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Abstract

Large language models (LLMs) have shown
strong potential in enhancing text clustering
when combined with traditional embedding
models. However, existing methods predomi-
nantly treat LLMs as static pseudo-oracles, i.e.,
unidirectionally querying them for similarity
assessment or data augmentation, while never
seeking feedback from embedding models to
improve them. In this work, we propose a train-
ing framework that enables bidirectional refine-
ment between LLMs and embedding models.
We first design task-aware prompts to guide the
LLM in generating interpretations for the input
texts. These interpretations are projected into
the embedding space, in which interpretations
that are preferred by the embedding model are
selected based on their distribution densities.
The selected interpretations are then used to
fine-tune the LLM via preference optimization
to prioritize the generation of helpful interpreta-
tions. Meanwhile, we enhance the embedding
model via contrastive learning on the gener-
ated interpretations and perform clustering on
the output embeddings, leading to iterative co-
training between the LLM and the embedding
model. Experiments on 14 benchmark datasets
across 5 tasks demonstrate the effectiveness of
our method.

1 Introduction

Text clustering is a fundamental task in natural lan-
guage processing (NLP), with applications ranging
from news recommendation (Bouras and Tsogkas,
2017), dialogue systems (Liu et al., 2019a) to opin-
ion monitoring (Stieglitz et al., 2018). Traditional
methods generally rely on statistical features like
TFE-IDF (Spérck Jones, 2004) or contextual em-
beddings from embedding models like Sentence-
BERT (Reimers and Gurevych, 2019) with algo-
rithms such as KMeans, DEC (Xie et al., 2016)
and pseudo-labelling (YM. et al., 2020), efc. Since
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these methods still struggle to understand complex
texts with diverse meanings and perspectives, re-
cent studies have begun to leverage the powerful
capabilities of LLMs for text clustering. A most
direct approach (Huang and He, 2024) is to first
ask LLMs for a candidate set of potential labels
and then query LLMs about categories for each
text. Since the generated label set is hard to co-
incide with the ground-truth one, this LLMs-only
method does not perform well. Differently, most
methods tend to use LLMs to assist embedding
models for better clustering. For instance, (Zhang
et al., 2023) mine boundary samples in embed-
ding space and query LLMs for their similarities
with samples from nearby clusters, as if LLMs
are pseudo-oracles. The similarities between texts
are used to construct positive and negative pairs
for the contrastive training of embedding models.
Another popular way is to regard LLMs as static
augmenters. By querying for either keyphrases
for each text or descriptions for each cluster, these
methods (Viswanathan et al., 2024; De Raedt et al.,
2023) concatenate or add the embeddings of origi-
nal texts and augmented contents from LLMs, and
then use KMeans to perform clustering on them.
Current approaches predominantly treat LLMs
as static oracles or augmenters, i.e., merely lever-
aging them through unidirectional interaction for
similarity assessment or data augmentation without
fine-tuning them to adapt to target datasets. How-
ever, since textual meaning is context-dependent,
a frozen LLM queried passively by embedding
models can only provide subjective interpretations
based on its pretrained knowledge, failing to cap-
ture dataset-specific semantics. This limitation is
particularly critical in text clustering, where un-
derstanding the underlying data distribution is es-
sential. While directly incorporating all data into
LLM prompts is infeasible, current methods lack
effective mechanisms to transfer the data distribu-
tion knowledge into LLMs for improved contextual
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understanding of texts.

To address the limitations above, in this paper,
we propose a training framework that mutually
trains the LLM and the embedding model for text
clustering. We first design task-aware prompts to
instruct the LLM to generate semantically rich and
helpful interpretations for original texts. Then, we
project these interpretations into the embedding
space and select those locating at high-density re-
gion as the preferred ones, based on the intuition
that high density implies that the interpretation is
more likely to be semantically helpful under the
dataset. We use the collected preference samples
to fine-tune the LLM via preference optimization,
thus effectively transfering the embedding model’s
understanding of data distribution into the LLM,
making it more likely to generate helpful interpre-
tations. Concurrently, we also enhance the embed-
ding model through contrastive learning on the gen-
erated interpretations, thus forming a training circle
that improves the two models mutually. Extensive
experiments show that our method can effectively
use the LLLM and the embedding model for better
clustering performance.

2 Related Work

Traditional Methods Previous works mainly
rely on vector representations like TF-IDF features
(Sparck Jones, 2004) and contextual embeddings
from embedding models (Devlin et al., 2019; Liu
et al., 2019b; Reimers and Gurevych, 2019). While
early studies (Banerjee et al., 2007; Hu et al., 2009)
tend to directly apply KMeans or Agglomerative
Hierarchical Clustering (AHC), recent studies (Guo
etal., 2017; Yang et al., 2017; Xu et al., 2017; Had-
ifar et al., 2019; Huang et al., 2020; Zhang et al.,
2021b; Yin et al., 2022; Zheng et al., 2023; Li et al.,
2024) use autoencoder or contrastive learning with
DEC (Xie et al., 2016) or pseudo labelling (YM.
et al., 2020) to achieve clustering. Among them,
some works also introduce multiple models for text
clustering like us. Different from attempts to com-
bine TF-IDF features and embedding models (Li
et al., 2024), our work focuses on leveraging LLMs
together with embedding models.

LLM-Assisted Methods LLMs now have been
increasingly used to enhance text clustering. As-
suming that partial labels are known in advance,
(Huang and He, 2024) use LLMs to generate a
candidate label set and then achieve clustering via
querying LLMs for text categories. Apart from

obtaining labels, some methods (Wang et al., 2023;
De Raedt et al., 2023) use LLMs to generate sum-
marizations for clusters, which will then be re-
garded as label descriptions to assisting clustering.
Differently, most methods (Zhang et al., 2023; An
et al., 2024; Liang et al., 2024a,b; Viswanathan
et al., 2024) tend to use LLMs as pseudo-oracles,
by mining boundary samples through various crite-
ria and then querying LLMs for their similarities.
These additional information will then be used for
training embedding models via contrastive learning.
What’s more, (Viswanathan et al., 2024) proposes
to use LLMs to generate keyphrases for texts as
augmentations, which is the most similar one to our
method. However, we use a lightweight LLM to
generate detailed interpretations and the used LLM
will be trained to adapt to target datasets.

3 Method

3.1 Task-Aware Prompt for Text
Interpretation

Label information such as label names or descrip-
tions is generally unavailable in text clustering, but
the overall clustering goal of the target data can of-
ten be inferred. For example, in dataset ArxivS2S,
a rough inspection of the data suggests that it likely
involves mining topics organized by subject areas.
Thus, we refer to this high-level understanding as
a task description DESC="topic: detailed subject
area”, and assume that it is available beforehand.
Different from existing works that use the LLM
to query text similarities, we leverage the LLM
for comprehensive interpretation of the input text.
Specifically, for the target data to be clustered, we
define a task description DESC="(TASK): (STAN-
DARD)”, where (TASK) means the overall task
(e.g. topic, intent), and (STANDARD) means the
detailed clustering standard (e.g. subject area, cus-
tomer purpose). Given an input text TEXT, we
then design the following prompt template Tpgsc:

Prompt Template Tpgsc

You are very good at natural language un-
derstanding.

For a given text, analyze its underlying
meaning to present a better understanding.
Remember that you should dissect the text
in terms of {TASK}. You need to infer what
{STANDARDY} the text is about. Show your
reasoning process and summarize by listing
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Figure 1: The training framework between the LLM and the embedding model. In this framework, the embedding
model guides the LLM through preference optimization for more helpful interpretations, and benefit from these

interpretations to improve clustering.

at most 8 keywords that reflect it. Do not be
too lengthy and strictly follow the specified
format:

Reasoning: ...

Keywords: ...

Text: {TEXT}

\. J

This prompt asks the LLM to analyze the text
with respect to the given TASK (e.g., topic, intent)
from the perspective of STANDARD (e.g., detailed
subject area, banking customer purpose). Require-
ments such as listing the reasoning process encour-
age the LLM to generate rich content reflecting its
comprehension of the text, while the subsequent
summarization helps highlight key points. As a
result, we can obtain:

z} = G(xi; Toesc), (1)

where G(-) denotes the LLM, and ;" is the out-
put interpretation generated by the LLM for the
original text x;. Here we present a concrete exam-
ple from the posts in dataset StackEx as follows,
where the original text x; is “06 Saturn Ion 2 2.21
P0101” and the task description is DESC="topic:
post topic™:

An Example Input-Output

Input z;:
06 Saturn Ion 2 2.21 PO101

Output z;:

Reasoning: The text appears to be refer-
ring to a specific car model, the Saturn lon,
with details about its engine and a diagnos-
tic code. The number “2” likely indicates
the second generation or a specific variant,
while “P0101” is a common diagnostic trou-
ble code related to the air flow meter.
Keywords: Saturn, Ion, engine, diagnostic,
code, air flow, trouble

\

3.2 Training LLM with Preference Feedback

Since the LLM relies on designed prompts to inter-
pret texts one by one, it cannot grapse the overall
data distribution and thus may not align well with
the needs of the embedding model. To address
this problem, we propose to introduce the distribu-
tional information from the embedding space into
the LLM by selecting text interpretations that are
preferred by the embedding model and train the
LLM with preference feedback.

Specifically, we first encode the deterministic

interpretation .%j_ as:

e = E(x}), )

where FE(-) is the embedding model, and apply
KMeans on {e;" })¥, to obtain the cluster centers
to represent the distributional information:

{/‘j}gK:1 = KMeans({¢; }/,, K). 3)
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Here, K is the number of clusters, and KMeans(-)
partitions embeddings into K clusters and outputs
the cluster centers. Then, we further employ the
LLM with different sampling temperatures to gen-
erate additional candidate interpretations and ob-
tain their corresponding embeddings:

x(m G, (z:; Tpesc), 4)
™ = B(al™). (5)

(2

Here, G, (-) denotes the LLM G(-) generating
text interpretations with sampling temperature 7,,,
and l‘gm) is the corresponding sampled candidate,
where m = 1,2,..., M. By assuming that sam-
ples locating at high-density region are more reli-
able, we believe that these samples can reflect some
meaningful semantics in the embedding space to
some extent. Therefore, for a given text x;, we de-
fine the one among {e; } U {e _, that lies in
a high-density region as the preferred interpretation
by the embedding model—i.e., a good or helpful
text interpretation in terms of the embedding model.
Letting 650) £ e, we compute the distances be-
tween all candidates for x; and the cluster centers
as follows:

dy = min [lef™ = gl (©)
In practice, we repeat KMeans and distance calcu-
lation multiple times and average d,,,. We choose
the one with minimum distance as the preferred
interpretation, while the others as the opposite:

w = argmin d,,, (7
m

1e€{0,1,..., MP\{w}. (8)
Here, the index w means winning and /[ means
losing. In this way, the distributional information
can be indirectly represented as the preference data:

Dpreference = {(«wagw wTZ('l))‘dw < dl}i]\;l' )]

To leverage the above preference feedback,
we follow the popular preference optimization
paradigm, and use direct preference optimization
(DPO) (Rafailov et al., 2023) to fine-tune the LLM,
so that the probability of generating the preferred
response can be raised while that of generating the
not preferred one can be suppressed. Specifically,

for text x; with the preferred interpretation :):Ew)

@

and the one not preferred x; *, we compute:

Gz (w)\ﬂfz; TbEsc)
ref( |5L'Za TDESC)
!
G| )’$i§TDESC> )
l )
Gref(xl( )
where G(y|z;T) is the probability of generating
response y when given input x in the LLM, and
Ghret(+) is the frozen LLM used as the reference
model, and § is used to control the difference be-

tween G(-) and Gyet(-). Thus, by minimize the
DPO loss for the LLM G(-):

N
La = Lppo = ﬁ Z Zf?m,
i=1 l#w

EDPO =—logo (ﬁ log
(10)
—flog

|zi; Toesc)

(11)

we can effectively transfer the distributional infor-
mation and the preference of the embedding model
to the LLM for better text interpretation.

3.3 Training Embedding Model via
Contrastive Learning

Since text interpretations from the LLM contain not
only useful contents but also lots of redundancy, we
further leverage contrastive learning (Chen et al.,
2020; Gao et al., 2021) to extract helpful semantics.
A simple way is to regard the interpretation x;r as

positive of x;, that is:

Ale;,e;)
(et = —log L , (12)
' Alei,ef) + Doz D€, ex)
where ¢; = E(z;) and e;” = E(z;") are the embed-

dings of the original text and its corresponding in-
terpretation, and A(e;, e ) = exp(cos(e;, el )/7)
is the similarity function, and 7 is the temperature
parameter. We also introduce text augmentation for
interpretation using dropout to enhance the training
process by forwarding the embedding model twice
with different dropout rates to obtain a different
but related virtual augmentatlon eT = E¢(z]). We
further view it as positive of el and construct the
following loss:

KCL —log A(ejvej) .
Aleihsef) + s Ale )
(13)
Therefore, by optimizeing the contrastive loss:
1 N "
Lo =5 2 +65), (4)
i=1
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the interpretation can not only be pulled to the
original text, but also to its virtual augmentation,
which can preserve rich semantics from the LLM
and not excessively deviate from the original text.

To encourage the embedding space to form clus-
ter structures, we use the DEC loss (Xie et al.,
2016) as regularization. We use the Student’s t-
distribution (van der Maaten and Hinton, 2008) to
compute the probability that ej belongs to clus-

(Ltlef —v;][3)~ ()2
St (LHlef —vg[3)— (et D/2?
{v; }]K:1 are trainable parameters initialized by
KMeans, and « represents the degree of freedom
and is set to 1. Then the auxiliary target distri-

az;/ 1
Z£<:1 ‘I?k / fr
fi = sz\i 1 9ij- Thus, the cluster-level regular-
ization DEC is computed as:

LN N K .
Lorc=4; > Dxw(pilla)=) > pijlog =
i=1

i=1 j=1 i
15)
Finally, after training the embedding model with
the following loss:

ter v as q;; = where

bution p;; = is introduced, where

Lg = LcL + ALlpec, (16)

where ) is a weighting parameter, we can encode
the text interpretations {x; }¥; to obtain {e; } |,
and achieve clustering by applying KMeans on
top of them to get the final clustering result {c¢; €
{1,2,..., K}}X . In practice, we can optimizing
(16) and (11) iteratively to achieve progressive im-
provement.

4 Experiment

4.1 Experimental Setup

Datasets We evaluate our method on 14 datasets
involving 5 tasks following (Zhang et al., 2023).
The statistics of the datasets are shown in Ta-
ble 6 in Appendix A, and the details are as fol-
lows: (i) Topic Mining: Three datasets, includ-
ing ArxivS2S, Reddit and StackEx from MTEB
(Muennighoff et al., 2023), are used for evaluating
capabilities of methods in topic mining. These
datasets contain various fine-grained topic cate-
gories. (ii)) Emotion Detection: GoEmo (Dem-
szky et al., 2020) is a dataset with fine-grained
emotions. The one we use here is processed by
(Zhang et al., 2023), where multi-label or neu-
tral instances are removed. (iii) Type Discovery:
Three datasets, including FewEvent, FewNerd and

FewRel originated from information extraction, fo-
cus on tasks about event, entity and relation type
discovery (Li et al., 2022). (iv) Domain Discovery:
Three datasets, including CLINC(D), Massive(D)
and MTOP(D), aim at mining the potential scenar-
ios where the user utterances may occur. (v) Intent
Discovery: Unlike domain discovery, four datasets,
including CLINC(I), Massive(I), MTOP(I) and
Bank77, are trying to discover unknown intents in
user utterances (Zhang et al., 2021b).

Baselines Following (Zhang et al., 2023), we
compare our method with the baselines below,
including traditional methods and LLM-assisted
methods:

* E5-KMeans is a simple baseline that per-
forms KMeans on embeddings from the em-
bedding model e5-large (Wang et al., 2022).

* SCCL (Zhang et al., 2021a) bases on em-
bedding models only and applies contrastive
learning and DEC loss (Xie et al., 2016) to
achieve clustering.

* Label-Gen (Huang and He, 2024) bases on
LLMs only and assumes that partial labels
are known. They query LLMs with unlabeled
texts to obtain candidate label set, and then
use LLMs for zero-shot classification via QA
to achieve clustering.

* ClusterLLM (Zhang et al., 2023) utilizes
both LLMs and embedding models for clus-
tering. They mine boundary sample in em-
bedding space together with candidate sam-
ples from its two closest clusters, and then
query the LLM for their similarity relation-
ships, which are used for training the embed-
ding model with contrastive learning. The
clustering result are obtained by KMeans.

* Keyphrase (Viswanathan et al., 2024) gener-
ates keyphrases for texts with the LLM and
encode them into embeddings with the em-
bedding model. The embeddings of texts and
keyphrases are then concatenated together and
clustered using KMeans.

Evaluation Metrics We use metrics accuracy
(ACC) and normalized mutual information (NMI)
to evaluate the performance of our method. Fol-
lowing previous works, we repeat KMeans 5 times
with different seeds and report the mean values. We
left training details in Appendix A.1.
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Topic

Emotion Type

Method ArxivS2S

ACC NMI

Reddit
ACC NMI

StackEx
ACC NMI

GoEmo
ACC NMI

FewEvent
ACC NMI

E5-KMeans
SCCL

35.68 56.96
33.57 55.39

43.52 51.87
40.89 50.31

4379  62.65
41.39 61.96

2175 21.73
17.51 14.20

37.34 59.29
31.62 52.52

Label-Gen
ClusterLLM
Keyphrase

26.21 52.50
37.89 59.17
38.77 59.59

29.84 4543
48.96 56.22
49.14 56.73

33.85 5747
46.43 65.44
46.63 65.57

16.75 29.71
19.69 18.49
29.77 28.65

34.35 60.03
38.76 62.89
35.80 58.79

Ours (iter-0)
Ours (iter-1)
Ours (iter-2)

38.81 59.69 49.11 56.00
40.45 60.76 49.74 56.46

40.94 61.09 50.59 56.82

46.42 65.02
46.97 65.72
47.74 65.79

19.72  15.59
23.87 19.80
28.20 25.00

3591 57.43
37.01 58.45
38.67 59.70

Type

Domain

Method FewNerd FewRel

ACC NMI ACC NMI

CLINC(D)
ACC NMI

Massive(D)
ACC NMI

MTOP(D)
ACC NMI

E5-KMeans
SCCL

27.49 4235 4198 56.79
30.21 44.68 39.22 54.33

59.17 55.15
60.53 57.56

61.57 64.99
60.09 62.26

87.23 83.00
84.86 83.43

Label-Gen
ClusterLLM
Keyphrase

29.14 56.36 27.10 52.45
28.81 44.13 46.09 60.46
29.16 4430 46.07 60.18

24.64 52.65
49.40 51.32
61.68 58.11

33.86 58.49
60.36  64.05
62.96 66.54

49.98 66.51
84.32 82.33
93.06 87.78

32.19 4738 48.37 62.08
33.73 49.08 51.34 64.81

Ours (iter-0)
Ours (iter-1)

60.68 58.20
63.40 59.95

61.13 65.03
64.75 66.60

89.92 83.56
89.28 83.33

Ours (iter-2) 36.85 52.84 52.73 66.51

64.07 62.08 65.77 66.76 89.69 84.06

Intent

Avg

Method CLINC(I)

ACC NMI

Massive(I)
ACC NMI

MTOP(I)
ACC NMI

Bank77

ACC NMI ACC NMI

E5-KMeans
SCCL

79.90 91.72
84.29 91.07

54.81 72.15
36.34 56.36

33.37 7143
27.22  64.68

62.90 77.90
59.73  73.35

49.32
46.25

62.00
58.72

Label-Gen
ClusterLLM
Keyphrase

39.47 65.15
83.83 93.10
83.31 93.18

44.62 62.89
56.48 74.59
57.68 75.05

47.56 57.95
35.17 72.56
3533  72.68

36.30 60.86
72.81 83.53
68.28 81.41

33.83
50.64
52.69

55.60
63.45
64.90

Ours (iter-0)
Ours (iter-1)
Ours (iter-2)

85.86 92.98
86.70 93.76
87.67 94.35

58.08 74.98
60.05 75.14
60.80 75.65

35.02 71.43
36.30 73.00
3775 174.01

71.53 83.00
70.27 83.36
70.54 83.64

52.34
53.85
55.14

63.74
65.02
66.31

Table 1: The clustering performance of the baselines and our method. The best results are bolded and the second
ones are underlined. In our method, the LLM is Qwen2.5-7B-Instruct and the embedding model is e5-large. The

baselines are reproduced with the same set of models.

4.2 Experimental Result
4.2.1 Performance Comparison

The clustering performance of the baselines and
our method is shown in Table 1. It can be seen
that our method achieves promising performance
on most datasets. We can also find some interesting
phenomena by further analyzing the resutls.
Traditional methods such as E5-KMeans and
SCCL do not perform well on most datasets. This
can be attributed to the fact that embedding mod-
els are struggling to understand texts from diverse
tasks and complex scenarios. With LLMs assist-
ing text clustering, obvious improvement can be
observed in ClusterLLM and Keyphrase. While

Label-Gen can perform well on some datasets like
MTOP(]), the difficulty of generating a label set
as the ground-truth one makes it perform badly
on most datasets. By contrast, ClusterLLM and
Keyphrase query LLMs for similarities or expan-
sions. These additional information helps embed-
ding models present better performance.

However, existing methods simply ignore pos-
sible adjustment or feedback for the LLM. In con-
trast, by using the LLM to provide text interpreta-
tions for training the embedding model unidirec-
tionally, our method (iter-0) has surpassed most
baselines. Furthermore, by reversely using the
trained embedding model to provide preference
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ArxivS2S Reddit StackEx GoEmo FewEvent FewNerd FewRel
Tm = 0.0 38.81 49.11 46.42 19.72 3591 32.19 48.37
Tm = 0.5 38.38 48.98 46.51 20.26 35.08 32.11 48.79
Tm = 1.0 38.27 49.24 46.10 19.64 36.11 32.58 48.39
Tm = 1.5 38.33 49.13 45.97 19.99 35.72 32.74 48.75
Random (iter-1) 38.99 48.46 46.14 19.85 36.41 31.99 47.86
Ours (iter-1) 40.45 49.74 46.97 23.87 37.01 33.73 51.34
CLINC(D) Massive(D) MTOP(D) CLINC(I) Massive() MTOP(I) Bank77
Tm = 0.0 60.68 61.13 89.92 85.86 58.08 35.02 71.53
Tm = 0.5 61.58 61.57 90.07 85.55 58.16 34.72 71.34
Tm = 1.0 60.20 62.63 89.86 86.02 57.42 35.06 70.69
Tm = 1.5 61.20 61.62 89.49 84.77 57.92 34.17 69.06
Random (iter-1) 60.85 60.84 89.12 85.40 58.27 34.65 70.65
Ours (iter-1) 63.40 64.75 89.28 86.70 60.05 36.30 70.27

Table 2: Ablation study for the construction strategy of the preference data (ACC).

ArxivS2S Reddit StackEx GoEmo FewEvent FewNerd FewRel
Ours (iter-1) 40.45 49.74 46.97 23.87 37.01 33.73 51.34
w/o DEC 39.64 49.23 46.63 24.44 36.40 33.54 51.55
w/o Dropout 38.62 49.30 46.47 25.06 36.63 33.36 51.39
CLINC(D) Massive(D) MTOPD) CLINCI) Massive() MTOPI) Bank77
Ours (iter-1) 63.40 64.75 89.28 86.70 60.05 36.30 70.27
w/o DEC 63.27 64.70 89.43 86.52 60.03 36.16 71.82
w/o Dropout 63.17 64.65 90.19 86.31 61.18 37.03 68.84

Table 3: Ablation study for the training objective in the embedding model (ACC).

feedback for training the LLM, our method (iter-1)
shows better results. Finally, by performing one
more iteration on this bidirectional training process,
our method (iter-2) can further improve the perfor-
mance, validating that with text interpretations and
preference feedback as bridges, our method can
achieve the mutual improvement between the LLM
and the embedding model.

4.2.2 Ablation Study

We conduct some experiments to study whether
the construction strategy of the preference data re-
ally works. We first probe candidate interpretations
sampled from different temperatures respectively.
In Table 2, we show the ACC results when using
only the candidate interpreations {mfm)}f\;l with
temperature 7, for training the embedding model.
We can see that all cadidates show generally similar
results, which means that the improvement of our
method does not come from any particular candi-
date interpretations but rather preference filtering
and LLM fine-tuning. Further, we introduce Ran-
dom that randomly chooses preferred candidate to
fine-tune the LLM. Compared with Random, we
can observe that our method is still better, which

demonstrates the effectiveness of our construction
strategy of the preference data.

To understand the effect of the training objec-
tive in the embedding model, we first remove the
DEC loss, and then further remove the contrastive
loss for the dropout augmentation. We show the
ACC results in Table 3. We can observe that the
two losses are useful on most datasets, but some
may be adversely affected instead. Thus, due to the
diversity of tasks, different datasets may require
different training objective for extracting the mean-
ingful semantics. To avoid excessive tuning, we
use the same objective for all datasets here.

4.2.3 Influence of Hyperparameters

Influence of #Iterations To find out whether
more training iterations can lead to increasing clus-
tering performance, we show the performance up
to 4 iterations in Figure 2. On most of the datasets,
we can see that the ACC and NMI metric are con-
tinuing to increase but the paces become gradually
slower and slower, which is reasonable and pre-
dictable. Howerver, due to the cost of training the
LLM, we generally choose 1 or 2 iterations in prac-
tice.
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Figure 3: Influence of the number of the candidates

Influence of #Candidates To see whether differ-
ent numbers of selectable candidates have imapcts
on the clustering perfomance, we set M = 1,2, 3
for comparison. The results are shown in Figure 3.
We can observe that in most cases, the performance
increases when the number of the candidates in-
creases. This can be due to the fact that more sam-
pled candidates allow larger space for exploring
better interpretations. However, since more ran-
dom sampling brings more diverse texts that may
hinder the training of the LLM, the performance
may drop on some datasets. Based on our experi-
mental environment, we generally choose M = 3.

4.24 Case Study

We present a case about emotion detection to show
the interpretation from the LLM for comprehensive
understanding, and see how the feedback from the
embedding model helps the LLM generate better
results. As shown in Table 5, the generated inter-
pretation is getting closer to the ground-truth label
as the training proceeds. The example text from

FewNerd FewRel CLINC(I) Massive(l)
iter-0 30.10 45.58 84.52 56.81
iter-1 31.22 46.66 85.65 57.96
iter-2 32.34 46.94 86.61 59.11
task-aware 36.85 52.73 87.67 60.80

Table 4: The clustering performance of our method
using the task-agnostic prompt (ACC).

GoEmo is iterpreted as anger by the LLM without
training, but it is later understood as amusement
after training. Finally, the emotion is highlighted
in the summarized keywords, demonstrating the
effectiveness of our method.

4.2.5 Investigation of Task-Agnostic Prompt

To further investigate whether the performance
improvement originates from the training frame-
work or the task-aware prompts, we conduct an
experiment using a task-agnostic prompt on several
datasets. Specifically, we remove the task knowl-
edge in the prompt template as follows:

Prompt Template 7" (Task-Agnostic)

You are very good at natural language un-
derstanding.

For a given text, analyze its underlying
meaning to present a better understanding.
Show your reasoning process and summa-
rize by listing at most 8 keywords that re-
flect it. Do not be too lengthy and strictly
follow the specified format:

Reasoning: ...

Keywords: ...

Text: {TEXT}

The corresponding results are shown in Table 4.
It can be seen that our method can still work us-
ing the task-agnostic prompt, which demonstrates
the effectiveness of the training framework. At the
same time, using the task-aware prompts can fur-
ther improve the performance, which is expected.
In practice, we assume the task knowledge is avail-
able since it can be expressed as the clustering goal
and obtained from users.

5 Conclusion

In this paper, we propose a training framework that
leverages LLMs and embedding models for text
clustering. We use the embedding model to select
helpful interpretations, and optimize the LLM via
preference optimization to generate better outputs.

4803



ground-truth label

amusement

original text

I know you’re joking, but there are people here either stupid or desperate enough
to believe and perpetuate such idiocy.

iter-0

Reasoning: The text expresses skepticism and disappointment towards others who
might believe in something considered foolish or false. The speaker acknowledges
that some people might be easily deceived, which implies a sense of frustration
and possibly even a touch of anger. \n\n Keywords: Skepticism, Disappointment,
Frustration, Anger, Deception, Foolishness, Belief, Perpetuation

iter-1

Reasoning: The text expresses skepticism and disappointment towards certain
individuals who believe in something deemed foolish or nonsensical. The speaker
acknowledges that some people might take the joke seriously, indicating a sense
of amusement mixed with frustration. This sentiment suggests a blend of humor
at the expense of others’ gullibility and a deeper concern for the impact of such
beliefs. \n\n Keywords: Skepticism, Frustration, Humor, Gullibility, Disappoint-
ment, Joke, Nonsensical, Belief

iter-2

Reasoning: The text expresses skepticism and disdain towards those who are
perceived as naive or desperate. The speaker is also slightly amused by the joke
but predominantly feels annoyed or irritated by the topic being discussed. \n\n
Keywords: Skepticism, Disdain, Amusement, Irritation, Naivety, Desperation,
Joke, Idiocy

Table 5: A text interpretation case from the LLM.

Then improved interpretations are used to enhance
the embedding model through contrastive learning
and achieve clustering, forming a training circle
between the two models. Experiments show the
effectiveness of our method in text clustering by
training both the LLM and the embedding model.

Limitations

As previous works, our method requires that the
number of clusters is known. Furthermore, by in-
corporating the LLM in both the training and infer-
ence stage, our method can incur additional costs.
However, we have restricted the training cost by
limiting the number of the preference data samples
(10000 samples in our experiment), thus it is actu-
ally controllable in training. What’s more, thanks
to the lightweight LLM, our method can also be
accelerated in inference with open-source acceler-
ation library, which helps reducing the inference
cost in practice. Nevertheless, we will leave fur-
ther improving the efficiency of the method as our
future work.
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A Appendix
A.1 Training Details

We implement our method using PyTorch(Paszke
et al., 2019). For the LLM, since the baseline meth-
ods rely on the powerful GPT models which cannot
be fine-tuned, we adopt Qwen2.5-7B-Instruct for
all reproductions to ensure fair comparisons. For
the embedding model, considering the difficulty of
capturing the semantics of the complex texts, we
use e5-large, a variant of the BERT model refined
by (Wang et al., 2022).

In terms of experimental settings, we use the
Adam optimizer. For fine-tuning the embedding
model, we set the batch size to 32 and the learning
rate to 3e-7. The number of clusters K involved
in DEC, used for regularization, is fixed at 256 to
preserve fine-grained semantic clusters. For fine-
tuning the LLM, we set the batch size to 4 and the
learning rate to le-5. The parameter 5 in DPO is
fixed at 0.25. Due to memory constraints, LORA
is applied for fine-tuning, with the rank set to 64.
Additionally, the weighting parameter A is set to
1 for most datasets but is set to 10 for ArxivS2S,
Reddit and StackEXx, and the temperature parameter
T is set to 0.1. What’s more, we set the number
of the candidates (including the deterministic one
:L‘:r with sample temperature 0) to 4, and the cor-
responding sample temperatures are set to 0, 0.5,
1.0 and 1.5. We generally perform 2 iterations for
training both the LLM and the embedding model.

In practice, since the method involves generating
a large amount of candidate interpretations using
the LLM, we employ vLLM (Kwon et al., 2023) as
the inference engine to significantly accelerate the
generation process. When constructing the prefer-
ence data, we use KMeans to obtain cluster cen-
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task dataset #texts  #clusters DESC
ArxivS2S 3674 93 topic: detailed subject area
topic Reddit 3217 50 topic: post topic
StackEx 4156 121 topic: post topic
emotion GoEmo 5940 27 emotion: potential emotion
FewEvent 4742 34 event type: the event
type FewNerd 3789 58 entity type: the entity
FewRel 4480 64 relation type: the relation
CLINC(D) 4500 10 utterance scenario: life scenario
domain Massive(D) 2974 18 utterance scenario: life scenario
MTOP(D) 4386 11 utterance scenario: life scenario
CLINCI) 4500 150 intent: banking customer purpose
intent Massive(I) 2974 59 intent: user intent
MTOP(I) 4386 102 intent: user intent
Bank77 3080 77 intent: user intent

Table 6: The statistics of the datasets.

ters and select high-confidence candidates based
on their densities. Considering KMeans’ sensitiv-
ity to initialization of cluster centers, we perform
KMeans 100 times and compute the distances be-
tween candidates and cluster centers in each run.
The final score is obtained by averaging these dis-
tances to reduce randomness. Given the computing
resource of four RTX 3090 GPUs, we set the num-
ber of the candidates to 4. As a result, the prefer-
ence data used in DPO is three times the size of the
original dataset. We randomly sample 10000 train-
ing samples, which can control the LLM training
time to about 40min. As for the embedding model
with contrastive learning, it takes about 10min for
each dataset on average.

Under the current settings, we acknowledge that
the cost of training the LLM remains considerable.
However, we believe that this concern will become
less critical in the near future. Recent advances
have shown that smaller LLMs (e.g., 0.5B, 1.5B,
3B) are rapidly improving in capability. It’s forsee-
able that these compact models will become viable
alternatives to larger ones for many tasks includ-
ing text clustering, making our framework more
efficient without compromising performance.

A.2 Results of Different Models

To evaluate the influence of different models, we
further conduct experiments using Meta-Llama-3-
8B-Instruct to replace Qwen. The results are shown
in Table 7. It can be observed that our method
remains effective across multiple datasets as the
number of the iterations increases. We also eval-

uate our method using instructor-large (Su et al.,
2023) as the embedding model. The results are
shown in Table 8. We can see that even when us-
ing a non-BERT architecture such as the T5-based
encoder as the embedding model, our method can
still maintain strong performance.

A.3 Analysis of Failure Case

We observe that performance gains are not always
guaranteed across all datasets, such as the Bank77
dataset. To understand the possible reason, we
probe and show a case in Table 9. It can be seen
that two texts from the same ground-truth category
may be interpreted very differently by the LLM.
As a result, their corresponding embeddings may
deviate and thus fail to capture the true seman-
tics. In such a scenario, preference guidede by
density can be low-confidence, which limits the
performance improvement and may even lead to
degradation. However, this issue can be attributed
to the capability of the LLM, as Meta-Llama-3-
8B-Instruct performs more consistently and better
than Qwen2.5-7B-Instruct on the Bank77 dataset,
as shown in Table 7.
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ArxivS2S Reddit StackEx GoEmo FewEvent FewNerd FewRel
KMeans 35.68 43.52 43.79 21.75 37.34 27.49 41.98
iter-0 37.32 49.26 46.58 21.03 35.63 29.98 45.33
iter-1 38.95 49.59 47.11 28.44 36.95 30.75 47.72
iter-2 40.19 48.73 47.58 33.02 41.25 28.31 48.38
CLINC(D) Massive(D) MTOPD) CLINC{) Massive(I) MTOP(I) Bank77
KMeans 59.17 61.57 87.23 79.90 54.81 33.37 62.90
iter-0 60.25 57.55 87.45 83.61 53.38 33.73 69.78
iter-1 62.44 57.00 89.33 85.36 58.48 3541 70.45
iter-2 56.99 56.79 90.30 85.47 60.36 35.81 71.24
Table 7: The ACC results when replacing Qwen2.5-7B-Instruct with Meta-Llama-3-8B-Instruct
ArxivS2S Reddit StackEx GoEmo FewEvent FewNerd FewRel
KMeans 24.32 53.17 41.87 24.67 38.73 28.65 39.93
iter-0 31.09 54.37 43.15 24.97 41.22 33.34 4791
iter-1 33.39 54.25 45.18 25.79 40.51 36.98 52.06
iter-2 34.88 53.60 45.81 26.34 44.50 42.61 52.60
CLINC(D) Massive(D) MTOP(D) CLINCI) Massive(I) MTOP() Bank77
KMeans 54.25 57.89 91.41 81.69 56.15 31.39 63.89
iter-0 62.44 64.55 89.51 86.52 58.67 36.85 66.30
iter-1 63.36 64.91 84.06 87.16 59.75 39.28 65.71
iter-2 60.98 67.07 81.75 86.84 60.87 42.00 65.08

Table 8: The ACC results when replacing e5-large with instructor-large

ground-truth label

lost or stolen card

original text A

card is lost, please help

interpretation

Reasoning: The text indicates a customer has lost their bank card and is seeking
assistance from a service provider, likely a bank or financial institution. The
customer’s intent is to resolve the issue of a lost card, which could involve
reporting the loss, blocking the card, and possibly arranging for a replacement.
\n\n Keywords: lost, card, assistance, bank, report, block, replace, issue

original text B

How do I deal with a stolen card?

interpretation

Reasoning: The text is asking for guidance on handling a specific issue related
to a bank card that has been stolen. The intent is to seek advice on the steps
to take to secure one’s financial information and prevent further unauthorized
transactions. \n\n Keywords: stolen, card, deal, guidance, security, transactions,
prevent, advice

Table 9: A failure case from the Bank77 dataset. Text A and B are from the same category but interpreted in different
ways (keywords) by the LLM, which gradually leads to divergence in the embedding space.
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