning of richer semantic represen-
tations, yielding higher-quality embeddings and
enhanced downstream task performance.

Thirdly, the bidirectional reconstruction tasks

4356



generally lead to performance improvements
across most sub-tasks. The EBQ2D and EBD2Q
objectives were specifically designed to capture
implicit semantic relationships between queries
and documents, primarily targeting retrieval and
re-ranking tasks. Unexpectedly, we find that the
reconstruction training maintains the model per-
formance on other tasks and, in some cases, even
delivers slight improvements. For instance, with
LLaMA-3.2-1B-Instruct, our approach yields per-
formance gains across all task categories, with the
most notable improvements observed in retrieval
and re-ranking as expected. This suggests that by
learning to reconstruct the counterpart text from
the [EOS] embedding, the model is encouraged
to encode a more compact and semantically rich
representation of the input, while better captur-
ing relational information. For instance, for pair
classification task, it becomes more effective at rep-
resenting the relationship between sentence pairs,
aiding in tasks such as assessing semantic similar-

ity.

4.3 Ablation Study

Ablation on Reconstruction Tasks. We eval-
uate the effectiveness of the two reconstruction
tasks proposed in Stage I, using the LLaMA-3.2-
1B-Instruct model. The results are summarized
in Table 3. The baseline refers to models trained
exclusively with contrastive learning (i.e., without
the bidirectional reconstruction stage), while "On-
lyD2Q" and "OnlyQ2D" represent models trained
with only one of the two reconstruction objectives
during Stage 1. Compared to the baseline, both
the OnlyD2Q and OnlyQ2D variants yield consis-
tent improvements across most tasks. In particular,
the OnlyQ2D variant achieves higher scores. This
indicates that the challenge of generating compre-
hensive documents from brief queries promotes
the model to produce more expressive informative
text embeddings. Moreover, our proposed method,
which integrates both objectives, achieves the best
overall performance with the highest average score
of 62.24.

To investigate the impact of the hyperparameter
a, we conduct experiments on the MTEB subset
with ae set to 0.2, 0.5, and 0.8. As shown in Table 4,
the model exhibits relatively stable performance
across these values, with our selected value o =
0.2 yielding the best results.

Models — Baseline OnlyD2Q OnlyQ2D Anchor
o — - 0 1 0.2
Retr. 50.06 51.54 52.05 52.60
Rerank. 54.94 56.30 56.62 56.65
Clust. 44.38 43.59 44.04 44.75
PairClass.  82.71 85.12 85.50 85.48
Class. 72.17 72.26 71.83 72.47
STS 81.27 80.70 81.04 82.10
Summ. 29.94 30.91 30.24 30.87
Avg 60.99 61.38 61.62 62.24

Table 3: Ablation study of training objectives in Stage I
over the full MTEB benchmark.

o | Average Score

0.2 65.19
0.5 64.88
0.8 65.12

Table 4: Performance under different o values.

Early-stage During Fine-tuning. We save
checkpoints every 25 steps and evaluate on the
15-task MTEB subset to assess early-stage fine-
tuning performance. As shown in Figure 2, models
trained with our bidirectional reconstruction tasks
consistently demonstrate stronger performance in
the early stages of fine-tuning in Stage II across
all model sizes. The models trained after Stage I
are nearly converged at the very beginning of fine-
tuning, as further evidenced by the loss curves in
Figure 4 provided in the Appendix. This suggests
that our training with bidirectional reconstruction
tasks is sufficiently powerful to endow the model
with high-quality textual representations, reducing
the reliance on subsequent contrastive learning.

Training stage. We conduct an ablation study
to assess the contribution of each training stage,
with the results plotted in Figure 3. The unsuper-
vised baseline yields relatively low performance,
suggesting that without task-specific supervision,
the [EOS] output embeddings are insufficient for
downstream tasks. Applying only Stage I with
bidirectional reconstruction tasks results in a no-
table improvement, demonstrating that the model
begins to learn semantic alignment through this
training process. Incorporating Stage II leads to a
further improvement, highlighting the indispens-
able role of contrastive learning in producing high-
quality embeddings. Our two-stage framework sig-
nificantly outperforms both single-stage variants:
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mance.

Training Configuration  Steps Score
Contrastive only (Stage II) 1,000 63.95
Contrastive only (Stage II) 3,000 63.74

Full method (Stage I + II) 2,000 + 1,000 65.19

Table 5: Comparison of training strategies on the MTEB
subset using LLaMA-3.2-1B-Instruct.

Stage I helps the model encode implicit semantic
alignment between relevant texts, while Stage 11
further refines the representation space by bring-
ing similar instances closer and pushing dissimilar
ones apart.

Effectiveness beyond extra training. To rule
out the possibility that the performance gains of
our method stem merely from additional training
steps, we evaluated a checkpoint trained solely on
Stage II for 3,000 steps using the LLaMA-3.2-1B-
Instruct model on an MTEB subset. The result was
63.74 as shown in Table 5, which is notably lower
than the 65.19 achieved by our full method (Stage
I: 2,000 steps + Stage II: 1,000 steps). Interest-
ingly, the 3,000-step baseline even underperforms
the 1,000-step version (63.95), which supports the

rationale behind following LLM2Vec in reporting
results after 1,000 steps of contrastive learning.
These findings indicate that the observed improve-
ment arises from the effectiveness of our bidirec-
tional reconstruction training, rather than simply
from longer training.

5 Conclusion

In this paper, we propose a two-stage training pro-
cedure for applying LLMs on text embedding tasks.
Our method is designed to address the mismatch
between the role of the [EOS] token in language
model pre-training and downstream embedding
tasks. We introduce two bidirectional reconstruc-
tion objectives, EBQ2D and EBD2Q, which treat
the [EOS] output embedding as an anchor to ag-
gregate semantic information from either queries
or relevant documents to reconstruct their counter-
parts. This stage encourages the model to encode
semantic alignment directly into the [EOS] repre-
sentation. Our method achieves state-of-the-art per-
formance on MTEB among models trained on the
same publicly available datasets under zero-shot
settings. We hope that our method offers valuable
insight to advance the development and application
of embedding models.

Limitations

While our method has effectively enhanced the per-
formance of LLMs as text embedders, the current
work can still be improved in the following ways.
First, the query-document bidirectional reconstruc-
tion tasks in Stage I are primarily designed to bene-
fit retrieval and re-ranking. For broader embedding
tasks such as classification or clustering, more tai-
lored objectives may yield further improvements.
Secondly, although the first-stage training acceler-
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ates convergence in the second-stage fine-tuning
and can reduce its computational cost, the overall
two-stage training framework still introduces ad-
ditional overhead. Future work should investigate
how to improve training efficiency in order to sup-
port scaling to larger models. Thirdly, the current
model is primarily developed for English-centric
scenarios, and expanding its applicability to other
languages remains an important future direction.

Ethical Considerations

Although our approach improves text embedding
quality, it does not eliminate potential ethical risks
associated with large language models. First,
our approach may still inherit biases present in
the training data, which can be amplified dur-
ing the representation learning process, especially
in domain-specific or underrepresented contexts.
These biases can negatively influence downstream
applications, such as search or recommendation
systems. Additionally, like other LLM-based meth-
ods, our model may generate misleading or hallu-
cinated outputs when used in generative scenarios,
posing risks in high-stakes applications. We en-
courage responsible use and further evaluation of
the model’s behavior, particularly in sensitive do-
mains.
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A Training Details

A.1 Training Datasets

The public portion of the E5 dataset consists
of ELI5 (sample ratio 0.1) (Fan et al., 2019),
HotpotQA (Yang et al., 2018), FEVER (Thorne
et al., 2018), MIRACL (Zhang et al., 2023), MS-
MARCO passage ranking (sample ratio 0.5) and
document ranking (sample ratio 0.2) (Nguyen et al.,
2016), NQ (Karpukhin et al., 2020), NLI (Gao
etal., 2021), SQuAD (Rajpurkar et al., 2016), Triv-
iaQA (Joshi et al., 2017), Quora Duplicate Ques-
tions (sample ratio 0.1) (DataCanary et al., 2017),
Mr- TyDi (Zhang et al., 2021), DuReader (He et al.,
2018), and T2Ranking (sample ratio 0.5) (Xie et al.,
2023).

During Stage I, we use (query, positive) pairs
as the training corpus. For fine-tuning in Stage II,
we follow the setup of Wang et al. (2024), with
dataset-specific instructions summarized in Table
6.

A.2 Training Setup

We adopt a two-stage training framework, where
the model first undergoes full-parameter train-
ing with bidirectional reconstruction objectives,
followed by parameter-efficient fine-tuning us-
ing LoRA. All experiments are performed with
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Dataset Instruction(s)

NLI Given a premise, retrieve a hypothesis that is entailed by the premise

Retrieve semantically similar text

DuReader Given a Chinese search query, retrieve web passages that answer the question

ELIS Provided a user question, retrieve the highest voted answers on Reddit ELIS forum

FEVER Given a claim, retrieve documents that support or refute the claim

HotpotQA Given a multi-hop question, retrieve documents that can help answer the question

MIRACL Given a question, retrieve Wikipedia passages that answer the question

MrTyDi Given a question, retrieve Wikipedia passages that answer the question

MSMARCO Passage Given a web search query, retrieve relevant passages that answer the query

MSMARCO Document Given a web search query, retrieve relevant documents that answer the query

NQ Given a question, retrieve Wikipedia passages that answer the question

QuoraDuplicates Given a question, retrieve questions that are semantically equivalent to the given question
Find questions that have the same meaning as the input question

SQuAD Retrieve Wikipedia passages that answer the question

T2Ranking Given a Chinese search query, retrieve web passages that answer the question

TriviaQA Retrieve Wikipedia passages that answer the question

Table 6: Instructions used for each of the ES datasets during fine-tuning.

a maximum input length of 512 tokens and
FlashAttention-2 enabled.

Stage I. In training stage I, models are trained
for 2000 steps on the E5 dataset using only (query,
positive) pairs. The learning rate is set to 4e — 5,
with a total batch size of 512 achieved by gradient
accumulation. We apply linear warm-up over the
first 300 steps and use end-of-sequence ([EQS])
token pooling to obtain sentence embeddings. Gra-
dient checkpointing is enabled to reduce memory
usage.

Stage II.  Fine-tuning in Stage II is performed for
1000 steps with LoRA (rank 16) using a learning
rate of 2e — 4 and a total batch size of 512. The
same EOS pooling strategy and gradient check-
pointing settings are the same as Stage I. Instruc-
tions used for each of the E5 dataset during this
stage are summarized in Table 6.

A.3 Fine-tuning Loss

Figure 4 presents the Gaussian-smoothed training
loss curves during Stage II fine-tuning of LLaMA-
3.2-3B-Instruct. Models that have gone through
Stage I (bidirectional reconstruction training) start
with significantly lower losses, dropping from over
10 to below 1, compared to models trained directly
in Stage II. This demonstrates the effectiveness of
our bidirectional reconstruction training. In addi-
tion, models trained with Stage I converge faster
and more smoothly during Stage II.

Anchor (Stage Il)
10 Baseline (Stage II)

Loss

0 200 400 600 800 1000
Steps

Figure 4: Comparison of training loss during fine-
tuning: Baseline vs. Training Stage I Initialization
(Anchor).

Model Size | StageI Stage I1
1B ~ 4hrs =~ 2hrs
3B ~ 12hrs =~ 5hrs
8B ~ 45hrs =~ 13hrs

Table 7: Training time (in hours) for each stage.

A.4 Training Efficiency of Each Stage

To provide a clearer view of the computational cost
involved in our two-stage training pipeline, we re-
port the training time required for each stage across
different model sizes. Specifically, we evaluate the
time taken by Stage I (bidirectional reconstruction
pretraining) and Stage II (contrastive fine-tuning)
on 8x80GB NVIDIA A100 GPUs, with the results
summarized in Table 7.
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B Massive Text Embeddings Benchmark
(MTEB)

B.1 Task Overview

The MTEB benchmark consists of a broad range
of embedding tasks, including classification, clus-
tering, pairwise classification, re-ranking, retrieval,
sentence similarity (STS), and summarization, aim-
ing to provide a comprehensive and robust evalu-
ation of embedding quality. For evaluation, we
follow the instruction templates from Wang et al.
(2024), as shown in Table 13.

B.2 MTEB Subset

To speed up the evaluation, we follow the approach
of LLM2vec and adopt the same representative
subset of 15 tasks from MTEB for our analyses,
as shown in Table 8. This subset was carefully
selected to maintain a similar proportional distribu-
tion across categories compared to the full MTEB
benchmark, ensuring that ablation studies and anal-
yses are not biased toward any specific category or
task.

Category Dataset

Retrieval (3) SciFact
ArguAna
NFCorpus

Reranking (2) StackOverflowDupQ.
SciDocsRR

Clustering (3) BiorxivClusteringS2S
MedrxivClusteringS2S
TwentyNewsgroupsClus.

Pair Classification (1) SprintDuplicateQ.

Classification (3) Banking77Classification

EmotionClassification

MassivelntentClassification

STS (3) STS17
SICK-R

STSBenchmark

SummEval (0) -

Overall 15 datasets

Table 8: Subset of MTEB tasks for ablation studies.

C LLM-Based Baselines

E5 (Wang et al., 2024) trains text embedding
models by fine-tuning open-source decoder-only

LLMs using synthetic data generated by propri-
etary large language models. The synthetic corpus
covers a wide range of embedding tasks across 93
languages and is created entirely without human
annotation. During training, a standard contrastive
loss is applied to learn effective representations
from these synthetic text pairs. We only compare
ES results trained on the publicly available portion
of the dataset.

GritLM  (Muennighoft et al., 2024) unifies rep-
resentation and generation training by finetuning a
decoder-only LLM on instruction-formatted data
for both tasks. It optimizes a contrastive loss for
embeddings:

ﬁR = 7i i log P (T . U(fg (q(i))’ fe (d(l))))

PTOM & U exp (r o(fo(a®), fo(dD)))
and a standard language modeling loss for genera-
tion:

N
1 i i
Loen =~ §_1ﬁ log P(fon(+") | fon(2"")).

The final objective combines both:
EGRIT = )\Rep‘CRep + AGenEGen-

This approach enables parameter-efficient train-
ing of strong text encoders and generators without
modifying model architecture. Similarly, we only
compare results trained on publicly available data.

Echo Embeddings (Springer et al., 2025) de-
rives high-quality text embeddings from auto-
regressive language models without modifying
their architecture. The key idea is to repeat the
input sequence and extract embeddings from the re-
peated tokens, which have access to the full context
of the original input. This simple repetition strat-
egy enables autoregressive models to approximate
bidirectional behavior and significantly improves
embedding quality in zero-shot settings.

LLM2Vec (BehnamGhader et al., 2024) converts
decoder-only language models into effective text
encoders by enabling bidirectional attention, train-
ing with masked next token prediction, and apply-
ing contrastive learning.

bge-en-icl (Li et al., 2025) enhances the text rep-
resentation ability of decoder-only language mod-
els by leveraging in-context learning during train-
ing. Instead of relying on task-specific instructions
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Steps 25 50 75 100 125
LLaMA-3.2-1B-Instruct

Baseline 23.38 43.83 59.55 62.56 63.07

OnlyD2Q 57.77 60.80 63.49 63.62 64.28

OnlyQ2D 59.15 61.58 62.23 62.89 63.48

Anchor 59.31 61.92 63.31 64.40 64.84
LLaMA-3.2-3B-Instruct

Baseline 36.43 48.54 58.50 63.91 64.56

Anchor 59.21 62.62 64.03 65.90 66.20
LLaMA-3.1-8B-Instruct

Baseline 40.35 56.79 63.78 65.29 65.39

Anchor 61.35 63.79 65.88 67.29 67.36

Table 9: Early-stage performance on the MTEB subset
during Stage II fine-tuning.

or architectural modifications, it samples a variable
number of input examples to simulate in-context
scenarios. This strategy equips the model with the
ability to generalize across tasks while preserving
zero-shot performance. For fair comparison, we
only compare results from models trained on the
same data and evaluated in zero-shot settings.

D Experimentals

D.1 Detailed Main Results

We report the detailed performance of base-
lines and Anchor Embedding models built on
LLaMA-3.2-1B-Instruct, Qwen2.5-1.5B-Instruct,
LLaMA-3.2-3B-Instruct, and LLaMA-3.1-8B-
Instruct across the full MTEB benchmark in Ta-
ble 14 and Table 15. Here, baselines refer to mod-
els trained only with Stage II.

D.2 Early-stage Fine-tuning Results

In Table 9, we report the detailed evaluation scores
on the 15-task MTEB subset at checkpoints saved
every 25 steps during Stage II fine-tuning. Anchor
Embedding consistently outperforms the baselines
across all model sizes and converges faster.

D.3 Results of Training Stage Ablation

To support the analysis in Figure 3, we present
the exact performance scores of different training
stage combinations on the 15-task MTEB subset.
As shown in Table 10, the unsupervised baseline
yields the lowest scores, while adding either Stage

Training Setting 1B 3B
46.23 44.29

Unsupervised Baseline

Only Stage I (Bi-Reconstruction) | 59.11 59.01
Only Stage II (Contrastive) 63.95 65.24
Stage [ + Stage 11 65.19 66.16

Table 10: Impact of training stages on performance
evaluated on MTEB subset.

I (bidirectional reconstruction) or Stage II (con-
trastive fine-tuning) brings significant gains. The
best results are achieved when combining both
stages, confirming the effectiveness of our method.

E Comparison with LLaMA2Vec

To further clarify our method, we provide an ex-
tended discussion of the differences between our
Anchor and previous related work LLaMA?2Vec
(Li et al., 2024a).

E.1 Methodology

Although both Anchor and LLaMA2Vec adopt
reconstruction-based objectives to improve the
[EOS] embedding, their formulations and training
paradigms differ substantially.

Reconstruction  mechanism. LLaMA2Vec
treats reconstruction as a multi-class classification
problem: the [EOS] embedding is directly
projected through the LLM’s output head into the
vocabulary space to perform token classification.
Specifically, the objective function of this problem
is derived as:

min — ]T\ Zl

where W € R**IV| is the projection head of LLM;
V' indicates the vocabulary space; T stands for the
collection of tokens of the target context (input text
itself for ef, the next sentence for ef ).

In contrast, Anchor adopts a bidirectional gen-
erative strategy. We reuse the [EOS] embedding
from either the query or document as input and
apply teacher-forcing language modeling to gener-
ate its counterpart sequence (document or query).
The training loss is standard cross-entropy over the
generated sequence.

exp(ef W;)
> vey exp(eTWy)

Supervision signal. LLaMA2Vec operates in a
fully unsupervised setting, relying only on raw text.
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Model Steps (Stage I) BEIR (N@10)
LLaMA2Vec 10,000 56.40
Anchor 2,000 58.07

Table 11: Comparison of Anchor and LLaMA2Vec on
the BEIR benchmark.

Anchor leverages task-relevant supervision from
query-document pairs. While this introduces a
data dependency, it also brings stronger semantic
alignment: the [EOS] embedding acts as a seman-
tic anchor that captures meaningful relationships
between queries and documents, enhancing effec-
tiveness for retrieval and re-ranking tasks.

E.2 Experiment

Training Efficiency. LLaMA2Vec requires
10,000 training steps in its unsupervised adaptation
stage (batch size 256). In contrast, Anchor
achieves better results with only 2,000 steps in
Stage I (batch size 512). Importantly, Stage I can
be trained on the same data used for fine-tuning,
without requiring additional annotation.

Effectiveness. We report the performance on the
BEIR benchmark using NDCG@10 in Table 11.
Anchor outperforms LLaMA2Vec while requiring
fewer training steps in Stage I, demonstrating both
higher efficiency and stronger retrieval effective-
ness.

F Related Works

A number of general-purpose embedding models
from industry, such as Alibaba’s GTE (Li et al.,
2023), NVIDIA’s NV-Embed (Lee et al., 2024),
Tencent’s Conan-Embedding (Li et al., 2024b),
Google’s Gemini Embedding (Lee et al., 2025),
and the Jina Embeddings series (Giinther et al.,
2023a,b), have shown strong performance across
retrieval and semantic tasks, and are widely used
in real-world applications. However, these mod-
els are often built with large-scale proprietary data
and engineering pipelines that make fair academic
comparison difficult. Therefore, we do not directly
compare with them, and instead include a brief
technical overview.

The method proposed in Li et al. (2023) intro-
duces a lightweight 110M-parameter Transformer
encoder enhanced with rotary positional encod-
ings and gated linear units. It follows a two-stage

contrastive training process—unsupervised pre-
training on large-scale web corpora followed by
supervised fine-tuning on relevance datasets us-
ing InfoNCE loss. Despite its compact size, this
approach outperforms many larger models on re-
trieval and classification benchmarks.

NV-Embed (Lee et al., 2024) builds on a 7B
decoder-only LLM architecture augmented with a
latent-attention pooling layer. During contrastive
training, the model discards causal masking, and a
two-stage instruction tuning process with curated
hard negatives further enhances the learned rep-
resentations. This yields state-of-the-art results
across tasks including semantic retrieval, semantic
similarity, reranking, and dense passage retrieval.

Conan-Embedding (Li et al., 2024b) uses a 1.4B-
parameter encoder trained with dynamic hard neg-
ative mining and a cross-GPU balancing loss for
scalable negative sampling. The inclusion of LLM-
generated prompt-response pairs as weak supervi-
sion allows the model to top the Chinese MTEB
leaderboard and perform strongly in multilingual
scenarios.

Gemini Embedding (Lee et al., 2025) fine-tunes
a multilingual and multimodal LLM to produce
3,000-dimensional embeddings via contrastive
learning on high-quality filtered datasets. To bet-
ter support low-resource languages, it incorporates
synthetic data. This design enables strong perfor-
mance on cross-lingual and cross-modal retrieval
benchmarks.

The Jina Embeddings framework (Gtinther et al.,
2023a) employs T5-based encoder-only models,
ranging from 35M to 6B parameters. These mod-
els are first trained on pairwise contrastive objec-
tives using hundreds of millions of filtered sentence
pairs, and then further refined via triplet-margin
fine-tuning, with curated hard negatives including
negation examples. The resulting embeddings out-
perform or match much larger models.

Jina Embeddings 2 (Giinther et al., 2023b)
adapts a BERT-style encoder with ALiBi and gated
linear units to support input lengths up to 8,192
tokens. Its three-stage training—Ilong-sequence
masked language modeling, contrastive fine-
tuning, and hard-negative refinement—produces
embeddings competitive with OpenAl’s ada-
002 and establishes new benchmarks for long-
document understanding.
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Usage Dataset

License / URL

Training Public Portion of ES (Wang et al., 2024),
curated by Springer et al. (2025)

Apache License 2.0
https://github.com/jakespringer/
echo-embeddings#training
https://github.com/jakespringer/
echo-embeddings/blob/master/LICENSE

Evaluation MTEB Benchmark (Muennighoff et al.,
2023)

Apache License 2.0
https://github.com/embeddings-benchmark/mteb
https://github.com/embeddings-benchmark/mteb/
blob/main/LICENSE

Table 12: License information for datasets used in this work.

G URLs and Licenses

Table 12 summarizes the license information for
the datasets used. All datasets are employed strictly
for research purposes and in compliance with their
respective licenses and intended usage guidelines.
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Task Name

Instruction

AmazonCounterfactualClassif.
AmazonPolarityClassification
AmazonReviewsClassification
Banking77Classification
EmotionClassification

ImdbClassification
MassivelntentClassification
MassiveScenarioClassification
MTOPDomainClassification
MTOPIntentClassification
ToxicConversationsClassif.
TweetSentimentClassification
ArxivClusteringP2P
ArxivClusteringS2S
BiorxivClusteringP2P
BiorxivClusteringS2S
MedrxivClusteringP2P
MedrxivClusteringS2S
RedditClustering
RedditClusteringP2P
StackExchangeClustering
StackExchangeClusteringP2P
TwentyNewsGroupsClustering
SprintDuplicateQuestions
TwitterSemEval2015
TwittertURLCorpus
AskUbuntuDupQuestions
MindSmallReranking
SciDocsRR
StackOverflowDupQuestions
ArguAna

ClimateFEVER
CQADupstackRetrieval

DBPedia
FEVER
FiQA2018
HotpotQA
MSMARCO
NFCorpus

NQ
QuoraRetrieval
SCIDOCS
SciFact
Touche2020
TRECCOVID
STS*
BUCC/Tatoeba
SummEval

Classify a given Amazon customer review text as either counterfactual or non-counterfactual
Classify Amazon reviews into positive or negative sentiment

Classify the given Amazon review into its appropriate rating category

Given a online banking query, find the corresponding intents

Classify the emotion expressed in the given Twitter message into one of the six emotions:
anger, fear, joy, love, sadness, and surprise

Classify the sentiment expressed in the given movie review text from the IMDB dataset
Given a user utterance as query, find the user intents

Given a utterance as query, find the user scenarios

Classify the internet domain of the given utterance in task-oriented conversation

Classify the intent of the given utterance in task-oriented conversation

Classify the given comments as either toxic or not toxic

Classify the sentiment of a given tweet as either positive, negative, or neutral

Identify the main and secondary category of Arxiv papers based on the titles and abstracts
Identify the main and secondary category of Arxiv papers based on the titles

Identify the main category of Biorxiv papers based on the titles and abstracts

Identify the main category of Biorxiv papers based on the titles

Identify the main category of Medrxiv papers based on the titles and abstracts

Identify the main category of Medrxiv papers based on the titles

Identify the topic or theme of Reddit posts based on the titles

Identify the topic or theme of Reddit posts based on the titles and posts

Identify the topic or theme of StackExchange posts based on the titles

Identify the topic or theme of StackExchange posts based on the given paragraphs
Identify the topic or theme of the given news articles

Retrieve duplicate questions from Sprint forum

Retrieve tweets that are semantically similar to the given tweet

Retrieve tweets that are semantically similar to the given tweet

Retrieve duplicate questions from AskUbuntu forum

Retrieve relevant news articles based on user browsing history

Given a title of a scientific paper, retrieve the titles of other relevant papers

Retrieve duplicate questions from StackOverflow forum

Given a claim, find documents that refute the claim

Given a claim about climate change, retrieve documents that support or refute the claim
Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates
to the given question

Given a query, retrieve relevant entity descriptions from DBPedia

Given a claim, retrieve documents that support or refute the claim

Given a financial question, retrieve user replies that best answer the question

Given a multi-hop question, retrieve documents that can help answer the question

Given a web search query, retrieve relevant passages that answer the query

Given a question, retrieve relevant documents that best answer the question

Given a question, retrieve Wikipedia passages that answer the question

Given a question, retrieve questions that are semantically equivalent to the given question
Given a scientific paper title, retrieve paper abstracts that are cited by the given paper
Given a scientific claim, retrieve documents that support or refute the claim

Given a question, retrieve detailed and persuasive arguments that answer the question
Given a query on COVID-19, retrieve documents that answer the query

Retrieve semantically similar text

Retrieve parallel sentences

Given a news summary, retrieve other semantically similar summaries

Table 13: Instructions used for MTEB evaluation. “STS*” denotes the set of all STS tasks.
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Task LLaMA-3.2-1B-Instruct | Qwen2.5-1.5B-Instruct
Baseline Anchor Baseline Anchor
AmazonCounterfactualClassification 73.70 75.93 73.25 71.81
AmazonPolarityClassification 87.11 85.81 91.51 94.32
AmazonReviewsClassification 44.96 43.11 45.78 48.50
ArguAna 54.00 55.28 53.75 55.71
ArxivClusteringP2P 47.09 48.05 46.00 47.93
ArxivClusteringS2S 42.07 41.65 40.78 39.99
AskUbuntuDupQuestions 60.42 61.73 58.22 63.31
BIOSSES 83.91 85.87 84.67 86.14
Banking77Classification 85.63 85.65 81.73 84.62
BiorxivClusteringP2P 39.29 37.36 32.61 35.06
BiorxivClusteringS2S 35.52 33.78 32.94 31.74
CQADupstackRetrieval 41.04 42.78 44.79 45.28
ClimateFEVER 33.30 34.27 34.10 32.82
DBPedia 45.38 43.29 42.07 43.96
EmotionClassification 49.46 50.41 50.32 48.97
FEVER 88.48 88.48 87.85 86.61
FiQA2018 37.19 41.42 41.64 44.25
HotpotQA 59.24 69.48 64.69 67.96
ImdbClassification 72.90 76.61 76.06 88.31
MSMARCO 38.54 39.80 38.17 39.87
MTOPDomainClassification 94.02 94.51 91.55 94.52
MTOPIntentClassification 77.01 80.18 80.88 81.61
MassivelntentClassification 76.21 74.97 77.96 76.05
MassiveScenarioClassification 79.31 79.00 79.94 77.55
MedrxivClusteringP2P 32,51 33.09 34.60 30.21
MedrxivClusteringS2S 31.06 29.95 32.46 29.32
MindSmallReranking 32.01 31.61 30.11 32.26
NFCorpus 35.98 35.87 37.29 37.15
NQ 54.62 57.66 56.52 60.31
QuoraRetrieval 88.22 88.83 88.46 89.17
RedditClustering 54.23 55.89 54.07 52.27
RedditClusteringP2P 60.88 61.98 60.85 58.10
SCIDOCS 18.07 20.10 20.53 20.40
SICK-R 80.70 81.64 81.76 82.10
STS12 71.32 73.18 76.10 76.65
STS13 85.02 84.36 85.72 85.12
STS14 79.80 79.80 80.29 80.94
STS15 84.98 85.48 87.36 87.81
STS16 84.49 85.68 84.24 85.27
STS17 91.28 90.67 89.80 90.88
STS22 65.15 67.27 64.57 66.12
STSBenchmark 86.08 87.01 85.67 86.38
SciDocsRR 77.85 81.84 80.93 83.43
SciFact 68.91 74.05 71.40 74.48
SprintDuplicateQuestions 88.18 95.31 94.30 94.94
StackExchangeClustering 65.70 66.08 63.21 67.80
StackExchangeClusteringP2P 30.86 34.42 30.44 35.23
StackOverflowDupQuestions 49.49 51.40 50.18 51.53
SummEval 29.94 30.87 31.89 31.61
TRECCOVID 70.86 78.21 74.27 83.36
Touche2020 17.07 19.44 19.35 23.00
ToxicConversationsClassification 64.40 62.18 64.83 65.90
TweetSentimentExtractionClassification | 61.34 61.24 61.79 61.99
TwentyNewsgroupsClustering 48.97 50.04 45.40 47.43
TwitterSemEval2015 73.24 74.54 72.07 75.91
TwitterURLCorpus 86.70 86.58 82.55 86.46
Average 60.99 62.24 61.51 62.86

Table 14: Results of Anchor Emebeddings and baselines on MTEB.
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Task LLaMA-3.2-3B-Instruct | LLaMA-3.1-8B-Instruct
Baseline Anchor Baseline Anchor
AmazonCounterfactualClassification 80.69 83.19 81.66 82.30
AmazonPolarityClassification 87.65 88.19 88.84 92.26
AmazonReviewsClassification 46.78 47.97 46.86 47.96
ArguAna 54.28 56.12 56.71 57.96
ArxivClusteringP2P 4471 46.75 46.10 47.99
ArxivClusteringS2S 39.57 43.63 44.11 44.77
AskUbuntuDupQuestions 60.63 62.63 64.18 66.87
BIOSSES 85.79 86.22 86.98 85.00
Banking77Classification 86.99 86.74 87.18 87.43
BiorxivClusteringP2P 34.59 37.18 39.01 38.62
BiorxivClusteringS2S 33.72 34.95 36.19 37.29
CQADupstackRetrieval 41.38 44.20 48.37 49.22
ClimateFEVER 34.09 33.86 35.17 37.79
DBPedia 41.54 44.80 49.01 51.88
EmotionClassification 49.64 50.91 50.64 51.78
FEVER 88.55 90.82 89.12 91.68
FiQA2018 40.60 47.51 47.84 48.40
HotpotQA 68.51 65.37 75.22 77.12
ImdbClassification 80.11 81.31 82.69 84.22
MSMARCO 39.38 41.08 41.21 43.29
MTOPDomainClassification 95.02 95.81 92.15 94.57
MTOPIntentClassification 82.01 83.48 80.25 83.47
MassivelntentClassification 77.70 78.36 79.06 78.72
MassiveScenarioClassification 79.89 80.89 81.12 80.99
MedrxivClusteringP2P 29.17 31.33 33.86 31.90
MedrxivClusteringS2S 27.56 29.75 31.72 31.14
MindSmallReranking 29.58 32.31 33.53 36.01
NFCorpus 38.47 36.62 39.82 39.82
NQ 57.80 62.30 62.16 64.16
QuoraRetrieval 88.53 89.18 89.80 88.85
RedditClustering 56.86 59.45 59.89 60.02
RedditClusteringP2P 62.35 64.07 61.85 63.86
SCIDOCS 18.18 17.78 21.97 23.12
SICK-R 82.37 82.57 81.22 83.38
STS12 76.50 76.81 76.84 76.98
STS13 85.53 83.93 83.42 86.81
STS14 81.56 81.18 81.63 83.27
STS15 87.90 85.84 87.85 88.33
STS16 85.86 84.63 86.31 86.72
STS17 89.99 91.36 91.82 91.34
STS22 65.29 65.57 67.15 67.25
STSBenchmark 86.49 86.69 87.78 88.55
SciDocsRR 82.98 83.17 84.87 86.93
SciFact 74.09 75.47 76.97 79.12
SprintDuplicateQuestions 96.29 95.69 94.10 96.51
StackExchangeClustering 69.87 69.41 68.04 68.35
StackExchangeClusteringP2P 32.38 32.72 31.26 31.22
StackOverflowDupQuestions 51.33 52.97 53.23 55.72
SummEval 30.98 30.98 29.67 30.13
TRECCOVID 71.45 80.46 79.30 81.02
Touche2020 18.89 19.29 17.96 22.85
ToxicConversationsClassification 67.36 68.07 64.96 68.03
TweetSentimentExtractionClassification | 62.16 62.17 62.27 62.32
TwentyNewsgroupsClustering 46.64 51.07 50.55 51.18
TwitterSemEval2015 75.85 77.37 79.47 80.28
TwitterURLCorpus 86.19 86.52 86.83 89.98
Average 62.33 63.55 64.06 65.30

Table 15: Results of Anchor Emebeddings and baselines on MTEB.
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