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Abstract

Human listeners readily adjust to unfamiliar
speakers and language varieties through ex-
posure, but do these adaptation benefits ex-
tend to state-of-the-art spoken language mod-
els (SLMs)? We introduce a scalable frame-
work that allows for in-context learning (ICL)
in Phi-4 Multimodal (Phi-4-MM) using inter-
leaved task prompts and audio-text pairs, and
find that as few as 12 example utterances (∼50
seconds) at inference time reduce word error
rates by a relative 19.7% (1.2 pp.) on av-
erage across diverse English corpora. These
improvements are most pronounced in low-
resource varieties, when the context and tar-
get speaker match, and when more examples
are provided—though scaling our procedure
yields diminishing marginal returns to context
length. Overall, we find that our novel ICL
adaptation scheme (1) reveals a similar per-
formance profile to human listeners, and (2)
demonstrates consistent improvements to au-
tomatic speech recognition (ASR) robustness
across diverse speakers and language back-
grounds. While adaptation succeeds broadly,
significant gaps remain for certain varieties,
revealing where current models still fall short
of human flexibility. We release our prompts
and code on GitHub1

1 Introduction

Variation is inseparable from language—across
and within accents, speakers, environments, and
social settings; yet humans rapidly adapt at every
level. This adaptability persists even when lin-
guistic content is unpredictable; the mechanism is
thought to involve fast (few-trial) re-weighting of
acoustic–phonetic cues and recalibration of lexical
priors (Sumner, 2011; Idemaru and Holt, 2014).

Automatic speech recognition (ASR) systems,
in contrast, struggle whenever the test speaker,
variety, or recording conditions diverge from the

1https://github.com/Nathan-Roll1/ASR-Adaptation/

supervised training distribution. For example,
word error rates (WERs) increase significantly in
“non-standard" English varieties relative to high-
resource, unmarked settings (Rogers et al., 2004;
Ji et al., 2014; Graham and Roll, 2024). Tra-
ditional remedies, such as continued pre-training
or supervised fine-tuning, are computationally ex-
pensive, cognitively implausible, and require often
infeasible quantities of data (Azeemi et al., 2022;
Nowakowski et al., 2023; Bartelds et al., 2023).

State-of-the-art ASR systems have taken many
forms in recent years. Contrastive learning-
based encoder models like Wav2Vec 2.0 (Baevski
et al., 2020) or self-supervised models like Hu-
BERT (Hsu et al., 2021) have been surpassed
in performance by encoder-decoder models like
Whisper (Radford et al., 2023). Most re-
cently, a new class of spoken language mod-
els (SLMs) such as SALMONN (Tang et al.,
2024), Qwen-Audio-Chat (Chu et al., 2023), and
Phi-4-Multimodal (Phi-4-MM) (Abouelenin et al.,
2025) has pushed encoder-decoder performance
even higher—beyond human levels in many set-
tings (Patman and Chodroff, 2024; Arora et al.,
2025). Phi-4-MM, among the newest of these
systems, has the capacity to enforce novel proto-
cols, transcribe non-lexical features, and—for our
purposes—interleave text and audio together in a
way that facilitates text-guided audio prompting.

In this paper, we ask two questions: (1) Can in-
context learning (ICL) unlock human-like adapta-
tion benefits in a state-of-the-art SLM?, and (2)
If so, does this lead to state-of-the-art perfor-
mance across diverse speakers and language va-
rieties? We craft a simple ICL prompting frame-
work (fig. 1) in which the model is first exposed
to a handful of labeled audio-transcript pairs from
the target speaker, followed by an unlabeled con-
tinuation to transcribe. Applying this setup to
Phi-4-MM, we find that just a few priming utter-
ances reduce WERs by 5.4–36.4% (rel.) across
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Figure 1: Our framework provides an initial description along with N transcribed examples (blue) before tasking
the model to transcribe the final ASR objective audio (red). Phi-4-MM interleaves text (orange) with audio (green).
These are projected into a multimodal embedding space, the context window of the shared decoder.

four corpora spanning multiple English varieties
(Kominek and Black, 2004; Zhao et al., 2018;
Weinberger and Kunath, 2011; Byrne et al., 2014).
Our findings demonstrate that (i) in-context learn-
ing significantly enhances ASR robustness, espe-
cially for low-resource varieties; (ii) this adapta-
tion shows dynamic speaker- and variety-specific
effects that evolve with context length; and (iii)
prompt design plays a crucial role in maximiz-
ing these benefits for underrepresented varieties.
Our work focuses specifically on Phi-4-MM, as its
novel architecture allows for the interleaved audio-
text prompting central to our ICL strategy. While
this provides a deep analysis of this model’s ca-
pabilities, we note upfront that generalizability to
other ASR systems like Whisper remains an open
question for future work.

2 Background

Previous work has established that listeners recal-
ibrate phonetic categories after minimal exposure
to systematic variation, whether induced by for-
eign accents, coarticulation, or idiolectal quirks
(Bradlow and Bent, 2008; Sidaras et al., 2009).

Phonetic variation is not merely a barrier to
overcome but serves as a necessary resource for
adaptation. Sumner (2011) showed that listeners
exposed to variable voice onset times (VOTs) from
French-accented English speakers successfully
shifted their phonetic boundaries, while those ex-
posed to invariant VOTs did not adapt. This
demonstrates that variation is beneficial—indeed
necessary—for robust speech perception. Moon
and Sumner (2013) extended this work by show-
ing that learned sub-lexical contrasts generalize

across speakers of different non-native accents,
with learned cues proving dominant enough to im-
prove word recognition when paired with native
contrasts. Work by de Marneffe et al. (2011) re-
vealed that lexical frequency alone provides lim-
ited benefits—successful adaptation requires the
interaction of phonetic variation with lexical con-
text, not mere repetition.

Pre–deep learning pipelines relied on maximum
a posteriori (MAP) adaptation and feature–space
transforms such as fMLLR or i–vectors. Neu-
ral end–to–end models revived interest through
layer–wise re–training, LHUC, and meta-learning
(Klejch et al., 2018). Yet these methods require
either dozens of utterances per speaker or back-
propagation at test time. More lightweight ideas
use context biasing or rescoring with personalized
language models, but benefits remain inconsistent
across domains (Prabhavalkar et al., 2023).

Inspired by text LLM control, researchers have
explored prefix tuning, adapters, and LoRA injec-
tions to steer multilingual ASR without updating
the core model (Le et al., 2021; Roll, 2025). Works
such as Le et al. (2021) show that a few frozen
vectors per language can close the gap to full fine-
tuning on talker–independent tasks, while scaling
negligibly in parameters. However, most studies
optimize on supervised validation sets and do not
test zero–shot adaptation at inference.

We are not the first to provide labeled exam-
ples directly at inference time. Early sequence–to–
sequence ASR treated preceding audio–transcript
pairs as an additional context window (Kim et al.,
2023). Whisper’s dense logits make such prompt-
ing tricky, but Wang et al. (2024) and Chen et al.
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(2024) independently showed sizable WER drops
by concatenating audio–text pairs, especially for
dialectal Chinese. Later, COSMIC introduced
instruction tuning to reinforce the format, while
Phi-4-MM extends the paradigm to low–footprint
models. Our work focuses on the specific schema
for implementing ICL in SLMs like Phi-4-MM,
detailing the interleaving of task prompts, ground
truth transcriptions, and audio examples within a
shared context window while studying the effec-
tiveness, scaling, and cognitive plausibility of ICL.

Evidence from bilingual production suggests
that talker-specific traits such as speaking rate
(Bradlow et al., 2017; Graham and Nolan, 2019)
or tonal structure (Graham and Post, 2018) carry
over from L1 to L2. For ASR, cross–lingual
prompts or multilingual adapter stacks can lever-
age high-resource L1 data to bootstrap L2 de-
coding (Hsu et al., 2024). Our work intersects
these lines by probing whether an English–centric
SLM can nevertheless exploit talker-specific cues
shared across dialects and second languages. To
our knowledge, this is the first study to apply in-
context learning for speaker adaptation in ASR
across multiple speech corpora, and the first to ap-
ply these paradigms in multimodal language mod-
els.

3 Data

Our experiments leverage four English speech cor-
pora that collectively span diverse speaker demo-
graphics, accent varieties, and speech contexts.
This selection enables comprehensive evaluation
of in-context adaptation across different types of
linguistic variation while maintaining experimen-
tal rigor through controlled comparisons.

3.1 L2-ARCTIC

L2-ARCTIC (Zhao et al., 2018) contains high-
quality recordings from 24 non-native English
speakers representing six major world languages:
Hindi, Korean, Mandarin, Spanish, Arabic, and
Vietnamese. Each first language group includes
two male and two female speakers, providing
balanced gender representation. Each speaker
recorded approximately one hour of read speech
consisting of 1,132 phonetically balanced sen-
tences adapted from the CMU ARCTIC prompt
set (Kominek and Black, 2004).

3.2 CMU-Arctic

CMU-Arctic (Kominek and Black, 2004) is com-
prised of approximately 18 hours of phonetically
balanced American English read speech across 18
speakers. Each speaker read the same set of ap-
proximately 1,200 utterances designed for com-
prehensive coverage of American English pho-
netic contexts. While featuring primarily Amer-
ican English speakers, the corpus also includes
speakers with German, Indian, and other re-
gional backgrounds, providing some accent diver-
sity within the “native” category.

3.3 Hispanic-English Corpus (HEC)

The Hispanic-English Corpus (Byrne et al., 2014)
contains approximately 30 hours of bilingual
speech data from 22 Spanish heritage speakers re-
siding in the United States. Speakers were adult
native Spanish speakers from Central and South
America who had lived in the United States for at
least one year. For this study, we use only the En-
glish read speech portions to maintain consistency
with other corpora.

3.4 Speech Accent Archive (SAA)

The Speech Accent Archive (Weinberger and Ku-
nath, 2011) contains approximately 23 hours of
English speech from over 2,500 speakers rep-
resenting more than 200 first language back-
grounds worldwide. All speakers read the identi-
cal 69-word paragraph beginning with “Please call
Stella...”. This uniform elicitation enables system-
atic comparison across accent types while control-
ling for lexical and syntactic factors. Given the
identical elicitation paragraph, we utilized SAA
to benchmark 0-shot ASR performance disparities
across a wide range of accents within the Phi-4-
MM specifically, and not to evaluate the proposed
ICL framework.

3.5 Data Selection Rationale

These four corpora were selected to provide
complementary perspectives on accent adapta-
tion while enabling rigorous experimental con-
trol. The shared elicitation materials between L2-
ARCTIC and CMU-Arctic enable direct compar-
ison of adaptation effects for native versus non-
native speakers under identical linguistic condi-
tions. Together, the corpora span native American
English, major world language varieties, Spanish
heritage varieties, and global accent diversity, pro-
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viding comprehensive coverage of English pro-
nunciation variation.

For this study, we filtered speakers to ensure ad-
equate context examples for few-shot evaluation,
including only speakers with at least 13 valid ut-
terances (minimum 2.5 seconds duration) and va-
rieties represented by at least two speakers. This
ensured that both test and context utterances could
be drawn from the same variety with sufficient
speech material to construct few-shot prompts of
varying lengths. For each test utterance, we ran-
domly sampled a fixed number of non-overlapping
utterances from either the same speaker or a differ-
ent speaker of the same variety, depending on the
experimental condition. This procedure was re-
peated for all shot count conditions (0-12). After
filtering, our analysis included 15 speakers from
CMU-Arctic, 14 speakers from L2-ARCTIC, 7
speakers from HEC, and the full SAA corpus for
zero-shot evaluation of the Phi-4 model.

4 Model: Phi-4-MM

Phi-4-MM (5.57B) builds on a frozen Phi-4-
Mini-Instruct decoder (3.84B) core by integrat-
ing dedicated encoders for vision and audio via
lightweight LoRA, enabling unified text genera-
tion from multimodal inputs (Abouelenin et al.,
2025). The model supports up to 128 thousand
tokens of context and generates outputs in dozens
of languages.

For speech/audio, Phi-4-MM accepts 80-
dimensional log-Mel filter-bank frames and pro-
cesses them through a convolutional front end fol-
lowed by Conformer blocks (Gulati et al., 2020).
A two-layer projector then maps encoded audio
into the text embedding space, where modality-
specific LoRA adapters interface with the frozen
layers.

Pre-training aligns the audio encoder and
frozen text decoder using approximately 2 million
hours of anonymized speech–text pairs spanning
eight languages (Chinese, English, French, Ger-
man, Italian, Japanese, Portuguese, Spanish). This
stage uses only paired ASR data to teach the model
cross-modal semantic alignment.

Instruction fine-tuning After the pre-training
phase, Phi-4-MM is fine-tuned on roughly
100 million curated speech and audio sam-
ples—covering ASR, speech translation, ques-
tion answering, summarization, and broader audio
understanding—across the same eight languages.

Maximum audio lengths vary by task (from 30
seconds for ASR to 30 minutes for summariza-
tion), ensuring the model learns both short-form
and long-form speech processing in diverse lin-
guistic contexts.

5 Methods

5.1 In-Context Learning Framework

We introduce a novel prompting framework that
enables Phi-4-MM to perform fast, low-data adap-
tation through ICL. Our approach leverages the
multimodal capabilities of the model by inter-
leaving transcribed audio-text pairs as examples
before presenting target audio for transcription.
Unlike traditional ASR adaptation methods that
require parameter updates or extensive speaker-
specific data, our approach achieves adaptation
purely through prompt engineering at inference
time.

The framework operates by providing N audio-
transcript example pairs (“shots”) followed by a
target audio segment to be transcribed. We sys-
tematically evaluated 0 through 12 in-context ex-
amples to capture both initial adaptation effects
and scaling effects. Each prompt includes a series
of <|user|> audio inputs paired with <|assistant|>
transcriptions, followed by an unlabeled test audio
segment. Full prompt templates and token format-
ting are provided in Appendix 7.

5.2 Prompt Design and Speaker Context
Conditions

We developed two prompting strategies to inves-
tigate format specificity effects. For zero-shot
evaluation, we employed both a standard prompt
(“Transcribe the audio clip into text”) and a varia-
tion explicitly mentioning non-native speech. Our
few-shot framework follows a structured conver-
sation format that begins with explicit instruc-
tions, includes model acknowledgment, presents
each audio-transcript pair individually, and con-
cludes with the transcription request. The vari-
ation prompt includes explicit “Transcription:”
markers designed to provide clearer structural cues
that may benefit lower-resource varieties.

To investigate adaptation specificity, we exam-
ined two context conditions that map onto hu-
man perceptual learning paradigms: same-speaker
(within-talker evidence from the identical individ-
ual as the target) and different-speaker (within-
variety evidence from other speakers of the same
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Figure 2: In-context learning consistently reduces WERs across all corpora with diminishing returns. (Left) WER
trajectories by shot count show rapid initial improvement plateauing around 6-10 examples. (Right) Aggregated
results across shot buckets (0-3, 4-8, 9-12) demonstrate strictly decreasing WERs with more examples. CMU-
Arctic (native speakers) achieves lowest WERs across all conditions.

language variety).

5.3 Model Configuration and Preprocessing

All experiments used Phi-4-MM with greedy de-
coding to ensure deterministic outputs suitable for
controlled evaluation. Technical implementation
details, including a minor code adjustment to the
model’s num_logits_to_keep parameter to en-
sure correct behavior with our generation settings,
are provided in Appendix 7.

Audio preprocessing involved resampling to 16
kHz, normalization to float32 to preserve dynamic
range and numerical precision during downstream
processing, and filtering clips shorter than 2.5 sec-
onds. This duration cutoff ensures coverage of the
"few-trials" regime documented in human adapta-
tion literature while maintaining sufficient acous-
tic information for analysis. Standard text pre-
processing included lowercasing, punctuation re-
moval, and whitespace normalization to ensure
fair and consistent word error rate (WER) calcula-
tion. Comprehensive preprocessing specifications
are detailed in Appendix 7.

5.4 Experimental Design and Evaluation

We applied strict filtering criteria to ensure ro-
bust evaluation: varieties required at least two
speakers, speakers needed at least 13 valid utter-
ances (enabling 12-shot evaluation), and we lim-
ited analysis to 50 utterances per speaker. This
was to maintain a consistent evaluation budget
across speakers and prevent over-representation of
any individual voice. Context examples were se-
lected using controlled randomization with fixed

seeds for reproducibility, excluding examples with
identical transcripts to the test audio.

Our primary evaluation metric was WER, com-
puted using the jiwer library. Results were aggre-
gated across trial, speaker, language variety, and
corpus levels to provide comprehensive analysis
of adaptation effects. We conducted up to 50 trials
per speaker per condition, with experiments run-
ning on NVIDIA A100 GPUs requiring approxi-
mately 8-12 hours per corpus for complete evalu-
ation.

The experimental design systematically tested
all combinations of shot counts (0-12), speaker
conditions (same/different), and prompt types
(standard/variation) across the four speech cor-
pora. This comprehensive approach enables de-
tailed analysis of how adaptation benefits vary
across different linguistic populations and exper-
imental conditions. Speaker-level results compar-
ing 0-shot and 12-shot performance are presented
in Appendix 7 and grouped results are shown in
fig. 2.

6 Results

Our experiments demonstrate that providing in-
context audio-transcript examples consistently im-
proves ASR performance across all tested corpora,
with the magnitude and pattern of improvements
varying systematically across speaker populations
and experimental conditions.

6.1 In-Context Learning Effectiveness
Figure 2 shows that in-context learning produces
substantial and generally consistent improvements
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Table 1: Phi-4-MM performance by shot count and corpus. Our ICL method improves performance across all
corpora and nearly all language varieties, with an average WER decrease of 19.7% rel. (1.2 pp.). Zero-shot
performance on SAA (section 3.4) highlights high-low resource discrepancies found between the other corpora.

Corpus / Variety
N-shot WER

0 → 12-shot
0 1 2 3 4 5 6 7 8 9 10 11 12

CMU-Arctic 2.5 2.7 1.9 1.9 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.6 1.6 -0.9 (-36.1%)
German 3.5 3.6 2.9 2.6 2.7 2.5 2.5 2.8 2.6 2.5 2.6 2.3 2.3 -1.2 (-35.2%)
Indian 3.2 4.6 2.1 2.2 2.0 2.0 2.0 1.9 2.1 2.0 2.1 1.8 1.9 -1.2 (-39.2%)
U.S. 2.0 1.8 1.7 1.8 1.5 1.6 1.6 1.7 1.6 1.6 1.7 1.4 1.5 -0.4 (-21.9%)
Other 2.1 1.6 1.6 1.4 1.2 1.3 1.2 1.3 1.3 1.3 1.2 1.3 1.2 -0.9 (-44.5%)

L2-Arctic 6.5 10.5 8.6 6.5 7.9 8.3 6.4 6.4 6.4 6.4 6.0 6.3 6.2 -0.3 (-5.4%)
Hindi 4.0 7.1 3.9 4.0 3.7 3.8 3.8 3.7 3.6 3.6 3.7 3.4 3.5 -0.5 (-13.7%)
Korean 4.2 8.5 14.9 4.5 14.9 15.2 4.3 3.9 3.9 3.7 3.4 3.8 3.9 -0.3 (-7.9%)
Mandarin 7.4 11.4 8.3 7.7 7.6 8.1 7.7 7.7 7.7 7.7 7.6 7.8 7.7 +0.3 (+3.9%)
Spanish 6.5 10.1 7.0 6.3 6.1 6.0 6.2 6.2 6.3 6.2 5.7 5.9 5.9 -0.6 (-9.0%)
Vietnamese 11.3 17.2 13.1 11.3 10.8 12.6 11.1 11.1 11.2 11.4 10.6 11.4 10.7 -0.5 (-4.9%)

HEC 12.7 9.5 7.9 8.3 8.4 9.6 9.0 8.7 8.7 9.2 9.1 9.3 9.3 -3.5 (-27.2%)

SAA2 4.7 Avg3: - 1.2 (-19.7%)
Native 1.2
Non-Native 11.4

across all corpora with 9-12 examples signifi-
cantly better than 0-3 at a 95% confidence level
(two-sample t-test). The left panel reveals charac-
teristic diminishing returns: the largest gains occur
between 0 and 1 shots, with performance improve-
ments plateauing around 6-10 examples. CMU-
Arctic consistently achieves the lowest WERs
across all shot conditions, reflecting the high-
resource nature of standard American English
in ASR training data. Baseline (0-shot) WERs
vary widely across corpora, ranging from 2.5%
(CMU-Arctic) to 12.7% (HEC). The HEC average
is heavily influenced by a single outlier speaker
(Speaker 7, Table 3 in Appendix 7) with an ex-
ceptionally high 0-shot WER of 63.9%; excluding
this speaker, the 0-shot average for the remaining
HEC speakers is approximately 4.2%. This out-
lier also significantly impacts the 12-shot HEC av-
erage (41.0% WER for Speaker 7–see section 7).
Non-native speakers in SAA reached 11.4% com-
pared to just 1.2% for native speakers.

Aggregated across shot ranges, performance
follows a clear hierarchy: 9-12 shots outperform
4-8 shots, which in turn outperform 0-3 shots
across all corpora. The asymptotic shape indicates
that approximately 25-30 seconds of transcribed
audio captures most adaptation benefits available
through ICL (see fig. 2).

6.2 Corpus-Level Performance Patterns

Table 1 reveals several consistent patterns across
corpora and varieties. For nearly all speaker
groups, highest WERs are found in the 0-1 shot
conditions, with the notable exception of L2-
Arctic Korean speakers who show elevated error
rates before improving substantially. Most vari-
eties reach their highest accuracies with 10-12 ex-
amples.

Low-resource varieties generally experience
large absolute and relative improvements. For
HEC, the substantial average absolute WER re-
duction reported in Table 1 (-3.5 points from
0 to 12 shots) is largely driven by the afore-
mentioned outlier speaker’s improvement (-22.9
points). Within CMU-Arctic, speakers with Ger-
man and Indian backgrounds show relative gains
of 35.2% and 39.2% respectively (0 to 12 shots),
compared to 21.9% for US English speakers.
The "Other" category (see Section 3.2 for de-
tails) achieves the largest relative improvement of
44.5%. Similarly, in L2-Arctic, most non-native
varieties achieve gains, with Hindi (-13.7%) and
Spanish (-9.0%) showing notable improvements,
while Korean shows a more modest -7.9% gain.

2Native and Non-native are distinctions which overlook
the complexity of many language-learning trajectories, how-
ever they manifest the wide gaps in ASR performance.

3Average over speakers. (See Appendix 7)
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A critical finding is that baseline disparities per-
sist despite adaptation. SAA illustrates this most
starkly: in zero-shot conditions, native speakers
achieve 1.2% WERs while non-native speakers
reach 11.4% WERs—a nearly 10-fold difference
despite all speakers reading identical text. L2-
Arctic Mandarin is the only variety that performs
slightly worse (+3.9%) at 12 shots compared
to zero-shot. This small negative change falls
within expected noise levels and does not con-
tradict the overall adaptation trend. We hypoth-
esize that bilingual interference or mismatches be-
tween orthography and pronunciation may under-
lie the weaker or inconsistent adaptation patterns
observed in these speaker groups.

6.3 Speaker Context Specificity

Table 2 examines whether adaptation benefits vary
when using examples from the same speaker ver-
sus different speakers of the same variety. The re-
sults reveal a nuanced pattern: no difference ap-
pears in the 1-3 shot range, but same-speaker ex-
amples provide a substantial 1.1 percentage point
advantage (19.6% relative improvement) specifi-
cally when 4-6 examples are provided. This ad-
vantage disappears entirely at higher shot counts,
with different-speaker examples slightly outper-
forming same-speaker context at 10-12 shots.

This pattern suggests two distinct adaptation
mechanisms operating at different scales: initial
speaker-specific acoustic calibration that benefits
from idiosyncratic features, followed by variety-
level adaptation that emphasizes shared phonetic
patterns across speakers within accent groups.

Table 2: Comparison of same-speaker versus different-
speaker context performance across shot groups.
Same-speaker context shows a notable benefit in the
4-6 shot range.

Speaker Condition

Shot Group Same Different Same Advantage4

1–3 5.6 5.7 0.1 (+1.8%)
4–6 4.5 5.6 1.1 (+19.6%)
7–9 4.6 4.5 -0.1 (-2.2%)
10–12 4.5 4.3 -0.2 (-4.7%)

4The "Same Advantage" is calculated as (Different WER
- Same WER). The relative percentage in parentheses is cal-
culated as (Absolute Advantage / Different WER) * 100%.

6.4 Prompt Sensitivity and Format Effects

Figure 3 plots the impact of prompt wording on
WERs. We tested exactly four lightweight tem-
plates (fully specified in Appendix 7): for zero-
shot inference a standard instruction taken from
the model card ("Transcribe the audio clip into
text.") versus a variation that pre-labels the clip
as coming from a "non-native English speaker";
for few-shot (N-shot) inference a standard tem-
plate that simply concatenates each audio–text
pair and a variation that additionally pre-generates
the token "Transcription:" before each exam-
ple. These manipulations isolate two hypothesized
helpers—task framing through explicit accent in-
formation and I/O scaffolding through consistent
answer delimiters.

In the zero-shot setting, the non-native framing
yielded a small but consistent improvement across
all corpora (blue bars in Figure 3), lowering WERs
by 0.1–0.3 pp even for native speech. The effect
suggests that the phrase "non-native" activates a
broader acoustic–phonetic prior learned during in-
struction tuning, making the decoder slightly more
tolerant of unexpected phone–letter mappings.

For few-shot adaptation, injecting the
"Transcription:" tag proved the larger lever.
It reduced early-shot volatility (<4 examples)
and delivered up to 0.9pp average WER gains in
L2-Arctic and 0.6pp in HEC, while leaving high-
resource CMU-Arctic essentially unchanged.
Together, the two variation templates confirmed
our a priori expectation: explicit accent cues help
immediately, and explicit answer markers help
the model exploit sparse context more reliably,
especially for under-represented varieties.

7 Discussion and Conclusion

This study set out to answer two primary research
questions:
(1) Can ICL unlock human-like adaptation ben-
efits in a state-of-the-art SLM?
Yes. Across four corpora that span native, her-
itage, and second-language English, supplying
even a few transcribed examples produces the
steep, rapidly-saturating learning curve that psy-
cholinguistic work reports for humans exposed to
unfamiliar talkers. Performance gains arise fastest
in the first few trials (∼25–30 s of speech), taper
off thereafter, and follow two recognizable phases:
(i) a speaker-specific phase in which 4–6 same-
speaker examples yield a ∼20% relative WER re-
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Figure 3: Prompt format sensitivity across corpora.
Including explicit “Transcription:” markers reduces
WERs in low-resource corpora (HEC, L2-Arctic). In
zero-shot settings, marginal gains are induced simply
by informing the model that it’s transcribing non-native
speech.

duction, and (ii) a variety-general phase in which
larger shot counts confer similar benefits even
when examples come from different speakers of
the same group.
(2) If so, does this human-like adaptation trans-
late into state-of-the-art recognition across di-
verse speakers and language varieties?
Largely, but not uniformly. After 9–12
shots, Phi-4-MM achieves or exceeds state-of-
the-art WERs on high-resource American English
(<2%)5, while delivering sizeable absolute drops
(1–3.5 pp.; 10–45% relative) for low-resource va-
rieties such as Spanish-heritage, L1 Hindi, and L1
Korean.

The asymptotic nature of performance gains,
with the largest improvements occurring in the
first few examples before plateauing around 6–10
shots, closely parallels psychometric curves ob-
served in human speech perception studies (Brad-
low and Bent, 2008). This convergence sug-
gests that ICL accesses fundamental mechanisms
of acoustic-phonetic recalibration, potentially in-
volving rapid re-weighting of phonetic features
based on observed speaker-specific patterns. The
fact that approximately 25–30 seconds of tran-
scribed audio captures most available adaptation
benefits mirrors the “fast” adaptation documented
in human perceptual learning paradigms.

A notable effect in the results (Table 1) is the

5On the same CMU Arctic dataset (American English),
OpenAI’s Whisper models yield WERs of 3.3 (medium) and
2.8 (large-V3) (Roll and Graham, 2025).

transient increase in WERs for several varieties
when transitioning from zero-shot to a single in-
context example. We hypothesize that this re-
flects an initial phase of task adaptation: While
Phi-4-MM is instruction-tuned, it was not explic-
itly trained on ICL for the ASR task, let alone
our novel protocol. The first audio-transcript pair
may therefore present a dual challenge: the model
must first recognize and assimilate the novel task
structure itself (essentially learning the "rules" of
this ICL interaction) before it can effectively lever-
age the example’s content for acoustic-lexical re-
calibration towards the target speaker or variety.
Once this foundational task understanding is es-
tablished, subsequent examples can more directly
contribute to the targeted adaptation, leading to
the WER reductions observed with additional ex-
amples. Given the strength of this effect in HEC
and L2-ARCTIC, there may be interaction effects
between task-learning and the out-of-distribution
nature of some English varieties, however, analy-
ses across additional corpora would be required to
fully disentangle these effects.

The observation that ASR performance is no-
tably sensitive to the prompt offers intriguing par-
allels to human speech perception. Research by
D’Onofrio (2015) demonstrates that human listen-
ers’ categorization of ambiguous speech sounds
is shaped by explicit social information provided
about the speaker. The "non-native" prompt ap-
pears to prime the ASR system, potentially by ac-
tivating or re-weighting internal models suited for
greater acoustic-phonetic variability or by adjust-
ing decision thresholds, even when such charac-
teristics are not objectively present in the target
audio.

The magnitude of improvements for several
low-resource varieties is particularly striking. For
example, in CMU-Arctic, the ’Other’ subgroup
(speakers with Scottish, Canadian, and Israeli
backgrounds, as detailed in Section 3.2) achieved
a 44.5% relative WER reduction (0 to 12 shots),
and the ’Indian’ subgroup saw a 39.2% reduc-
tion. Spanish heritage speakers (HEC) experi-
enced an average relative reduction of 27.2%,
though this figure is significantly influenced by
an outlier speaker improving from a very high
baseline (see Section 6). Other L2-Arctic vari-
eties such as Hindi English (-13.7%) and Korean
English (-7.9%) also benefited, albeit with more
modest relative reductions (Table 1). These gains
help narrow the performance gap compared to
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high-resource US English. This finding connects
to evidence that frequency alone provides limited
benefits—our results show that meaningful adap-
tation requires quality variation, not mere repeti-
tion (de Marneffe et al., 2011). The dispropor-
tionate gains for underrepresented speakers sug-
gest that ICL may help mitigate biases inherent in
training distributions dominated by high-resource
varieties.

We found that same-speaker examples provide a
significant advantage at 4–6 shots (about 1.1 per-
centage points), but this benefit disappears entirely
with longer contexts. This pattern aligns with
multi-level adaptation processes in human per-
ception (Sidaras et al., 2009; Moon and Sumner,
2013). Adaptation appears to begin with speaker-
specific cues and then shift toward variety-level
generalization, as the model learns to extract fea-
tures that transcend individual speaker character-
istics.

More importantly, these disproportionate gains
for low-resource varieties offer a scalable path-
way toward more equitable speech technology,
requiring no additional training data or compu-
tational resources beyond slightly longer infer-
ence contexts. Just as humans cope effortlessly
with variation at every level, frontier SLMs show
emergent robustness that can be unlocked purely
through prompt engineering—offering a practical
tool to improve ASR equity for speakers and va-
rieties historically underserved by speech tech-
nology. Future work should extend this frame-
work to more challenging, real-world conditions,
including spontaneous speech, the use of noisy
or automatically-generated transcripts for context,
cross-lingual settings, and streaming applications.

Limitations

While this study demonstrates the significant po-
tential of ICL for ASR adaptation within a frontier
model, its limitations define key avenues for future
research. First, generalizability is constrained: our
experiments used a single model (Phi-4-MM) and
focused on read English speech. **The overrep-
resentation of English in ASR research is a known
issue that can perpetuate biases;** while our focus
was a deliberate choice to ensure high internal va-
lidity across multiple corpora, future work must
validate these findings in a wider range of lan-
guages to ensure equitable progress. Second, the
ICL methodology has scope for expansion. Our

reliance on accurately transcribed context, while
establishing the potential of ICL with quality sig-
nals, may not always be practical. Future efforts
should explore unsupervised or self-transcription
for context generation and active context selec-
tion. Additionally, we explored adaptation mainly
within the same speaker or variety and tested lim-
ited prompt variations, which inhibited the engi-
neering goal to make speech recognition more ro-
bust and restricted the scope of investigations into
human-model perceptual convergence.
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Appendix: Supplementary Experimental
Details

A.1 Model and Generation Parameters
Model Configuration:

• Model: microsoft/Phi-4-multimodal-instruct

• Processor: AutoProcessor.from_pretrained
(’microsoft/Phi-4-multimodal-instruct’,
trust_remote_code=True)

• Loading: AutoModelFor-
CausalLM.from_pretrained
(’microsoft/Phi-4-multimodal-
instruct’, trust_remote_code=True,

torch_dtype=’auto’,
attn_implementation=’flash_attention_2’)

Generation Configuration:

• max_new_tokens: 1200

• do_sample: False (greedy decoding)

• num_beams: 1

• num_logits_to_keep: 1 (explicitly set at
multiple levels)

A.2 Datasets and Comprehensive
Preprocessing
A.2.1 Dataset Sources

• L2-Arctic:
NathanRoll/l2-arctic-dataset-250

• HEC (HISP-ENG): NathanRoll/hisp-eng

• CMU-Arctic: NathanRoll/cmu-arctic

A.2.2 Audio Preprocessing Pipeline
Target Specifications:

• Sample Rate: 16,000 Hz (resampled using
librosa.resample)

• Format: 32-bit float (np.float32)

• Duration: Minimum 2.5 seconds (shorter
clips filtered out)

Normalization Algorithm Steps:

• Integer handling: Convert integer types by
dividing by max value for that dtype

• Float handling: Convert directly to
np.float32

• FLAC bug detection: Check for max > 0.99
and min > -0.5, indicating missing negative
values

• Bug correction: Flip values above 0.9
threshold if bug detected

• Range clipping: Clip extreme values ex-
ceeding ±1.1 to [-1.0, 1.0]

Resampling Configuration:

• Primary method: librosa.resample with
default parameters

• Fallback method: librosa.resample with
res_type=’kaiser_fast’ if primary fails

• All resampling errors are logged and re-
raised for debugging
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A.2.3 Text Normalization

Normalization Steps:

1. Convert to lowercase

2. Remove punctuation: . , ? ! ; : " ’ (
) [ ] (each replaced with space)

3. Normalize whitespace: Multiple spaces col-
lapsed to single spaces, leading/trailing
whitespace removed

Implementation Logic: Convert text to low-
ercase, iterate through punctuation list replacing
each with space, then split and rejoin to normalize
whitespace.

A.2.4 Dataset Filtering Criteria

Variety-Level Filtering:

• Varieties must have ≥2 speakers

• For HEC dataset: exclude samples with
variety == ’unknown’

Speaker-Level Filtering:

• Speakers must have ≥(max_shots + 1) valid
utterances

• Maximum 50 samples per speaker used (se-
lected via shuffling with speaker-specific
seed)

Sample-Level Filtering:

• Duration ≥2.5 seconds

• Valid audio array present

• Valid transcript field present and non-empty

Variety Mapping Details:

• CMU-Arctic: Based on speaker ID mapping
to variety (see CMU_ARCTIC_VARIETIES)

• HEC: Based on speaker origin mapping (see
HISP_ENG_ORIGINS)

• L2-Arctic: Uses l1 field directly

A.3 Experimental Design and Context
Selection

A.3.1 Random Seed Management

Global Seed: 42 (default, configurable via com-
mand line)

Seed Hierarchies:

• Speaker-level shuffling: global_seed +
hash(f"{variety}_{speaker}") % 10000

• Trial-level context selection: global_seed
+ hash(f"{speaker}_{trial_idx}") %
10000

• Different-speaker selection: Same as trial-
level but includes variety information

This hierarchical seeding ensures:

1. Reproducible speaker orderings

2. Consistent context selection across runs

3. Deterministic different-speaker selection

A.3.2 Context Example Selection Algorithm

Same-Speaker Condition Logic:

• Build candidate list excluding current test
sample

• Filter out samples with identical normalized
transcripts

• Use trial-specific random seed for selection

• Sample n_shots examples without replace-
ment

Different-Speaker Condition Logic:

• Select random other speaker from same vari-
ety

• Collect samples from selected speaker

• Filter out samples with identical transcripts to
test audio

• Sample n_shots examples using same ran-
dom seed strategy
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A.3.3 Trial Generation Process
Trial Count Calculation:

• Maximum trials per speaker: min(pool_size -
n_shots, max_trials)

• Pool size limit: 50 samples per speaker

• Test samples drawn sequentially from shuf-
fled pool

Quality Control:

• Skip trials where insufficient context exam-
ples available

• Skip samples without valid transcript fields

• Handle all exceptions gracefully with de-
tailed logging

A.4 In-Context Learning Prompts
The following prompt structures are used for the
Phi-4 model, where <|user|>, <|assistant|>,
<|audio_N|>, and <|end|> are special model to-
kens.

A.4.1 Zero-Shot Prompts
Standard Prompt:
<|user|><|audio_1|>Transcribe the audio
clip into text.<|end|><|assistant|>

Variation Prompt (Non-Native Focus):
<|user|><|audio_1|>Transcribe the audio
clip from a non-native English speaker
into text.<|end|><|assistant|>

A.4.2 Few-Shot Prompt Structure
Initial Instruction Block:

• User message: Explains providing N exam-
ples from non-native speaker, followed by
new audio from same/different speaker

• Assistant acknowledgment: Confirms under-
standing and intent to use examples for tran-
scription

Dynamic Elements:

• {num_shots_text}: “an example” (1-shot)
or “N examples” (N-shot)

• {speaker_reference}: “the same speaker”
or “a different speaker”

• {pronoun_text}: “it” (1-shot) or “them”
(N-shot)

Example Block Structure:

• Standard: User provides audio, assistant re-
sponds with transcript

• Variation: Same as standard but assistant re-
sponse prefixed with “Transcription: ”

Final Query Block: User provides final au-
dio with speaker reference, assistant begins re-
sponse (with “Transcription: ” prefix for variation
prompt).

A.5 Computational Requirements and
Implementation
Hardware Specifications:

• GPU: NVIDIA A100 (required for flash at-
tention)

• Memory: Minimum 40GB GPU memory
recommended

• Runtime: 8-12 hours per corpus for complete
evaluation (0-12 shots)

Software Dependencies:

• torch, peft, torchvision, backoff, flash-attn

• tqdm, jiwer, librosa, transformers, datasets

Model Memory Management:

• Model loaded with torch_dtype=’auto’ for
optimal precision/memory trade-off

• Flash attention implementation used to re-
duce memory footprint

• Single inference batch processing (no batch-
ing across utterances)

A.6 Statistical Analysis and Data Collection
A.6.1 Trial Collection
Number of Trials:

• Default maximum: 50 trials per speaker per
condition

• Actual trials: min(available_samples -
n_shots, max_trials)

• Zero-shot: All valid samples used (up to 50)

Data Validation:

• WER calculated using jiwer library with
normalized texts
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• All results stored with full precision (no
rounding during intermediate calculations)

• Individual trial results preserved in addition
to averages

A.6.2 Result Aggregation
Speaker-Level Results Format:

• Variety identification

• Run counts per shot condition

• Average WER per shot condition

• Complete list of individual WER values

Corpus-Level Results:

• Weighted averages across all speakers

• Total sample counts per condition

• Preservation of speaker-level breakdowns

A.7 Reproducibility Checklist
1. Environment Setup:

• Use identical package versions (see depen-
dencies list)

• Set all random seeds (Python, NumPy, Py-
Torch)

2. Data Processing:

• Apply exact audio normalization pipeline (in-
cluding FLAC bug correction)

• Use identical text normalization (case, punc-
tuation, whitespace)

• Apply same filtering criteria (duration, vari-
ety, speaker counts)

3. Experimental Configuration:

• Use hierarchical random seeding as specified

• Maintain exact prompt structure (including
special tokens)

• Follow context selection algorithm precisely

4. Model Configuration:

• Use greedy decoding (do_sample=False)

• Set num_logits_to_keep=1 at all levels

• Use flash attention implementation

5. Evaluation:

• Calculate WER using jiwer with normalized
texts

• Aggregate results maintaining full precision

• Store individual trial values, not just averages

A.8 Extended Speaker-Level Results
The following table provides complete speaker-
level results for 0-shot and 12-shot conditions
across all corpora, enabling verification of re-
ported aggregate statistics.

A.9 License Information
The code and prompts released for this research
are available under the MIT License.

A.10 Use Of AI Assistants
AI assistants were used in a limited fashion to

The code and prompts released for this research
are available under the MIT License.
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Table 3: Complete speaker-level Word Error Rates (WER) for 0-shot and 12-shot conditions. All WERs are
percentages.

Dataset (Corpus) Speaker 0-shot WER (%) 12-shot WER (%)

CMU-Arctic aew 1.5 0.7
CMU-Arctic ahw 2.8 2.0
CMU-Arctic aup 3.1 2.1
CMU-Arctic axb 3.8 2.4
CMU-Arctic bdl 1.4 0.9
CMU-Arctic clb 1.9 0.7
CMU-Arctic eey 1.9 2.6
CMU-Arctic fem 4.1 2.5
CMU-Arctic gka 1.9 1.3
CMU-Arctic ksp 3.4 2.4
CMU-Arctic ljm 2.2 1.8
CMU-Arctic lnh 2.2 1.0
CMU-Arctic rms 2.0 0.7
CMU-Arctic slp 3.9 1.8
CMU-Arctic slt 1.7 1.1
HEC 0 4.6 7.6
HEC 1 3.9 3.3
HEC 18 6.7 4.9
HEC 3 2.3 1.9
HEC 4 4.7 3.8
HEC 6 3.0 2.3
HEC 7 63.9 41.0
L2-Arctic ASI 3.5 3.3
L2-Arctic BWC 9.4 10.3
L2-Arctic EBVS 8.8 7.5
L2-Arctic ERMS 6.5 6.1
L2-Arctic HJK 4.1 4.0
L2-Arctic HQTV 17.9 15.8
L2-Arctic LXC 6.4 6.1
L2-Arctic MBMPS 5.5 5.1
L2-Arctic NCC 6.4 6.7
L2-Arctic NJS 5.1 4.9
L2-Arctic PNV 4.6 5.6
L2-Arctic RRBI 4.9 3.5
L2-Arctic TNI 3.7 3.5
L2-Arctic YKWK 4.2 3.7

Grand Average (across speakers) 6.1 4.9
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