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Abstract

CLIP is one of the most popular foundation
models and is heavily used for many vision-
language tasks, yet little is known about its
inner workings. As CLIP is increasingly de-
ployed in real-world applications, it is becom-
ing even more critical to understand its limita-
tions and embedded social biases to mitigate
potentially harmful downstream consequences.
However, the question of what internal mech-
anisms drive both the impressive capabilities
as well as problematic shortcomings of CLIP
has largely remained unanswered. To bridge
this gap, we study the conceptual consistency
of text descriptions for attention heads in CLIP-
like models. Specifically, we propose Concept
Consistency Score (CCS), a novel interpretabil-
ity metric that measures how consistently in-
dividual attention heads in CLIP models align
with specific concepts. Our soft-pruning exper-
iments reveal that high CCS heads are critical
for preserving model performance, as pruning
them leads to a significantly larger performance
drop than pruning random or low CCS heads.
Notably, we find that high CCS heads capture
essential concepts and play a key role in out-of-
domain detection, concept-specific reasoning,
and video-language understanding. Moreover,
we prove that high CCS heads learn spurious
correlations which amplify social biases. These
results position CCS as a powerful interpretabil-
ity metric exposing the paradox of performance
and social biases in CLIP models.

1 Introduction

Large-scale vision-language (VL) models such as
CLIP (Radford et al., 2021) have significantly ad-
vanced state-of-the-art performance in vision tasks
in recent years. Consequently, CLIP has been ex-
tensively used as a foundational model for down-
stream tasks such as video retrieval, image gen-
eration, and segmentation (Luo et al., 2022; Liu
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et al., 2024; Brooks et al., 2023; Esser et al., 2024;
Kirillov et al., 2023). This has enabled the con-
struction of compositional models combining CLIP
with other foundation models, thereby increasing
the functionality of CLIP while also adding com-
plexity to the overall model structure. However,
as these models gain prominence in real-world ap-
plications, their embedded social biases (Howard
et al., 2024; Hall et al., 2023; Seth et al., 2023)
have emerged as a critical concern with potentially
harmful consequences. Despite the growing body
of work documenting these biases, a fundamental
question remains: what mechanisms within these
models’ architectures drive both their impressive
capabilities and problematic shortcomings?

Recent interpretability advances (Gandelsman
et al.) have made initial progress by decomposing
CLIP’s image representations into contributions
from individual attention heads, identifying text
sequences that characterize different heads’ seman-
tic roles. However, this approach provides only a
partial view into CLIP’s inner workings, leaving a
critical missing piece: systematic understanding of
the visual concepts encoded at the attention head
level—and how these concepts underpin both the
model’s strengths and its social failures.

Our work addresses this critical gap through a
novel interpretability framework we call “concep-
tual consistency”. This framework systematically
analyzes which visual concepts are learned by indi-
vidual attention heads and how consistently these
concepts are processed throughout the model’s ar-
chitecture. First, we identify interpretable struc-
tures within the individual heads of the last four
layers of the model using a set of text descriptions.
To accomplish this, we employ the TEXTSPAN al-
gorithm (Gandelsman et al.), which helps us find
the most appropriate text descriptions for each head.
After identifying these text descriptions, we as-
sign labels to each head representing the common
property shared by the descriptions. This label-
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ing process is carried out using in-context learning
with ChatGPT. We begin by manually labeling five
pairs of text descriptions and their corresponding
concept labels, which serve as examples. These ex-
amples are then used to prompt ChatGPT to assign
labels for the remaining heads.

Leveraging the resulting text descriptions and
concept labels of attention heads, we introduce
the Concept Consistency Score (CCS), a new in-
terpretability metric that quantifies how strongly
individual attention heads in CLIP models align
with specific concepts. Using GPT-4o, Gemini
and Claude as automatic judges, we compute CCS
for each head and classify them into high, mod-
erate, and low categories based on defined thresh-
olds. A key contribution of our work is our tar-
geted soft-pruning experiments which show that
heads with high CCS are essential for maintaining
model performance; pruning these heads causes a
significantly larger performance drop compared to
pruning any other heads. We also show that high
CCS heads are not only crucial for general vision-
language tasks but are especially important for out-
of-domain detection and targetted concept-specific
reasoning. Additionally, our experiments in video
retrieval highlight that high CCS heads are equally
vital for temporal and cross-modal understanding.
Moreover, we demonstrate that high CCS heads
often encode spurious correlations, contributing to
social biases in CLIP models. Selective pruning
of these heads can reduce such biases without the
need for fine-tuning. Together, these results expose
a fundamental paradox: while high-CCS heads are
indispensable for strong model performance, they
are simultaneously key contributors to undesirable
biases.

2 Related Work

Early research on interpretability primarily concen-
trated on convolutional neural networks (CNNs)
due to their intricate and opaque decision-making
processes (Zeiler and Fergus, 2014; Selvaraju et al.,
2017; Simonyan et al., 2014; Fong and Vedaldi,
2017; Hendricks et al., 2016). More recently, the in-
terpretability of Vision Transformers (ViT) has gar-
nered significant attention as these models, unlike
CNNs, rely on self-attention mechanisms rather
than convolutions. Researchers have focused on
task-specific analyses in areas such as image clas-
sification, captioning, and object detection to un-
derstand how ViTs process and interpret visual in-

formation (Dong et al., 2022; Elguendouze et al.,
2023; Mannix and Bondell, 2024; Xue et al., 2022;
Cornia et al., 2022; Dravid et al., 2023). One of the
key metrics used to measure interpretability in ViTs
is the attention mechanism itself, which provides
insights into how the model distributes focus across
different parts of an image when making deci-
sions (Cordonnier et al., 2019; Chefer et al., 2021).
This has led to the development of techniques that
leverage attention maps to explain ViT predictions.
Early work on multimodal interpretability, which
involves models that handle both visual and textual
inputs, probed tasks such as how different modali-
ties influence model performance (Cao et al., 2020;
Madasu and Lal, 2023) and how visual semantics
are represented within the model (Hendricks and
Nematzadeh, 2021; Lindström et al., 2021). Aflalo
et al. (Aflalo et al., 2022) explored interpretability
methods for vision-language transformers, examin-
ing how these models combine visual and textual in-
formation to make joint decisions. Similarly, Stan
et al. (Stan et al., 2024) proposed new approaches
for interpreting vision-language models, focusing
on the interactions between modalities and how
these influence model predictions. Our work builds
upon and leverages the methods introduced by Gan-
delsman et al., 2024) to interpret attention heads,
neurons, and layers in vision-language models, pro-
viding deeper insights into their decision-making
processes. Several works (Shu et al., 2023; May-
ilvahanan et al.; Moeller et al., 2024) explored the
out-of-domain generalization of CLIP models on
several benchmarks. In contrast to these works, our
work provides a new interpretability metric to un-
derstand the decision making processes of attention
heads in CLIP models.

3 Quantifying interpretability in CLIP
models

3.1 Preliminaries

In this section, we describe our methodology, start-
ing with the TEXTSPAN (Gandelsman et al.) algo-
rithm and its extension across all attention heads
in multiple CLIP models using in-context learning.
Specifically, we deal with attention heads in the im-
age encoder. TEXTSPAN associates each attention
head with relevant text descriptions by analyzing
the variance in projections between head outputs
and candidate text representations. Through itera-
tive projections, it identifies distinct components
aligned with different semantic aspects. While ef-
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Figure 1: Illustration of our approach to computing Concept Consistency Score for each attention head.

High CCS (CCS = 5) Moderate CCS (CCS = 3) Low CCS (CCS ≤ 1)

L23.H11 (“People”) L23.H0 (“Material”) L21.H6 (“Professions”)
Playful siblings Intrica wood carvingte Photo taken in the Italian pizzerias
A photo of a young person Nighttime illumination thrilling motorsport race
Image with three people Image with woven fabric design Urban street fashion
A photo of a woman Image with shattered glass reflections An image of a Animal Trainer
A photo of a man A photo of food A leg
L22.H10 (“Animals”) L11.H0 (“Locations”) L10.H6 (“Body parts”)
Image showing prairie grouse Photo taken in Monument Valley A leg
Image with a donkey Majestic animal colorful procession
Image with a penguin An image of Andorra Contemplative monochrome portrait
Image with leopard print patterns An image of Fiji Graceful wings in motion
detailed reptile close-up Image showing prairie grouse Inviting reading nook
L23.H5 (“Nature”) L11.H11 (“Letters”) L9.H2 (“Textures”)
Intertwined tree branches A photo with the letter J Photo of a furry animal
Flowing water bodies A photo with the letter K Closeup of textured synthetic fabric
A meadow A swirling eddy Eclectic street scenes
A smoky plume A photo with the letter C Serene beach sunset
Blossoming springtime blooms awe-inspiring sky Minimalist white backdrop

Table 1: Examples of high, moderate and low CCS heads.

Model High Medium Low

ViT-B-32-OpenAI 8 13 4
ViT-B-32-datacomp 11 9 8

ViT-B-16-OpenAI 10 14 4
ViT-B-16-LAION 13 12 6

ViT-L-14-OpenAI 16 13 11
ViT-L-14-LAION 21 14 3

Table 2: Count of high, medium and low CCS heads
in CLIP models.

fective at linking heads to descriptive text spans,
TEXTSPAN does not assign explicit concept la-
bels. We inherited the set of 3498 text spans from
Gandelsman et al. (Gandelsman et al.), which
were generated by prompting ChatGPT-3.5 to pro-
duce general image descriptions using the prompts
shown below. After obtaining an initial set, Chat-
GPT was manually prompted to generate more ex-
amples of specific patterns we found (e.g., image
with a lunar eclipse, Oceanic coral reef). In the

next section, we detail our method for labeling the
concepts learned by individual CLIP heads.

3.2 Concept Consistency Score (CCS)
We introduce the Concept Consistency Score (CCS)
as a systematic metric for analyzing the concepts
(properties) learned by transformer layers and atten-
tion heads in CLIP-like models. This score quan-
tifies the alignment between the textual represen-
tations produced by a given head and an assigned
concept label. Existing interpretability methods
(Chefer et al., 2021; Abnar and Zuidema, 2020;
Barkan et al., 2021) are largely descriptive and do
not identify which internal components (e.g., at-
tention heads) are reliably responsible for model
behavior. This lack of discriminative insight limits
their utility in scenarios where intervention or con-
trol is required. CCS addresses this by measuring
concept consistency across heads, enabling us to
isolate specialized heads that consistently encode
particular concepts. This makes interpretability
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Model CIFAR-10 CIFAR-100
Original K=5 K=7 K=9 K=11 K=13 Original K=5 K=7 K=9 K=11 K=13

ViT-B-32-OpenAI 75.68 71.31 71.86 73.66 74.53 70.54 65.08 56.07 62.21 60.17 56.42 59.05
ViT-B-32-datacomp 72.07 70.50 70.59 69.61 69.93 70.20 54.95 53.14 53.59 53.73 53.81 53.91
ViT-B-16-OpenAI 78.10 63.93 71.83 76.08 64.67 76.74 68.22 51.70 52.45 61.90 62.59 55.54
ViT-B-16-LAION 82.82 78.91 81.25 80.25 78.03 78.56 76.92 65.55 69.94 72.46 67.59 69.49
ViT-L-14-OpenAI 86.94 86.29 85.44 85.89 85.49 85.58 78.28 75.66 74.85 74.70 76.73 77.19
ViT-L-14-LAION 88.29 86.48 85.99 86.34 87.28 85.99 83.37 80.07 80.75 82.03 82.14 80.11

Table 3: Accuracy (%) on CIFAR-10 and CIFAR-100 datasets across different values of TEXTSPAN (K).

Model Kappa SC (ρ) Kendall (τ)

ViT-B-32-OpenAI 0.821 0.737 0.781
ViT-B-16-LAION 0.813 0.773 0.737
ViT-L-14-OpenAI 0.827 0.751 0.758

Table 4: Results between human judgment and LLM
judgment on CCS labelling. SC denotes Spearman’s
correlation.

actionable by supporting tasks like pruning, debug-
ging, or understanding failure modes with certainty
and control. Figure 1 illustrates our approach,
with the following sections detailing each step in
computing CCS.

3.2.1 Extracting Text Representations
From each layer and attention head of the CLIP
model, we obtain a set of five textual outputs,
denoted as {T1, T2, T3, T4, T5}, referred to as
TEXTSPANs. These outputs serve as a textual ap-
proximation of the concepts encoded by the head.

3.2.2 Assigning Concept Labels
Using in-context learning with ChatGPT, we ana-
lyze the set of five TEXTSPAN outputs and infer a
concept label Ch that best represents the dominant
concept captured by the attention head h. This en-
sures that the label is data-driven and reflects the
most salient pattern learned by the head.

3.2.3 Evaluating Concept Consistency
To assess the consistency of a head with respect to
its assigned concept label, we employ three state-of-
the-art foundational models, GPT-4o, Gemini 1.5
pro and Claude Sonnet as external evaluators. For
each TEXTSPAN Ti associated with head h, GPT-
4o determines whether it aligns with the assigned
concept Ch. The Concept Consistency Score (CCS)
for head h is then computed as:

CCS(h) =
5∑

i=1

⊮ [Ti aligns with Ch]

where ⊮[·] is an indicator function that returns 1
if Ti to be consistent with Ch, and 0 otherwise.
To ensure a high standard of reliability, we define
consistency strictly—only if all three LLM judges
independently rate Ti as consistent with Ch. This
requirement for unanimous agreement minimizes
the influence of individual model biases or variabil-
ity in judgment (Liu and Zhang, 2025), thereby
enhancing the robustness and trustworthiness of
the overall concept consistency score.

We define CCS@K as the fraction of attention
heads in a CLIP model that have a Concept Con-
sistency Score (CCS) of K. This metric provides a
global measure of how many heads strongly encode
interpretable concepts. A higher CCS@K value
indicates that a greater proportion of heads exhibit
strong alignment with a single semantic property.
Mathematically, CCS@K is defined as:

CCS@K =
1

H

H∑

h=1

⊮ [CCS(h) = K]

where H is the total number of attention heads
in the model, CCS(h) is the Concept Consistency
Score of head h, ⊮[·] is an indicator function that
returns 1 if CCS(h) = K, and 0 otherwise. This
metric helps assess the overall interpretability of
the model by quantifying the proportion of heads
that consistently capture well-defined concepts. Ta-
ble 1 shows the examples of heads with different
CCS scores.

Next, we categorize each attention head based
on its Concept Consistency Score (CCS) into three
levels: high, moderate, and low. A head is consid-
ered to have a high CCS if all of its associated text
descriptions align with the labeled concept, indi-
cating that the head is highly specialized and likely
encodes features relevant to that concept. Moder-
ate CCS heads exhibit partial alignment, with three
out of five text descriptions matching the concept
label, suggesting that they capture the concept to
some extent but not exclusively. In contrast, low
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CCS heads have zero or only one matching descrip-
tion, implying minimal relevance and indicating
that these heads are largely unrelated to the given
concept. This categorization provides insight into
the degree of concept selectivity exhibited by indi-
vidual attention heads. Table 1 shows examples of
different types of CCS heads and Table 2 shows
the count of high, moderate and low CCS heads in
all CLIP models.

3.3 Evaluating LLM Judgment Alignment
with Human Annotations

In the previous section, we introduced the Concept
Consistency Score (CCS), computed using three
LLM judges as an external evaluator. This raises an
important question: Are LLM evaluations reliable
and aligned with human assessments? To investi-
gate this, we conducted a human evaluation study
comparing LLM-generated judgments with human
annotations. We selected 100 TEXTSPAN descrip-
tions from three different models, along with their
assigned concept labels, and asked one of the au-
thors to manually assess the semantic alignment
between each span and its corresponding label.

Table 4 reports the agreement metrics between
human and LLM evaluations, including Cohen’s
Kappa, Spearman’s ρ, and Kendall’s τ. The Kappa
values exceed 0.8, indicating extremely substantial
agreement, while the correlation scores consistently
surpass 0.7, confirming strong alignment. These re-
sults validate the use of LLMs as reliable evaluators
in concept consistency analysis. The high agree-
ment with human judgments suggests that LLMs
can effectively assess semantic coherence, offering
a scalable alternative to manual annotation. In the
next section, we introduce the tasks and datasets
used in our experiments.

3.4 Sensitivity of CCS to the number of
TEXTSPAN descriptions

Next, we analyze the robustness of CCS computa-
tion to number of TEXTSPAN (K) descriptions. To
directly address this issue, we conduct experiments
evaluating CCS performance across different num-
bers of TextSpan descriptions on CIFAR-10 and
CIFAR-100 datasets. The results are depicted in the
table 3. From the results, it is evident that perfor-
mance remains remarkably stable across all K val-
ues, with variations typically within 1-3% accuracy
points across multiple CLIP models. Importantly,
the relative performance ordering between different
model configurations remains consistent regardless

of K, indicating that our concept alignment assess-
ment captures meaningful patterns. Performance
does not consistently improve with higher K val-
ues, suggesting that five TEXTSPAN descriptions
capture sufficient conceptual diversity without un-
necessary computational overhead. These findings
directly validate that CCS is robust to the number
of TEXTSPAN descriptions and not overly sensitive
to this hyperparameter choice.

3.5 Experimental Setting

3.5.1 Tasks
For our experiments, we use a wide variety of
datasets focusing on the tasks of image classifica-
tion, out-of-domain classification, video retrieval,
and bias measurement. Below, we mention datasets
for each of the tasks.
Image classification: CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009),
Food-101 (Bossard et al., 2014), Country-211
(Radford et al., 2021) and Oxford-pets (Parkhi
et al., 2012).
Out-of-domain classification: Imagenet-A
(Hendrycks et al., 2021b) and Imagenet-R
(Hendrycks et al., 2021a).
Video retrieval: MSRVTT (Xu et al., 2016),
MSVD (Chen and Dolan, 2011), DiDeMo
(Anne Hendricks et al., 2017).
Bias: FairFace (Karkkainen and Joo, 2021),
SocialCounterFactuals (Howard et al., 2024).

3.5.2 Models
For experiments we use the following six founda-
tional image-text models: ViT-B-32, ViT-B-16 and
ViT-L-14 pretrained from OpenAI-400M (Radford
et al., 2021) and LAION2B (Schuhmann et al.,
2022). Next, we discuss in detail the results from
the experiments.

4 Results and Discussion

4.1 Interpretable CLIP Models: The Role of
CCS.

In this section we examine the role of the Con-
cept Consistency Score (CCS) in revealing CLIP’s
decision-making process, focusing on the question:
How does CCS provide deeper insights into the
functional role of individual attention heads in in-
fluencing downstream tasks? To explore this, we
perform a soft-pruning analysis by zeroing out at-
tention weights of heads with extreme CCS val-
ues—specifically, high CCS (CCS = 5) and low
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Model CIFAR-10 CIFAR-100 FOOD-101

Original High CCS Low CCS Original High CCS Low CCS Original High CCS Low CCS

ViT-B-32-OpenAI 75.68 71.31 73.61 65.08 56.07 62.39 84.01 73.42 82.12
ViT-B-32-datacomp 72.07 70.50 70.43 54.95 53.14 53.72 41.66 38.13 40.77

ViT-B-16-OpenAI 78.10 63.93 76.44 68.22 51.70 65.38 88.73 76.35 87.36
ViT-B-16-LAION 82.82 78.91 75.38 76.92 65.55 72.51 86.63 67.54 81.4

ViT-L-14-OpenAI 86.94 86.29 85.97 78.28 75.66 77.55 93.07 90.75 92.79
ViT-L-14-LAION 88.29 86.48 88.19 83.37 80.07 83.25 91.02 86.45 90.35

Table 5: Accuracy comparison of various CLIP models on CIFAR-10, CIFAR-100 and FOOD-101 datasets.
The values represent original accuracy, performance after pruning high-CCS heads, and performance after
pruning low-CCS heads.

(a) CIFAR-10 (b) CIFAR-100 (c) Food-101

Figure 2: Zero-shot performance comparison for CIFAR-10, CIFAR-100, and Food-101 datasets under
different pruning strategies. For random pruning, results are averaged across five runs.

Figure 3: Zero-shot results on Country-211 (location)
dataset.

CCS (CCS ≤ 1). This approach disables selected
heads without modifying the model architecture.
As shown in Table 5, pruning high-CCS heads con-
sistently causes significant drops in zero-shot clas-
sification performance across CIFAR-10, CIFAR-
100 and FOOD-101 while pruning low-CCS heads
has a minimal effect. This performance gap demon-
strates that CCS effectively identifies heads encod-
ing critical, concept-aligned information, making

it a reliable tool for interpreting CLIP’s internal
decision-making mechanisms.

We further observe notable variations in prun-
ing sensitivity across model architectures. ViT-B-
16 models suffer the most from high-CCS head
pruning, implying a reliance on a smaller number
of specialized heads. In contrast, ViT-L-14 mod-
els show greater resilience, suggesting more dis-
tributed representations. Among smaller models,
OpenAI-trained models experience larger perfor-
mance drops than OpenCLIP models when high-
CCS heads are pruned. However, in larger models
like ViT-L-14, OpenCLIP variants show a slightly
higher degradation. These patterns reveal that CCS
not only identifies functionally important heads but
also captures model-specific and training-specific
differences in how conceptual knowledge is orga-
nized and utilized within CLIP architectures.

4.2 Pruning equal number of high CCS, low
CCS and random heads

In the previous section, we showed that attention
heads with high Concept Consistency Scores (CCS)
are crucial to CLIP’s performance. To validate
whether these heads are truly more important than
others, we perform a controlled comparison against
random pruning. Specifically, we randomly prune
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Model

Country-211 Oxford-pets ImageNet-A ImageNet-R

Original
High
CCS

Low
CCS Original

High
CCS

Low
CCS Original

High
CCS

Low
CCS Original

High
CCS

Low
CCS

ViT-B-32-OpenAI 17.16 11.46 16.3 50.07 46.66 48.96 31.49 20.24 28.72 69.09 54.47 64.45
ViT-B-32-datacomp 4.43 4.37 4.37 26.48 25.98 25.33 4.96 4.59 4.65 34.06 31.6 32.47

ViT-B-16-OpenAI 22.81 10.72 21.79 52.72 49.12 51.89 49.85 25.49 47.27 77.37 55.52 74.84
ViT-B-16-LAION 20.45 7.49 16.87 65.79 48.48 49.81 37.97 25.27 27.44 80.56 66.32 71.73

ViT-L-14-OpenAI 31.91 23.21 30.63 61.79 62.04 62.08 70.4 68.15 69.2 87.87 86.56 86.97
ViT-L-14-LAION 26.41 16.38 25.66 54.1 56.12 57.16 53.8 42.44 52.93 87.12 82.22 86.94

Table 6: Accuracy comparison of various CLIP models on Country-211, Oxford-pets, ImageNet-A and
ImageNet-R datasets. The values represent original accuracy, performance after pruning high-CCS heads,
and performance after pruning low-CCS heads.

Model CIFAR-100 FOOD-101 Country-211

Original High CCS Low CCS Original High CCS Low CCS Original High CCS Low CCS

ViT-B-32-OpenAI 65.08 62.39 58.58 84.01 82.12 73.24 17.16 16.3 12.23
ViT-B-32-datacomp 54.95 53.72 53.77 41.66 40.77 39.31 4.43 4.37 4.41

ViT-B-16-OpenAI 68.22 65.38 56.17 88.73 87.36 83.23 22.81 21.79 21.74
ViT-B-16-LAION 76.92 72.51 72.73 86.63 81.4 80.51 20.45 16.87 14.39

ViT-L-14-OpenAI 78.28 77.55 73 93.07 92.79 90.15 31.91 30.63 25.38
ViT-L-14-LAION 83.37 83.25 83.35 91.02 90.35 90.25 26.41 25.66 25.43

Table 7: Accuracy comparison of various CLIP models on CIFAR-100, FOOD-101 and Country-211 datasets.
The values represent original accuracy, performance after pruning equal number of high-CCS and low-CCS
heads.

the same number of attention heads—excluding
high-CCS heads—and repeat this across five seeds,
averaging the results. As illustrated in Figure 2,
pruning high-CCS heads consistently causes a sig-
nificantly larger drop in zero-shot accuracy com-
pared to random pruning across datasets and model
variants. In contrast, random pruning results in only
minor performance degradation, highlighting the
functional importance of high-CCS heads. Interest-
ingly, we also find that larger CLIP models show
a smaller performance gap between high-CCS and
random pruning, suggesting that larger architec-
tures may be more robust due to greater redundancy
or more distributed representations.

Similarly, we conducted experiments where we
pruned an equal number of high and low CCS at-
tention heads across multiple datasets (CIFAR-100,
FOOD-101, Country-211). Results are shown in
the table 7. From the table, we observe that prun-
ing high-CCS heads leads to a substantially larger
performance drop, even when the number of pruned
heads is held constant. This effectively rules out the
explanation that the observed degradation is merely
due to pruning more heads in the high-CCS condi-
tion. Taken together, these findings support CCS as
a reliable and interpretable metric for identifying
concept-relevant heads and offer deeper insights
into how CLIP organizes conceptual information.

Figure 4: Zero-shot results on CIFAR-10 (Objects)
dataset.

4.3 High CCS heads are crucial for
out-of-domain (OOD) detection

While our earlier experiments primarily focused on
in-domain datasets such as CIFAR-10 and CIFAR-
100 to validate the Concept Consistency Score
(CCS), understanding model behavior under out-of-
domain (OOD) conditions is a critical step toward
evaluating models’ robustness. Table 6 demon-
strates the results on ImageNet-A and ImageNet-R
datasets respectively. From the table, we observe
that pruning heads with high CCS scores leads to a
substantial degradation in model performance, un-
derscoring the critical role these heads play in the
model’s decision-making process. Notably, the
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(a) MSRVTT (b) MSVD (c) DIDEMO

Figure 5: Zero-shot performance comparison of unpruned (original) model, pruning high CSS, low CSS and
random heads on video retrieval task.

ViT-B-16-OpenAI model exhibits the most pro-
nounced drop in performance upon pruning high
CCS heads, suggesting that this model relies heav-
ily on a smaller set of concept-specific heads for
robust feature representation consistent with the
observations previously. These results demonstrate
that CCS is a powerful metric for identifying at-
tention heads that encode essential, generalizable
concepts in CLIP models.

4.4 High CCS heads are crucial for
concept-specific tasks.

To investigate the functional role of high Con-
cept Consistency Score (CCS) heads, we conduct
concept-specific pruning experiments. In these ex-
periments, we prune heads with high CCS scores
corresponding to a target concept (e.g., locations)
and evaluate the model’s performance on tasks
aligned with that concept, such as location clas-
sification. In contrast, we also prune heads asso-
ciated with unrelated concepts (e.g., animals) and
assess the resulting impact on task performance.
Our results indicate that pruning high CCS heads
leads to a significant drop in task performance, val-
idating that these heads encode essential concept-
relevant information. For instance, in the ViT-B-
16 model, pruning location heads results in a sub-
stantial decrease in location classification accuracy
from 22.81% to 14.09%, as shown in Figure 3. Con-
versely, pruning heads corresponding to unrelated
concepts has little effect on performance, demon-
strating the concept-specific nature of high CCS
heads, as illustrated in Figure 4.

In more general classification tasks, object-
related heads consistently exhibit a greater impact
on performance than location or color heads. For
example, in the ViT-B-32 model, pruning object-
related heads leads to a more noticeable accu-
racy drop (from 87.6% to 86.02%) compared to
pruning location or color heads, which result in

smaller reductions (87.02% and 87.22%, respec-
tively). This underscores the greater importance
of object-related features in vision tasks. Larger
models, such as ViT-L-14, demonstrate a more ro-
bust performance to pruning, with smaller accuracy
drops when pruning concept-specific heads, sug-
gesting that these models employ more distributed
and redundant representations. For instance, prun-
ing object-related heads in ViT-L-14 reduces accu-
racy only marginally, from 92.1% to 91.25%, with
negligible effects from pruning location and color
heads. These results not only confirm the effective-
ness of CCS as an interpretability tool but also show
that high CCS heads are critical for concept-aligned
tasks and provide significant insights into how con-
cepts are represented within CLIP-like models.

4.5 Impact of CCS pruning on zero-shot video
retrieval.

To further assess the importance of high CCS
heads for downstream tasks, we conducted zero-
shot video retrieval experiments on three popular
datasets (MSRVTT, MSVD, and DIDEMO) under
different pruning strategies. The results in Figure
5 show that pruning high CCS (Concept Consis-
tency Score) heads consistently leads to a substan-
tial drop in performance across all datasets, demon-
strating their critical role in preserving CLIP’s re-
trieval capabilities. For instance, on MSRVTT and
MSVD, high CCS pruning significantly underper-
forms compared to low CCS and random head
pruning, which show much milder performance
degradation. Interestingly, low CCS and random
head pruning maintain performance much closer to
the original unpruned model, indicating that not all
attention heads contribute equally to model compe-
tence. This consistent trend across datasets high-
lights that heads with high CCS scores are essential
for encoding concept-aligned information neces-
sary for accurate zero-shot video retrieval.
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Model

Race (↓) Gender (↓)

Original
High
CCS

Low
CCS Original

High
CCS

Low
CCS

ViT-B-32-OpenAI 61.8 60.5 65.0 41.2 41.1 42.5
ViT-B-32-datacomp 49.2 48.3 49.7 21.7 21 21.6

ViT-B-16-OpenAI 64.6 55.6 66.6 40.2 38.2 40.5
ViT-B-16-LAION 59.2 56.7 56.6 43.6 43.1 43.8

ViT-L-14-OpenAI 59.3 59.8 59.9 34.7 32.2 35.2
ViT-L-14-LAION 61.9 55.6 59.7 43 39.2 43.9

Table 8: Comparison of original and high-CCS prun-
ing on FairFace dataset for race and gender.. We
used MaxSkew (K=900) as the metric.

Model

Race (↓) Gender (↓)

Original
High
CCS

Low
CCS Original

High
CCS

Low
CCS

ViT-B-32-OpenAI 4.1 1.2 2.4 3.7 2.4 1.2
ViT-B-16-OpenAI 0.8 2.0 1.2 2.4 1.2 2.1
ViT-L-14-OpenAI 2.0 0.8 2.0 2.4 2.0 1.6

Table 9: Comparison of original and high-CCS soft-
pruning on SocialCounterFactuals dataset for race
and gender.. We used MaxSkew (K=12 for race, K=4
for gender) as the metric.

4.6 CLIP’s high-CCS heads encode features
that drive social biases.

Previously, we established that high-CCS heads
in CLIP models are crucial for image and video
tasks and pruning them leads to significant drop
in performance. Now, we investigate if these high
CCS heads learn spurious features leading to so-
cial biases. For this, we perform soft pruning ex-
periment on FairFace and SocialCounterFactuals
datasets. Here given neutral text prompts of 104
occupations*, we measure MaxSkew across race
and gender in the datasets. Tables 8 and 9 show
the results on FairFace and SocialCounterFactuals
datasets respectively.

On the FairFace dataset, pruning high-CCS
heads consistently reduces the MaxSkew values
for both race and gender across all models. For
example, in the ViT-B-16-OpenAI model, prun-
ing high-CCS heads drops the race MaxSkew from
64.6 to 55.6 and the gender MaxSkew from 40.2
to 38.2. Similar reductions are observed across
all ViT-B and ViT-L variants. These drops, al-
though modest in some cases, indicate a consistent
trend: high-CCS heads are contributing dispropor-
tionately to skewed model predictions. The effect
is even more evident on the SocialCounterfactuals
dataset, where MaxSkew values drop substantially
upon pruning high-CCS heads. For instance, in

*List of occupations and prompts can be foudn in Ap-
pendix

ViT-B-32-OpenAI, the race MaxSkew falls from
4.1 to 1.2, and gender MaxSkew from 3.7 to 2.4.
Similar reductions occur for other ViT variants,
with some pruned models showing more than 50%
decrease in bias.

These results reveal a fundamental paradox at
the heart of CLIP models: high-CCS heads, while
critical for strong performance in tasks such as clas-
sification, retrieval, and concept alignment, are also
the primary contributors to social bias. Pruning
these heads leads to a notable reduction in model
bias, as shown in our experiments, but also comes
at the cost of reduced performance—a clear trade-
off between fairness and utility. This performance-
bias paradox underscores the complex role of high-
CCS heads: they are both enablers of semantic
understanding and carriers of learned stereotypes.
The CCS metric, in this context, provides a valu-
able lens for navigating this tension. It not only
aids in interpreting model behavior but also offers
a lightweight intervention—soft-pruning—that mit-
igates bias without requiring expensive fine-tuning.

5 Conclusion

In this work, we proposed Concept Consistency
Score (CCS), a novel interpretability metric that
quantifies how consistently individual attention
heads in CLIP-like models align with semanti-
cally meaningful concepts. Through extensive soft-
pruning experiments, we demonstrated that heads
with high CCS are essential for maintaining model
performance, as their removal leads to substantial
performance drops compared to pruning random or
low CCS heads. Our findings further highlight that
high CCS heads are not only critical for standard
vision-language tasks but also play a central role in
out-of-domain detection and concept-specific rea-
soning. Moreover, experiments on video retrieval
tasks reveal that high CCS heads are crucial for
capturing temporal and cross-modal relationships,
underscoring their broad utility in multimodal un-
derstanding. In addition, we demonstrated that
high-CCS heads learn spurious correlations lead-
ing to social biases and pruning them mitigates that
harmful behaviour without the need for further fine-
tuning. Thus, CCS provides an wholistic view of
interpretability proving the paradox performance
vs social biases in CLIP.
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6 Limitations

In this work, we experimented primarily on CLIP
models. Although CCS metric established the fun-
damental paradox of performance vs social biases
we haven’t proved for other vision language mod-
els. Hence, we leave extending for more vision
language models for future work. Another limita-
tion is the use of LLM models for concept labelling
and judging which requires robust manual verifi-
cation to limit any inconsistencies. Hence, scaling
our work to much bigger models with more layers
and heads can be a limitation.
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A Concept Consistency Scores (CCS) for
CLIP models.

We measure CCS@K for all values of K i.e
K ∈ [0, 5]. Table 10 presents the Concept Consis-
tency Score (CCS) distribution across various CLIP
models, categorized by architecture size, patch
size, and pre-training data. Several noteworthy
trends emerge from this analysis. First, models pre-
trained on larger and more diverse datasets (e.g.,
OpenCLIP-LAION2B) tend to exhibit a higher pro-
portion of heads with CCS@5, indicating that a
greater number of transformer heads are aligned
with semantically meaningful concepts. For in-
stance, the ViT-L-14 model trained on LAION2B
shows the highest CCS@5 score of 0.328, suggest-
ing that approximately 32.8% of heads are consis-
tently associated with a single concept, reflecting
strong concept alignment in these models.

Second, smaller models such as ViT-B-32
trained on OpenAI-400M demonstrate a signifi-
cantly lower CCS@5 score (0.167) and a higher
proportion of heads with lower CCS values (e.g.,
CCS@0 = 0.021), indicating weaker alignment of
heads to consistent concepts. This observation im-
plies that larger models with richer pre-training
data are better at learning concept-specific repre-
sentations, a key requirement for robust and inter-
pretable multimodal reasoning.

Interestingly, when comparing models with the
same architecture but different pre-training corpora,
such as ViT-B-32 (OpenAI-400M vs. OpenCLIP-
datacomp), we observe a higher CCS@5 score for
datacomp (0.229) than OpenAI-400M (0.167), sug-
gesting that dataset composition significantly af-
fects the emergence of interpretable heads.

Moreover, progressive increases in CCS from
CCS@0 to CCS@5 show how concept alignment
varies within each model. For instance, while ViT-
L-14 (OpenCLIP-LAION2B) has a low CCS@0
of 0.016, it steadily increases to a high CCS@5
of 0.328, suggesting that although a few heads are
poorly aligned, a substantial fraction are highly
consistent in capturing specific concepts.

In summary, these results demonstrate that the
CCS metric effectively captures differences in con-
ceptual alignment across models of varying size
and pre-training datasets. Models with larger ca-
pacities and richer pre-training datasets tend to ex-
hibit higher concept consistency, offering better
interpretability and potentially stronger generaliza-
tion abilities. This analysis underscores the value of

CCS as a diagnostic tool for evaluating and compar-
ing the internal conceptual representations learned
by CLIP-like models.

B Redundancy and Functional
Duplication Analysis.

Previously in section 4.1, we observed that larger
models degrade less when high-CCS (Concept Con-
tribution Score) attention heads are pruned. This
raises the question of whether larger models exhibit
greater redundancy—i.e., whether multiple heads
are attending to the same concepts, providing ro-
bustness against pruning.

To quantify this, we introduce the Concentrated
Concept Ratio (CCR), a metric that captures the ex-
tent to which concepts are redundantly represented
across multiple high-CCS heads.

CCR =
Cmulti

Hhigh
(1)

where Hhigh be the set of attention heads with
high CCS, Cmulti be the number of unique con-
cepts that are concentrated on more than one head
within Hhigh. A higher CCR implies greater re-
dundancy—i.e., the same concepts are captured by
multiple heads. Conversely, a lower CCR suggests
a more distributed and unique representation of
concepts across heads.

Table 11 presents CCR values across models
of varying sizes. Interestingly, larger models (e.g.,
ViT-L variants) show lower CCR, indicating that
they tend to distribute conceptual information more
evenly across heads. This aligns with the empiri-
cal finding that these models are more resilient to
pruning of high-CCS heads.

To further examine whether redundancy exists
across layers (functional duplication), we perform
a layer-wise CCR analysis restricted to the last four
transformer layers of each model. This focus is mo-
tivated by prior work (Gandelsman et al.), which
shows that only the final four layers significantly
affect model outputs. CCR is computed indepen-
dently for each of the last four layers. However, the
analysis reveals no consistent trend indicating that
deeper layers exhibit greater concept duplication.
This suggests that redundancy across layers is not
a dominant factor and that the observed robustness
in larger models is more likely due to distributed
head-level representations rather than functional
duplication across layers.
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Model Model size Patch size Pre-training data CCS@0 CCS@1 CCS@2 CCS@3 CCS@4 CCS@5

CLIP B 32 OpenAI-400M 0.021 0.062 0.167 0.271 0.312 0.167
CLIP B 32 OpenCLIP-datacomp 0.104 0.062 0.208 0.189 0.208 0.229
CLIP B 16 OpenAI-400M 0.021 0.062 0.125 0.292 0.292 0.208
CLIP B 16 OpenCLIP-LAION2B 0.062 0.062 0.105 0.25 0.25 0.271
CLIP L 14 OpenAI-400M 0.062 0.109 0.172 0.204 0.203 0.25
CLIP L 14 OpenCLIP-LAION2B 0.016 0.031 0.109 0.219 0.297 0.328

Table 10: Concept Consistency Score (CCS) for CLIP models.

Model Concentrated Concept Ratio (CCR)

ViT-B-32-OpenAI 0.250
ViT-B-32-datacomp 0.273
ViT-B-16-OpenAI 0.200
ViT-B-16-LAION 0.231
ViT-L-14-OpenAI 0.125
ViT-B-14-LAION 0.143

Table 11: Concentrated Concept Ratio (CCR) across different CLIP model variants. Lower CCR in larger
models (e.g., ViT-L-14) suggests more distributed concept representations.

ViT-B-32-OpenAI
L8.H11 (Descriptive), L9.H2 (Objects), L9.H3 (Descriptions), L10.H8 (Locations), L11.H1
(Objects), L11.H5 (Colors), L11.H7 (Objects), L11.H9 (Locations)

ViT-B-32-datacamp
L8.H1 (Objects), L8.H3 (Subjects), L8.H10 (Objects), L9.H3 (Subjects), L9.H10 (Objects),
L10.H7 (Locations), L10.H11 (Objects), L11.H3 (Colors), L11.H4 (Colors), L11.H9
(Colors), L11.H10 (Objects)

ViT-B-16-OpenAI
L8.H5 (Visual), L8.H8 (Visual), L10.H5 (Subjects), L10.H7 (Settings), L11.H0 (Creative),
L11.H3 (Settings), L11.H4 (Stylistic), L11.H6 (Locations), L11.H7 (Colors), L11.H11
(Animals)

ViT-B-16-LAION
L8.H6 (Descriptions), L8.H7 (Descriptions), L9.H0 (Themes), L9.H1 (Aesthetics), L9.H3
(Descriptive), L10.H5 (Artwork), L10.H10 (Locations), L11.H0 (Locations), L11.H2 (De-
scriptions), L11.H6 (Locations), L11.H7 (Objects), L11.H8 (Objects), L11.H10 (Colors)

ViT-L-14-OpenAI
L20.H2 (Locations), L20.H12 (Descriptions), L21.H0 (Locations), L21.H1 (Locations),
L21.H8 (Expressions), L21.H13 (Locations), L21.H15 (Locations), L22.H1 (Objects),
L22.H2 (Locations), L22.H5 (Locations), L22.H9 (Subjects), L22.H13 (Animals),
L22.H15 (Locations), L23.H4 (Objects), L23.H10 (Locations), L23.H11 (Colors)

ViT-L-14-LAION
L20.H4 (Subjects), L20.H14 (Descriptions), L21.H0 (Colors), L21.H1 (Locations), L21.H5
(Descriptive), L21.H9 (Colors), L21.H11 (Locations), L22.H0 (Patterns), L22.H1 (Shapes),
L22.H3 (Objects), L22.H5 (Visual), L22.H6 (Animals), L22.H8 (Letters), L22.H10 (Col-
ors), L22.H12 (Landscapes), L22.H13 (Locations), L23.H4 (People), L23.H5 (Nature),
L23.H6 (Locations), L23.H8 (Colors), L23.H9 (Descriptive)

Table 12: Full List of high-CCS heads of all CLIP models.
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ViT-B-32-OpenAI
L8.H1 (Artistic), L8.H2 (Objects), L8.H6 (Photography), L8.H9 (Styles), L8.H10 (Per-
spective), L9.H1 (Subjects), L9.H11 (Settings), L10.H0 (Objects), L10.H3 (Locations),
L10.H7 (Locations), L11.H6 (Descriptions), L11.H10 (Locations), L11.H11 (Locations)

ViT-B-32-datacamp
L8.H0 (Environments), L8.H7 (Creativity), L9.H6 (Colors), L10.H5 (Art), L10.H6 (De-
scriptions), L10.H8 (Locations), L10.H9 (Descriptions), L11.H2 (Subjects), L11.H8 (Qual-
ities)

ViT-B-16-OpenAI
L8.H1 (Artistic), L8.H2 (Photography), L8.H4 (Styles), L8.H6 (Artwork), L8.H7 (Pho-
tography), L8.H9 (Light), L9.H4 (Photography), L9.H6 (Artforms), L9.H10 (Elements),
L10.H3 (Locations), L10.H8 (Colors), L10.H9 (Artwork), L11.H5 (Objects), L11.H8
(Effects)

ViT-B-16-LAION
L8.H0 (Locations), L8.H8 (Text), L8.H9 (Photography), L9.H7 (Artistic), L9.H8 (Settings),
L9.H11 (Descriptions), L10.H2 (Nature), L10.H3 (Location), L10.H7 (Expressions),
L11.H3 (Settings), L11.H9 (Numbers), L11.H11 (Letters)

ViT-L-14-OpenAI
L20.H0 (Locations), L20.H3 (Locations), L20.H7 (Communication), L20.H8 (Vehicles),
L20.H10 (Locations), L21.H4 (Photography), L21.H6 (People), L21.H10 (Locations),
L22.H3 (Countries), L22.H12 (Professions), L23.H3 (Patterns), L23.H9 (Creativity),
L23.H15 (Visual)

ViT-L-14-LAION
L20.H0 (Locations), L20.H1 (Locations), L20.H2 (Locations), L20.H8 (Locations),
L20.H9 (Locations), L20.H11 (Aesthetics), L20.H15 (Descriptions), L21.H12 (Photogra-
phy), L21.H14 (Locations), L22.H9 (Activities), L22.H14 (Colors), L22.H15 (Emotions),
L23.H0 (Materials), L23.H3 (Settings)

Table 13: Full List of medium-CCS heads of all CLIP models.

ViT-B-32-OpenAI
L8.H5 (Patterns), L9.H9 (Ambiance), L11.H0 (Diverse), L11.H8 (Word)

ViT-B-32-datacamp
L8.H2 (Images), L8.H4 (Varied), L8.H9 (Varied), L9.H4 (Variety), L9.H5 (Professions),
L11.H0 (Diverse), L11.H1 (Varied), L11.H11 (Settings)

ViT-B-16-OpenAI
L8.H0 (Diversity), L9.H3 (Locations), L10.H6 (Body parts), L11.H2 (Perspective)

ViT-B-16-LAION
L8.H4 (Variety), L8.H5 (Varied), L8.H10 (Diverse), L9.H2 (Textures), L10.H6 (Photogra-
phy), L10.H8 (Traits)

ViT-L-14-OpenAI
L20.H1 (Diverse), L20.H4 (Diversity), L20.H6 (Items), L20.H15 (Diverse), L21.H2 (Di-
versity), L21.H3 (Diverse), L22.H0 (Occupations), L22.H4 (Settings), L22.H6 (Weather),
L22.H14 (Items), L23.H5 (Diversity)

ViT-L-14-LAION
L20.H13 (Photography), L21.H6 (Professions), L23.H1 (Diverse)

Table 14: Full List of low-CCS heads of all CLIP models.
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Occupations

biologist, composer, economist, mathematician, model, poet, reporter, zoologist, artist,
coach, athlete, audiologist, judge, musician, therapist, banker, ceo, consultant, prisoner,
assistant, boxer, commander, librarian, nutritionist, realtor, supervisor, architect, priest,
guard, magician, producer, teacher, lawyer, paramedic, researcher, physicist, pediatrician,
surveyor, laborer, statistician, dietitian, sailor, tailor, attorney, army, manager, baker, re-
cruiter, clerk, entrepreneur, sheriff, policeman, businessperson, chief, scientist, carpenter,
florist, optician, salesperson, umpire, painter, guitarist, broker, pensioner, soldier, astro-
naut, dj, driver, engineer, cleaner, cook, housekeeper, swimmer, janitor, pilot, mover,
handyman, firefighter, accountant, physician, farmer, bricklayer, photographer, surgeon,
dentist, pianist, hairdresser, receptionist, waiter, butcher, videographer, cashier, technician,
chemist, blacksmith, dancer, doctor, nurse, mechanic, chef, plumber, bartender, pharmacist,
electrician

Table 15: Full list of occupations used for evaluating biases on FairFace and SocialCounterFactuals datasets.

Prompt Example
A <occupation> A biologist

A photo of <occupation> A photo of biologist
A picture of <occupation> A picture of biologist
An image of <occupation> An image of biologist

Table 16: Prompts used for measuring biases on FairFace and SocialCounterFactuals datasets.
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