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Abstract

Contrastive Language-Image Pre-training
(CLIP) has recently demonstrated remarkable
success in aligning vision and language.
Aligning time series with text leverages the
rich semantic cues of language to enhance
interpretability and generalization, addressing
a largely underexplored area of research.
Although applying the CLIP training paradigm
to time-series and language pairs is promising,
it may result in label collapse due to the sparse
semantic annotations and the absence of visual
cues in time-series data. To address this, we
introduce Time Series CLIP (TS-CLIP), a
novel approach that tackles label collapse
using a synonym bank mechanism. Synonym
bank exploits word analogy phenomena to
generate potential synonym embeddings as
alignment targets. Specifically, the synonym
bank facilitates aligning time series with a
word distribution instead of a precise textual
description. We conducted extensive zero-shot
and few-shot experiments on 128 sub-datasets
from the UCR archive. The results show that
TS-CLIP achieves state-of-the-art (SOTA)
performance in zero-shot settings on 51
datasets. Comprehensive ablation studies and
visualization analyzes reveal that TS-CLIP
effectively aligns time series with natural
language. To the best of our knowledge, this is
the first foundational model to achieve general
time series and natural language alignment.
TS-CLIP introduces a new paradigm for the
semantic understanding of time series and
opens the possibility of integrating the time
series modality into multimodal large models.

1 Introduction

Time series tasks constitute a highly research-
intensive field(Sun et al., 2020) with applications
across industries(Xu, 2021), healthcare(Sternickel,
2002), meteorology(Bi et al., 2023), and more. As
a unique modality, models for time series tasks
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Figure 1: The zero-shot TS-CLIP and its linear probe
variants outperform other state-of-the-art models. For a
fair comparison, we used the pre-trained TimeMoE with
Chronos for the linear probe, while the other baselines
utilized fully supervised training.

have evolved from specialized statistical models to
general-purpose architectures like RNNs, CNNg,
and Transformers. Recently, cross-modal models
have excelled in the domains of NLP, image, au-
dio, and video(Radford et al., 2021; Guzhov et al.,
2022; Xu et al., 2021). Combining quantitative
time-series data with qualitative text (e.g., events
and semantics) reveals causal relationships and con-
textual insights, enabling deeper analysis of com-
plex systems. However, existing methods have seen
limited progress due to the absence of foundational
models for time-series understanding (Sun et al.,
2023), hindering tasks like time series captioning
and question answering. This gap motivates our
research.

CLIP aligns text and images in the feature
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space through large-scale contrastive learning with
language-image pairs, demonstrating robust zero-
shot capabilities. As a foundational model, CLIP
has shown considerable value in downstream tasks
such as information retrieval(Luo et al., 2021),
data generation(Sanghi et al., 2022; Mirowski
et al., 2022; Kwon and Ye, 2022), and 3D mod-
eling(Huang et al., 2023; Wang et al., 2022). Addi-
tionally, many studies have emulated CLIP to align
supplementary modal data(Guzhov et al., 2022;
Zhang et al., 2022). However, despite CLIP’s sub-
stantial progress in various vision-language and
computer vision tasks, it has not yet achieved simi-
lar success in time series tasks. Motivated by this,
our work seeks to address the issue by investigating
the following question: Is the CLIP architecture
effective for the time series modality?

Time series data, unlike image or audio data,
typically lack visual cues and are challenging to
annotate with natural language semantics due to
their complex features(Sun et al., 2023). Only
a small subset of time series data, such as ECG
data, includes dense semantic annotations with text
descriptions for each segment. Training a CLIP
model for time series requires a large number of
TS-Text matching pairs, which is challenging to
obtain. Currently, several studies aim to achieve
alignment between time series data and text or other
modalities. Some approaches(Pan et al., 2024; Sun
et al., 2023)focus on aligning time series represen-
tations with textual prototypes to enable pre-trained
language models to perform time series tasks. How-
ever, these methods do not align the original se-
mantics of time series segments with natural lan-
guage representations, limiting their utility for se-
mantic understanding tasks involving time series
data. Other approaches(Jin et al., 2023)consider
the original semantics of time series data and use
general descriptions and terms representing time
series trends to reprogram the data. While these
methods essentially perform time series forecast-
ing tasks, forcing language models to handle time
series prediction may introduce excessive parame-
ters and computational overhead, offering limited
contributions to time series modeling. In contrast,
understanding the semantic information of time
series to extend the modality boundaries of large
language models (LLMs) is more meaningful.

We emphasize the importance of paired data in
the training process of CLIP. CLIP utilizes 400
million (image, text) pairs to cover as broad a spec-
trum of visual concepts as possible. Achieving a

similar scale for time series datasets is challeng-
ing, as a substantial portion of time series data
is described in generalized terms. Moreover, un-
like images, manual semantic annotation of time
series data is inherently difficult. When multiple
subclasses are trained using the same major class
textual descriptions, CLIP may learn an overly gen-
eral matching relationship. This excessive gen-
eralization can lead to label collapse(Jing et al.,
2021), where the model loses sensitivity to the
specific characteristics of subclasses, thereby im-
pairing its fine-grained differentiation capabilities.
We examine the possibility that, inspired by the
evolution from Autoencoder (AE) to Variational
Autoencoder (VAE)(Kingma, 2013), time series
data might be aligned to a semantic distribution
rather than a specific semantic description vector.
Thus, we explore the possibility of expanding dis-
crete word vectors into continuous space via word
offset. Continuous-space language models exhibit
the word analogy phenomenon(Mikolov, 2013),
where similarities between word representations
extend beyond simple syntactic rules, allowing for
algebraic operations on word vectors using word
offset techniques(Mikolov et al., 2013). To explore
whether CLIP’s text encoder has the capability for
word analogy, we conducted a toy experiment in
Appendix. CLIP demonstrated effective word anal-
ogy capabilities on the E-KAR benchmark(Chen
et al., 2022).

Consequently, we reassessed the primary chal-
lenges of aligning time series with natural language
semantics. Time series data typically lack text de-
scriptions, making it difficult to manually annotate
with natural language. Based on the observations
above, we propose TS-CLIP to address the poten-
tial label collapse issue that occurs when aligning
time series with natural language. By leveraging
the word analogy capabilities of the text encoder,
we connected the synonym bank after the text en-
coder. The synonym bank generates multiple near-
synonymous embedding vectors from macro-level
category description text embeddings, providing
reliable contrastive supervision signals for the time
encoder. Pre-trained TS-CLIP can achieve seman-
tic alignment between time series and natural lan-
guage text in a zero-shot manner. To the best of
our knowledge, TS-CLIP is the first general model
for aligning time series with natural language. Re-
sults on 128 sub-datasets from the UCR archive
demonstrate that TS-CLIP achieves state-of-the-art
performance in zero-shot scenarios on 51 datasets.
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The code will be publicly available at: https:
//github.com/chenziwenhaoshuai/TS-CLIP
We highlight our contributions as follows:

* To the best of our knowledge, we present the
first general method for aligning time series
with text. Our proposed synonym bank ad-
dresses the difficulties of time series data lack-
ing visual cues and the annotation bottleneck.

* We introduce TS-CLIP, which achieves state-
of-the-art performance in zero-shot scenarios
on 51 of the 128 sub-datasets in the UCR
archive.

* TS-CLIP brings the time series modality to
multimodal large language models (MLLMs),
enabling the processing and understanding of
time series data (e.g., sensor data, financial
time series), thus addressing the research gap
in aligning time series with natural language
modalities.

2 Related Work

The field of Time Series (TS) and Natural Lan-
guage Processing (NLP) modeling is still in its
early stages, with limited research mostly con-
centrated on time series forecasting. Some ap-
proaches(Zhou et al., 2023; Chang et al., 2023; Gao
et al., 2024) attempt to model time series using
language model frameworks by either designing
and training a large language model (LLM) from
scratch or fine-tuning an existing one via transfer
learning to adapt it to time series tasks such as
prediction, imputation, and classification. Bene-
fiting from the well-designed structure of LLMs
and the initialization weights derived from large-
scale pre-training, these methods often perform
well across multiple datasets. However, these ap-
proaches frequently lose the capability to process
natural language. Other methods(Sun et al., 2023;
Jin et al., 2023) retain the language processing abil-
ities of LLMs by adding additional encoders to re-
program time series data and natural language into
the same latent space. Also, some methods(Xue
and Salim, 2023) treat time series values as words,
using prompt learning to adapt LLMs to time series.
Further, certain approaches(Li et al., 2024; Chung
et al., 2023; Liu et al., 2023a) leverage the dense
natural language annotations in the medical field
to achieve joint modeling of the true semantics of
time series and natural language. Despite these ad-
vances, a critical issue remains: these methods rely

excessively on using language models directly for
time series prediction, without fully capitalizing on
the strengths of LLMs in semantic understanding
and high-level abstract modeling. Hence, aligning
time series data with natural language semantically,
and exploiting LLMs’ capabilities in semantic com-
prehension and abstract modeling, can unveil in-
trinsic patterns of time series data, offering a new
perspective and approach for cross-modal data fu-
sion and complex task reasoning.

3 Methods

In this section, we aim to address the potential is-
sue of label collapse that arises when aligning time
series with natural language due to a lack of dense
textual descriptions. As illustrated in Figure 2, we
adopt the structurally validated design paradigm
of CLIP and introduce a synonym bank. This in-
novation generates potential synonym embedding
vectors to substitute for dense textual descriptions.
We will detail the structural design and training
specifics of TS-CLIP in the subsequent sections.

3.1 Encoder

TS Encoder: Given a series of observations across
T time steps from multiple domains X;.7 =
(w1,22,...,27) € RTbelonging to category k, our
goal is to obtain an embedding vector Z € R*¢
of dimension C. We adopt the structural design of
TimeMoE(Shi et al., 2024) and apply point-wise
tokenization to each input sequence Xi.7 . Subse-
quently, we use SwiGLU(Shazeer, 2020)to embed
each time series point:

hY = SwiGLU(z;) (1)

To enhance training stability and support longer se-
quence lengths, we employ rotary position encod-
ing(Zhang and Sennrich, 2019)and RMSNorm(Su
et al., 2024). We replace the feedforward network
(FEN) with a Mixture-of-Experts (MoE) layer,
where each MoE layer consists of multiple expert
networks, each following a standard FFN architec-
ture. As a result, individual time series points can
be routed to one or multiple experts based on the
top-k selection. The MoE layer is formulated as
follows:

M=

Mixture( ut =

g Sity
it =
0,

(gl L FFN; (u! ) , )
i=1

si,6 € Topk({s; | 1 < j < N}, K),

otherwise

3
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Figure 2: Summary of TS-CLIP: (a) We introduce a synonym bank to enable time series alignment with word
distributions, addressing the potential label collapse problem caused by the lack of visual cues. (b) and (c) illustrate

how TS-CLIP diverges from CLIP in word embedding.

si,t = Softmax; (W}ut), “4)

where u! represents the input tensor to the MoE
layer, and W} € R1*“ denotes the trainable pa-
rameters. [V and K correspond to the total number
of experts and the number of activated experts in
each MoE layer, respectively. Finally, we apply
averaging to obtain the final embedding vector:

Z, = Angool(ull, ul2, e ,Ui) (%)

Text Encoder: To ensure effective initializa-
tion, we directly incorporate the pre-trained CLIP
text encoder, keeping its parameters frozen during
the entire training process. This strategy enables
the TS-CLIP model’s text encoder to leverage the
substantial prior knowledge encapsulated within
CLIP’s corpus, thereby minimizing the necessity
for extensive textual data during training. More-
over, freezing the text encoder parameters signifi-
cantly reduces computational expenses.

During inference, we categorize time series de-
scriptions into two types: fine-grained and coarse
category descriptions. Fine-grained descriptions in-
clude detailed category names, allowing the use of
standard prompt templates to construct supervision
signals directly. For coarse category descriptions,
we first generate a text embedding from the de-
scription text Z,, € R'C. Using the category
index ¢ as a reference, we then retrieve the cor-
responding offset vector from the synonym bank
S; = Synonym([i] € R'*®. The final embedding
vector is obtained by summing these components,
which serves as the supervision signal:

7. = 2+ Si ©6)

The following sections elaborate on the generation
of the synonym bank.

3.2 Synonym Bank

The word analogy phenomenon captures a struc-
tured relationship between words in natural lan-
guage processing, where word vectors can per-
form analogy operations. The most famous exam-
ple is in continuous-space language model embed-
dings, where this relationship can be approximated
as: Vec(king) — vec(man) + vec(woman) ~ Vec(queen)'
Building on this concept, we hypothesize that the
original word vector in continuous space can obtain
its synonym vector through a small offset. Hence,
we use vector operations to estimate the synonym
distribution for any coarse category description and
sample potential synonym embeddings accordingly.
We assume that word vectors Z,, € R in an
embedding space of dimension C follow a multi-
variate Gaussian distribution N (u, ), where the
mean vector u represents the central vector of the
synonyms for a given word w, and the covariance
matrix o defines the relationships between different
dimensions in the embedding space. For a given
word w, the distribution of its synonyms is formu-
lated as:

p) = e (5w S 2 )
@)
where Z, € R® denotes the embedding vector of
a synonym, i € R represents the mean vector
derived from w, and X € RE*€ is the covariance
matrix that defines the shape of the synonym dis-
tribution. We assume that the embedding vector of
the target word w directly serves as the mean p:

p= Zy ®)

To simplify computations, we assume that the co-
variance matrix is diagonal and determined by a
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scalar o2

Y = o2, 9

where I € RE*C is the identity matrix, and o2
represents the variance scalar of the distribution.
Consequently, the probability density function of
the synonym distribution can be simplified as:

1 Zs— Z,|I?
p(Z) = WCXP (—H20_2H> (10)

To better utilize the geometric properties of the
pre-trained text encoder and generate semantically
meaningful synonyms, we introduce an anisotropic
perturbation term that enhances perturbations along
the Z,, direction:

2:02(I+a-zwzj), (11)
where « is a weighting factor that adjusts the
anisotropic perturbation strength. By sampling L
times from the above distribution, we construct the
synonym bank Synonym € RE*C. We provide
pseudocode for implementing the synonym bank
generation process in the Appendix.

3.3 Dataset

We collected a comprehensive set of time series
classification datasets to encompass a variety of
time series domains. As illustrated in Table 1, our
training data spans several fields, including med-
ical, energy, biological, spectral, gesture, shape,
environmental, simulation, and acoustics. For ini-
tialization, we employ the TimeMoE-base model,
pre-trained on Time-300B, as our time series en-
coder, and further train it on our dataset. To validate
our model, we use the validation sets from 128 sub-
datasets within the UCR Time Series Archive(Dau
et al., 2019). To ensure fair comparisons and pre-
vent data leakage, we implement a data-cleaning
process to eliminate any potential validation sam-
ples from the training set. The complete training
data will be publicly released.

Prompt Engineering: Constructing prompts
from raw data is a critical step in initializing the
training pipeline. Once the initial training data
is collected, we classify the sub-datasets into two
categories:

* Densely annotated datasets — Contain detailed
README and rich subclass label texts.

* Coarsely annotated datasets — Include only
README without detailed subclass labels.

The first category comprises 44.6% of the to-
tal. For these datasets, we adopt a fixed prompt
template: "Time series of {sub_class},
{class_summary}"”, where {sub_class} denotes
the specific subclass label, and {class_summary}
provides a concise dataset description. We use
LLM to generate summaries through the README
of the dataset. For instance, in the AllGes-
tureWiimoteX dataset, we construct the prompt:
"Time series of shake, a subclass of
acceleration time series from Wiimote
gestures across X axes”. This prompt is
then fed into the text encoder to obtain the cor-
responding embedding vector. The second cat-
egory accounts for 55.4% of the total. Since
these datasets lack subclass labels and only pro-
vide {class_summary}, we retrieve an offset vec-
tor from a pre-generated synonym bank using the
assigned class ID. This offset is then added to the
text embedding of {class_summary}. To improve
efficiency, we precompute all text embeddings prior
to training. As the text encoder remains frozen, this
approach minimizes computational overhead dur-
ing training.

3.4 Loss Function

Following the contrastive learning framework, we
treat the time series data and its corresponding tex-
tual description as positive sample pairs, while all
other pairs are designated as negative samples. TS-
CLIP is trained by maximizing the contrastive loss
for negative pairs and minimizing it for positive
pairs. We compute the similarity between two rep-
resentations using cosine similarity:

ts' -t
sim(ts,t) = i

= 12
I (12)

Here, ts denotes the embedding vector of the time
series, t is the embedding vector of the text, The
terms ||ts|| and ||¢|| represent the L2 norms of ts
and ¢, respectively. Next, we calculate the con-
trastive loss for the ¢-th TS-to-Text pair as follows:

exp(sim(t;, ts;)/T)

13
Y exp(sim(ti,tsn/f)>’ (4

Lgts—)t) _ log <

where the initial value of 7 is set to 0.07. Similarly,
the contrastive loss for Text-to-TS is formulated as:

exp (sim(ts;, t;)/T) 14
ZkNlexp(Sim(tsi,tj)/r)> (4

LEt—)ts) _ —log <
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Medical Energy  Biological  Spectral Gesture Shape Environmental ~Simulation Acoustics Total
#Seqs. 18,273 27,808 3,663 15,342 32,889 29,062 35,870 16,774 11,477 191,158
#0Obs. 10,912,820 8,019,534 4,698,176 13,425,183 18,637,069 10,644,033 2,579,126 4,532,622 6,855,617 80,304,180
% 9.54% 14.54% 1.91% 8.02% 17.20% 15.20% 18.76% 8.77% 6.00% 100.00%

Table 1: Key statistics of the training dataset from various domains.

Finally, the overall training loss is computed as the
average of all positive TS-Text pairs within each
batch:

o 1§:L§ts—>t)+LZ(t—>ts)
N4 2

4 Experiments

15)

4.1 Implementation Details

We utilize TimeMoE-base(Shi et al., 2024) as
the time encoder. To leverage prior knowledge,
we initialize the pre-trained weights of TimeMoE
from Time-300B. Following this, we continued
pre-train on our dataset and use the validation sets
from the 128 sub-datasets in the UCR Time Se-
ries Archive(Dau et al., 2019) for evaluation. A
linear projection layer is added to align the output
dimensions, with the output dimension set to 512.
The temperature parameter 7 is initialized to 0.07.
The time encoder is optimized using the AdamW
optimizer, with an initial learning rate of le-5 and
a weight decay of 0.01. During the pre-training
phase, we train for 200 epochs with a batch size of
192. For the linear probe, we use a batch size of 16
and train for 100 epochs with early stopping and a
patience of 10. All experiments are conducted on
an NVIDIA Tesla A100 GPU.

4.2 Experimental Results

To evaluate the performance of TS-CLIP, we com-
pare our method against several established base-
lines: TimeMoE(Shi et al., 2024), Chronos(Ansari
et al., 2024), Autoformer(Wu et al., 2021), Cross-
former(Zhang and Yan, 2023), Dlinear(Zeng
et al.,, 2023), FEDFormer(Zhou et al., 2022),
Informer(Zhou et al., 2021), iTransformer(Liu
et al., 2023b), patchTST(Nie et al.,, 2022),
Pyraformer(Liu et al., 2022), Reformer(Kitaev
et al., 2020), and TimesNet(Wu et al., 2022). The
training protocols for these baselines adhere to the
default parameter settings in the Time Series Li-
brary!.

Zero-shot learning refers to a pretrained
model’s capability to generalize to unseen data dur-
ing classification. Within the UCR archive, we

"https://github.com/thuml/Time-Series-Library

generated candidate prompts for each of the 128
sub-datasets using predefined templates. We then
compared our model with a fully supervised base-
line on each sub-dataset. As illustrated in Table
2, TS-CLIP outperformed the baseline in 51 out
of the 128 datasets (see the detailed table in the
Appendix). This finding underscores TS-CLIP’s
robust zero-shot learning capabilities and demon-
strates the effectiveness of incorporating a synonym
Bank to prevent label collapse when aligning time
series with natural language modalities. In Fig-
ure 3, we analyze the datasets where TS-CLIP
performed well and those where it did not per-
form well. We observed that TS-CLIP typically
performs better on datasets with larger volumes.
For instance, TS-CLIP excels in datasets related
to Energy (FreezerSmallTrain, PLAID, LargeK-
itchenAppliances). Conversely, its performance is
subpar in domains like Biological (InsectEPGReg-
ularTrain) and Simulation (TwoPatterns). Addition-
ally, TS-CLIP shows a preference for datasets with
strong regularities, such as Medical (PigArtPres-
sure, PigCVP) and Shape (OSULeaf). However, its
performance is limited on datasets with high com-
plexity, irregular patterns, and significant noise,
such as those in Environmental (Crop, Chinatown,
MelbournePedestrian) and Gesture (CricketZ, Inli-
neSkate). These results suggest that TS-CLIP is ef-
fective at leveraging natural language descriptions
to align with data characterized by clear structures
and well-defined class boundaries. However, its
mapping capability is constrained by noisy datasets
with high variability.

Few-shot learning provides a more direct met-
ric for assessing TS-CLIP’s adaptability to domain-
specific data. Unlike zero-shot learning, few-shot
learning allows the model to observe a limited num-
ber of samples to adapt to a new domain. For
time series data, a robust few-shot learning capa-
bility can counterbalance TS-CLIP’s deficiencies
in fine-grained class differentiation. In Figure 1,
we compare the performance of TS-CLIP using lin-
ear probing against baseline methods. Since both
TimeMOoE and Chronos are pretrained models, we
evaluated them using linear probing, while fully
supervised methods were applied to the other, non-
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Dataset TS-CLIP  Autoformer Crossformer DLinear FEDFormer Informer iTransformer patchTST Pyraformer Reformer TimesNet
ACSF1 77.00 38.00 63.00 42.00 54.00 57.00 42.00 60.00 46.00 55.00 63.00
Adiac 78.01 42.20 54.73 70.59 70.08 47.83 29.92 64.71 28.13 38.62 43.22
AllGestureWiimoteX  58.71 21.57 59.57 22.00 34.29 49.29 46.29 53.14 45.43 45.29 49.71
AllGestureWiimoteY  64.57 25.71 62.43 35.00 38.71 50.00 41.71 61.14 49.71 5271 55.14
AllGestureWiimoteZ 54.14 25.29 49.14 22.57 33.57 40.29 35.29 42.00 28.43 39.00 39.57
Wafer 99.94 99.32 99.40 93.79 99.68 99.63 99.56 99.51 99.51 99.35 99.58
Wine 74.07 44.44 44.44 5741 51.85 55.56 50.00 53.70 51.92 57.41 55.56
WordSynonyms 62.38 26.96 61.44 40.75 42.79 54.39 52.66 57.05 44.67 54.86 57.52
WormsTwoClass 54.55 48.05 61.04 55.84 54.55 50.65 54.55 50.65 64.47 55.84 58.44
Worms 66.23 44.16 54.55 38.96 53.25 37.66 48.05 50.65 48.68 38.96 53.25
Yoga 85.77 61.37 78.20 64.63 64.50 74.67 69.30 76.67 64.07 72.71 77.27
AVG. 69.65 54.74 71.69 64.02 60.72 70.13 67.31 72.08 66.52 68.80 69.90
15 Count 51 3 23 5 5 12 13 19 12 8 16

Table 2: Performance comparison of Zero-shot TS-CLIP and supervised baselines on UCR datasets. TS-CLIP
achieves the best results in 51 out of 128 datasets. All values are accuracy percentages (%), with the highest accuracy

in bold and the second highest number is underlined.
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FreezerSmallTrain
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LargeKitchenAppliances
SmallKitchenAppliances
OSULeaf
ACSF1
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Figure 3: Comparison of zero shot with previous SOTAs
on different datasets. TS-CLIP is more biased towards
data with strong regularity and distinct category bound-
aries, and performs weakly on complex datasets.

pretrained models. Our results indicate that the
zero-shot performance of TS-CLIP is on par with
its 10-shot performance. This consistency may be
attributed to the detailed natural language descrip-
tions used to generate zero-shot classifiers, which
directly express visual cues, whereas supervised
training infers these cues from training samples.
Upon using 20 samples, TS-CLIP with linear prob-
ing surpassed all baselines. Notably, although TS-
CLIP and TimeMoE share the same architecture
and initial weights, the incorporation of natural lan-
guage contrastive learning substantially enhanced
the model’s few-shot capabilities. We hypothesize
that a single time series could encompass multi-
ple concepts, and the inclusion of natural language
facilitated the model’s understanding of these com-

plex concepts.

5 Ablation Studies

To validate the efficacy of our TS-CLIP design, we
conducted a comprehensive ablation study on criti-
cal hyperparameters and architectural components
across all experimental benchmarks.

Ablation 15 Avg. Acc
TS-CLIP 51 69.65
TS-CLIP (Rewrite) 49  66.84

Table 3: Ablation study of prompt rewrite.

Prompt Rewrite. Label collapse is often ob-
served when a model performs well with a fixed
prompt but suffers substantial performance loss
upon slight modifications (e.g., altering sentence
structure or using synonyms). Therefore, we
employed an LLM to rewrite the pre-generated
prompts, preserving the original sentence mean-
ings. Table 3 shows our zero-shot test results on
TS-CLIP after these rewrites. The results indicate
that TS-CLIP did not experience significant perfor-
mance degradation, demonstrating that TS-CLIP,
trained with a synonym bank, possesses robust gen-
eralization ability to handle diverse language de-
scriptions.

Ablation 15t Avg. Acc
ID Text Bank 48  69.08%
Synonym Bank 51  69.65%

Table 4: Ablation study of synonym bank generation.

Ablation of synonym bank generation. To val-
idate the sampling process in the Synonym bank,
we employed a prompt template using the subclass
IDs’ text (e.g., “Type {Sub-CLASS-ID} of time

4652



series, {CLASS-Summary}”) to retrain and test
TS-CLIP, referred to as the ID Text bank. Table
4 presents the results comparing both methods,
demonstrating that the Synonym bank achieved
higher accuracy. We posit that the natural lan-
guage embeddings of subclass IDs (such as “17,
“2”) typically display specific semantic distribu-
tions within the language model. In models like
BERT or word2vec, these numerical embeddings
may represent certain semantic features (such as
order or category) rather than being random. When
these embeddings are combined with the original
class embeddings, the resulting synonym distribu-
tion might skew towards a particular geometric
structure instead of a genuinely diverse distribu-
tion. This fixed pattern could restrict the alignment
capability between time series features and these
distributions. Conversely, the sampling method of
the Synonym bank uniformly perturbs text embed-
dings in multi-dimensional space, thereby more
effectively generating a uniform "synonym distri-
bution," which facilitates better alignment of time
series with natural language.

- 5651
- s7.86
©._ s7.49
® . 57.84

o. 58.04

Figure 4: Grid search accuracy percentages (%) for the
parameters ¢ and « in the synonym bank sampling
process.

Ablation of 2 and . In the sampling process
of the Synonym bank, the parameter o2 controls
the isotropic perturbation. If o2 is too small, it gen-
erates indistinguishable synonym vectors, whereas
if o2 is too large, it introduces semantically unre-
lated word vectors that are closely positioned in the
latent space. To address this issue, we introduced
the anisotropic term hyperparameter o , which adds
controllable perturbations in the semantic direction,
thereby generating more reasonable synonyms. Fig-

ure 4 illustrates the grid search results for o2 and
«. As shown, when o2 is set to 0.6 and « is set to
1.6, TS-CLIP achieves its highest performance.

Prompt Zero-Shot
"a time series of a [Sub-CLASS]." 68.41
"Time series representation of a [Sub-CLASS]." 67.63
"A dynamic time series of [Sub-CLASS]." 68.68
"Time series of [Sub-CLASS], [CLASS-Summary]." 69.65

Table 5: Ablation study of prompt design.

Ablation of Prompt Design. Table 5 presents
our experiments with four different prompt designs.
We found that employing solely subclass descrip-
tions as prompts did not fully exploit the capabil-
ities of TS-CLIP. However, when we included a
summary of the dataset, TS-CLIP achieved optimal
performance. This indicates that certain datasets
may contain similar subclass descriptors belonging
to different major categories. For example, "mo-
bile phone" can appear in both "Electricity" and
"Shape" datasets. Incorporating the dataset sum-
mary allows the model to better contextualize the
current time series, leading to more accurate classi-
fication of sample types.

Downstream Tasks. TS-CLIP is pre-trained
on the time-series-to-text retrieval task. Verifying
whether TS-CLIP can effectively transfer to down-
stream tasks serves as an important sanity check
and proof of concept. Therefore, we report the
experimental results of TS-CLIP on downstream
tasks related to time-series understanding in the
Appendix, providing insights and inspiration for
future research.

6 Conclusions

In this work, we propose TS-CLIP, which, to the
best of our knowledge, is the first foundational
model for aligning general time series with natu-
ral language. By introducing the synonym bank
mechanism, TS-CLIP addresses the issue of la-
bel collapse caused by the lack of dense textual
descriptions in time series data. Experimental re-
sults show that TS-CLIP exhibits strong zero-shot
learning capabilities and few-shot generalization.
However, we wish to emphasize that TS-CLIP cur-
rently achieves coarse-grained alignment and may
have limitations when handling samples requiring
precise textual descriptions. Despite this, TS-CLIP
provides a new paradigm for the semantic under-
standing of time series data and cross-modal learn-
ing, laying the groundwork for multimodal large
language models to process time series modalities.
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Limitations

TS-CLIP lays the foundation for aligning time se-
ries with natural language. However, efficiently
integrating alignment models into large language
models (LLMs) to support complex multimodal
reasoning requires further research. A foreseeable
limitation is that, in real-world scenarios, time se-
ries from different sources may exhibit highly sim-
ilar waveform characteristics; for instance, electri-
cal current and voltage signals of appliances often
appear as sine waves. This phenomenon might lead
to semantic conflicts during the alignment of time
series with natural language, where time series with
different semantics could be erroneously mapped to
similar or identical linguistic expressions, impair-
ing semantic understanding and inference accuracy
in downstream tasks. To address this issue, employ-
ing methods such as prompt learning or one-shot
learning when integrating with LLMs may be nec-
essary. These methods involve initially teaching
the model based on exemplary samples. However,
this solution heavily relies on the availability of
high-quality samples and increases the complexity
of both model design and usage, thereby limiting
its generalizability in certain scenarios. Secondly,
constructing a pre-training dataset in the time series
domain that is comparable in scale to CLIP’s (400
million samples) is challenging, making efficient
data utilization a current limitation.
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A A Revisit of CLIP

CLIP(Radford et al., 2021)is a foundational method
known for its robust scalability, designed to learn
extensive visual concepts through natural language
supervision. The key contribution of CLIP is its
ability to align image and text representations in a
zero-shot manner(Gu et al., 2021), enabling various
vision-language downstream tasks. CLIP’s training
objective is to link image representations to text
representations, thus facilitating tasks such as infor-
mation retrieval and image captioning(Hendriksen
et al., 2022; Nukrai et al., 2022; Mokady et al.,
2021). Additionally, several works(Luo et al., 2021;
Lei et al., 2021) have extended its retrieval capa-
bilities to video retrieval. Controllable image gen-
eration tasks also benefit from natural language
guidance; various studies(Wang et al., 2022; Patash-
nik et al., 2021; Sanghi et al., 2022; Michel et al.,
2022) have used CLIP-aligned vision-language rep-
resentations to guide 2D or 3D generation tasks.
Beyond the visual domain, certain works have ex-
plored aligning other modalities (such as audio,
point clouds, ECG series) with language(Zhang
et al., 2022; Guzhov et al., 2022; Li et al., 2024).
These alignment tasks are typically feasible due
to the availability of dense natural language iden-
tifiers for corresponding modalities, obtained via
automated tools or human effort. However, achiev-
ing such alignment for time series data remains
challenging.

CLIP is trained using a contrastive learning
framework, which learns cross-modal represen-
tations by maximizing the similarity of correct
image-text pairs while minimizing the similarity
of incorrect ones. Specifically, CLIP employs a
dual-encoder structure (image encoder and text en-
coder) to project images and text into the same
vector space, optimized using the InfoNCE (Noise
Contrastive Estimation) loss. For a batch of (V)
image-text pairs, the model computes an (N x N)
similarity matrix and uses softmax normalization
to calculate the cross-entropy loss, ensuring that
the correct image-text pairs have the highest sim-
ilarity. Through this method, CLIP is pretrained
on large-scale image-text data, learning general
cross-modal representations that enable it to per-
form open-class recognition tasks in a zero-shot
setting during inference.

Within CLIP, two independent encoders gener-
ate embedding vectors for images and text. During
training, CLIP employs a contrastive loss to align

Method Acc.
Word2Vec 25.6
GloVe 27.8
FastText 28.2
BERT-Base 30.4
CLIP 30.77

Table 6: Performance comparison of different methods

on word analogy tasks.
images and texts within a given batch in the embed-

ding space.

For a given set of K unknown categories, CLIP
places all category names into predefined prompt
templates. The text encoder then generates C-
dimensional text embeddings Z; € REXC where
K row vectors encode the pre-trained category rep-
resentations. For an input test image, the image
encoder generates the corresponding image embed-
dings Z; € R'¥C. Classification logits; € R*K
is performed by calculating the predicted probabili-
ties of the K categories using a softmax operation.
The process can be formulated as follows:

p = SoftMax(Z; Z,") (16)

In this procedure, no new training images are re-
quired. The pre-trained encoders alone enable ro-
bust zero-shot performance.

To explore whether CLIP’s text encoder has the
capability for word analogy, we conducted a toy ex-
periment. We compared CLIP’s text encoder with
three static word embedding methods—word2vec,
GloVe, and FastText—which have been proven ef-
fective for word analogy tasks, and with context-
aware embeddings from pre-trained language mod-
els such as BERT. As shown in Table 6, CLIP
demonstrated effective word analogy capabilities
on the E-KAR benchmark(Chen et al., 2022).

B Visualization

To evaluate the alignment effectiveness of TS-CLIP,
we performed an intuitive visualization of its em-
beddings. We selected 14 datasets, embedding their
class summaries with TS-CLIP’s text encoder and
several time series samples with the time encoder.
Figure 6 displays the t-SNE visualization results.
We observed that the representations of time series
samples (denoted as points) closely aligned with
the corresponding text representations (denoted as
stars), illustrating the cross-modal alignment capa-
bility of TS-CLIP.

To visually demonstrate the sampling effective-
ness of the synonym bank, we employed the Clip-
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Figure 5: Decoded results of the original prompt and sampled embeddings from the synonym bank.

Cap(Mokady et al., 2021) decoder to decode five
samples from the synonym bank. This approach in-
directly showcased the potential distribution of the
aligned texts. Figure 5 displays the original prompt,
the decoded result of the original prompt embed-
ding vector, and the decoded results of the sam-
pled embedding vectors from the synonym bank.
Notably, while ClipCap cannot achieve perfectly
accurate vector decoding, the synonym bank pre-
serves the essential hints from the original prompt
and exhibits a degree of generalization.

t-SNE Visualization of TS-CLIP Embeddings (Time Series & Text)

10 ‘.
% x %
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* Tk
MR > ¥
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Figure 6: t-SNE visualization of TS-CLIP embeddings
for 14 datasets. Time series samples (points) and
their corresponding class summaries (stars) are closely
aligned.

Since we directly used CLIP’s text encoder dur-
ing training without updating its parameters, TS-
CLIP aligns time series with natural language and

inherently retains the ability to align with images.
In Figure 7, we utilized CLIP’s image encoder to
process images as retrieval targets. It can be ob-
served that the embedding derived from a spectrum
sequence of beef naturally exhibits higher similar-
ity with the image embedding of beef. Similarly,
a car-related time series displays higher similarity
with the image of an SUV. This demonstrates that
TS-CLIP not only establishes effective alignment
between text and time series but also enables effi-
cient matching between time series and images via
the existing CLIP model.

Beef Car
iRemote |[((— T LT T TTTTT 1 fo— === \
V7 Wi Remote Iﬁrime Series: | ‘- Nintendo Wi :Time Series: |
| |
| § |

| |
i I P I
/ | S |
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E Beetles | | Fly . . |
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Figure 7: TS-CLIP aligns time series with images.
Aligned Summary refers to the raw text of the time
series alignment during training.

C Downstream Tasks

TS-CLIP is pre-trained for the task of time series-
text retrieval. Although the focus of this paper is
on representation learning and pre-trained models,
verifying whether TS-CLIP can be transferred to
downstream tasks serves as an important sanity
check and proof of concept. Therefore, we evalu-
ate TS-CLIP on downstream tasks related to time
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series understanding, providing insights for future
research.

C.1 Time Series Caption

Time series captioning is a fundamental task in time
series language understanding, where the model
predicts textual captions for a given input time se-
ries. While pre-trained foundation models have
achieved significant progress in vision-language
captioning, there has been limited work reported
on time series captioning due to the lack of founda-
tional models similar to CLIP. To demonstrate the
transferability of TS-CLIP in downstream tasks, we
adapt the ClipCap framework (Mokady et al., 2021)
with minor modifications to implement time series
captioning. Leveraging the inherent alignment of
TS-CLIP with image-based representations, we re-
place the image encoder in ClipCap with the time
series encoder from TS-CLIP to enable caption gen-
eration for time series data. Figure 9 illustrate the
captioning results of TS-CLIP for different time se-
ries inputs. As shown, TS-CLIP effectively extracts
semantic information embedded in various time se-
ries. However, since no modules were retrained in
our experiments and ClipCap was originally trained
on visual data, the generated captions tend to de-
scribe sequences as visual scenes. Despite this
limitation, the results provide strong evidence for
TS-CLIP’s capability as a foundational model in
enabling time series captioning tasks.

C.2 Time Series Question Answering

Time Series Question Answering (TQA) is a fun-
damental task in downstream applications of time
series understanding models, where the model is
required to answer a question related to the in-
put time series. Among various forms of TQA,
multiple-choice TQA is particularly challenging,
as it requires the model to distinguish between mul-
tiple seemingly plausible answers. To demonstrate
the transferability of TS-CLIP as a foundational
model to TQA tasks, we designed a pipeline for
implementing TQA, as illustrated in Figure 8.

In this pipeline, each option for the input ques-
tion is split and combined with the question to form
multiple textual segments. These segments are then
paired with the input time series to compute cosine
similarity scores. The computed results are aggre-
gated as auxiliary information, which, along with
the original question, is formatted using prompt
templates and fed into a large language model
(LLM), enabling TQA without requiring additional

training. Figure 10 present TS-CLIP’s responses
to different input time series and question pairs.
The results demonstrate that TS-CLIP’s zero-shot
inference capability effectively supports the imple-
mentation of TQA tasks.

D More ablation studies and experiments

D.1 Initialization methods

We compared the impact of using TimeMoE pre-
training weights on the performance of TS-CLIP.
Table 7 presents a comparison of results when
initializing TS-CLIP with TimeMoE pretraining
weights versus training without pretraining, under
the same number of epochs. It is evident that, un-
der identical training conditions, TS-CLIP with
random initialization performs worse. By increas-
ing the number of pretraining epochs, the randomly
initialized TS-CLIP achieves comparable perfor-
mance. We also experimented with using a vanilla
Transformer with a similar parameter size as the
time series encoder. The results indicate that the
performance of the Transformer-based encoder is
comparable to that of TimeMoE. However, the
mixture-of-experts mechanism in TimeMOoE sig-
nificantly reduces computational overhead during
inference, which motivates our choice of TimeMoE
as the time series encoder for TS-CLIP.

Initialization Methods Zero-Shot
TimeMoE-Pretrain-200epoch 69.53
TimeMoE-Random-200epoch 52.79
TimeMoE-Random-400epoch 69.51
Transformer-Random-400epoch 69.47

Table 7: Ablation study of initialization methods.

D.2 Different LLMs Used for Summary

When creating the dataset, we utilized large lan-
guage models (LLMs) to generate summaries. For
the selection of LLMs, we conducted ablation ex-
periments, as shown in Table 8. The results indicate
that differences in the summarization capabilities of
current advanced LLMs do not significantly affect
the training process of TS-CLIP. This is because
the embedding vectors generated during text em-
bedding are sampled from the summaries produced
by LLMs within the synonym bank. As a result, the
synonym distributions generated after embedding
are similar across different LLMs. Therefore, all
existing advanced LLMs are suitable for use in the
TS-CLIP training process.
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Figure 8: Overview of the Time Series Question Answering pipeline.

A: Electricity .}_'i What is this time series about? ECG E
LLMs Zero-Shot
ChatGPT-40 69.53
ChatGPT-40 mini 69.51
Qwen 2.5 69.50
Claude 3.5 sonnet 69.52
Claude 3.5 Haiku 69.52

Table 8: Ablation study of LLMs.

D.3 Comparison of Synonym Bank and ID
Text Bank

In the previous sections, we compared the perfor-
mance of TS-CLIP trained with the ID text bank
and observed similar results in linear probe experi-
ments. However, does this imply that the Synonym
bank can be replaced? To address this question,
we conducted further experiments. Table 9 illus-
trates the prompt words generated by the two meth-
ods for the description "A power usage curve of
a household appliance." As shown, the Synonym
bank generates prompt words that are semantically
relevant to the input description, whereas the ID
text bank merely distinguishes between different
categories without providing meaningful semantic
differentiation. For linear probe experiments, dis-
tinguishing between different embedding vectors is
relatively straightforward, which explains why the
linear probe results showed no significant differ-
ence. However, the ID text bank is not meaningful
for understanding time series data. To further val-
idate this, we conducted zero-shot classification
tests on several datasets. As shown in Table 10, TS-
CLIP trained with the ID text bank predicts nearly
equal probabilities for each category, rendering it
incapable of performing zero-shot classification
and limiting its applicability to downstream tasks.

In contrast, TS-CLIP trained with the Synonym
bank successfully performs zero-shot classification,
demonstrating its effectiveness in downstream ap-
plications.

CLASSID Synonym Bank ID Text Bank

1

Time series of TV,

Time series of class

A power usage 1, A power usage
curve of a house- curve of a house-
hold appliance. hold appliance.

2 Time series of Time series of class
phone, A power 2, A power usage
usage curve of a curve of a house-
household  appli- hold appliance.
ance.

3 Time series of com- Time series of class
puter, A power us- 3, A power usage
age curve of ahouse- curve of a house-
hold appliance. hold appliance.

4 Time series of oven, Time series of class
A power wusage 4, A power usage
curve of a house- curve of a house-
hold appliance. hold appliance.

Table 9: Ablation study of the prompt words generated
by the synonym bank and ID text bank for the descrip-
tion "A power usage curve of a household appliance.”

D.4 Few-Shot Fine-Tuning Performance
Analysis

In the zero-shot experimental results, TS-CLIP
achieves the best performance on 51 out of 128
datasets. However, its average accuracy is lower
than that of the supervised baseline. TS-CLIP
does not require any post-training after pre-training,
allowing us to evaluate its performance using a
zero-shot approach in comparison to fully super-
vised baseline models. While the zero-shot method
achieves competitive performance without relying
on extensive labeled data, it inherently sacrifices
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Figure 9: The visualization of TS-CLIP’s time series captioning results for different input sequences.

Dataset(num_class) Synonym Bank ID Text Bank

ACSF1 (10) 77.00 12.00
Adiac (37) 78.01 342
CBF (3) 98.00 34.25
ChlorineConcentration (3) 72.24 31.55
FaceAll (14) 90.41 6.92
HandOutlines (2) 94.32 54.62
LargeKitchenAppliances (3) 84.27 37.33
MiddlePhalanxOutlineCorrect (2) 82.82 51.89
ProximalPhalanxOutlineCorrect (2) 86.69 42.80

Table 10: Ablation study of synonym bank and ID text
bank in zero-shot learning.

some accuracy in exchange for enhanced general-
ization and application flexibility. Therefore, al-
though the average accuracy is lower than that of
fully supervised models, this outcome aligns with
the anticipated trade-off in performance. In Table
11, we report the performance of TS-CLIP under
few-shot fine-tuning. It can be observed that TS-
CLIP surpasses all supervised baselines with as few
as 20 samples for fine-tuning. When trained with
the full dataset, TS-CLIP significantly outperforms

the previous supervised baselines.

Training Setting Accuracy
Previous Supervised SOTA (patchTST) 72.08
1-shot (TS-CLIP) 55.92
2-shot (TS-CLIP) 60.44
5-shot (TS-CLIP) 66.29
10-shot (TS-CLIP) 69.78
20-shot (TS-CLIP) 72.31
Fully Supervised (TS-CLIP) 76.52

Table 11: Ablation study of few-shot and fully super-
vised fine-tuning.

D.5 Comparison with Additional Methods

We compared zero-shot and few-shot performance
with several self-supervised methods and other
alignment approaches. Specifically, we selected
self-supervised baselines such as PatchTST (Nie
et al., 2022), TS-TCC (Eldele et al., 2021), and
GPTA4TS (Zhou et al., 2023) for comparison. Ad-
ditionally, we compared TS-CLIP with other time-
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B. Coffee machines
C. Computer stations (including monitor)

Question: The time series below shows the Question: The time series below shows Question: The spectrogram below shows the

power consumption of a household pedestrian counts over time at a location in }iinfrared spectrum of a coffee bean sample.
appliance, with idle periods and bursts of Melbourne. Does this pattern most likely Which type of coffee bean does this pattern
energy use. Which appliance does this power i} represent a weekend or a weekday? most likely represent?
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A. Mobile phones (via chargers) B. Weekday B. Arabica
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Question: The time series below shows Question: The outlines below represent fouri} Question: The time series below shows the
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C. Dense building C. Stauroneis smithii B. Freezer in the garage

D. Built industrial D. Eunotia tenella

Answer: Wheat Answer: Fragilariforma bicapitata Answer: Fridge freezer in the kitchen

Figure 10: The visualization of TS-CLIP’s time series question answering results for different input sequences.

series and natural language alignment methods, in-  datasets from UCR. Figure 11 shows the code for
cluding TimeLLLM (Jin et al., 2023) and TEST (Sun  pytorch like generated by synonym bank.

et al., 2023). As shown in Table 12, none of the
aforementioned baselines can perform zero-shot
classification, as they do not fundamentally align
the semantics of time series with natural language.
In contrast, the 20-shot fine-tuning results highlight
the effectiveness of TS-CLIP, further demonstrat-
ing its capability in bridging the gap between time-
series data and natural language understanding.

Methods Zero-shot 20-shot
patchTST - 58.02
TS-TCC - 61.47
GPT4TS - 62.27
TimeLLM - 69.72
TEST - 67.54

TS-CLIP(ours) 69.53 72.31

Table 12: Ablation study of additional methods.

# z_w (Tensor): Base embedding vector (d-dimensional)
# sigma (float): Global perturbation magnitude

# alpha (float): Anisotropic perturbation weight

# K (int): Number of synonyms to generate

d = z_w.size(-1)
# Optional: Normalization
zW=2z_w/ zw.norm(dim=-1, keepdim=True)

# Isotropic noise (K x d)
epsilon_iso = torch.randn(K, d) * sigma

# Anisotropic noise (K x 1) -> (K x d)
z = torch.randn(K, 1)

# Scalar noise
epsilon_aniso = (sigma * torch.sqrt(alpha)) * z * z_w

# Combined perturbation
epsilon = epsilon_iso + epsilon_aniso

# Generate synonym embeddings
synonym = z_w + epsilon

Figure 11: Pytorch-like pseudocode for the core of an

implementation of synonym bank.

D.6 Experimental details

In Table 13 and Table 14, we show the complete
experimental results of zero shot TS-CLIP on 128
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Dataset TS-CLIP Autoformer Crossformer Dlinear FEDFormer Informer iTransformer patchTST Pyraformer Reformer TimesNet

ACSF1 77.00 38.00 63.00 42.00 54.00 57.00 42.00 60.00 46.00 55.00 63.00
Adiac 78.01 42.20 54.73 70.59 70.08 47.83 29.92 64.71 28.13 38.62 43.22
AllGestureWiimoteX 58.71 21.57 59.57 22.00 3429 49.29 46.29 53.14 45.43 45.29 49.71
AllGestureWiimote Y 64.57 25.71 6243 35.00 38.71 50.00 41.71 61.14 49.71 52.71 55.14
AllGestureWiimoteZ 54.14 25.29 49.14 22.57 33.57 40.29 3529 42.00 2843 39.00 39.57
ArrowHead 61.14 56.00 55.43 69.14 73.71 72.00 68.00 77.14 69.14 68.57 57.14
Beef 20.00 56.67 63.33 63.33 46.67 73.33 70.00 73.33 63.33 66.67 60.00
BeetleFly 75.00 55.00 80.00 80.00 40.00 80.00 85.00 85.00 80.00 75.00 70.00
BirdChicken 80.00 65.00 55.00 75.00 60.00 55.00 80.00 90.00 55.00 60.00 50.00
BME 88.67 85.33 96.67 84.00 96.00 90.00 95.33 94.67 97.33 91.33 64.00
Car 85.00 33.33 66.67 76.67 43.33 75.00 81.67 86.67 65.00 75.00 76.67
CBF 98.00 42.56 87.44 78.11 52.22 93.78 92.89 87.00 95.44 93.11 83.44
Chinatown 30.61 97.08 98.54 81.63 96.79 97.38 97.08 90.96 96.50 77.26 59.18
ChlorineConcentration 72.24 69.69 57.84 57.94 64.87 63.07 53.10 59.48 55.31 64.95 61.64
CinCECGTorso 66.96 42.03 89.93 45.14 60.07 84.20 80.22 90.36 90.72 85.00 84.42
Coffee 96.43 85.71 100.00 100.00 100.00 100.00 100.00 100.00 89.29 92.86 85.71
Computers 72.00 59.20 60.00 51.20 52.00 53.20 56.00 59.60 63.20 61.20 63.60
CricketX 65.13 21.03 63.59 2333 31.03 54.36 41.28 60.26 42.05 52.31 61.28
CricketY 62.31 14.36 61.54 31.54 36.92 55.90 43.33 62.82 42.05 45.64 60.00
CricketZ 69.74 19.49 70.00 24.10 36.41 47.44 45.38 63.33 45.64 50.00 61.03
Crop 71.96 71.54 73.66 68.33 74.32 75.24 70.00 73.98 65.29 74.82 75.85
DiatomSizeReduction 89.54 43.14 82.35 39.54 61.76 93.46 93.14 95.10 86.27 90.85 58.82
DistalPhalanxOutlineAgeGroup 55.40 71.70 74.10 66.19 71.22 69.78 74.10 76.26 6691 74.82 70.50
DistalPhalanxOutlineCorrect 61.59 78.99 74.64 68.12 74.64 75.36 61.23 74.28 65.58 72.10 76.81
DistalPhalanxTW 51.80 67.63 67.63 70.50 59.71 69.78 68.35 69.06 69.06 61.15 71.22
DodgerLoopDay 18.75 30.00 56.25 47.50 40.00 52.50 53.75 55.00 55.00 52.50 56.25
DodgerLoopGame 52.17 55.80 84.06 81.16 64.49 81.88 86.96 84.78 84.78 84.06 76.81
DodgerLoopWeekend 85.51 75.36 97.83 96.38 81.88 97.83 97.83 97.83 97.83 97.83 97.83
Earthquakes 74.82 74.82 74.10 58.99 69.78 72.66 64.03 72.66 74.82 71.22 76.26
ECG200 87.00 90.00 89.00 83.00 92.00 85.00 84.00 89.00 85.00 84.00 84.00
ECG5000 93.93 94.07 94.64 92.87 93.53 93.00 92.64 93.07 92.64 92.53 93.60
ECGFiveDays 96.98 97.44 97.44 5772 97.79 91.99 93.38 82.46 73.95 84.55 75.84
ElectricDevices 75.06 65.48 59.28 47.75 62.56 68.64 57.62 63.01 64.88 71.04 64.41
EOGHorizontalSignal 15.19 16.30 48.90 41.44 20.99 43.92 33.98 40.06 36.19 42.27 45.58
EOG VerticalSignal 9.94 10.77 41.71 1243 31.22 41.71 22.10 46.13 30.94 30.94 37.85
EthanolLevel 50.00 35.60 25.40 37.00 28.20 62.00 24.80 30.20 28.20 58.40 56.80
FaceAll 90.41 75.09 79.70 81.72 78.46 74.79 81.01 76.69 74.97 74.02 74.56
FaceFour 67.05 65.91 85.23 80.68 71.59 81.82 84.09 88.64 85.23 79.55 81.82
FacesUCR 16.88 77.07 89.76 76.24 79.37 84.88 77.12 88.68 83.12 84.24 8522
FiftyWords 70.99 24.40 74.29 49.23 49.01 58.24 60.88 68.13 51.65 58.24 69.01
Fish 36.00 34.29 80.00 84.00 72.00 78.86 80.57 86.29 72.00 76.00 81.71
FordA 93.64 79.32 86.05 48.86 86.59 63.41 54.95 90.63 51.59 56.78 92.99
FordB 80.99 64.94 70.99 50.25 68.77 54.57 52.96 63.95 57.04 69.75 71.28
FreezerRegularTrain 99.72 88.74 99.44 92.81 96.00 98.91 90.25 98.84 97.82 95.44 92.07
FreezerSmallTrain 99.72 60.42 67.44 69.82 70.53 70.21 70.18 67.89 67.44 69.72 75.65
Fungi 30.65 74.19 88.71 66.13 78.49 95.70 82.80 87.63 84.41 96.77 93.01
GestureMidAirD1 46.92 30.00 63.08 56.92 3538 61.54 49.23 53.85 56.92 60.77 63.85
GestureMidAirD2 48.46 20.00 54.62 51.54 33.85 44.62 52.31 50.77 41.54 44.62 53.08
GestureMidAirD3 23.08 19.23 23.08 17.69 20.77 7.69 23.08 37.69 9.23 13.85 10.00
GesturePebbleZ1 81.98 32.56 88.95 76.16 56.98 87719 72.67 86.63 80.81 84.30 86.63
GesturePebbleZ2 80.38 2532 77.85 60.13 53.16 76.58 66.46 75.32 75.95 70.25 70.89
GunPointAgeSpan 98.67 67.41 96.52 86.39 80.70 92.41 87.97 94.62 81.33 88.29 92.41
GunPointMaleVersusFemale 87.66 76.90 98.73 94.94 55.38 99.68 98.73 97.47 100.00 99.37 95.89
GunPointOldVersus Young 93.35 58.73 100.00 100.00 94.29 100.00 100.00 92.38 100.00 100.00 100.00
GunPoint 62.86 77.33 89.33 78.00 81.33 97.33 94.00 89.33 73.33 94.00 76.00
Ham 68.57 76.19 76.19 64.76 70.48 70.48 77.14 68.57 68.27 71.43 77.14
HandOutlines 94.32 55.95 88.92 88.92 65.41 87.03 89.19 90.00 88.11 88.92 85.68
Haptics 51.30 25.00 38.31 4545 28.57 4091 4351 47.40 29.22 36.69 40.26
Herring 60.94 56.25 59.38 64.06 56.25 51.56 62.50 57.81 53.13 48.44 62.50
HouseTwenty 94.12 63.87 83.19 75.63 68.07 85.71 75.63 82.35 82.35 85.71 87.39
InlineSkate 16.36 19.45 25.64 25.27 16.91 24.55 26.55 27.45 2291 27.64 30.73
InsectEPGRegularTrain 95.98 50.20 100.00 100.00 47.39 100.00 100.00 7791 100.00 100.00 100.00
InsectEPGSmallTrain 95.98 59.44 100.00 86.25 49.17 100.00 100.00 71.67 100.00 100.00 100.00
InsectWingbeatSound 47.17 48.59 61.26 57.53 53.18 59.24 59.49 57.63 55.96 60.15 62.93
ItalyPowerDemand 93.00 96.79 97.08 95.72 95.72 95.53 96.02 96.31 96.21 95.53 96.02
LargeKitchenAppliances 84.27 52.53 61.33 37.07 47.47 49.60 46.67 66.13 51.47 53.07 64.00
Lightning2 62.30 59.02 68.85 59.02 73.77 67.21 68.85 68.85 71.67 65.57 68.85
Lightning7 4247 30.14 71.23 60.27 46.58 73.97 56.16 67.12 59.72 71.23 73.97
Mallat 91.22 72.67 89.04 93.43 79.70 89.34 96.59 94.12 83.75 71.17 92.88
Meat 51.67 86.67 46.67 86.67 43.33 7833 75.00 63.33 60.00 90.00 93.33
Medicallmages 75.00 61.05 71.71 59.61 65.53 68.68 60.79 72.63 64.34 66.18 69.08
MelbournePedestrian 88.23 85.94 89.50 88.48 93.32 94.75 85.98 87.00 87.13 94.71 95.98
MiddlePhalanxOutlineAgeGroup 48.70 64.94 62.34 59.09 52.60 50.65 65.58 57.79 58.44 51.95 63.64
MiddlePhalanxOutlineCorrect 82.82 81.44 57.39 59.11 79.38 71.48 51.89 57.39 48.80 69.07 80.41
MiddlePhalanxTW 28.57 55.84 62.34 58.44 47.40 51.95 59.74 54.55 55.84 51.95 55.19
MixedShapesRegularTrain 96.29 2532 85.86 81.73 49.32 83.30 81.77 84.70 84.65 79.96 86.47
MixedShapesSmallTrain 96.54 24.95 80.54 75.84 33.15 79.51 80.62 79.51 70.01 75.51 80.37
MoteStrain 79.47 77.72 84.35 84.98 85.62 91.61 85.78 88.02 88.42 91.77 81.63
NonlnvasiveFetalECGThorax 1 93.03 5247 84.83 87.53 75.52 82.85 84.53 86.41 73.37 78.98 84.53
NonlInvasiveFetalECGThorax2 93.94 77.56 88.04 91.20 84.94 88.80 90.13 89.16 81.06 85.04 89.21
OliveOil 86.67 50.00 40.00 43.33 63.33 66.67 40.00 4333 40.00 70.00 40.00
OSULeaf 72.73 21.90 54.96 43.39 43.80 41.74 53.31 58.26 4091 45.45 49.59

Table 13: Performance comparison of Zero-shot TS-CLIP and supervised baselines on UCR datasets. TS-CLIP
achieves the best results in 51 out of 128 datasets. All values are accuracy percentages (%), with the highest accuracy
in bold and the second highest number is underlined.
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Dataset TS-CLIP Autoformer Crossformer Dlinear FEDFormer Informer iTransformer patchTST Pyraformer Reformer TimesNet

PhalangesOutlinesCorrect 75.52 75.29 64.45 65.73 82.17 67.25 63.52 65.97 63.52 66.43 77.16
Phoneme 17.83 13.71 14.72 9.86 12.76 13.61 10.76 15.93 9.18 13.29 16.46
PickupGestureWiimoteZ 46.00 34.00 62.00 64.00 48.00 64.00 58.00 60.00 60.00 58.00 52.00
PigAirwayPressure 13.94 4.81 10.10 9.13 2.88 6.73 8.65 577 5.29 5.71 9.62
PigArtPressure 62.98 8.17 17.79 14.90 4.81 13.94 13.94 9.13 12.50 12.50 17.31
PigCVP 38.46 4.33 9.13 8.65 2.88 5.77 9.13 8.65 9.62 13.94 12.98
PLAID 83.99 34.64 39.85 35.38 36.87 42.83 35.01 65.36 35.82 40.60 40.97
Plane 100.00 99.05 96.19 99.05 99.05 97.14 97.14 98.10 96.15 97.14 98.10
PowerCons 95.00 68.33 100.00 98.89 93.89 100.00 100.00 97.78 99.44 100.00 99.44
ProximalPhalanxOutlineAgeGroup 73.17 86.34 86.83 81.95 85.37 85.85 85.85 84.39 86.76 85.85 85.37
ProximalPhalanxOutlineCorrect 89.69 82.82 70.79 83.16 89.00 86.25 7423 77.32 75.95 81.10 80.76
ProximalPhalanxTW 39.02 79.51 79.02 78.54 74.15 79.02 79.51 78.54 79.41 76.10 79.02
RefrigerationDevices 53.33 36.00 44.27 37.07 33.87 48.27 38.40 41.33 42.40 45.60 46.40
Rock 44.00 58.00 80.00 76.00 48.00 52.00 78.00 88.00 48.00 48.00 56.00
ScreenType 47.73 37.33 34.67 36.80 37.07 46.40 38.40 38.40 37.07 46.93 42.40
SemgHandGenderCh2 83.17 74.17 95.00 81.50 81.67 89.83 88.67 89.00 92.00 85.17 89.00
SemgHandMovementCh2 4422 2222 72.67 49.33 30.22 42.44 46.67 42.67 44.00 42.44 50.67
SemgHandSubjectCh2 3533 41.33 90.22 80.89 53.78 75.78 80.22 86.00 88.22 72.00 78.22
ShakeGestureWiimoteZ 44.00 36.00 66.00 56.00 52.00 68.00 56.00 68.00 74.00 70.00 64.00
ShapeletSim 66.11 57.22 50.56 48.33 51.67 48.89 5111 48.89 45.56 48.89 53.33
ShapesAll 82.50 12.50 72.00 57.33 22.67 59.17 67.33 66.67 41.50 57.67 68.83
SmallKitchenAppliances 78.93 59.47 56.27 38.40 59.73 5227 36.27 54.13 61.07 52.80 57.87
SmoothSubspace 33.33 98.00 88.67 83.33 98.67 99.33 89.33 88.00 97.30 98.00 97.33
SonyAIBORobotSurfacel 70.55 67.05 73.21 66.72 65.89 7271 73.21 71.55 73.50 71.21 51.08
SonyAIBORobotSurface2 85.10 85.73 85.31 83.21 84.58 84.37 82.58 85.31 88.24 85.20 81.53
StarLightCurves 97.20 54.20 89.32 90.91 28.29 91.72 85.64 93.14 85.68 92.11 91.33
Strawberry 90.00 91.35 95.41 94.59 95.14 95.41 77.03 94.86 74.46 96.49 93.24
SwedishLeaf 93.28 7837 89.26 81.41 88.78 88.62 72.44 91.03 78.85 86.38 85.58
Symbols 82.71 35.58 85.73 79.70 60.20 81.21 86.13 85.43 7172 80.60 82.41
SyntheticControl 98.00 79.67 97.00 86.33 93.67 98.33 89.00 98.33 98.67 98.33 99.33
ToeSegmentation 1 79.39 49.12 60.09 55.70 50.44 60.96 57.89 66.23 58.33 61.84 66.67
ToeSegmentation2 75.38 63.85 53.08 54.62 50.00 73.85 75.38 87.69 64.62 72.31 61.54
Trace 100.00 57.00 82.00 69.00 79.00 95.00 50.00 98.00 97.00 87.00 85.00
TwoLeadECG 99.39 79.46 88.76 57.68 86.57 65.85 83.23 85.95 74.28 76.47 58.56
TwoPatterns 99.48 80.25 99.35 83.00 67.55 88.13 82.08 99.63 98.03 86.43 98.25
UMD 90.97 84.03 100.00 92.36 95.83 98.61 94.44 98.61 100.00 7222 73.61
UWaveGestureLibraryAll 94.00 35.71 92.04 80.51 75.46 90.23 89.22 91.26 89.64 91.32 92.46
UWaveGestureLibraryX 68.62 34.67 74.71 62.65 57.12 67.76 65.41 77.61 68.96 64.71 72.72
UWaveGestureLibrary Y 69.68 27.28 63.85 59.10 49.50 58.21 5779 70.18 62.95 58.01 63.54
UWaveGestureLibraryZ 63.74 31.99 68.23 54.33 52.46 60.30 58.68 70.32 60.75 54.08 64.54
Wafer 99.94 99.32 99.40 93.79 99.68 99.63 99.56 99.51 99.51 99.35 99.58
Wine 74.07 44.44 44.44 57.41 51.85 55.56 50.00 53.70 51.92 57.41 55.56
‘WordSynonyms 62.38 26.96 61.44 40.75 42.79 54.39 52.66 57.05 44.67 54.86 57.52
WormsTwoClass 54.55 48.05 61.04 55.84 54.55 50.65 54.55 50.65 64.47 55.84 58.44
Worms 66.23 44.16 54.55 38.96 53.25 37.66 48.05 50.65 48.68 38.96 53.25
Yoga 85.77 61.37 78.20 64.63 64.50 74.67 69.30 76.67 64.07 7277 77.27

Table 14: (continued) Performance comparison of Zero-shot TS-CLIP and supervised baselines on UCR datasets.
TS-CLIP achieves the best results in 51 out of 128 datasets. All values are accuracy percentages (%), with the
highest accuracy in bold and the second highest number is underlined.
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